文档库 最新最全的文档下载
当前位置:文档库 › 图像拼接方法综述

图像拼接方法综述

图像拼接方法综述
图像拼接方法综述

图像记忆的原理和方法[图像拼接原理及方法]

图像记忆的原理和方法[图像拼接原理及方法] 第一章绪论 1.1 图像拼接技术的研究背景及研究意义 图像拼接(image mosaic)是一个日益流行的研究领域,他已经成为照相绘图学、计算机视觉、图像处理和计算机图形学研究中的热点。图像拼接解决的问题一般式,通过对齐一系列空间重叠的图像,构成一个无缝的、高清晰的图像,它具有比单个图像更高的分辨率和更大的视野。 早期的图像拼接研究一直用于照相绘图学,主要是对大量航拍或卫星的图像的整合。近年来随着图像拼接技术的研究和发展,它使基于图像的绘制(IBR )成为结合两个互补领域——计算机视觉和计算机图形学的坚决焦点,在计算机视觉领域中,图像拼接成为对可视化场景描述(Visual Scene Representaions)的主要研究方法:在计算机形学中,现实世界的图像过去一直用于环境贴图,即合成静态的背景和增加合成物体真实感的贴图,图像拼接可以使IBR 从一系列真是图像中快速绘制具有真实感的新视图。 在军事领域网的夜视成像技术中,无论夜视微光还是红外成像设备都会由于摄像器材的限制而无法拍摄视野宽阔的图片,更不用说

360 度的环形图片了。但是在实际应用中,很多时候需要将360 度所拍摄的很多张图片合成一张图片,从而可以使观察者可以观察到周围的全部情况。使用图像拼接技术,在根据拍摄设备和周围景物的情况进行分析后,就可以将通过转动的拍摄器材拍摄的涵盖周围360 度景物的多幅图像进行拼接,从而实时地得到超大视角甚至是360 度角的全景图像。这在红外预警中起到了很大的作用。 微小型履带式移动机器人项目中,单目视觉不能满足机器人的视觉导航需要,并且单目视觉机器人的视野范围明显小于双目视觉机器人的视野。利用图像拼接技术,拼接机器人双目采集的图像,可以增大机器人的视野,给机器人的视觉导航提供方便。在虚拟现实领域中,人们可以利用图像拼接技术来得到宽视角的图像或360 度全景图像,用来虚拟实际场景。这种基于全景图的虚拟现实系统,通过全景图的深度信息抽取,恢复场景的三维信息,进而建立三维模型。这个系统允许用户在虚拟环境中的一点作水平环视以及一定范围内的俯视和 仰视,同时允许在环视的过程中动态地改变焦距。这样的全景图像相当于人站在原地环顾四周时看到的情形。在医学图像处理方面,显微镜或超声波的视野较小,医师无法通过一幅图像进行诊视,同时对于大目标图像的数据测量也需要把不完整的图像拼接为一个整体。所以把相邻的各幅图像拼接起来是实现远程数据测量和远程会诊的关键 环节圆。在遥感技术领域中,利用图像拼接技术中的图像配准技术可以对同一区域的两幅或多幅图像进行比较,也可以利用图像拼接技术

像素级图像融合讲解

山东大学(威海)毕业论文 毕业设计(论文)设计(论文)题目像素级图像融合方法 姓名:李桂楠 学号:201100800668 学院:机电与信息工程学院 专业:自动化 年级2011级 指导教师:孙甲冰

目录 摘要 (4) Abstract (5) 第一章绪论 (1) 1.1课题背景及来源 (1) 1.2图像融合的理论基础和研究现状 (1) 1.3图像融合的应用 (1) 1.4图像融合的分类 (1) 第二章像素级图像融合的预处理 (3) 2.1图像增强 (3) 2.2图像校正 (6) 2.3图像配准 (6) 第三章像素级图像融合的方法综述 (8) 3.1加权平均图像融合方法 (8) 3.2 HIS空间图像融合方法 (8) 3.3 主成分分析图像融合方法 (8) 3.4 伪彩色图像融合方法 (9) 第四章基于小波变换的像素级图像融合概述 (10) 4.1 小波变换的基本理论 (10) 4.2 基于小波变换的图像融合 (11) 4.3基于小波变换的图像融合性能分析 (12)

第五章像素级图像融合方法的研究总结与展望 (19) 参考文献 (20) 谢辞................................. 错误!未定义书签。

摘要 近些年,随着科学技术的飞速发展,各种各样的图像传感器出现在人们的视野前,这种样式繁多的图像传感器在不同的成像原理和不同的工作环境下具有不同功能。而因为多传感器的不断涌现,图像融合技术也越来越多的被应用于医学、勘探、海洋资源开发、生物学科等领域。 图像融合主要有像素级、决策级和特征级三个层次,而像素级图像融合作为基础能为其他层次的融合提供更准确、全面、可依赖的图像信息。本文的主要工作是针对像素级的图像融合所展开的。 关键词 图像融合理论基础、加权平均、图像融合方法、小波变换、

图像拼接原理及方法

第一章绪论 1.1 图像拼接技术的研究背景及研究意义 图像拼接(image mosaic)是一个日益流行的研究领域,他已经成为照相绘图学、计算机视觉、图像处理和计算机图形学研究中的热点。图像拼接解决的问题一般式,通过对齐一系列空间重叠的图像,构成一个无缝的、高清晰的图像,它具有比单个图像更高的分辨率和更大的视野。 早期的图像拼接研究一直用于照相绘图学,主要是对大量航拍或卫星的图像的整合。近年来随着图像拼接技术的研究和发展,它使基于图像的绘制(IBR)成为结合两个互补领域——计算机视觉和计算机图形学的坚决焦点,在计算机视觉领域中,图像拼接成为对可视化场景描述(Visual Scene Representaions)的主要研究方法:在计算机形学中,现实世界的图像过去一直用于环境贴图,即合成静态的背景和增加合成物体真实感的贴图,图像拼接可以使IBR从一系列真是图像中快速绘制具有真实感的新视图。 在军事领域网的夜视成像技术中,无论夜视微光还是红外成像设备都会由于摄像器材的限制而无法拍摄视野宽阔的图片,更不用说360 度的环形图片了。但是在实际应用中,很多时候需要将360 度所拍摄的很多张图片合成一张图片,从而可以使观察者可以观察到周围的全部情况。使用图像拼接技术,在根据拍摄设备和周围景物的情况进行分析后,就可以将通过转动的拍摄器材拍摄的涵盖周围360 度景物的多幅图像进行拼接,从而实时地得到超大视角甚至是360 度角的全景图像。这在红外预警中起到了很大的作用。 微小型履带式移动机器人项目中,单目视觉不能满足机器人的视觉导航需要,并且单目视觉机器人的视野范围明显小于双目视觉机器人的视野。利用图像拼接技术,拼接机器人双目采集的图像,可以增大机器人的视野,给机器人的视觉导航提供方便。在虚拟现实领域中,人们可以利用图像拼接技术来得到宽视角的图像或360 度全景图像,用来虚拟实际场景。这种基于全景图的虚拟现实系统,通过全景图的深度信息抽取,恢复场景的三维信息,进而建立三维模型。这个系统允许用户在虚拟环境中的一点作水平环视以及一定范围内的俯视和仰视,同时允许在环视的过程中动态地改变焦距。这样的全景图像相当于人站在原地环顾四周时看到的情形。在医学图像处理方面,显微镜或超声波的视野较小,医师无法通过一幅图像进行诊视,同时对于大目标图像的数据测量也需要把不完整的图像拼接为一个整体。所以把相邻的各幅图像拼接起来是实现远程数据测量和远程会诊的关键环节圆。在遥感技术领域中,利用图像拼接技术中的图像配准技术可以对来自同一区域的两幅或多幅图像进行比较,也可以利用图像拼接技术将遥感卫星拍摄到的有失真地面图像拼接成比较准确的完整图像,作为进一步研究的依据。 从以上方面可以看出,图像拼接技术的应用前景十分广阔,深入研究图像拼接技术有着很重要的意义 1.2图像拼接算法的分类 图像拼接作为这些年来图像研究方面的重点之一,国内外研究人员也提出了很多拼接算法。图像拼接的质量,主要依赖图像的配准程度,因此图像的配准是拼接算法的核心和关键。根据图像匹配方法的不同仁阔,一般可以将图像拼接算法分为以下两个类型:(1) 基于区域相关的拼接算法。 这是最为传统和最普遍的算法。基于区域的配准方法是从待拼接图像的灰度值出发,对

图像拼接原理及方法

第一章绪论 1.1图像拼接技术的研究背景及研究意义 图像拼接(image mosaic)是一个日益流行的研究领域,他已经成为照相绘图学、计算机视觉、图像处理和计算机图形学研究中的热点。图像拼接解决的问题一般式,通过对齐一系 列空间重叠的图像,构成一个无缝的、高清晰的图像,它具有比单个图像更高的分辨率和更大的视野。 早期的图像拼接研究一直用于照相绘图学,主要是对大量航拍或卫星的图像的整合。近年来随着图像拼接技术的研究和发展,它使基于图像的绘制( IBR )成为结合两个互补领域 ――计算机视觉和计算机图形学的坚决焦点,在计算机视觉领域中,图像拼接成为对可视化 场景描述(Visual Seene Representaions)的主要研究方法:在计算机形学中,现实世界的图像过去一直用于环境贴图,即合成静态的背景和增加合成物体真实感的贴图,图像拼接可以 使IBR从一系列真是图像中快速绘制具有真实感的新视图。 在军事领域网的夜视成像技术中,无论夜视微光还是红外成像设备都会由于摄像器材的限制而无法拍摄视野宽阔的图片,更不用说360度的环形图片了。但是在实际应用中,很 多时候需要将360度所拍摄的很多张图片合成一张图片,从而可以使观察者可以观察到周围的全部情况。使用图像拼接技术,在根据拍摄设备和周围景物的情况进行分析后,就可以将通过转动的拍摄器材拍摄的涵盖周围360度景物的多幅图像进行拼接,从而实时地得到 超大视角甚至是360度角的全景图像。这在红外预警中起到了很大的作用。 微小型履带式移动机器人项目中,单目视觉不能满足机器人的视觉导航需要,并且单目 视觉机器人的视野范围明显小于双目视觉机器人的视野。利用图像拼接技术,拼接机器人双 目采集的图像,可以增大机器人的视野,给机器人的视觉导航提供方便。在虚拟现实领域中,人们可以利用图像拼接技术来得到宽视角的图像或360度全景图像,用来虚拟实际场景。 这种基于全景图的虚拟现实系统,通过全景图的深度信息抽取,恢复场景的三维信息,进而建立三维模型。这个系统允许用户在虚拟环境中的一点作水平环视以及一定范围内的俯视和仰视,同时允许在环视的过程中动态地改变焦距。这样的全景图像相当于人站在原地环顾四 周时看到的情形。在医学图像处理方面,显微镜或超声波的视野较小,医师无法通过一幅图 像进行诊视,同时对于大目标图像的数据测量也需要把不完整的图像拼接为一个整体。所以把相邻的各幅图像拼接起来是实现远程数据测量和远程会诊的关键环节圆。在遥感技术领域中,利用图像拼接技术中的图像配准技术可以对来自同一区域的两幅或多幅图像进行比较,也可以利用图像拼接技术将遥感卫星拍摄到的有失真地面图像拼接成比较准确的完整图像,作为进一步研究的依据。 从以上方面可以看出,图像拼接技术的应用前景十分广阔,深入研究图像拼接技术有着很重 要的意义 1.2图像拼接算法的分类 图像拼接作为这些年来图像研究方面的重点之一,国内外研究人员也提出了很多拼接算 法。图像拼接的质量,主要依赖图像的配准程度,因此图像的配准是拼接算法的核心和关键。根据图像匹配方法的不同仁阔,一般可以将图像拼接算法分为以下两个类型: (1) 基于区域相关的拼接算法。 这是最为传统和最普遍的算法。基于区域的配准方法是从待拼接图像的灰度值出发,对 待配准图像中一块区域与参考图像中的相同尺寸的区域使用最小二乘法或者其它数学方法 计算其灰度值的差异,对此差异比较后来判断待拼接图像重叠区域的相似程度,由此得到待

360°全景拼接技术简介

本文为技术简介,详细算法可以参考后面的参考资料。 1.概述 全景图像(Panorama)通常是指大于双眼正常有效视角(大约水平90度,垂直70度)或双眼余光视角(大约水平180度,垂直90度),在一个固定的观察点,能够提供水平方向上方位角360度,垂直方向上180度的自由浏览(简化的全景只能提供水平方向360度的浏览),乃至360度完整场景范围拍摄的照片。 生成全景图的方法,通常有三种:一是利用专用照相设备,例如全景相机,带鱼眼透镜的广角相机等。其优点是容易得到全景图像且不需要复杂的建模过程,但是由于这些专用设备价格昂贵,不宜普遍适用。二是计算机绘制方法,该方法利用计算机图形学技术建立场景模型,然后绘制虚拟环境的全景图。其优点是绘制全景图的过程不需要实时控制,而且可以绘制出复杂的场景和真实感较强的光照模型,但缺点是建模过程相当繁琐和费时。三是利用普通数码相机和固定三脚架拍摄一系列的相互重叠的照片,并利用一定的算法将这些照片拼接起来,从而生成全景图。 近年来随着图像处理技术的研究和发展,图像拼接技术已经成为计算机视觉和计算机图形学的研究焦点。目前出现的关于图像拼接的商业软件主要有Ptgui、Ulead Cool 360及ArcSoft Panorama Maker等,这些商业软件多是半自动过程,需要排列好图像顺序,或手动点取特征点。 2.全景图类型: 1)柱面全景图 柱面全景图技术较为简单,发展也较为成熟,成为大多数构建全景图虚拟场景的基础。这种方式是将全景图像投影到一个以相机视点为中心的圆柱体内表面,

视线的旋转运动即转化为柱面上的坐标平移运动。这种全景图可以实现水平方向360度连续旋转,而垂直方向的俯仰角度则由于圆柱体的限制要小于180度。柱面全景图有两个显著优点:一是圆柱面可以展开成一个矩形平面,所以可以把柱面全景图展开成一个矩形图像,而且直接利用其在计算机内的图像格式进行存取;二是数据的采集要比立方体和球体都简单。在大多数实际应用中,360度的环视环境即可较好地表达出空间信息,所以柱面全景图模型是较为理想的一种选择。 2)立方体全景图 立方体全景图由六个平面投影图像组成,即将全景图投影到一个立方体的内表面上。这种方式下图像的采集和相机的标定难度较大,需要使用特殊的拍摄装置,依次在水平、垂直方向每隔90度拍摄一张照片,获得六张可以无缝拼接于一个立方体的六个面上的照片。这种方法可以实现水平方向360度旋转、垂直方向180度俯仰的视线观察。 3)球面全景图 球面全景图是指将源图像拼接成一个球体的形状,以相机视点为球心,将图像投影到球体的内表面。与立方体全景图类似,球面全景图也可以实现水平方向360度旋转、垂直方向180度俯仰的视线观察。球面全景图的拼接过程及存储方式较柱面全景图大为复杂,这是因为生成球面全景图的过程中需要将平面图像投影成球面图像,而球面为不可展曲面。因此这是一个平面图像水平和垂直方向的非线性投影过程,同时也很难找到与球面对应且易于存取的数据结构来存放球面图像。目前国内外在这方面提出的研究算法较其他类型全景图少,而且在可靠性和效率方面也存在一些问题。 3.主要内容

多聚焦图像融合方法综述

多聚焦图像融合方法综述 摘要:本文概括了多聚焦图像融合的一些基本概念和相关知识。然后从空域和频域两方面将多聚焦图像融合方法分为两大块,并对这两块所包含的方法进行了简单介绍并对其中小波变换化法进行了详细地阐述。最后提出了一些图像融合方法的评价方法。 关键词:多聚焦图像融合;空域;频域;小波变换法;评价方法 1、引言 按数据融合的处理体系,数据融合可分为:信号级融合、像素级融合、特征级融合和符号级融合。图像融合是数据融合的一个重要分支,是20世纪70年代后期提出的概念。该技术综合了传感器、图像处理、信号处理、计算机和人工智能等现代高新技术。它在遥感图像处理、目标识别、医学、现代航天航空、机器人视觉等方面具有广阔的应用前景。 Pohl和Genderen将图像融合定义为:“图像融合是通过一种特定的方法将两幅或多幅图像合成一幅新图像”,其主要思想是采用一定的方法,把工作于不同波长范围、具有不同成像机理的各种成像传感器对同一场景成像的多幅图像信息合成一幅新的图像。 作为图像融合研究重要内容之一的多聚焦图像融合,是指把用同一个成像设备对某一场景通过改变焦距而得到的两幅或多幅图像中清晰的部分组合成一幅新的图像,便于人们观察或计算机处理。图像融合的方法大体可以分为像素级、特征级、决策级3中,其中,像素级的图像融合精度较高,能够提供其他融合方法所不具备的细节信息,多聚焦融合采用了像素级融合方法,它主要分为空域和频域两大块,即: (1)在空域中,主要是基于图像清晰部分的提取,有梯度差分法,分块法等,其优点是速度快、方法简单,不过融合精确度相对较低,边缘吃力粗糙; (2)在频域中,具有代表性的是分辨方法,其中有拉普拉斯金字塔算法、小波变换法等,多分辨率融合精度比较高,对位置信息的把握较好,不过算法比较复杂,处理速度比较慢。 2、空域中的图像融合 把图像f(x,y)看成一个二维函数,对其进行处理,它包含的算法有逻辑滤波器法、加权平均法、数学形态法、图像代数法、模拟退火法等。 2.1 逻辑滤波器法 最直观的融合方法是两个像素的值进行逻辑运算,如:两个像素的值均大于特定的门限值,

图像拼接算法及实现.doc

图像拼接算法及实现(一) 来源:中国论文下载中心 [ 09-06-03 16:36:00 ] 作者:陈挺编辑:studa090420 论文关键词:图像拼接图像配准图像融合全景图 论文摘要:图像拼接(image mosaic)技术是将一组相互间重叠部分的图像序列进行空间匹配对准,经重采样合成后形成一幅包含各图像序列信息的宽视角场景的、完整的、高清晰的新图像的技术。图像拼接在摄影测量学、计算机视觉、遥感图像处理、医学图像分析、计算机图形学等领域有着广泛的应用价值。一般来说,图像拼接的过程由图像获取,图像配准,图像合成三步骤组成,其中图像配准是整个图像拼接的基础。本文研究了两种图像配准算法:基于特征和基于变换域的图像配准算法。在基于特征的配准算法的基础上,提出一种稳健的基于特征点的配准算法。首先改进Harris角点检测算法,有效提高所提取特征点的速度和精度。然后利用相似测度NCC(normalized cross correlation——归一化互相关),通过用双向最大相关系数匹配的方法提取出初始特征点对,用随机采样法RANSAC(Random Sample Consensus)剔除伪特征点对,实现特征点对的精确匹配。最后用正确的特征点匹配对实现图像的配准。本文提出的算法适应性较强,在重复性纹理、旋转角度比较大等较难自动匹配场合下仍可以准确实现图像配准。 Abstract:Image mosaic is a technology that carries on the spatial matching to a series of image which are overlapped with each other, and finally builds a seamless and high quality image which has high resolution and big eyeshot. Image mosaic has widely applications in the fields of photogrammetry, computer vision, remote sensing image processing, medical image analysis, computer graphic and so on. 。In general, the process of image mosaic by the image acquisition, image registration, image synthesis of three steps, one of image registration are the basis of the entire image mosaic. In this paper, two image registration algorithm: Based on the characteristics and transform domain-based image registration algorithm. In feature-based registration algorithm based on a robust feature-based registration algorithm points. First of all, to improve the Harris corner detection algorithm, effectively improve the extraction of feature points of the speed and accuracy. And the use of a similar measure of NCC (normalized cross correlation - Normalized cross-correlation), through the largest correlation coefficient with two-way matching to extract the feature points out the initial right, using random sampling method RANSAC (Random Sample Consensus) excluding pseudo-feature points right, feature points on the implementation of the exact match. Finally with the correct feature point matching for image registration implementation. In this paper, the algorithm adapted, in the repetitive texture, such as relatively large rotation more difficult to automatically match occasions can still achieve an accurate image registration. Key words: image mosaic, image registration, image fusion, panorama 第一章绪论

图像拼接论文

基于特征点的图像拼接算法研究指导教师: 学生姓名:学号: 专业:计算机技术 院(系):信息工程学院 完成时间:2013年11月

摘要: 图像拼接(image mosaic)技术是将一组相互间重叠部分的图像序列进行空间匹配对准,经重采样合成后形成一幅包含各图像序列信息的宽视角场景的、完整的、高清晰的新图像的技术。图像拼接的过程由图像获取,图像配准,图像合成三步骤组成。其中图像配准是整个图像拼接的基础。本文研究了基于特征图像配准算法。 利用基于特征Harris角点检测算法提取出初始特征点对,实现实现特征点对的精确匹配。最后用加权平均对实现图像融合。实验证明该算法适应性较强,在重复性纹理、旋转角度比较大等较难自动匹配场合下仍可以准确实现图像配准。同时该算法准确率高,鲁棒性强,具有较高的使用价值。 关键词::图像拼接图像配准特征点图像合成

Abstract: Image mosaic is a technology that carries on the spatial matching to a series of image which are overlapped with each other,and finally builds a seamless and high quality image which has high resolution and big eyeshot.The image mosaic process consists of the following steps.Image acquisition,image registration,image fusion.fusion.Image registration is the important foundation of image mosaic.This article has studied a image registration algorithrm feature-based image registration algorithm. Firstly,corners are extracted using improved Harris operator to extract the initial feature point pairs.Then,the correct matching feature point pairs are used to realize the image registration.Finally,use the Weighted Average Fusion Rule to fuse the images.The experiment results indicate this algorithmhas better registration results under a variety of conditions such as different light,bigger rotation and repetitive texture.At the same time,this algorithm has good effect in image registration,high accurate rate,strong robustness,higher use value. Key words:Image mosaic Image registration Feature points Image fusion

图像匹配与拼接方法

图像匹配与拼接 分匹配和拼接两部分 一、匹配 当然匹配的方法,有sift,surf什么的,这里主要就介绍一下我自己的方法啦! 特征点提取是必须的,不然搜索范围太大哇!并且可能不可靠,所以特征点提取是必须的。什么点适合做特征点呢?这方面的论文很多啦,主要还是看你用什么方法匹配了,如果是用互相关作为相似性准则的话,那自相关系数随各个方向变化大的点就适合作特征点了,当然还要考虑稳定性,即特征点应该不太受光照、噪声、缩放、旋转等的影响,这样的才是好的特征点。当然,如果确定了应用坏境,不一定要满足不受上四个因素影响的,比如平行的双目匹配、全景图的匹配等,具体问题具体分析吧!角点特征是个人比较喜欢的特征。这里我自己定义了一种局部特征,效果还行,匹配采用互相关为准则的匹配,大概效果如下: 目测这几个匹配点还是正确的哇!在一些应用中,可能需要的匹配点数相当多,这就需要较密集的匹配了。密集的匹配可以根据初始的匹配结果估计搜索范围,这可以加速搜索,同时也要提取更多的特征点呀!话不多说了,下面是密集的匹配:

虽然这样的密度对于三维重构来说还不够,但对于一般的图像拼接来说足够了。匹配完了,下面就要将第二步了。 二、矫正 匹配好两幅图像了,接下来干啥呢?把它们对准呗。可惜了,两幅图像之间不但存在平移,还存在旋转缩放什么的,更复杂的,可能还存在所谓的3D变换,那就复杂啦!不管怎么样,所谓的对准,也就是矫正,总是基于一定的模型的,即基于相机拍摄两幅图像的相对姿态。对于全景图拼接(个人觉得是最简单的且较实用的拼接),需要根据相机焦距或者视场角投影到柱面上,然后两幅图像间的位置就只有一维的平移关系了。但是这对拍摄的相机也是有要求的,就是要保证拍摄两幅图像时,物防焦点是重合的,这样才能根据稀疏的几个点确定所有重叠区域内点的相对位置呀!但实际中很难做到物方焦点重合,比如数码相机或者所谓的智能手机的全景图拍摄,一般人都是拿着相机或者手机绕人旋转,而非绕物方焦点旋转拍摄的,这样拼接起来是绝对有误差的呀!特别是拼接近景,误差就更大了,远景还好。怎么克服这个缺点呢?简单的改进方法就是绕着摄像头旋转吧,虽然这也不是严格绕物方焦距旋转,但起码误差小得多啦,拼接的效果当然也就好得多了,可以试一试哦! 不扯了,第二种模型就是认为两幅图像间存在的变换关系是有2D旋转、缩放、平移的,可以通过一个旋转、缩放、平移矩阵来矫正,这个也不难,但是应用范围却相当有限,不详说了。 第三种模型就是不用模型,或者说认为两幅图像间的对应点存在的是一种线性变换关系,这样只要解一个线性方程组就可以了,似乎也挺简单的。但可惜的是,不是任给的两幅图像间都只存在线性变换呀!它可能是一个3D的线性变换,那就麻烦了,这个必须需要密匹配呀!不然就一定是有误差的,即不能通过稀疏的匹配点来矫正两幅图像的所有对应点的。 还有更多的模型,比如各方位的全景图,需要投影到球面上的哇!不过这个模型也不难。最难的当然是拍摄两幅图像时,相机不同,相机姿态也不同了,这个是很有挑战的,我也很惧怕这个。下面展示三种矫正结果: 1、2D线性模型: 2D矫正,认为匹配点之间存在线性变换,X=ax+by+c,Y=dx+ey+e这样的模型,业内称之放射变换,其中x,y是第一幅点的坐标,X,Y是对应的第二幅图像中的点坐标,使用最小二乘法计算a、b、c、d、e、f,第二幅图相对于第一幅图矫正的结果就是这样的了

基于经验模态分解的图像融合研究

基于经验模态分解的图像融合研究 图像融合是对不同渠道摄取的同一景物的多幅图像进行处理,以得到更清晰更实用的图像的过程。它是图像处理过程中的一个重要环节,比如图像拼接就离不开图像融合,因而研究图像融合具有一定的现实和理论意义。目前,以小波分析为代表的多分辨率图像融合技术是一个研究热点,但小波基函数的选取是小波分析的难点,也是小波分析这种信号分析方法的最大瓶颈。经验模态分解则能突破这种障碍,它根据自身的特性自适应的进行信号分解,显示出极大的优越性。把经 验模态分解用于图像融合,取得了良好的效果。 标签:图像融合;多分辨率分析;经验模态分解;固有模态函数 1 引言 数字图像融合(Digital Image Fusion)是以图像为主要研究内容的数据融合技术,是把来自不同时刻或不同成像设备对同一目标检测的多幅图像数据采用某种方法进行处理,生成一幅能够有效表示出该图像检测信息的图像的过程。由于不同模式的图像传感器的成像机理不同,工作电磁波的波长不同,所以不同图像传感器获得的同一场景的多幅图像之间具有信息的冗余性和互补性,经图像融合技术处理后可以获取对同一场景的更为精确、更为全面、更为可靠的图像描述。正是由于这一特点,图像融合作为信息融合的一种有力工具,已广泛地应用于军事、遥 感、机器人视觉和医学图像处理等领域。 图像融合包含图像配准和无缝合成两个部分。由于成像时受到各种变形因素的影响,得到的各幅图像间存在着相对的几何差异,所以需要对待融合的图像进行配准。图像配准是通过数学模拟来对图像间存在着的几何差异进行校正,把相邻两幅图像合成到同一坐标系下,并使得相同景物在不同的局部图像中对应起来,以便于图像无缝合成。图像配准之后,在某些情况下,由于拍摄时光照、环境条件(如噪声、云、烟雾、雨等)、视野、地点的差异,两幅待拼接图像地重叠区域可能会有较大的差别。如果直接对这样的图像进行简单的叠加拼合,得到的拼接图在拼接位置上会存在明显的接缝以及重叠区域的模糊和失真现象。因此需要一种技术 修正待拼接图像拼接缝附近的颜色值,使之平滑过渡,实现无缝合成。 根据图像的表征层来划分,图像融合可分为三类:像素级融合、特征级融合和决策级融合。常用的融合方法有HIS融合法、KL变换融合法、高通滤波融合法、样条变换融合法、金字塔变换融合法、小波变换融合法等,尤其是多分辨率分析方法(金字塔变换,小波变换等)具有明显的优势。小波变换融合算法主要是利用人眼对局部对比度的变化比较敏感这一事实,根据一定的融合规则,在多幅原

图像拼接算法及实现(一).

图像拼接算法及实现(一) 论文关键词:图像拼接图像配准图像融合全景图 论文摘要:图像拼接(image mosaic)技术是将一组相互间重叠部分的图像序列进行空间匹配对准,经重采样合成后形成一幅包含各图像序列信息的宽视角场景的、完整的、高清晰的新图像的技术。图像拼接在摄影测量学、计算机视觉、遥感图像处理、医学图像分析、计算机图形学等领域有着广泛的应用价值。一般来说,图像拼接的过程由图像获取,图像配准,图像合成三步骤组成,其中图像配准是整个图像拼接的基础。本文研究了两种图像配准算法:基于特征和基于变换域的图像配准算法。在基于特征的配准算法的基础上,提出一种稳健的基于特征点的配准算法。首先改进Harris角点检测算法,有效提高所提取特征点的速度和精度。然后利用相似测度NCC(normalized cross correlation——归一化互相关),通过用双向最大相关系数匹配的方法提取出初始特征点对,用随机采样法RANSAC(Random Sample Consensus)剔除伪特征点对,实现特征点对的精确匹配。最后用正确的特征点匹配对实现图像的配准。本文提出的算法适应性较强,在重复性纹理、旋转角度比较大等较难自动匹配场合下仍可以准确实现图像配准。 Abstract:Image mosaic is a technology that carries on the spatial matching to a series of image which are overlapped with each other, and finally builds a seamless and high quality image which has high resolution and big eyeshot. Image mosaic has widely applications in the fields of photogrammetry, computer vision, remote sensing image processing, medical image analysis, computer graphic and so on. 。In general, the process of image mosaic by the image acquisition, image registration, image synthesis of three steps, one of image registration are the basis of the entire image mosaic. In this paper, two image registration algorithm: Based on the characteristics and transform domain-based image registration algorithm. In feature-based registration algorithm based on a robust feature-based registration algorithm points. First of all, to improve the Harris corner detection algorithm, effectively improve the extraction of feature points of the speed and accuracy. And the use of a similar measure of NCC (normalized cross correlation - Normalized cross-correlation), through the largest correlation coefficient with two-way matching to extract the feature points out the initial right, using random sampling method RANSAC (Random Sample Consensus) excluding pseudo-feature points right, feature points on the implementation of the exact match. Finally with the correct feature point matching for image registration implementation. In this

基于特征点的全自动无缝图像拼接方法

-2083- 0引言 图像拼接是计算机视觉领域的一个重要分支。它是一种将多幅相关的重叠图像进行无缝拼接从而获得宽视角全景图像的技术。近年来,国内外对于图像拼接各细节的研究已取得了一些成果[1~3],但对于尺度、视差及光照变化较大的图像序列的拼接效果还有待提高。此外,目前对于完整的全自动无缝图像拼接技术的研究还较少。针对以上现状,本文给出了一种基于特征点的全自动无缝图像拼接方法。该方法依据图像拼接过程中各阶段涉及的理论与技术,利用RANSAC (ran-dom sample consensus )算法、引导互匹配、加权平滑算法等技术克服了传统图像拼接技术中的局限性(如光照、尺度变化的影响等),实现了光照和尺度变化条件下的多视角无缝图像拼接。 1拼接方法的总体设计 文中的图像拼接技术包括4大部分:图像获取;特征点提 取与匹配;图像配准;图像融合。各部分均采用了当前图像处理领域的先进算法,并使用相应的精炼技术对各部分的处理结果进行优化,以达到较理想的拼接效果。整个技术的实现 流程如图1所示。 2图像获取 图像获取是实现图像拼接的前提条件。不同的图像获取 方法会得到不同的输入图像序列,并产生不同的图像拼接效果。目前,获得图像序列的方法主要有3种[4]:①照相机被固定在三脚架上,通过旋转照相机获取图像数据;②照相机固定在可移动平台上,通过平行移动照相机获取图像数据;③手持 收稿日期:2006-04-20E-mail :lihan409@https://www.wendangku.net/doc/a04949752.html, 作者简介:李寒(1981-),女,辽宁沈阳人,硕士研究生,研究方向为数字图像处理;牛纪桢,女,副教授,研究方向为计算机应用;郭禾,男,副教授,研究方向为数字图像处理、计算机应用。 基于特征点的全自动无缝图像拼接方法 李 寒,牛纪桢,郭禾 (大连理工大学计算机科学与工程系,辽宁大连116023) 摘 要:提出了一种基于特征点的全自动无缝图像拼接方法。该方法采用对于尺度具有鲁棒性的SIFT 算法进行特征点的提取与匹配,并通过引导互匹配及投票过滤的方法提高特征点的匹配精确度,使用稳健的RANSAC 算法求出图像间变换矩阵H 的初值并使用LM 非线性迭代算法精炼H ,最终使用加权平滑算法完成了图像的无缝拼接。整个处理过程完全自动地实现了对一组图像的无缝拼接,克服了传统图像拼接方法在尺度和光照变化条件下的局限性。实验结果验证了方法的有效性。关键词:图像拼接;SIFT 特征点;引导互匹配;随机抽样一致算法;变换矩阵中图法分类号:TP391 文献标识码:A 文章编号:1000-7024(2007)09-2083-03 Automatic seamless image mosaic method based on feature points LI Han, NIU Ji-zhen, GUO He (Department of Computer Science and Engineering,Dalian University of Technology,Dalian 116023,China ) Abstract :An automatic seamless image mosaic method based on feature points is proposed.First a scale-invariant feature extracting algorithm SIFT is used for feature extraction and matching.In order to improve the accuracy of matching,guided complementary matching and voting filter is used.Then,the transforming matrix H is computed with RANSAC algorithm and LM algorithm.And finally image mosaic is completed with smoothing algorithm.The method implements automatically and avoids the disadvantages of tra-ditional image mosaic method under different scale and illumination conditions.Experimental results show that the image mosaic method is stable and effective. Key words :image mosaic;SIFT features;guided complementary matching;RANSAC algorithm;transforming matrix 图1图像拼接技术流程 图像融合图像配准(计算H )特征点提取与匹配 图像获取 H=

基于MATLAB的图像拼接技术

基于MATLAB的图像拼接技术 基于MATLAB的图像拼接技术实验报告 学院:数信学院 专业班级: 12级信息工程1班 姓名学号: 一、实验名称:基于MATLAB的图像拼接技术 二、实验目的:利用图像拼接技术得到超宽视角的图像,用来虚拟实际场景。 三、实验原理: 基于相位相关的图像拼接技术是一种基于频域的方法,通过求得图像在频 域上是相位相关特点来找到特征位置,从而进行图像拼接。其基本原理是 基于傅氏功率谱的相关技术。该方法仅利用互功率谱中的相位信息进行图 像配准,对图像间的亮度变化不敏感,而且所获得的相关峰尖突出,具有 一定的鲁棒性和较高的配准精度。 基于相位相关法进行图像拼接的基本原理如下:假设f(x,y)表示尺寸为MN的图像,该函数的二维离散傅里叶变换(DFT)为: , MN,,111,,,juxMvyN2(//) Fuvfxye,(,)(,),,MN,xy,,00 其中,F(u,v)是复变函数;u、v是频率变量,u=0,1,…,M-1,v=0,1,…,N-1;x、y是空间或图像变量。 二维离散傅里叶逆变换(IDFT)为: N,1M,1,,juxMvyN2(//),fuve(,) Fxy(,),,,y,0x,0 ,…,M-1;y=0,1,…,N-1。其中,x=0,1 设两幅图像、的重叠位置为(,),则图像、的互功率谱为:IIxyII112002 *II(,)(,),,,,,,,jxy,,,2()1200 ,eII(,)(,),,,,,12

其中,*为共轭符号,对上式两边进行傅里叶逆变换将在(x,y)处产生一00个函数。因此,只要检测上式傅里叶逆变换结果最大值的位置,就可以获得两xy幅图像间的评议量(,。具体算法步骤如下: 00 II?读入两幅图片、(函数输入),并转换为灰度图像; 12 II?分别对、做二维傅里叶变换,即: 12 fftIfftI A=() B=() 1222 C则通过A、B的简单的矩阵运算得到另一矩阵,即: 3 C =B*.conj(A)/norm(B*.conj(A),1) 3 矩阵的二维傅里叶逆变换C在(,)处取得最大,可通过遍历比较C(i,Cxy300 j)大小即可找到该位置,并作为函数返回值。 四实验程序 tic x=[1 2;0 1]; a=imread('7.jpg'); %读取图片 b=imread('8.jpg'); figure imshow(a); figure imshow(b); imwrite(b,'160.jpg'); IMG={a,b}; %将图片存为元胞结构 num=size(IMG,2); %计算图片个数 move_ht=0; %累计平移量初值 move_wd=0; for count=1:num-1 input1=IMG{count}; %读取图象 input11=imresize(rgb2gray(input1),[300,200]);

相关文档