文档视界 最新最全的文档下载
当前位置:文档视界 > 2014高考数学必考知识点:概率与统计

2014高考数学必考知识点:概率与统计

2014高考数学必考知识点:概率与统计

考试内容:

抽样方法.总体分布的估计. 总体期望值和方差的估计. 考试要求:

(1)了解随机抽样了解分层抽样的意义,会用它们对简单实际问题进行抽样. (2)会用样本频率分布估计总体分布. (3)会用样本估计总体期望值和方差.

概率与统计 知识要点

一、随机变量.

1. 随机试验的结构应该是不确定的.试验如果满足下述条件: ①试验可以在相同的情形下重复进行;②试验的所有可能结果是明确可知的,并且不止一个;③每次试验总是恰好出现这些结果中的一个,但在一次试验之前却不能肯定这次试验会出现哪一个结果.

它就被称为一个随机试验.

2. 离散型随机变量:如果对于随机变量可能取的值,可以按一定次序一一列出,这样的随机变量叫做离散型随机变量.若ξ是一个随机变量,a ,b 是常数.则b a +=ξη也是一个随机变量.一般地,若ξ是随机变量,)(x f 是连续函数或单调函数,则)(ξf 也是随机变量.也就是说,随机变量的某些函数也是随机变量.

设离散型随机变量ξ可能取的值为: ,,,,21i x x x

ξ取每一个值),2,1(1 =i x 的概率i i p x P ==)(ξ,则表称为随机变量ξ的概率分布,简称ξ的分布列. ξ

1x

2x

i x

… P 1p 2p …

i p …

有性质① ,2,1,01=≥i p ; ②121=++++ i p p p .

注意:若随机变量可以取某一区间内的一切值,这样的变量叫做连续型随机变量.例如:]5,0[∈ξ即ξ可以取0~5之间的一切数,包括整数、小数、无理数.

3. ⑴二项分布:如果在一次试验中某事件发生的概率是P ,那么在n 次独立重复试验中这个

事件恰好发生k 次的概率是:k n k k n q

p C k)P(ξ-==[其中p q n k -==1,,,1,0 ] 于是得到随机变量ξ的概率分布如下:我们称这样的随机变量ξ服从二项分布,记作ξ~B

(n·p ),其中n ,p 为参数,并记p)n b(k;q

p C k n k k n ?=-. ⑵二项分布的判断与应用. ①二项分布,实际是对n 次独立重复试验.关键是看某一事件是否是进行n 次独立重复,且每次试验只有两种结果,如果不满足此两条件,随机变量就不服从二项分布. ②当随机变量的总体很大且抽取的样本容量相对于总体来说又比较小,而每次抽取时又只有两种试验结果,此时可以把它看作独立重复试验,利用二项分布求其分布列.

4. 几何分布:“k =ξ”表示在第k 次独立重复试验时,事件第一次发生,如果把k 次试验时事件A 发生记为k A ,事A 不发生记为q )P(A ,A k k =,那么)A A A A P(k)P(ξk 1k 21-== .根据相互独立事件的概率乘法分式:))P(A A P()A )P(A P(k)P(ξk 1k 21-== ),3,2,1(1 ==-k p q k 于是得

到随机变量ξ的概率分布列. ξ 1 2 3

… k

… P

q

qp

p q 2

p q 1k -

我们称ξ服从几何分布,并记p q p)g(k,1k -=,其中 3,2,1.1=-=k p q

5. ⑴超几何分布:一批产品共有N 件,其中有M (M <N )件次品,今抽取)N n n(1≤≤件,则其中的次品数

ξ是一离散型随机变量,分布列为

)M N k n M,0k (0C

C C k)P(ξn

N

k

n M

N k M -≤-≤≤≤??=

=--.〔分子是从M 件次品中取k 件,从N-M 件正

品中取n-k 件的取法数,如果规定m <r 时0C r

m =,则k 的范围可以写为k=0,1,…,n.〕

⑵超几何分布的另一种形式:一批产品由 a 件次品、b 件正品组成,今抽取n 件(1≤n≤a+b ),则次品数ξ的分布列为n.,0,1,k C

C C k)P(ξn

b

a k

n b

k a =?=

=+-.

⑶超几何分布与二项分布的关系.

设一批产品由a 件次品、b 件正品组成,不放回抽取n 件时,其中次品数ξ服从超几何分布.若放回式抽取,则其中次品数η的分布列可如下求得:把b a +个产品编号,则抽取n 次共有

n b a )(+个可能结果,等可能:k)(η=含k

n k k n b

a C -个结果,故

n ,0,1,2,k ,)b a a (1)b a a (

C b)(a b

a C k)P (ηk

n k k n n

k

n k k n =+-+=+=

=--,

即η~)(b

a a n B +?.[我们先为k 个次品选定位置,共k n C 种选法;然后每个次品位置有a 种选法,每个正品位置有

b 种选法] 可以证明:当产品总数很大而抽取个数不多时,k)P(ηk)P(ξ=≈=,因此二项分布可作为超几何分布的近似,无放回抽样可近似看作放回抽样.

二、数学期望与方差.

1. 期望的含义:一般地,若离散型随机变量ξ的概率分布为 ξ 1x 2x …

i x …

P 1p 2p … i p … 则称 ++++=n n p x p x p x E 2211ξ为ξ的数学期望或平均数、均值.数学期望又简称期望.数学

期望反映了离散型随机变量取值的平均水平. 2. ⑴随机变量b a +=ξη的数学期望:b aE b a E E +=+=ξξη)( ①当0=a 时,b b E =)(,即常数的数学期望就是这个常数本身. ②当1=a 时,b E b E +=+ξξ)(,即随机变量ξ与常数之和的期望等于ξ的期望与这个常数的和. ③当0=b 时,ξξaE a E =)(,即常数与随机变量乘积的期望等于这个常数与随机变量期望的乘积. ⑵单点分布:c c E =?=1ξ其分布列为:c P ==)1(ξ. ⑶两点分布:p p q E =?+?=10ξ,其分布列为:(p + q = 1)

⑷二项分布:∑=?-?=

-np q p

k n k n k E k n k

)!(!!

ξ 其分布列为ξ~),(p n B .(P 为发生ξ的概率)

ξ 0 1 P

q

p

⑸几何分布:p

E 1

=

ξ 其分布列为ξ~),(p k q .(P 为发生ξ的概率) 3.方差、标准差的定义:当已知随机变量ξ的分布列为),2,1()( ===k p x P k k ξ时,则称

+-++-+-=n n p E x p E x p E x D 2222121)()()(ξξξξ为

ξ的方差. 显然0≥ξD ,故σξξσξ.D =为ξ的

根方差或标准差.随机变量ξ的方差与标准差都反映了随机变量ξ取值的稳定与波动,集中与离散的程度.ξD 越小,稳定性越高,波动越小............... 4.方差的性质.

⑴随机变量b a +=ξη的方差ξξηD a b a D D 2)()(=+=.(a 、b 均为常数) ⑵单点分布:0=ξD 其分布列为p P ==)1(ξ ⑶两点分布:pq D =ξ 其分布列为:(p + q = 1) ⑷二项分布:npq D =ξ ⑸几何分布:2

p q D =

ξ

5. 期望与方差的关系. ⑴如果ξE 和ηE 都存在,则ηξηξE E E ±=±)( ⑵设ξ和η是互相独立的两个随机变量,则ηξηξηξξηD D D E E E +=+?=)(,)(

⑶期望与方差的转化:22)(ξξξE E D -= ⑷)()()(ξξξξE E E E E -=-(因为ξE 为一常数)0=-=ξξE E .

三、正态分布.(基本不列入考试范围)

1.密度曲线与密度函数:对于连续型随机变量ξ,位于x 轴上方,ξ落在任一区间),[b a 内的

概率等于它与x 轴.直线a x =与直线b x =所围成的曲边梯形的面积

(如图阴影部分)的曲线叫ξ的密度曲线,以其作为 图像的函数)(x f 叫做ξ的密度函数,由于“),(+∞-∞∈x ”

是必然事件,故密度曲线与x 轴所夹部分面积等于1.

2. ⑴正态分布与正态曲线:如果随机变量ξ的概率密度为:2

22)(21)(σμσ

π--

=

x e

x f . (σ

μ,,R x ∈为常数,且0 σ),称ξ服从参数为σμ,的正态分布,用ξ~),(2σμN 表示.)(x f 的表达式可简记为),(2σμN ,它的密度曲线简称为正态曲线.

⑵正态分布的期望与方差:若ξ~),(2σμN ,则ξ的期望与方差分别为:2,σξμξ==D E . ⑶正态曲线的性质. ①曲线在x 轴上方,与x 轴不相交. ②曲线关于直线μ=x 对称. ③当μ=x 时曲线处于最高点,当x 向左、向右远离时,曲线不断地降低,呈现出“中间高、两边低”的钟形曲线. ④当x <μ时,曲线上升;当x >μ时,曲线下降,并且当曲线向左、向右两边无限延伸时,以x 轴为渐近线,向x 轴无限的靠近. ⑤当μ一定时,曲线的形状由σ确定,σ越大,曲线越“矮胖”.表示总体的分布越分散;σ越

ξ 0 1 P

q

p

y x

a

b

y=f (x )

小,曲线越“瘦高”,表示总体的分布越集中.

3. ⑴标准正态分布:如果随机变量ξ的概率函数为)(21)(2

2

+∞-∞=

- x e

x x π?,则称ξ服

从标准正态分布. 即ξ~)1,0(N 有)()(x P x ≤=ξ?,)(1)(x x --=??求出,而P (a <ξ≤b )的计算则是)()()(a b b a P ??ξ-=≤ .

注意:当标准正态分布的)(x Φ的X 取0时,有5.0)(=Φx 当)(x Φ的X 取大于0的数时,有

5.0)( x Φ.比如5.00793.0)5.0(

=-Φσ

μ

σ

μ

-5.0必然小于0,如图.

⑵正态分布与标准正态分布间的关系:若ξ~),(2σμN 则ξ的分布函数通 常用)(x F 表示,且有)σ

μx (F(x)x)P(ξ-==≤?.

4.⑴“3σ”原则.

假设检验是就正态总体而言的,进行假设检验可归结为如下三步:①提出统计假设,统计假设里的变量服从正态分布),(2σμN .②确定一次试验中的取值a 是否落入范围)3,3(σμσμ+-.③做出判断:如果)3,3(σμσμ+-∈a ,接受统计假设. 如果)3,3(σμσμ+-?a ,由于这是小概率事件,就拒绝统计假设.

⑵“3σ”原则的应用:若随机变量ξ服从正态分布),(2σμN 则 ξ落在)3,3(σμσμ+-内的概率为99.7% 亦即落在)3,3(σμσμ+-之外的概率为0.3%,此为小概率事件,如果此事件发生了,就说明此种产品不合格(即ξ不服从正态分布).

x

y a

标准正态分布曲线

S 阴=0.5S a =0.5+S S

相关文档
  • 高考数学概率与统计

  • 高考数学必考知识点

  • 2014年高考数学知识点

  • 高考数学必考题型

  • 高考数学概率统计

  • 高考数学必背知识点

相关推荐: