文档库 最新最全的文档下载
当前位置:文档库 › 温度传感器课程设计

温度传感器课程设计

温度传感器课程设计
温度传感器课程设计

温度传感器课程设计报告专业:电气化

年级:13-2

学院:机电院

姓名:崔海艳

学号:35

--

目录

1 引言 (3)

2 设计要求 (3)

3 工作原理 (3)

4 方案设计 (4)

5 单元电路的设计和元器件的选择 (6)

微控制器模块 (6)

温度采集模块 (7)

报警模块 (9)

温度显示模块 (9)

其它外围电路 (10)

6 电源模块 (12)

7 程序设计 (13)

流程图 (13)

程序分析 (16)

8. 实例测试 (18)

总结 (18)

参考文献 (19)

1 引言

传感器是一种有趣的且值得研究的装置,它能通过测量外界的物理量,化学量或生物量来捕捉知识和信息,并能将被测量的非电学量转换成电学量。在生活中它为我们提供了很多方便,在传感器产品中,温度传感器是最主要的需求产品,它被应用在多个方面。总而言之,传感器的出现改变了我们的生活,生活因使用传感器也变得多姿多彩。

温度控制系统广泛应用于社会生活的各个领域,如家电、汽车、材料、电力电子等,常用的控制电路根据应用场合和所要求的性能指标有所不同,在工业企业中,如何提高温度控制对象的运行性能一直以来都是控制人员和现场技术人员努力解决的问题。这类控制对象惯性大,滞后现象严重,存在很多不确定的因素,难以建立精确的数学模型,从而导致控制系统性能不佳,甚至出现控制不稳定、失控现象。传统的继电器调温电路简单实用,但由于继电器动作频繁,可能会因触点不良而影响正常工作。控制领域还大量采用传统的PID控制方式,但PID 控制对象的模型难以建立,并且当扰动因素不明确时,参数调整不便仍是普遍存在的问题。而采用数字温度传感器DS18B20,因其内部集成了A/D转换器,使得电路结构更加简单,而且减少了温度测量转换时的精度损失,使得测量温度更加精确。数字温度传感器DS18B20只用一个引脚即可与单片机进行通信,大大减少了接线的麻烦,使得单片机更加具有扩展性。由于DS18B20芯片的小型化,更加可以通过单跳数据线就可以和主电路连接,故可以把数字温度传感器

DS18B20做成探头,探入到狭小的地方,增加了实用性。更能串接多个数字温度传感器DS18B20进行范围的温度检测

2 设计要求

本设计主要是介绍了单片机控制下的温度检测系统,详细介绍了其硬件和软件设计,并对其各功能模块做了详细介绍,其主要功能和指标如下:

●利用温度传感器(DS18B20)测量某一点环境温度

●测量范围为-55℃~+99℃,精度为±℃

●用液晶进行实际温度值显示

●能够根据需要方便设定上下限报警温度

3 工作原理

温度传感器DS18B20 从设备环境的不同位置采集温度,单片机AT89S51 获取采集的温度值,经处理后得到当前环境中一个比较稳定的温度值,再根据当前设定的温度上下限值,通过加热和降温对当前温度进行调整。当采集的温度经处理后超过设定温度的上限时,单片机通过三极管驱动继电器开启降温设备(压缩制冷器) ,当采集的温度经处理后低于设定温度的下时,单片机通过三极管驱动继电器开启升温设备(加热器) 。

当由于环境温度变化太剧烈或由于加热或降温设备出现故障,或者温度传感头出现故障导致在一段时间内不能将环境温度调整到规定的温度限内的时候,单片机通过三极管驱动扬声器发出警笛声。

系统中将通过串口通讯连接PC机存储温度变化时的历史数据,以便观察整个温度的控制过程及监控温度的变化全过程。

4 方案设计

采用数字温度芯片DS18B20 测量温度,输出信号全数字化。便于单片机处理及控制,省去传统的测温方法的很多外围电路。且该芯片的物理化学性很稳定,它能用做工业测温元件,此元件线形较好。在0—100摄氏度时,最大线形偏差小于1 摄氏度。DS18B20 的最大特点之一采用了单总线的数据传输,由数字温度计DS18B20和微控制器AT89S51构成的温度测量装置,它直接输出温度的数字信号,可直接与计算机连接。这样,测温系统的结构就比较简单,体积也不大。采用51单片机控制,软件编程的自由度大,可通过编程实现各种各样的算术算法和逻辑控制,而且体积小,硬件实现简单,安装方便。既可以单独对多DS18B20控制工作,还可以与PC 机通信上传数据,另外AT89S51 在工业控制上也有着广泛的应用,编程技术及外围功能电路的配合使用都很成熟。

该系统利用AT89S51芯片控制温度传感器DS18B20进行实时温度检测并显示,能够实现快速测量环境温度,并可以根据需要设定上下限报警温度。该系统扩展性非常强,它可以在设计中加入时钟芯片DS1302以获取时间数据,在数据处理同时显示时间,并可以利用AT24C16芯片作为存储器件,以此来对某些时间点的温度数据进行存储,利用键盘来进行调时和温度查询,获得的数据可以通过MAX232芯片与计算机的RS232接口进行串口通信,方便的采集和整理时间温度

数据。

系统框图如图4-3所示

图4-3 DS18B20温度测温系统框图

5 单元电路的设计和元器件的选择

微控制器模块

AT89S51 是一个低功耗,高性能CMOS 8位单片机,片内含8k Bytes ISP(In-system programmable)的可反复擦写1000次的Flash只读程序存储器,器件采用ATMEL 公司的高密度、非易失性存储技术制造,兼容标准MCS-51指令系统及80C51引脚结构,芯片内集成了通用8位中央处理器和ISP Flash存储单元,功能强大的微型计算机的AT89S51可为许多嵌入式控制应用系统提供高性价比的解决方案。AT89S51具有如下特点:40个引脚,4k Bytes Flash片内程序存储器,128 bytes 的随机存取数据存储器(RAM),32个外部双向输入/输出(I/O)口,5个中断优先级2层中断嵌套中断,2个16位可编程定时计数器,2个全双工串行通信口,看门狗(WDT)电路,片内时钟振荡器。

此外,AT89S51设计和配置了振荡频率可为0Hz并可通过软件设置省电模式。空闲模式下,CPU暂停工作,而RAM定时计数器,串行口,外中断系统可继续工作,掉电模式冻结振荡器而保存RAM的数据,停止芯片其它功能直至外中断激活或硬件复位。同时该芯片还具有PDIP、TQFP和PLCC等三种封装形式,以适应不同产品的需求。

由于系统控制方案简单,数据量也不大,考虑到电路的简单和成本等因素,因此在本设计中选用 A TMEL 公司的 A T89S51单片机作为主控芯片。主控模块采用单片机最小系统是由于 A T89S51芯片内含有4 kB的E2PROM ,无需外扩存储器,电路简单可靠,其时钟频率为0~24 MHz ,并且价格低廉,批量价在10元以内。

主要特性如下

●与MCS-51 兼容

●4K字节可编程闪烁存储器

●寿命:1000写/擦循环

●数据保留时间:10年

●全静态工作:0Hz-24Hz

●三级程序存储器锁定

●128*8位内部RAM

●32可编程I/O线

●两个16位定时器/计数器

●5个中断源

●可编程串行通道

●低功耗的闲置和掉电模式

●片内振荡器和时钟电路AT89S51单片机引脚图

温度采集模块

DS18B20是DALLAS公司生产的一线式数字温度传感器,它具有微型化、低功耗、高性能抗干扰能力、强易配处理器等优点,特别适合用于构成多点温度测控系统,可直接将温度转化成串行数字信号(按9位二进制数字)给单片机处理,且在同一总线上可以挂接多个传感器芯片,它具有三引脚TO-92小体积封装形式,温度测量范围-55~+125℃,可编程为9~12位A/D转换精度,测温分辨率可达℃,被测温度用符号扩展的16位数字量方式串行输出,其工作电源既可在远端引入,业可采用寄生电源方式产生,多个DS18B20可以并联到三根或者两根线上,CPU 只需一根端口线就能与多个DS18B20通信,占用微处理器的端口较少,可节省大量的引线和逻辑电路。从而可以看出DS18B20可以非常方便的被用于远距离多点温度检测系统。

综上,在本系统中我采用温度芯片DS18B20测量温度。该芯片的物理化学性很稳定,它能用做工业测温元件,且此元件线形较好。在0—100摄氏度时,最大线形偏差小于1摄氏度。该芯片直接向单片机传输数字信号,便于单片机处理及控制。

图5-2温度芯片DS18B20

DS18B20 最大的特点是单总线数据传输方式,DS18B20 的数据I/O 均由同一条线来完成。DS18B20 的电源供电方式有 2 种: 外部供电方式和寄生电源方式。工作于寄生电源方式时,VDD 和GND 均接地,他在需要远程温度探测和空间受限的场合特别有用,原理是当1 W ire 总线的信号线DQ 为高电平时,窃取信号能量给DS18B20 供电,同时一部分能量给内部电容充电,当DQ为低电平时释放能量为DS18B20 供电。但寄生电源方式需要强上拉电路,软件控制变得复杂(特别是在完成温度转换和拷贝数据到E2PROM 时) ,同时芯片的性能也有所降低。外部电源供电方式是DS18B20最佳的工作方式,工作稳定可靠,抗干扰能力强,而且电路也比较简单,可以开发出稳定可靠的多点温度监控系统。因此本设计采用外部供电方式。如下图所示:

DS18B20

温度传感器DS18B20的测量范围为-55℃~+125℃,在-10℃~+85℃时精度为±℃。因为本设计只用于测量环境温度,所以只显示0℃~+85℃。

报警模块

本设计采软件处理报警,利用有源蜂鸣器进行报警输出,采用直流供电。当所测温度超过获低于所预设的温度时,数据口相应拉高电平,报警输出。(也可采用发光二级管报警电路,如过需要报警,则只需将相应位置1,当参数判断完毕后,再看报警模型单元ALARM 的内容是否与预设一样,如不一样,则发光报警)报警电路硬件连接见图5-3

图5-3蜂鸣器电路连接图

温度显示模块

本设计显示电路采用两位共阳极LED数码管来显示测量得到的温度值。LED数码管能在低电压下工作,而且体积小、重量轻、使用寿命长,因次本设计选用此数码管作为显示器件。

一个LED数码管只能显示一位的字符,如果字符位数不止一位,可以用几个数码管组成,但要控制多位的显示电路需要有字段控制和字位控制,字段控制是指控制所要显示的字符是什么,控制电路应将字符的七段码通过输出口连接到LED的a~g引脚,是某些段点亮,某些段处于熄灭状态。字位控制是指控制在多位显示器中,哪几位发光或那几位不发光,字位控制则需要通过字位码作用于LED数码管的公共引脚,是某一位或某几位的数码管可以发光。

数码管显示电路分为动态显示和静态显示。

静态显示方式是指每一个数码管的字段控制是独立的,每一个数码管都需要配置一个8位输出口来输出该字位的七段码。因此需要显示多位时需要多个输出口,通常片内并口不够用,需要在片外扩展。

动态显示又称为扫描显示方式,也就是在某一时刻只能让一个字位处于选通状态,其他字位一律断开,同时在字段线上发出该位要显示的字段码,这样在某一时刻某一位数码管就会被点亮,并显示出相应的字符。下一时刻改变所显示的字位和字段码,点亮另一个数码管,显示另一个字符。绕后一次扫描轮流点亮其他数码管,只要扫描速度快,利用人眼的视觉残留效应,会使人感觉到几位数码管都在稳定的显示。

本设计采用数码管动态显示,电路如下图所示:

显示部分电路

图中由单片机P1口串接74HC245驱动两位共阳极数码管,上拉电阻排为10K。由和通过PNP型三极管Q1,Q2驱动其字位。三极管发射极接高电平,当或为低电平时使三极管导通选通数码管的某一位。

其它外围电路

复位电路:在单片机的RST引脚引入高电平并保持2个机器周期时,单片机内部就执行复位操作。实际应用中,复位操作有两种形式:一种是上电复位,另一种是上电与按键均有效的复位。如下图所示

上电复位要求接通电源后,单片机自动实现复位操作。上电瞬间RST引脚获得高电平,随着电容的充电,RST引脚的高电平逐渐下降。只要RST引脚保持两个机器周期的高电平单片机就可以进行复位操作。该电路参数为:晶振为12MHz时,电容为10μF,电阻为Ω;晶振为6MHz时,电容为22μF,电阻为1 KΩ。本设计采用上电复位电路,电路参数为电容10μF,电阻.。

晶振电路:单片机的时钟信号通常有两种方式产生:一是内部时钟方式,二是外部时钟方式。

本设计采用内部时钟方式,在单片机内部有一震荡电路,只要在单片机的XTAL1和XTAL2脚外接石英晶体(简称晶振),就构成了自己震荡器并在单片机内部产生时钟脉冲信号。

C1

C2

图中电容器的作用是稳定频率和快速起振,电容值在5~30pF,典型值为30pF。晶振CYS的震荡频率范围在~12MHz间选择,典型值为12MHz和6MHz。本设计采用12MHz晶振,电容值为20 pF。

在电路总体设计中,EA\Vpp脚用于是从外部程序存储器取指还是从内部程序存储器取指的选择信号。当EA\Vpp接高电平时,先从片内程序存储器读取指令,读完4KB后,自动改为片外取指。若EA\Vpp接低电平,则所有指令均从片外程序存储器读取。ALE脚用于输出允许地址所存信号。PSEN脚用于外部程序存储器选通信号,在对外部程序存储器取指操作时此引脚置低电平有效。在执行片内程序存储器取指时PESN脚无效。本设计无片外程序存储器扩展,所以将EA\V pp脚接高电平,ALE及PSEN脚悬空。

6 电源模块

控制系统主控制部分电源需要用5V直流电源供电,其电路如图6所示,把频率为50Hz、有效值为220V的单相交流电压转换为幅值稳定的5V直流电压。其主要原理是把单相交流电经过电源变压器、整流电路、滤波电路、稳压电路转换成稳定的直流电压。

由于输入电压为电网电压,一般情况下所需直流电压的数值和电网电压的有效值相差较大,因而电源变压器的作用显现出来起到降压作用。降压后还是交流电压,所以需要整流电路把交流电压转换成直流电压。由于经整流电路整流后的电压含

有较大的交流分量,会影响到负载电路的正常工作。需通过低通滤波电路滤波,使输出电压平滑。稳压电路的功能是使输出直流电压基本不受电网电压波动和负载电阻变化的影响,从而获得稳定性足够高的直流电压。本电路使用集成稳压芯片7805解决了电源稳压问题。

图6电源部分连线图

7 程序设计

用汇编语言完成对设计的软件编程,程序开始首先对温度传感器DS18B20进行复位,检测是否正常工作;接着读取温度数据,主机发出CCH指令与在线的DS18B20联系,接着向DS18B20发出温度A/D转换44H指令,再发出温度寄存器的温度值BEH指令,并反复调用复位,写入及读取数据子程序,之后再经过数据转换,由数码管显示出来,不断循环。

流程图

程序分析

①对DS18B20进行复位,写入和读取温度数据(在温度传感器DS18B20内部完成,并实现对温度信息的采集);读取温度流程如下:复位→发CCH命令(跳过ROM)→发44H命令→延时1s→复位→发CCH命令(跳过ROM)→发BEH 命令(读内部RAM中9字节内容)→连接从总线上读出2个字节的数据(温度数据的低8位和高8位)→结束

部分程序代码:

(1)DS18B20的复位子程序部分:

RESET_1820:

SETB DQ;

NOP

NOP

CLR DQ

;主机发出复位低脉冲

MOV R1,#3;

DLY: MOV R0,#107;

DJNZ R0,$;

DJNZ R1,DLY;

;拉高数据线

SETB DQ

NOP

NOP

NOP

;等待DS18B20的回应

MOV R0,#25H;

T2:JNB DQ,T3;

DJNZ R0,T2;

JMP T4;

;标志位flag=1,表示DS18B20存在

T3:SETB FLAG

JMP T5;

;标志位flag=0,表示DS18B20不存在

T5:MOV R0,#117;

T4:RET

注:根据DS18B20的通信协议,每一次读写数据之前都要对DS18B20进行复位,复位要求主机先发出复位低脉冲(大于48us);然后释放,DS18B20收到信号后等待16~60us,然后发出60~240us的存在低脉冲,主机收到此信号表示复位成功。

初始化时序

(2)DS18B20的写入子程序部分:

WRITE_1820:

MOV R2,#8 ;一位共8位数据

CLR C ;C=0

WR1:

CLR DQ ;总线低位,开始写入

MOV R3,#7;

DJNZ R3,$ ;保持16us以上

RRC A ;把字节DATA分成8个位,循环给C

MOV DQ,C ;写入一个位;

MOV R3,#23;

DJNE R3,$ ;等待

SETB DQ ;重新释放总线;

NOP

DJNZ R2,WR1 ;写入下一个位;

SETB DQ

RET

注:当主机把数据从逻辑高电平拉到逻辑低电平的时候,写时间隙开始。有两种写时间隙,写1 时间隙和写0 时间隙。所有写时间隙必须最少持续60μs,包括两个写周期至少1μs 的恢复时间。I/O线电平变低后,DS18B20 在一个15μs 到60μs 的窗口内对I/O 线采样。如果线上事高电平,就是写1,如果是低电平,就是写0。主机要生成一个写时间隙,必须把数据线拉到低电平然后释放,在写时间隙开始后的15μs 内允许数据线拉到高电平。主机要生成一个写0 时间隙,必须把数据线拉到低电平并保存60μs。

每个读时隙都由主机发起,至少拉低总线1us,在主机发起读时序之后,单总线器件才开始在总线上发送0 或1。所有读时序至少需要60us。

写时序

(3)DS18B20的读取子程序

READ_1820:

MOV R4 ,#2 ;读取两个字节的数字

MOV R1,#29H ;低位存入29H,高位存入28H

RE0:

MOV R2,#8 ;数据一共有8位

RE1:

CLR C

SETB DQ

NOP

NOP

CLR DQ ;读前总线保持为低

NOP

NOP

NOP

SETB DQ ;开始读总线释放

MOV R3,#9;

RE2:

DJNZ R3,RE2 ;延时18us

MOV C,DQ ;从总线读到一个位

MOV R3,#23;

RE3:

DJNZ R3,RE3 ;等待50us

RRC A ;把读得的位值循环移给A

DJNZ R2,RE1 ;读取下一位

MOV @R1,A;

DEC R1

DJNZ R4,RE0;

RET

注:当从DS18B20 读数据时,主机生成读时间隙。当主机把数据从高电平拉到低电平时,读时间隙开始,数据线必须保持至少1μs;从DS18B20输出的数据在读时间隙的下降沿出现后15μs 内有效。

因此,主机在读时间隙开始后必须把I/O 脚驱动拉为的电平保持15μs,以读取I/O 脚状态。在读时间隙的结尾,I/O 引脚将被外部上拉电阻拉到高电平。所有读时间隙必须最少60μs,包括两个读周期至少1μs的恢复时间。

读时序

②获得实际测量温度(温度传感器DS18B20把数据信息传给单片机,完成数据信息的传输);

数据转化子程序部分:

TURN:

ANL 28H,#07H

ANL 29H,#0F0H

MOV A,28H

ORL 29H,A

MOV A,29H

SWAP A

MOV 29H,A

RET

注:温度传感器DS18B20所测得的温度数据低位存入29H,高位存入28H,将28H 中的低4位移入29H中的高4位,获得一个新字节,这个字节就是实际测量的温度。

③将测量的温度数据在两位数码管上显示出来(单片机把数据信息传给LED数码管显示器,实现温度的数字化显示)。

温度显示子程序部分:

DISPLAY:

MOV A,29H;

MOV B,#10;

DIV AB

MOV B_bit ,A ;十位在A

MOV A_bit,B ;个位在B

MOV DPTR ,#TABLE ;指定查表起始地址

MOV R0,#4;

DP1:

MOV R1,#250 ;显示1000次

LOOP:

MOV A,A_bit ;取个位数

MOVC A,@a+DPTR ;查个位数的7段代码

MOV P0,A ;送出个位的7段代码

CLR ;开个位显示

ACALL DELAY

SETB

MOV A,B_bit ;取十位数

MOVC A,@A+DPTR ;查出十位数的7段代码

MOV P0,A ;送出十位的7段代码

CLR ;开十位显示

ACALL DELAY ;显示1ms

SETB

DJNZ R1,LOOP ;250次未完循环

DJNZ R0,DP1 ;4个250次未完循环

RET

8 实例测试

实例测试:将写入程序的单片机插入实验板插座内,检查温度传感器DS18B20连接正常后接通电源,此时,在两位7段LED数码管上将会准确的显示环境温度,无需作任何调整。

为了观察温度传感器DS18B20对稳定变化的灵敏度,可以用手握住DS18B20管,会看到数码管上显示的稳定很快上升至人体温度值,再将手离开DS18B20管,温度又会很快降至环境温度值,温度传感器DS18B20的测量范围为-55℃~+125℃,在-10℃~+85℃时精度为±℃。

设计总结

主要参考文献

[1]栾桂冬等《传感器及其应用》西安电子科技大学出版社2002年[2] 何希才, 薛永毅. 传感器及其应用实例[M]. 北京: 机械工业出版社, 2001.

[3]陈杰黄鸿《传感器与检测技术》高等教育出版社2002年

[4]何立民.单片机应用系统设计[M].北京:北京航空航天大学出版社,1994.

[5]张智,邹智荣。基于单片机的日光温室控制系统的设计,微计算机信息,2006

[6]任文辉,林智群,彭佩夫。用单片机对实验室恒温控制系统的设计,大学物理,2005

[7]高涛,梁晓阳,汪洋。火控雷达温度监测仪的设计与实现,微计算机信息,2006

[8]杨俊华,黄明辉。基于80C196 单片机的温度检测及显示系统,机械与电子,2003

集成温度传感器LM35测量水温

《传感器技术》课程设计 课题:集成温度传感器测量水温 班级______________________ 学生姓名__________ 学号 指导教师________________________ 淮阴工学院电子与电气工程学院

2013年6月21日 集成温度传感器LM35测量水温 1.系统方案设计 1.1概述 如今,随着科学技术的发展,传感器的种类也日益增多,如AD公司生产的模拟电压输出 型的温度传感器TMP35/36/37,它主要应用于环境控制系统、过热保护、工业过程控制、火灾报警系统、电源系统监控、仪器散热风扇控制等。还有NATIONAISEMICONDUCT生产的与微处理器相结合的测温及温度控制、管理的温度测量控制器LM8Q它主要应用于个人计算机 及服务器的硬件及系统的温度监控、办公室设备、电子测试设备等。以及MAXINE司生产的PW风扇控制器及遥控温度传感器MAX1669它主要应用于CPU冷却控制。因此,测量外界的 温度也有很多种方法,然而,由于热敏电阻及其放大电路受到环境的影响,在不同的条件下 会出现不同的测温偏差;TMP35/36/37,LM80 MAX166这些传感器的造价又太高,在相同条 件下,由于测温精度、处理精度等多方面的因素,不同的通道也会出现不同的偏差,因此必 须采用一种灵活的修正方式,这便用到了电压型温度传感器LM35D它的线性好(10mV/C), 宽量程(0--100 C)高精度(+0.4 C ),低成本,而且采集到的是电压型信号,易于处理,使得电路简单实用。 采集到的微弱电压信号经过放大器OP07放大十倍后送入ADC0804的输入端,A/D转换 器(ADC0804将模拟信号转换为数字信号后传给AT89C51,该系统以AT89C51单片机为核 心,通过单片机编程可以实现高温(50C)、低温(10C)报警的控制,以及预置温度的控 制,然后经过P1 口将数字信号传送给74LS138译码器以及驱动器CD4511使LED八段数码管动态显示室温。经实验调试,用该方法对0--100 C范围的温度测量时,测量误差+0.4 C, 可靠性好、抗干扰性能强。采用MC& 51系列单片机作为核心监控器对外界温度进行测量。 这样,既可以降低对温度传感器和放大电路的要求,从而降低成本,又可以针对不同外部环 境或不同通道对温度显示及报警设定进行灵活修改。 1.2系统方案框图 根据课题设计要求可知该系统需要利用电压型温度传感器采集室温并产生10mv/C的电压信号,将放大后的信号送给转换器进行转换,通过单片机设定上下限报警温度并显示转 换后的室温,具体流程图如图2:

各种温度传感器分类及其原理.

各种温度传感器分类及其原理

各种温度传感器分类及其原理 温度传感器是检测温度的器件,其种类最多,应用最广,发展最快。众所周知,日常使用的材料及电子元件大部分特性都随温度而变化,在此我们暂时介绍最常用的热电阻和热电偶两类产品。 1.热电偶的工作原理 当有两种不同的导体和半导体A和B 组成一个回路,其两端相互连接时,只要两结点处的温度不同,一端温度为T,称为工作端或热端,另一端温度为TO,称为自由端(也称参考端或冷端,则回路中就有电流产生,如图2-1(a所示,即回路中存在的电动势称为热电动势。这种由于温度不同而产生电动势的现象称为塞贝克效应。 与塞贝克有关的效应有两个:其一,当有电流流过两个不同导体的连接处时,此处便吸收或放出热量(取决于电流的方向, 称为珀尔帖效应;其二,当有电流流过存在温度梯度的导体时,导体吸收或放出热量(取决 于电流相对于温度梯度的方向,称为汤姆逊效应。两种不同导体或半导体的组合称为热电偶。热电偶的热电势EAB(T,T0 是由接触电势和温差电势合成的。接触电势是指两种不同 的导体或半导体在接触处产生的电势,此电势与两种导体或半导体的性质及在接触点的温度有关。 温差电势是指同一导体或半导体在温度不同的两端产生的电势, 此电势只与导体或半导体的性质和两端的温度有关,而与导体的长度、截面大小、沿其长度方向的温度分布无关。 无论接触电势或温差电势都是由于集中于接触处端点的电子数不同而产生的电势:热电偶测量的热电势是二者的合成。当回路断开时,在断开处a,b 之间便有一电动势差△ V,其极性和大小与回路中的热电势一致,如图 2-1(b所示。并规定在冷端,当电流由A流向B时,称A为正极,B 为负极。实验表明,当△ V很小时,△ V与厶T成正比关系。定义△ V对厶T 的微分热电势为热电势率,又称塞贝克系数。

温度传感器的历史发展与研究现状

温度传感器的历史发展与研究现状 摘要:本文通过查阅各类文献并进行分析总结,简述了温度传感器的意义和作用,介绍了温度传感器的发展历史,列举并分析了常用温度传感器的类型,对比了国外温度传感器设计和研究领域的现状与发展,着重阐述了国外先进的CMOS模拟集成温度传感器的主要原理。最后,文章对温度传感器的未来发展方向做出了说明。 关键词:温度传感器,IC温度传感器,CMOS集成温度传感器 一、背景介绍 1.1绪言 人们为了从外界获取信息,必须借助于感觉器官,而单靠人们自身的感觉器官,在研究自然现象和规律以及生产活动中,它们的功能就远远不够了。为适应这种情况,就需要传感器。传感器是一种检测装置,能感受到被测量的信息,并能将检测感受到的信息,按一定规律变换成为电信号或其他所需形式的信息输出,以满足信息的传输、处理、存储、显示、记录和控制等要求。[1]传感器是以一定的精度和规律把被测量转换为与之有确定关系的、便于应用的某种物理量的测量装置。它是实现自动测量和自动控制的首要环节。[2]温度是反映物体冷热状态的物理参数,它与人类生活环境有着密切关系。早在2000多年前,人类就开始为检测温度进行了各种努力,并开始使用温度传感器检测温度。[3]在人类社会中,无论工业、农业、商业、科研、国防、医学及环保等部门都与温度有着密切的关系。 [4]在工业生产自动化流程中,温度测量点一般要占全部测量点的一半左右。[5]因此,人类离不开温度传感器。传感器技术因而成为许多应用技术的基础环节,成为当今世界发达国家普

遍重视并大力发展的高新技术之一,它与通信技术、计算机技术共同构成了现代信息产业的三大支柱。[6] 1.2温度传感器的发展历史和主要分类 人们研究温度测量的历史已经相当的久远了。公元1600年,伽利略研制出气体温度计。 [7]一百年后,酒精温度计[8]和水银温度计[9]问世。到了1821年,德国物理学家赛贝发明了热电偶传感器[10],人类真正的第一次把温度变成了电信号。此后,随着技术的发展,人们研制出了各种温度传感器。本世纪,在半导体技术的支持下,相继诞生了半导体热电偶传感器、PN结温度传感器和集成温度传感器。[11]与之相应,根据波与物质的相互作用规律,相继开发了声学温度传感器、红外传感器和微波传感器。[12] 温度传感器有四种主要类型:热电偶、热敏电阻、电阻温度检测器(RTD)和IC温度传感器。[13] 热电偶传感器有自己的优点和缺陷。热电偶温度传感器的灵敏度与材料的粗细无关,用非常细的材料也能够做成温度传感器。也由于制作热电偶的金属材料具有很好的延展性,这种细微的测温元件有极高的响应速度,可以测量快速变化的过程。然而热电偶传感器的灵敏度比较低,容易受到环境干扰信号的影响,也容易受到前置放大器温度漂移的影响,因此不适合测量微小的温度变化。[14] IC温度传感器即数字集成温度传感器,其外形非常得小,这样更加让它广泛应用在生产实践的各个领域中,也为我们的生活提供了无数的便利和功能。尤其是CMOS工艺实现的智能温度传感芯片具有低成本、低功耗、与标准数字工艺兼容以及芯片面积小等优点,已经取代了双极型工艺。IC温度传感器又包括模拟输出和数字输出两种类型,最主要的特点之一是将温度传感模块和信号的处理电路同时集成在一个芯片上。[15]

温度传感器基础知识

https://www.wendangku.net/doc/a015041785.html,/download/4104_0/101400.html 温度传感器基础知识 温度是表征物体冷热程度的物理量,是工农业生产过程中一个很重要而普遍的测量参数。温度的测量及控制对保证产品质量、提高生产效率、节约能源、生产安全、促进国民经济的发展起到非常重要的作用。由于温度测量的普遍性,温度传感器的数量在各种传感器中居首位,约占50%。 温度传感器是通过物体随温度变化而改变某种特性来间接测量的。不少材料、元件的特性都随温度的变化而变化,所以能作温度传感器的材料相当多。温度传感器随温度而引起物理参数变化的有:膨胀、电阻、电容、而电动势、磁性能、频率、光学特性及热噪声等等。随着生产的发展,新型温度传感器还会不断涌现。 由于工农业生产中温度测量的范围极宽,从零下几百度到零上几千度,而各种材料做成的温度传感器只能在一定的温度范围内使用。常用的测温传感器的种类与测温范围如下表所示。

工作原理晶体二极管或三极管的PN 结的结电压是随温度而变化的。例如硅管的PN 结的结电压在温度每升高1℃时,下降-2mV ,利用这种特性,一般可以直接采用二极管(如玻璃封装的开关二极管1N4148)或采用硅三极管(可将集电极和基极短接)接成二极管来做PN 结温度传感器。这种传感器有较好的线性,尺寸小,其热时间常数为0.2—2秒,灵敏度高。测温范围为-50—150℃。典型的温度曲线如图1所示。同型号的二极管或三极管特性不完全相同,因此它们的互换性较差。 应用电路(一) 图(2)是采用PN 结温度传感器的数字式温度计,测温范围-50—150℃,分辨率为0.1℃,在0—100℃范围内精度可达±1℃。 1N4148 https://www.wendangku.net/doc/a015041785.html,/datasheet/1N4148/28138465/Beyschlag

传感器应用电路设计.

传感器应用电路设计 电子温度计 学校:贵州航天职业技术学院 班级:2011级应用电子技术 指导老师: 姓名: 组员:

摘要 传感器(英文名称:transducer/sensor)是一种检测装置,能感受到被测量的信息,并能将检测感受到的信息,按一定规律变换成为电信号或其他所需形式的信息输出,以满足信息的传输、处理、存储、显示、记录和控制等要求。它是实现自动检测和自动控制的首要环节。 本文将介绍一种基于单片机控制的数字温度计。在件方面介绍单片机温度控制系统的设计,对硬件原理图做简洁的描述。系统程序主要包括主程序、读出温度子程序、温度转换命令子程序、计算温度子程序、显示数据刷新子程序。软硬件分别调试完成以后,将程序下载入单片机中,电路板接上电源,电源指示灯亮,按下开关按钮,数码管显示当前温度。由于采用了智能温度传感器DS18B20,所以本文所介绍的数字温度计与传统的温度计相比它的转换速率极快,进行读、写操作非常简便。它具有数字化输出,可测量远距离的点温度。系统具有微型化、微功耗、测量精度高、功能强大等特点,加之DS18B20内部的差错检验,所以它的抗干扰能力强,性能可靠,结构简单。 随着科技的不断发展,现代社会对各种信息参数的准确度和精确度的要求都有了几何级的增长,而如何准确而又迅速的获得这些参数就需要受制于现代信息基础的发展水平。在三大信息信息采集(即传感器技术)、信息传输(通信技术)和信息处理(计算机技术)中,传感器属于信息技术的前沿尖端产品,尤其是温度传感器技术,在我国各领域已经引用的非常广泛,可以说是渗透到社会的每一个领域,人民的生活与环境的温度息息相关,在工业生产过程中需要实时测量温度,在农业生产中也离不开温度的测量,因此研究温度的测量方法和装置具有重要的意义。 测量温度的关键是温度传感器,温度传感器的发展经历了三个发展阶段:①传统的分立式温度传感器②模拟集成温度传感器③智能集成温度传感器。 目前的智能温度传感器(亦称数字温度传器)是在20世纪90年代中期问世的,它是微电子技术、计算机技术和自动测试技术(ATE)的结晶,特点是能输出温度数据及相关的温度控制量,适配各种微控制器(MCU)。社会的发展使人们对

温度传感器的常见分类 温度传感器应用大全

温度传感器的常见分类温度传感器应用大全 温度传感器在我们的日常生活中扮演着十分重要的角色,同时它也是使用范围最广,数量最多的传感器。关于它你了解多少呢?本文主要介绍的就是各种温度传感器的分类及其原理,温度传感器的应用电路。 温度传感器从17世纪温度传感器首次应用以来,依次诞生了接触式温度传感器,非接触式温度传感器,集成温度传感器,近年来在智能温度传感器在半导体技术,材料技术等新技术的支持下,温度传感器发展迅速,由于智能温度传感器的软件和硬件的合理配合既可以大大增强传感器的功能、提高传感器的精度,又可以使温度传感器的结构更为简单和紧凑,使用也更加方便。 1、热电偶传感器: 两种不同导体或半导体的组合称为热电偶。热电势EAB(T,T0)是由接触电势和温差电势合成的,接触电势是指两种不同的导体或半导体在接触处产生的电势,此电势与两种导体或半导体的性质及在接触点的温度有关,当有两种不同的导体和半导体A和B组成一个回路,其相互连接时,只要两结点处的温度不同,一端温度为T,称为工作端,另一端温度为TO,称为自由端,则回路中就有电流产生,即回路中存在的电动势称为热电动势,这种由于温度不同而产生电动势的现象称为塞贝克效应。 2、热敏电阻传感器: 热敏电阻是敏感元件的一类,热敏电阻的电阻值会随着温度的变化而改变,与一般的固定电阻不同,属于可变电阻的一类,广泛应用于各种电子元器件中,不同于电阻温度计使用纯金属,在热敏电阻器中使用的材料通常是陶瓷或聚合物,正温度系数热敏电阻器在温度越高时电阻值越大,负温度系数热敏电阻器在温度越高时电阻值越低,它们同属于半导体器件,热敏电阻通常在有限的温度范围内实现较高的精度,通常是-90℃?130℃。 3、模拟温度传感器: HTG3515CH是一款电压输出型温度传感器,输出电流1~3.6V,精度为±3%RH,0~100%RH相对湿度范围,工作温度范围-40~110℃,5s响应时间,0±1%RH迟滞,是一个带

热电阻热电偶温度传感器校准实验资料讲解

热电阻热电偶温度传感器校准实验

湖南大学实验指导书 课程名称:实验类型: 实验名称:热电阻热电偶温度传感器校准实验 学生姓名:学号:专业: 指导老师:实验日期:年月日 一、实验目的 1.了解热电阻和热电偶温度计的测温原理 2.学会热电偶温度计的制作与校正方法 3.了解二线制、三线制和四线制热电阻温度测量的原理 4.掌握电位差计的原理和使用方法 5.了解数据自动采集的原理 6.应用误差分析理论于测温结果分析。 二、实验原理 1.热电阻 (1) 热电阻原理 热电阻是中低温区最常用的一种温度检测器。它的主要特点是测量精度高,性能稳定。其中铂热是阻的测量精确度是最高的,它不仅广泛应用于工业测温,而且被制成标准的基准仪。热电阻测温是基于金属导体的电阻值随温度的增加而增加这一特性来进行温度测量的。热电阻大都由纯金属材料制成,目前应用最多的是铂和铜,此外,现在已开始采用镍、锰和铑等材料制造热电阻。常用铂电阻和铜电阻,铂电阻在0—630.74℃以内,电阻Rt与温度t的关系为: (1+At+Bt2) Rt=R 系温度为0℃时的电阻,铂电阻内部引线方式有两线制,三线制,和四线R 制三种,两线制中引线电阻对测量的影响最大,用于测温精度不高的场合,三线制可以减小热电阻与测量仪之间连接导线的电阻因环境温度变化所引起的测量误差。四线制可以完全消除引线电阻对测量的影响,用与高精度温度检测。本实验是三线制连接,其中一端接二根引线主要是消除引线电阻对测量的影响。

(2) 热电阻的校验 热电阻的校验一般在实验室中进行,除标准铂电阻温度计需要作三定点,(水三相点,水沸点和锌凝固点)校验外,实验室和工业用的铂或铜电阻温度计的校验方法有采用比较法两种校验方法。比较法是将标准水银温度计或标准铂电阻温度计与被校电阻温度计一起插入恒温水浴中,在需要的或规定的几个稳定温度下读取标准温度计和被校验温度计的示值并进行比较,其偏差不超过最大允许偏差。在校验时使用的恒温器有冰点槽,恒温水槽和恒温油槽,根据所校验的温度范围选取恒温器。比较法虽然可用调整恒温器温度的方法对温度计刻度值逐个进行比较校验,但所用的恒温器规格多,一般实验室多不具备。因此,工业电阻温度计可用两点法进行校验,即只校验R0与R100/ R0两个参数。这种校验方法只需要有冰点槽和水沸点槽,分别在这两个恒温槽中测得被校验电阻温度计的电阻R0 和R100,然后检查R0 值和R100/R0 的比值是否满足规定的技术数据指标,以确定温度计是否合格。 (3) 热电阻的类型 1)普通型热电阻。从热电阻的测温原理可知,被测温度的变化是直接通过热电阻阻值的变化来测量的,因此,热电阻体的引出线等各种导线电阻的变化会给温度测量带来影响。 2)铠装热电阻。铠装热电阻是由感温元件(电阻体)、引线、绝缘材料、不锈钢套管组合而成的坚实体,它的外径一般为φ2--φ8mm。与普通型热电阻相比,它有下列优点:①体积小,内部无空气隙,热惯性上,测量滞后小;②机械性能好、耐振,抗冲击;③能弯曲,便于安装④使用寿命长。 3)端面热电阻。端面热电阻感温元件由特殊处理的电阻丝材绕制,紧贴在温度计端面。它与一般轴向热电阻相比,能更正确和快速地反映被测端面的实际温度,适用于测量轴瓦和其他机件的端面温度。 4)隔爆型热电阻。隔爆型热电阻通过特殊结构的接线盒,把其外壳内部爆炸性混合气体因受到火花或电弧等影响而发生的爆炸局限在接线盒内,生产现场不会引超爆炸。隔爆型热电阻可用于Bla--B3c级区内具有爆炸危险场所的温度测量。 2.热电偶 (1) 热电偶原理 将两种不同材质的金属导线连接成闭合回路,如果两接点的温度不同,由于金属的热电效应,在回路中就会产生一个与温差有关的电动势,称为温差电势。在回路中串接一毫伏表,就能粗略地测出温差电势值。如图1:

LM35温度传感器中文资料

lm35温度传感器中文资料 LM35 是由National Semiconductor 所生产的温度传感器,其输出电压与摄氏温标 呈线性关系,转换公式如式,0 时输出为0V,每升高1℃,输出电压增加10mV。 LM35 有多种不同封装型式,外观如图所示。在常温下,LM35 不需要额外的校准 处理即可达到 ±1/4℃的准确率。其电源供应模式有单电源与正负双电源两种,其接 脚如图所示,正负双电源的供电模式可提供负温度的量测;两种接法的静止电流- 温度关系如图所示,在静止温度中自热效应低(0.08℃),单电源模式在25℃下静止电流约50μA,工作电压较宽,可在4—20V的供电电压范围内正常工作非常省电。 TO-92封装引脚图SO-8 IC式封装引脚图 TO-46金属罐形封装引脚图 TO-220 塑料封装引脚图

单电源模式正负双电源模式供电电压35V到-0.2V 输出电压6V至-1.0V 输出电流10mA 指定工作温度范围 LM35A -55℃ to +150℃ LM35C, LM35CA -40℃ to +110℃ LM35D 0℃ to +100℃ 封装形式与型号关系 TO-46金属罐形封装引脚图LM35H,LM35AH,LM35CH,LM35CAH,LM35DH TO-220 塑料封装引脚图LM35DT TO-92封装引脚图LM35CZ,LM35CAZ LM35DZ SO-8 IC式封装引脚图LM35DM Electrical Characteristics电气特性(注1, 6) Parameter 参数Conditions 条件 LM35A LM35CA Units (Max.) 单位Typical 典型 Tested Limit 测试极 限(注4) Design Limit设 计极限 (注5) Typical 典型 Tested Limit 测试 极限 (注4) Design Limit设 计极限 (注5) Accuracy 精度(注7 )TA=+25℃±0.2 ±0.5 -±0.2 ±0.5 -℃TA=?10℃±0.3 --±0.3 -±1.0 ℃TA=TMAX ±0.4 ±1.0 -±0.4 ±1.0 -℃TA=TMIN ±0.4 ±1.0 -±0.4 -±1.5 ℃ Nonlinearity非线性(注 8) TMIN≤TA≤TMAX ±0.18 -±0.35 ±0.15 -±0.3 ℃ Sensor Gain传感器增益(Average Slope)平均斜率TMIN≤TA≤TMAX +10.0 +9.9, -+10.0 -+9.9 mV/℃--+10.1 ---+10.1 Load Regulation 负载调节(注3) 0≤IL≤1mA TA=+25℃±0.4 ±1.0 -±0.4 ±1.0 -mV/mA TMIN≤TA≤TMAX ±0.5 -±3.0 ±0.5 -±3.0 mV/mA Line Regulation 线TA=+25℃±0.01 ±0.05 ±0.01 ±0.05 -mV/V

各种温度传感器分类及其原理.

各种温度传感器分类及其原理.

各种温度传感器分类及其原理 温度传感器是检测温度的器件,其种类最多,应用最广,发展最快。众所周知,日常使用的材料及电子元件大部分特性都随温度而变化, 在此我们暂时介绍最常用的热电阻和热电偶两类产品。 1. 热电偶的工作原理 当有两种不同的导体和半导体 A 和 B 组成一个回路,其两端相互连接时,只要两结点处的温度不同,一端温度为 T ,称为工作端或热端,另一端温度为 TO ,称为自由端 (也称参考端 或冷端,则回路中就有电流产生,如图 2-1(a所示,即回路中存在的电动势称为热电 动势。这种由于温度不同而产生电动势的现象称为塞贝克效应。 与塞贝克有关的效应有两个:其一, 当有电流流过两个不同导体的连接处时, 此处便吸收或放出热量 (取决于电流的方向 , 称为珀尔帖效应;其二,当有电流流过存在温度梯度的导体时,导体吸收或放出热量(取决 于电流相对于温度梯度的方向 ,称为汤姆逊效应。两种不同导体或半导体的组合称为热电偶。热电偶的热电势 EAB(T, T0 是由接触电势和温差电势合成的。接触电势是指两种不同 的导体或半导体在接触处产生的电势, 此电势与两种导体或半导体的性质及在接触点的温度有关。 温差电势是指同一导体或半导体在温度不同的两端产生的电势, 此电势只与导体或半导体的性质和两端的温度有关, 而与导体的长度、截面大小、沿其长度方向的温度分布无关。 无论接触电势或温差电势都是由于集中于接触处端点的电子数不同而产生的电势, 热电偶测量的热电势是二者的合成。当回路断开时,在断开处 a , b 之间便有一电动势差△ V ,其极性和大小与回路中的热电势一致,如图 2-1(b所示。并规定在冷端,当电流由 A 流向 B 时, 称 A 为正极, B 为负极。实验表明,当△ V 很小时,△ V 与△ T 成正比关系。定义△ V 对△ T

温度传感器的发展现状、原理及应用

温度传感器的发展现状、原理及应用 摘要: 近年来,中国工业现代化进程和电子信息产业的持续快速发展,推动了传感器市场的快速崛起。温度传感器是一类重要的传感器,占传感器总需求量的40%以上。温度传感器是一种半导体器件,利用NTC电阻随温度变化的特点,将非电物理量转化为电量,从而实现精确的温度测量和自动控制。温度传感器广泛应用于温度测量和控制、温度补偿、流量和风速测量、液位指示、温度测量、紫外和红外测量、微波功率测量等领域,广泛应用于彩电领域。电脑彩色显示,开关电源,热水器,冰箱,厨房设备,空调,汽车等领域。近年来,汽车电子和消费电子行业的快速增长推动了中国对温度传感器需求的快速增长。 关键词:温度传感器;发展现状;应用

目录 一、温度传感器的发展现状 (3) 二、温度传感器的原理 (3) (一)热电偶温度传感器原理 (4) (二)金属热电阻温度传感器原理 (4) (三)集成温度传感器原理 (4) 三、温度传感器的应用 (4) (一)在汽车中的应用 (5) (二)在家用电器中的应用 (5) (三)生物医学中的应用 (6) (四)工业中的应用 (6) (五)太空中的应用 (6) 四、结论 (6) 参考文献 (8)

一、温度传感器的发展现状 温度传感器是通过物体随温度变化而改变某种特性来间接测量的[1]。不少材料、元件的特性都随温度的变化而变化,所以能作温度传感器的材料相当多。温度传感器随温度而引起物理参数变化的有:膨胀、电阻、电容、而电动势、磁性能、频率、光学特性及热噪声等等。随着生产的发展,新型温度传感器还会不断涌现。 由于工农业生产中温度测量的范围极宽,从零下几百度到零上几千度,而各种材料做成的温度传感器只能在一定的温度范围内使用。温度是一个和人们生活环境有着密切关系的物理量,也是一种在生产、科研、生活中需要测量和控制的重要物理量,是国际单位制七个基本量之一。其测量控制一般产用各式各样形态的温度传感器。 表1.1当前市面上温度传感器分类统计表[2] 分类特征传感器名称 测量范围 超高温用1500℃以上光学高温计、辐射传感器 中高温用1000℃ -1500℃ 光学高温计、辐射传感器、热电偶 中温用500℃-1000℃光学高温计、辐射传感器、热电 低温用-250℃-0℃晶体管、热敏电阻、压力式玻璃温度计极低温用-270℃ --250℃ BaSrTi03陶瓷 现如今,在集成数字智能温度传感器领域,国内相关的设计和研究尚处于交 际处的阶段。目前市场上流行的同类温度传感器诸如DS18B20,AD7416,AD7417,AD7418,AD590等F,大国都是出自国外一些比较大的公司。就目前来说,国内的很多公司往往温度传感器产品比较少,并且已申请到的相关专利也非常少,处理厦门大学等高校申请专利外,还有香港应用科技研究院、苏州纳芯微电子、背景中电华大电子设计、上海贝岭等少数研究机构或企业的专利,虽然其专利名称比较大,但是技术涉及点并不全面。因此,在集成数字温度传感器方面,我国尚有较大的发展空间。

实验六 温度传感器校准实验

温度传感器校准实验 一、实验目的 掌握热电偶热电阻温度传感器的使用方法和校准方法 二、实验装置 热电偶温度传感器实验装置主要由恒温水浴、电位差计、热电偶、热电阻、冰点仪、数据采集装置、低电势转换开关和标准玻璃温度计等组成。 三、实验内容 1).了解热电阻测温原理,练习热电阻二三线制接法; 2).做出被校热电阻与标准温度计之间的曲线关系,通过查标准热电阻温度与阻值关系进行 分析; 3).了解热电偶的测温原理、温度补偿方法,练习热电偶连线与测温; 4).做出被校热电偶温度与电势曲线,通过查标准热电偶与电势关系进行分析; 5).练习电位差计测量电势方法,了解校验实验台自动采集原理。 四、操作步骤 采用手动数据采集,操作步骤如下: 1).恒温水浴内加好水,冰瓶内放入冰水混合物。 2).将热电阻与热电偶按上图4所示连好,其中热电偶冷端放入冰瓶,并保证热电偶连线在 冰瓶内10分钟以上。检查热电阻、热电偶的高温探头是否都浸在恒温水浴里。热电偶和热电阻高温探头头部要在同一水平面,以使两者温度尽可能一致。(注意:待需要测量恒温水浴精准温度时,才将温度计插入恒温水浴,以免误操作造成标准温度计损坏。 且标准温度计也要和热电偶、热电阻高温探头在同一水平面)。 3).打开恒温水浴电源,按下“加热”,“水泵”按钮,设定恒温水浴温度,待温度比较稳定 的时候,选择量程适当的标准温度计温度测量出水浴温度,采用电位差计测量各热电偶通道电势,采用万用表测量热电阻的电阻值,并做好记录。 4).实验者根据需要重复步骤3。 5).完成实验时,关闭恒温水浴电源。 6).根据记录的实验数据,进行分析与处理,最终得到不同温度情况下电势与电阻值。 7).应用误差分析理论进行测温结果分析。 六、注意事项 1.实验之前应将加热主体加入适量的水或油。 2.工作环境应无强磁场,温度0~35℃,相对湿度不大于85%。

lm35温度传感器相关资料与引脚图

lm35温度传感器相关资料与引脚图 温度传感器LM35 LM35 是由National Semiconductor 所生产的温度传感器,其输出电压与摄氏温标呈线性关系,转换公式如式,0 时输出为0V,每升高1℃,输出电压增加10mV。 LM35 有多种不同封装型式,外观如图所示。在常温下,LM35 不需要额外的校准 处理即可达到 ±1/4℃的准确率。其电源供应模式有单电源与正负双电源两种,其接 脚如图所示,正负双电源的供电模式可提供负温度的量测;两种接法的静止电流- 温度关系如图所示,在静止温度中自热效应低(0.08℃),单电源模式在25℃下静止电流约50μA,工作电压较宽,可在4—20V的供电电压范围内正常工作非常省电。 TO-92封装引脚图SO-8 IC式封装引脚图

TO-46金属罐形封装引脚图 TO-220 塑料封装引 脚图 单电源模式正负双电源模式 供电电压35V到-0.2V 输出电压6V至-1.0V 输出电流10mA 指定工作温度范围 LM35A -55℃to +150℃

LM35C, LM35CA -40℃to +110℃ LM35D 0℃to +100℃ Electrical Characteristics电气特性(注1, 6)

Electrical Characteristics电气特性(注1, 6)

注1: Unless otherwise 注d, these specifications apply: ?55℃≤TJ≤+150℃for t he LM35 and LM35A; ?40°≤TJ≤+110℃for the LM35C and LM35CA; and 0°≤TJ≤+100℃for the LM35D. VS=+5Vdc and ILOAD=50 μA, in the circuit of Figure 2. These specifications also apply from +2℃to TMAX in the circuit of F igure 1. Specifications in boldface apply over the full rated temperature range. 注2:Thermal resistance of the TO-46 package is 400℃/W, junction to ambient, and 24℃/W junction to case. Thermal resistance of the TO-92 package is 180℃/W junction to ambient. Thermal resistance of the small outline molded p ackage is 220℃/W junction to ambient. Thermal resistance of the TO-220 pac kage

基于单片机的温度传感器的设计说明

基于单片机的温度传感器 的设计 目录 第一章绪论-------------------------------------------------------- ---2 1.1 课题简介 ----------------------------------------------------------------- 2 1.2 设计目的 ----------------------------------------------------------------- 3 1.3 设计任务 ----------------------------------------------------------------- 3 第二章设计容与所用器件 --------------------------------------------- 4第三章硬件系统设计 -------------------------------------------------- 4 3.1单片机的选择------------------------------------------------------------- 4 3.2温度传感器介绍 ---------------------------------------------------------- 5 3.3温度传感器与单片机的连接---------------------------------------------- 8 3.4单片机与报警电路-------------------------------------------------------- 9 3.5电源电路----------------------------------------------------------------- 10 3.6显示电路----------------------------------------------------------------- 10 3.7复位电路----------------------------------------------------------------- 11 第四章软件设计 ----------------------------------------------------- 12 4.1 读取数据流程图--------------------------------------------------------- 12 4.2 温度数据处理程序的流程图 -------------------------------------------- 13 4.3程序源代码 -------------------------------------------------------------- 14

各种温度传感器分类及其原理.

各种温度传感器分类及其原理 温度传感器是检测温度的器件,其种类最多,应用最广,发展最快。众所周知,日常使用的材料及电子元件大部分特性都随温度而变化, 在此我们暂时介绍最常用的热电阻和热电偶两类产品。 1. 热电偶的工作原理 当有两种不同的导体和半导体 A 和 B 组成一个回路,其两端相互连接时,只要两结点处的温度不同,一端温度为 T ,称为工作端或热端,另一端温度为 TO ,称为自由端 (也称参考端或冷端,则回路中就有电流产生,如图 2-1(a所示,即回路中存在的电动势称为热电动势。这种由于温度不同而产生电动势的现象称为塞贝克效应。与塞贝克有关的效应有两个:其一, 当有电流流过两个不同导体的连接处时, 此处便吸收或放出热量 (取决于电流的方向 , 称为珀尔帖效应;其二,当有电流流过存在温度梯度的导体时,导体吸收或放出热量 (取决于电流相对于温度梯度的方向 ,称为汤姆逊效应。两种不同导体或半导体的组合称为热电偶。热电偶的热电势 EAB(T, T0 是由接触电势和温差电势合成的。接触电势是指两种不同的导体或半导体在接触处产生的电势, 此电势与两种导体或半导体的性质及在接触点的温度有关。温差电势是指同一导体或半导体在温度不同的两端产生的电势, 此电势只与导体或半导体的性质和两端的温度有关, 而与导体的长度、截面大小、沿其长度方向的温度分布无关。无论接触电势或温差电势都是由于集中于接触处端点的电子数不同而产生的电势, 热电偶测量的热电势是二者的合成。当回路断开时,在断开处 a , b 之间便有一电动势差△ V ,其极性和大小与回路中的热电势一致,如图 2-1(b所示。并规定在冷端,当电流由 A 流向 B 时, 称 A 为正极, B 为负极。实验表明,当△ V 很小时,△ V 与△ T 成正比关系。定义△ V 对△ T 的微分热电势为热电势率, 又称塞贝克系数。塞贝克系数的符号和大小取决于组成热电偶的两种导体的热电特性和结点的温度差。 2. 热电偶的种类

实验十一 LM35温度传感器特性实验

实验十一 LM35温度传感器特性实验 【实验目的】 1、了解LM35温度传感器的基本原理和温度特性的测量方法; 2、测量LM35温度传感器输出电压与温度的特性曲线; 【实验仪器】 电磁学综合实验平台、LM35温度传感器、加热井、温度传感器特性实验模板 【实验原理】 1.电压型集成温度传感器(LM35) LM35温度传感器,标准T0-92工业封装,其准确度一般为±0.5℃。(有几种级别)由于其输出为电压,且线性极好,故只要配上电压源,数字式电压表就可以构成一个精密数字测温系统。内部的激光校准保证了极高的准确度及一致性,且无须校准。输出电压的温度系数K V=10.0mV/℃,利用下式可计算出被测温度t(℃): U O=K V*t=(10mV/℃)*t 即: t(℃)= U O/10mV (11-1)LM35温度传感器的电路符号见图11-1,V o为输出端实验测量时只要直接测量其输出端电压U o,即可知待测量的温度。 图11-1

图11-2LM35传感器特性实验连接图 【实验步骤】 1、按图11-2,将实验平台加热输出与加热井(加热接口)连接,实验台风扇接口与加热井(风扇接口)连接。 2、调节PID控温表,设置SV:在表面板上按一下(SET)按键,SV表头的温度显示个位将会闪烁;按面板上的“▲”或“▼”键调整设置个位的温度;在按面板上按一下(SET)按键即可,SV表头的温度显示个位将会闪烁,再按“<”键使表头的温度显示十位闪烁,按面板上的“▲”或“▼”键调整设置十位的温度;用同样方法还可设置百位的温度。调好SV所需设定的温度后,再按一下(SET)按键即可完成设置。将加热开关选择(快)档加热,待30秒后,仪器开始加热,控温表即可自动控制温度。调节不同温度,设定参照步骤2进行调节。 3、根据不同的实验连接不同的连接线,可参照上图。 【实验数据】 1、LM35传感器(工作电压5V)(直流电压表2V档测量) 表11-1 t(℃) 30 40 50 60 70 80 90 100 U 2、描绘.LM35传感器曲线,求出.LM35随温度变化的灵敏度S(mV/℃), 【注意事项】 1、加热器温度不能加热到120℃以上,否则将可能损坏加热器。

温度传感器发展史

温度传感器,使用范围广,数量多,居各种传感器之首。温度传感器的发展大致经历了以下3个阶段: 1.传统的分立式温度传感器(含敏感元件),主要是能够进行非电量和电量之间转换。2.模拟集成温度传感器/控制器。 3.智能温度传感器。目前,国际上新型温度传感器正从模拟式想数字式、集成化向智能化及网络化的方向发展。 温度传感器的分类 温度传感器按传感器与被测介质的接触方式可分为两大类:一类是接触式温度传感器,一类是非接触式温度传感器。 接触式温度传感器的测温元件与被测对象要有良好的热接触,通过热传导及对流原理达到热平衡,这是的示值即为被测对象的温度。这种测温方法精度比较高,并可测量物体内部的温度分布。但对于运动的、热容量比较小的及对感温元件有腐蚀作用的对象,这种方法将会产生很大的误差。 非接触测温的测温元件与被测对象互不接触。常用的是辐射热交换原理。此种测稳方法的主要特点是可测量运动状态的小目标及热容量小或变化迅速的对象,也可测量温度场的温度分布,但受环境的影响比较大。 温度传感器的发展 1.传统的分立式温度传感器——热电偶传感器 热电偶传感器是工业测量中应用最广泛的一种温度传感器,它与被测对象直接接触,不受中间介质的影响,具有较高的精度;测量范围广,可从-50~1600℃进行连续测量,特殊的热电偶如金铁——镍铬,最低可测到-269℃,钨——铼最高可达2800℃。 2.模拟集成温度传感器 集成传感器是采用硅半导体集成工艺制成的,因此亦称硅传感器或单片集成温度传感器。模拟集成温度传感器是在20世纪80年代问世的,它将温度传感器集成在一个芯片上、可完成温度测量及模拟信号输出等功能。 模拟集成温度传感器的主要特点是功能单一(仅测量温度)、测温误差小、价格低、响应速度快、传输距离远、体积小、微功耗等,适合远距离测温,不需要进行非线性校准,外围电路简单。 2.1光纤传感器 光纤式测温原理 光纤测温技术可分为两类:一是利用辐射式测量原理,光纤作为传输光通量的导体,配合光敏元件构成结构型传感器;二是光纤本身就是感温部件同时又是传输光通量的功能型传感器。光纤挠性好、透光谱段宽、传输损耗低,无论是就地使用或远传均十分方便而且光纤直径小,可以单根、成束、Y型或阵列方式使用,结构布置简单且体积小。因此,作为温度计,适用的检测对象几乎无所不包,可用于其他温度计难以应用的特殊场合,如密封、高电压、强磁场、核辐射、严格防爆、防水、防腐、特小空间或特小工件等等。目前,光纤测温技术主要有全辐射测温法、单辐射测温法、双波长测温法及多波长测温等 2.1.1 全辐射测温法 全辐射测温法是测量全波段的辐射能量,由普朗克定律: 测量中由于周围背景的辐射、测试距离、介质的吸收、发射及透过率等的变化都会严重影响准确度。同时辐射率也很难预知。但因该高温计的结构简单,使用操作方便,而且自动测量,测温范围宽,故在工业中一般作为固定目标的监控温度装置。该类光纤温度计测量范围一般在600~3000℃,最大误差为16℃。 2.1.2 单辐射测温法 由黑体辐射定律可知,物体在某温度下的单色辐射度是温度的单值函数,而且单色辐射度的增长速度较温度升高快得多,可以通过对于单辐射亮度的测量获得温度信息。在常用温度与波长范围内,单色辐射亮度用维恩公式表示: 2.1.3 双波长测温法 双波长测温法是利用不同工作波长的两路信号比值与温度的单值关系确定物体温度。两路信号的比值由下式给出: 际应用时,测得R(T)后,通过查表获知温度T。同时,恰当地选择λ1和λ2,使被测物体在这两特定波段内,ε(λ1,T)与ε(λ2,T)近似相等,就可得到与辐射率无关的目标真实温度。这种方法响应快,不受电磁感应影响,抗干扰能力强。特别在有灰尘,烟雾等恶劣环境下,对目标不充满视场的运动或振动物体测温,优越性显著。但是,由于它假设两波段的发射率相等,这只有灰体才满足,因此在实际应用中受到了限制。该类仪器测温范围一般在600~3000℃,准确度可达2℃。 2.1.4 多波长辐射测温法 多波长辐射测温法是利用目标的多光谱辐射测量信息,经过数据处理得到真温和材料光谱发射率。考虑到多波长高温计有n个通道,其中第i个通道的输出信号Si可表示为: 将式(9)~(13)中的任何一式与式(8)联合,便可通过拟合或解方程的方法求得温度T和光谱发射率。Coates[8,9]在1988年讨论了式(9)、(10)

(完整版)基于FPGA的温度传感器课程设计

FPGA课程设计论文 学生姓名周悦 学号20091321018 院系电子与信息工程学院 专业电子科学与技术 指导教师李敏 二O一二年5月28 日

基于FPGA的温度传感器系统设计 1引言 温度是一种最基本的环境参数,人们的生活与环境的温度息息相关,在工业生产过程中需要实时测量温度,在农业生产中也离不开温度的测量,因此研究温度的测量方法和装置具有重要的意义。测量温度的关键是温度传感器,温度传感器的发展经历了三个发展阶段:传统的分立式温度传感器;模拟集成温度传感器;智能集成温度传感器。目前,国际上新型温度传感器正从模拟式向数字式,从集成化向智能化、网络化的方向飞速发展。本文将介绍采用智能集成温度传感器DS18B20,并以FPGA为控制器的温度测量装置的硬件组成和软件设计,用液晶来实现温度显示。 2电路分析 系统框图如下: 第一部分:DS18B20温度传感器 美国 Dallas 半导体公司的数字化温度传感器 DS1820 是世界上第一片支持 "一线总线"接口的温度传感器,在其内部使用了在板(ON-B0ARD)专利技术。全部传感元件及转换电路集成在形如一只三极管的集成电路内。一线总线独特而且经济的特点,使用户可轻松地组建传感器网络,为测量系统的构建引入全新概念。现在,新一代的 DS18B20 体积更小、更经济、更灵活。使你可以充分发挥“一线总线”的优点。 DS18B20 的主要特性:(1)适应电压范围更宽,电压范围:3.0~5.5V,在寄生电源方式下可由数据线供电(2)独特的单线接口方式,DS18B20 在与微处理器连接时仅需要一条口线即可实现微处理器与DS18B20 的双向通讯(3)DS18B20 支持多点组网功能,多个DS18B20 可以并联在唯一的三线上,实现组网多点测(4)DS18B20 在使用中不需要任何外

相关文档