文档库 最新最全的文档下载
当前位置:文档库 › 工业炉窑掺风系数

工业炉窑掺风系数

工业炉窑掺风系数
工业炉窑掺风系数

4 对冲天炉的大气污染物排放浓度为什么不能用过量空气系数换算,应怎么进行换算?试举例说明。

答:因过量空气系数是通过测定烟气中氧的百分含量或烟气成分分析后,按下列公式计:

式中:O2——测点的O2百分含量;

RO2——测点的CO2百分含量;

RO——测点的CO百分含量。

而冲天炉炉窑烟气中O2含量由于工艺操作、炉料和熔炼时间不同而有很大的波动值,其容积百分比含量从0.1%至1.6%。炉内CO含量经常超过爆炸下限,故必须从加料口掺风稀释CO,并保证烟气不逸至操作地区。因此,国外均不以过量空气系数对排放浓度进行换算,而以掺风系数(即:加料口等处进入风量与炉窑鼓风量之比)换算。

标准规定掺风系数的折算值:冷风炉(鼓风温度≤400℃)为4.0;热风炉(鼓风温度>400℃)为2.5。

以5t/h冷风炉为例:

若工艺鼓风量为80m3/s,加料口进入空气量为206 m3/s,其掺风系数为2.58.如果实测的烟尘排放浓度为200 mg/m3 (标态),经折算后的烟尘排放浓度为:200×(2.58÷4.0)=129.0(mg/ m3<标态>),低于标准中表2,二类区150mg/ m3(标态)的最高允许限值。

若工艺鼓风量为80 m3/s,加料口进入空气量为450 m3/s,其掺风系数为:450÷80=5.63。如果实测的烟尘排放浓度为200mg/ m3(标态),经折算后的烟尘排放浓度为:281.5mg/ m3 (标态),超过标准中表2,二类区150mg/ m3(标态)的最高允许限值。

阵风系数和风振系数

风速包括两部分,10分钟平均风速+脉动风速;相应风压也包括两部分,平均风压+脉动风压。 如果结构较柔,应考虑结构共振,即乘以风振系数。对于刚度较大的结构(T<0.25s),荷载规范规定可以不考虑风振影响 问题: 1、结构刚度较大,可不考虑共振,取风振系数=1。即只考虑平均风压,而不考虑瞬间风压增大,是否正确? 2、阵风系数,是考虑瞬间风速增大时风压相应增大,对平均风压值的放大系数,和结构振动周期无关。如果结构刚度较大不考虑共振,风压应为平均风压乘以阵风系数;如刚度较小,应考虑共振,风压应为平均风压乘以风振系数。风振系数应是阵风系数基础上考虑了共振影响,应比阵风系数更大的一个值。这个说法对不对? A: 结构刚度较大,可不考虑风荷载作用在结构上引起的动力放大,取风振系数=1。此时不需要再考虑瞬间风压增大。考虑瞬间风压体现在阵风系数上,用于围护结构的设计。考虑瞬间风压是由于玻璃幕墙等围护结构是脆性材料,因而将风速的时距由10分钟变为3秒(瞬时),具体就是将平均风压乘阵风系数。若结构刚度较小,要考虑风荷载作用在结构上引起的动力放大,即将平均风压乘风振系数,风振系数是通过结构随机振动计算得到的等效风荷载相对于平均风压的放大,与阵风系数无关。 B:(1)《建筑结构荷载规范》关于风荷载部分的第一条就规定,风振系数是用于结构整体设计;阵风系数是用于围护结构设计(如玻璃幕墙,膜结构等)。 (2)阵风系数与结构的动力特性无关,仅与风压时程的统计特性有关,也不能简单的认为是10分钟平均换算到3秒平均,应该是在统计的基础上、在一定失效概率的基础上的统计值,滦贵汉的硕士论文应该就是做了这个方面的工作(峰值因子的选取)。在规范中,简单的将阵风系数仅与高度有关,不能考虑建筑的干扰作用。最佳的做法应该是在风洞试验的基础上再通过统计的方法确定。 (3)结构刚度无穷大,也不能取风振系数=1。风振系数是随时间变化的风压对结构作用引起的结构响应的放大,一般认为包括三个部分:1)风压自身的脉动值对响应的放大;2)结构动力特性对响应的放大;3)气弹效应对结构的放大。结构刚度无穷大,只能认为第二项可以忽略不计(此时第3项当然也没有),脉动风压的影响还在,因此不能

白酒制造业产排污系数

白酒制造业产排污系数及排污费计算系数

1 适用范围 本手册给出了《统计上使用的产品分类目录》中白酒制造行业的产污系数和排污系数,可用于第一次全国污染源普查白酒制造业工业污染源污染物产生量和排放量的核算。 涉及的污染物包括:工业废水量、化学需氧量、五日生化需氧量、氨氮。 2 注意事项 2.1系数表中未涉及产品的产排污系数 1)《统计上使用的产品分类目录》中白酒分类目录: 固态法白酒(152111)包括:40-51度(15211101) 52-53度(15211102) 54度以上(15211103) 半固态法白酒(152131)包括:40-51度(15213101) 52-53度(15213102) 54度以上(15213103) 液态法白酒(152151)包括:40-51度(15215101) 52-53度(15215102) 54度以上(15215103) 其他白酒(152199) 2)半固态法白酒生产总量不足白酒生产总量的百分之一,因此不同规模等级企业的产污及排污系数均使用同一组数据。 3)所有固态法白酒(152111)、半固态法白酒(152131)、液态法白酒(152151)和其他白酒(152199)的产量均折算成酒度65%(v/v)计。 4)液态法白酒(152151)的产污系数和排污系数取值分两种情况: 若企业通过外购食用酒精勾兑生产白酒则污染较少,将液态法白酒年产量以酒度65%(v/v)进行折算,按此折算量查找“1521白酒制造行业产排污系数表”中相同规模等级的浓香型固态法白酒的相应数据,将所选择的产排污系数乘以10%,得到液态法白酒的产排污系数; 若企业本身带有酒精生产车间,将白酒年产量以酒度为96%(v/v)进行折算,按此折算量查找“1510酒精制造业产排污系数使用手册”中相同原料和规模等级的酒精产品的相应数据,以此作为液态法白酒的产排污系数。 5)固态法清香型白酒的大、小型企业,产污系数及排污系数分别参照浓香型白酒的大、小型企业的数据进行计算。 6)其他类型的白酒生产企业,产污系数及排污系数参照同等规模浓香型白酒企业的数据。 7)对于存在多种原料或不同生产工艺的企业,例如,同一白酒企业既生产

风荷载标准值

For personal use only in study and research; not for commercial use For personal use only in study and research; not for commercial use 风荷载标准值 关于风荷载计算 风荷载是高层建筑主要侧向荷载之一,结构抗风分析(包括荷载,内力,位移,加速度等)是高层建筑设计计算的重要因素。 脉动风和稳定风 风荷载在建筑物表面是不均匀的,它具有静力作用(长周期哦部分)和动力作用(短周期部分)的双重特点,静力作用成为稳定风,动力部分就是我们经常接触的脉动风。脉动风的作用就是引起高层建筑的振动(简称风振)。 以顺风向这一单一角度来分析风载,我们又常常称静力稳定风为平均风,称动力脉动风为阵风。平均风对结构的作用相当于静力,只要知道平均风的数值,就可以按结构力学的方法来计算构件内力。阵风对结构的作用是动力的,结构在脉动风的作用下将产生风振。 注意:不管在何种风向下,只要是在结构计算风荷载的理论当中,脉动风一定是一种随机荷载,所以分析脉动风对结构的动力作用,不能采用一般确定性的结构动力分析方法,而应以随机振动理论和概率统计法为依据。 从风振的性质看顺风向和横风向风力 顺风向风力分为平均风和阵风。平均风相当于静力,不引起振动。阵风相当于动力,引起振动但是引起的是一种随机振动。也就是说顺风向风力除了静风就是脉动风,根本就没有周期性风力会引起周期性风振,绝对没有,起码从结构计算风载的理论上顺风向的风力不存在周期性风力。 横风向,既有周期性振动又有随机振动。换句话说就是既有周期性风力又有脉动风。反映在荷载上,它可能是周期性荷载,也可能是随机性荷载,随着雷诺数的大小而定。 有的计算方法 根据现有的研究成果,风对结构作用的计算,分为以下三个不同的方面: (1)对于顺风向的平均风,采用静力计算方法 (2)对于顺风向的脉动风,或横风向脉动风,则应按随机振动理论计算 (3)对于横风向的周期性风力,或引起扭转振动的外扭矩,通常作为稳定性荷载,对结构进行动力计算

工业锅炉产排污系数表

工业锅炉产排污系数表

————————————————————————————————作者:————————————————————————————————日期: ?

工业锅炉产排污系数表-燃煤工业锅炉 产品名称原料名称工艺名 称 规模等级污染物指标单位产污系数末端治理技术名称排污系数 蒸汽/热水/其它烟煤层燃炉所有规模 工业废气量标立方米/吨-原料10,290.43 直排10,290.43 有末端治理①10,804.95 二氧化硫千克/吨-原料 16S② (无炉内脱硫) 直排16S 湿法除尘法③13.6S 湿式除尘脱硫(钙法 /镁法/其它脱硫剂)④ 4.8S 11.2S (炉内脱硫⑤) 直排11.2S 湿式除尘脱硫(钙法 /镁法/其它脱硫剂) 3.36S 烟尘千克/吨-原料1.25A② 直排 1.25A 单筒旋风除尘法0.5A 多管旋风除尘法0.38A 湿法除尘法/湿式除 尘脱硫⑥ 0.16A 静电除尘法(管式) 0.23A 静电除尘法(卧式)0.04A 布袋/静电+布袋⑦0.01A 氮氧化物千克/吨-原料2.94 直排2.94 蒸汽/ 热水/其 它烟煤抛煤机炉所有规模工业废气量标立方米/吨-原料9,097.4 直排9,097.4 有末端治理9,552.27

4430 工业锅炉(热力生产和供应行业)产排污系数表-燃煤工业锅炉(续1) 产品名称原料名称工艺名 称 规模等级污染物指标单位产污系数末端治理技术名称排污系数 蒸汽/热水/其它烟煤抛煤机炉所有规模 二氧化硫千克/吨-原料 16S (无炉内脱硫) 直排16S 湿法除尘法13.6S 湿式除尘脱硫(钙法 /镁法/其它脱硫剂) 4.8S 11.2S (炉内脱硫) 直排11.2S 湿式除尘脱硫(钙法 /镁法/其它脱硫剂) 3.36S 烟尘千克/吨-原料 3.84A 直排3.84A 湿法除尘法/湿式除 尘脱硫 0.5A 静电除尘法(卧式) 0.12A 布袋除尘法0.04A 氮氧化物千克/吨-原料 3.11直排3.11 蒸汽/热水/其它烟煤 循环流化 床炉 所有规模 工业废气量标立方米/吨-原料9,415.54 直排9,415.54 有末端治理9,886.32 二氧化硫千克/吨-原料 15S (无脱硫剂) 直排15S 湿法除尘法12.75S 湿式除尘脱硫(钙法/ 镁法/其它脱硫剂) 4.5S 4.5S (添加脱硫剂⑧) 直排 4.5S 湿式除尘脱硫(钙法 /镁法/其它脱硫剂) 1.35S 烟尘千克/吨-原料5.19A直排5.19A

火力发电行业产排污系数手册

4411火力发电行业

1适用范围 本手册给出了《统计上使用的产品分类目录》中4411火力发电行业电能、电能+热能等产品生产过程中的产污系数和排污系数,可用于第一次全国污染源普查火力发电行业工业污染源污染物产生量和排放量的核算。 本手册产、排污系数指在典型工况生产条件下,消耗单位燃料的污染物产生量与排放量。 涉及的污染物指标包括:工业废水量、工业废水中的化学需氧量、工业废气量、烟尘、二氧化硫、氮氧化物、工业固体废物(粉煤灰)、工业固体废物(炉渣)、工业固体废物(脱硫石膏)。 2注意事项 2.1 在本《4411火力发电行业产排污系数使用手册》中,原料均指燃料。 2.2 系数表单中未涉及的燃料、工艺及末端治理技术的产排污系数 (1)燃料为生物质类,采用燃料为垃圾的同“产品、原料、工艺、规模”条件下的产、排污系数; (2)燃料为高焦炉混合煤气,参照燃料为天然气类的同“产品、原料、工艺、规模”下的产、排污系数。 高炉煤气的工业废气量产、排污系数采用天然气工业废气量产、排污系数除以15,氮氧化物的产、排污系数采用天然气的产、排污系数除以4,其它系数直接采用。 焦炉煤气工业废气量系数采用天然气工业废气量系数除以6,氮氧化物的产、排污系数采用天然气的产、排污系数除以4,其它系数直接采用。 (3)燃料为煤炭+高、焦炉煤气,与第(2)步高焦炉混合煤气系数取值方法相同; (4)燃料为“油页岩”类,采用燃料为煤矸石的同“产品、原料、工艺、规模”条件下的产、排污系数; (5)当燃煤矸石机组所用锅炉不是循环流化床锅炉时,采用燃料为煤炭类的同“产品、原料、工艺、规模”条件下的产、排污系数; (6)烟尘末端治理技术为过滤式除尘法或电、过滤式除尘器时,烟尘的排污系数采用电除尘器末端治理技术的排污系数乘以0.3取得;此时,粉煤灰的产污系数采用电除尘器末端治理技术的粉煤灰产污系数加上0.5取得; (7)烟尘末端治理技术为斜棒栅除尘器时,烟尘的排污系数采用文丘里水

风振系数及其计算取值

风振系数及其计算取值 Document number:WTWYT-WYWY-BTGTT-YTTYU-2018GT

风振系数及其计算取值 科技名词定义 中文名称:风振系数英文名称:wind vibration coefficient 定义:脉动风压引起高耸建筑物的动力作用。此时风压应再乘以风振系数βz。风振系数βz与风速、脉动结构的尺度、结构固有频率、振型、结构组织以及地面粗糙度等有关。应用学科:资源科技(一级学科);气候资源学(二级学科)风振系数是指风对建筑物的作用是不规则的,风压随风速、风向的紊乱变化而不停地改变。通常把风作用的平均值看成稳定风压或平均风压,实际风压是在平均风压上下波动的。平均风压使建筑物产生一定的侧移,而波动风压使建筑物在该侧移附近左右振动。对于高度较大,刚度较小的高层建筑,波动风压会产生不可忽略的动力效应,在设计中必须考虑。目前采用加大风荷载的办法来考虑这个动力效应,在风压值上乘以风振系数。当房屋高度大于30m、高宽比大于时,以及对于构架、塔架、烟囱等高耸结构,均考虑风振。( PS:对于30m以下且高宽比小于的房屋建筑,可以不考虑脉动风压影响,此时风振系数取β(z)=。对于低矮、刚度比较大的结构,脉动风压引起的结构振动效应比较小,一般不需要考虑脉动风振作用,而仅考虑平均风压作用。但是为了考虑脉动风压的影响,还是引入一个与风振系数不同的参数:阵风系数。阵风系数考虑的是脉动风压的瞬间增大系数,即脉动风压的变异效应。门式钢架也只需要考虑阵风系数。但是门式钢架规程中没有采用阵风系数。而参照美国的规范弄的,这个规范里的体型系数也是参考美国的,规程中解释已经考虑了阵风系数。这与荷载规范GB5009中的体型系数不一样。) 《建筑结构荷载规范》(GB5009-2001)在计算风荷载时提到了这两个系数,但是在结合实际工程使用中,结构上的风荷载可分为两种成分:平均风和脉动风。对应地,风对结构的作用也有静力的平均风作用和动力的脉动风作用。平均风的作用可用静力方法计算,而脉动风是随机荷载,它引起结构的振动,一般采用随机振动理论对其振动进行分析。风振系数是指结构总响应与平均风压引起的结构响应的比值。 阵风系数是考虑到瞬时风较平均风大而乘的系数,一般是阵风风速与时距10min的平均风速之间的比值。 风荷载影响较大的结构一般都要考虑风振系数,具体如何取值只能参考以往的相关类似工程。对于屋盖结构(如大跨度的看台)不应当成“围护结构”而只考虑阵风系数。 对于风振系数βz,中国建筑科学研究院建筑结构研究所规范室的意见是:高度小于30m的单层工业厂房仍可按以往实践经验不考虑风振系数,即取βz=1。 对于阵风系数βgz,中国建筑科学研究院建筑结构研究所规范室的意见是:现行规范提供的阵风系数主要是对高层建筑的玻璃幕墙结构参考国外规范

第一次全国污染源普查畜禽养殖业产排污系数与排污系数手册

内部资料 第一次全国污染源普查 畜禽养殖业源产排污系数手册 组织单位:农业部科技教育司 第一次全国污染源普查领导小组办公室 编写单位:中国农业科学院农业环境与可持续发展研究所 环境保护部南京环境科学研究所 2009年2月

说明 为保证第一次全国污染源普查工作顺利实施,确保普查数据质量,根据国务院批准的《第一次全国污染源普查方案》和《第一次全国污染源普查农业源产排污系数测算组织实施方案》通知的要求,在农业部科技教育司、环境保护部指导下,中国农业科学院农业环境与可持续发展研究所、环境保护部南京环境科学研究所共同牵头主持,会同地方农业部门、农业和环保领域的科研单位和大学开展了“畜禽养殖业源产排污系数”核算,历时一年多的辛勤工作,在地方农业和环保部门、科研、检测中心、相关企业的支持下,完成了这一核算项目,并以此为基础编写了本手册,为第一次全国污染源普查畜禽养殖业源产排污量的核算打下了比较好的基础。为此,在手册付印之际,向一切参加这一工作的单位和个人表示衷心的感谢。 国务院第一次全国污染源普查领导小组办公室

目录 一、适用范围 (1) 二、主要术语与解释 (1) 三、使用方法 (2) 四、系数表 (3) (一)畜禽养殖产污系数 (3) (二)畜禽养殖场排污系数 (15) (三)畜禽养殖小区排污系数 (34) (四)畜禽养殖专业户排污系数 (53)

使用说明 一、适用范围 1.本手册给出了全国大陆范围内规模化饲养的猪、奶牛、肉牛、蛋鸡、肉鸡等5种畜禽在不同区域的产排放系数,应用于第一次全国污染源普查中畜禽养殖业污染物产生量、排放量的计算,也可供畜禽养殖产业发展规划和产业政策制定工作参考。 2.本手册给出的畜禽养殖业产污系数和排污系数涉及粪便产生量、尿液产生量、化学需氧量、总氮、总磷、铜、锌。 二、主要术语与解释 1、畜禽养殖产污系数:在典型的正常生产和管理条件下,一定时间内(本手册中以“天”为单位),单个畜禽所产生的原始污染物量。 2、畜禽养殖排污系数:在典型的正常生产和管理条件下,单个畜禽产生的原始污染物经处理设施消减或利用后,或未经处理利用而直接排放到环境中的污染物量。 3、规模化养殖场:指具有一定规模,在较小的场地内,投入较多的生产资料和劳动,采用合理的工艺与技术措施,进行精心管理,并在工商部门注册登记过的养殖场。本实施方案中规定规模化养殖场的存栏或出栏规模如下:生猪≥500头(出栏)、奶牛≥100头(存栏)、肉牛≥200头(出栏)、蛋鸡≥20000羽(存栏)、肉鸡≥50000羽(出栏)。 4、畜禽养殖小区:指在适合畜禽养殖的地域内,建立的有一定规模的较为规范、严格管理的畜禽养殖基地,基地内养殖设施完备,技术规程及措施统一,只养一种畜禽,由多个养殖业主进行标准化养殖。 5、畜禽养殖专业户:指畜禽饲养数量达到一定数量的养殖户,本手册中规定养殖专业户的存栏或出栏规模如下:生猪≥50(出栏)、奶牛≥5头(存栏)、肉牛≥10头(出栏)、蛋鸡≥500羽(存栏)、肉鸡≥2000羽(出栏)。

风荷载计算方法与步骤

1风荷载 当空气的流动受到建筑物的阻碍时,会在建筑物表面形成压力或吸力,这些压力或吸力即为建 筑物所受的风荷载。 1.1单位面积上的风荷载标准值 建筑结构所受风荷载的大小与建筑地点的地貌、离地面或海平面高度、风的性质、风速、风向以及高层建筑结构自振特性、体型、平面尺寸、表面状况等因素有关。 垂直作用于建筑物表面单位面积上的风荷载标准值ω(KN/m2)按下式计算: ω 风荷载标准值(kN/m2)=风振系数×风荷载体形系数×风压高度变化系数×基本风压 1.1.1基本风压 按当地空旷平坦地面上10米高度处10分钟平均的风速观测数据,经概率统计得出50年一遇的最大值确定的风速v0(m/s),再考虑相应的空气密度通过计算确定数值大小。 按公式确定数值大小,但不得小于0.3kN/m2,其中的单位为t/m3,单位为kN/m2。也可以用公式计算基本风压的数值,也不得小于0.3kN/m2。 1.1.2风压高度变化系数 风压高度变化系数在同一高度,不同地面粗糙程度也是不一样的。规范以B类地面粗糙程度作为标准地貌,给出计算公式。 粗糙度类别 A B C D 300 350 450 500 0.12 0.15 0.22 0.3 场地确定之后上式前两项为常数,于是计算时变成下式: 1.1.3风荷载体形系数 1)单体风压体形系数 (1)圆形平面;

(2)正多边形及截角三角平面,n为多边形边数; (3)高宽比的矩形、方形、十字形平面; (4)V形、Y形、L形、弧形、槽形、双十字形、井字形、高宽比的十字形、高宽比,长宽比 的矩形、鼓形平面; (5)未述事项详见相应规范。 2)群体风压体形系数 详见规范规程。 3)局部风压体形系数 檐口、雨棚、遮阳板、阳台等水平构件计算局部上浮风荷载时,不宜小于 2.0。未述事项详见相应规范规程。 1.1.4风振系数 对于高度H大于30米且高宽比的房屋,以及自振周期的各种高耸结构都应该考虑脉动风压对结构发生顺向风振的影响。(对于高度H大于30米、高宽比且可忽略扭转的高层建筑,均可只考虑第一振型的影响。) 结构在Z高度处的风振系数可按下式计算: ○1g为峰值因子,去g=2.50;为10米高度名义湍流强度,取值如下: 粗糙度类别 A B C D 0.12 0.14 0.23 0.39 ○2R为脉动风荷载的共振分量因子,计算方法如下: 为结构阻尼比,对钢筋混凝土及砌体结构可取; 为地面粗糙修正系数,取值如下: 粗糙度类别 A B C D 1.28 1.0 0.54 0.26 为结构第一阶自振频率(Hz); 高层建筑的基本自振周期可以由结构动力学计算确定,对于较规则的高层建筑也可采用 下列公式近似计算: 钢结构 钢筋混凝土框架结构

燃气锅炉污染物排放参数

P249环境统计手册.pdf 从《环境统计手册》(99页和100页)可以理论计算氮氧化物的排放量、环境保护计算手册.pdf 无相关数据 P60-P69环境保护实用数据手册.pdf 胡名操94年 根据《环境保护实用数据手册》(胡名操主编)中统计,1Nm3天然气燃烧产生的烟气量为Nm3,《环境保护实用数据手册》里60页和69页有相关数据。1Nm3天然气燃烧产生的烟气量为.燃烧10000m3的天然气,产生6.3kg的NO2,? 1.0kg的SO2, 2.4Kg 的烟尘 P60 注意这个标况 P69 P73 第一次全国污染源普查工业污染源产排污系数手册 第一次全国污染源普查工业污染源产排污系数手册第十分册热力生产与供应的系数P249 4430工业锅炉(热力生产和供应行业)产排污系数表-燃气工业锅炉 含量,单位为毫克/立方米。例如燃料中含硫量(S)为200毫克/立方米,则S=200。 第一次污染物普查生活污染源产排污系数手册 (3)居民生活产生的燃烧废气 本项目B2地块住户供计1144户约3203人,居民生活采用天然气,由市政管网供给。小区内居民炊事燃用天然气用热指标为2700MJ从a,天然气低热值为m3,则每人天然气用量约为a,因此B2地块居民每年炊事天然气量用气量约万Nm3。居民生活燃烧天然气产生的污染物量参考《第一次污染物普查生活污染源产排污系数手册》提供的数据,

本项目B2地块居民日常生活用气产生的污染物量见表。 表B2地块居民日常生活用气污染物统计 注:*产排污系数表中管道煤气和天然气二氧化硫的产排污系数是以含硫量(S)的形式表示的,其中 含硫量(S)是指燃气收到基硫分含量,单位为毫克/立方米。例如燃料中含硫量(S)为200毫克/立 方米,则S=200。 建设项目环境保护实用手册 根据《建设项目环境保护实用手册》燃烧1Nm3天然气产生的烟气,燃气锅炉污染物产生量引用该手册中民用取暖设备污染物产生量数据,B2地块锅炉废气中主要污染物产生量具体见表。 经验参数 ?天然气用量计算: 有建筑面积时,一个采暖期(5个月)12?18m3/m2计(节能住宅区下限,非节能住宅取上限);一般按 15m3/m2计。 无建筑面积时,天然气按0.5m3/人?d,石油液化气按0.17m3/人? d计算(天然气热值为MJ/Nm3, 石油液化气热值为~ MJ/Nm3。液化气热值为天然气的三倍)。 天然气主要成份参数表 成份CH4 C2H6 C3H8 CO2 H2O H2S 指标(%)62ppm 2ppm 产污系数:

生活源产排污系数及使用说明(2010年修订)讲解

生活源产排污系数及使用说明 第一部分生活源废气污染物产排污系数及使用说明1-2页第二部分生活源污水污染物产生系数及使用说明3-37页 环境保护部华南环境科学研究所 2010.1.13

第一部分生活源废气污染物产排污系数及使用说明根据第一次污染源普查的生活能源的研究成果(详见《第一次全国污染源普查:城镇生活源产排污系数手册》),结合动态更新调查制度的相关说明,确定生活能源污染物排放系数及其核算方法如下: 1.生活烟气排放量采用排放系数法估算: 烟气:1kg煤产生8.5m3烟气 2.生活燃煤二氧化硫采用物料衡算法进行核算: SO2:Q=G×2×R×S 式中:G-耗煤量;R—硫转化率,取0.8;S-煤中含硫量,见表1~2。 表1 中国商品煤平均含硫量,% 煤种(或分区)全国东北华北华东中南西南西北 平均硫含量,% 1.08 0.54 0.92 1.12 1.18 2.13 1.42 表2 中国各省分区 区域省份 东北辽宁、吉林、黑龙江 华北北京、天津、河北、山西、内蒙古 华东上海、江苏、浙江、安徽、福建、江西、山东 中南河南、湖北、湖南、广东、广西、海南 西南重庆、四川、贵州、云南、西藏 西北宁夏、新疆、青海、陕西、甘肃 3.生活氮氧化物排放量采用排放系数法估算: NOx排放系数:1 t煤产生2.0kgNOx

4.生活燃煤烟尘排放量核算方法: (1)集中供热锅炉采暖用煤的烟尘排放量,按照工业锅炉燃煤排放烟尘的核算方法和排放系数计算,详见《第一次全国污染源普查工业污染源产排污系数手册》。 (2)居民生活以及社会生活用煤的烟尘排放量,按照燃用的民用型煤和原煤,分别采用不同的核算方法: 民用型煤:烟尘排放量=型煤消费量(t)×(1~2)‰ 原煤:烟尘排放量=原煤消费量(t)×(8~10)‰ 5.其他燃料类型(煤气、天然气和液化石油气)核算方法 其他类型燃料类型采用排放系数法估算,其核算公式: Q=G×f 式中:G为各类燃气消费量,f为污染物排放系数,见表3。 表3 燃气排污系数 能源类型污染物指标单位产污系数 石油液化气 烟气量标立方米/吨-气17000 烟尘克/吨-气 4.7 二氧化硫千克/吨-气0.0068 氮氧化物 千克/吨-气 1.2 千克/万立方米-气29.9 管道煤气 烟气量标立方米/万立方米-气54800 烟尘克/万立方米-气15 二氧化硫千克/万立方米-气0.7

风振系数及其计算取值

风振系数及其计算取值公司标准化编码 [QQX96QT-XQQB89Q8-NQQJ6Q8-MQM9N]

风振系数及其计算取值 科技名词定义 中文名称:风振系数英文名称:wind vibration coefficient 定义:脉动风压引起高耸建筑物的动力作用。此时风压应再乘以风振系数βz。风振系数βz与风速、脉动结构的尺度、结构固有频率、振型、结构组织以及地面粗糙度等有关。应用学科:资源科技(一级学科);气候资源学(二级学科) 风振系数是指风对建筑物的作用是不规则的,风压随风速、风向的紊乱变化而不停地改变。通常把风作用的平均值看成稳定风压或平均风压,实际风压是在平均风压上下波动的。平均风压使建筑物产生一定的侧移,而波动风压使建筑物在该侧移附近左右振动。对于高度较大,刚度较小的高层建筑,波动风压会产生不可忽略的动力效应,在设计中必须考虑。目前采用加大风荷载的办法来考虑这个动力效应,在风压值上乘以风振系数。当房屋高度大于30m、高宽比大于时,以及对于构架、塔架、烟囱等高耸结构,均考虑风振。( PS:对于30m以下且高宽比小于的房屋建筑,可以不考虑脉动风压影响,此时风振系数取β(z)=。对于低矮、刚度比较大的结构,脉动风压引起的结构振动效应比较小,一般不需要考虑脉动风振作用,而仅考虑平均风压作用。但是为了考虑脉动风压的影响,还是引入一个与风振系数不同的参数:阵风系数。阵风系数考虑的是脉动风压的瞬间增大系数,即脉动风压的变异效应。门式钢架也只需要考虑阵风系数。但是门式钢架规程中没有采用阵风系数。而参照美国的规范弄的,这个规范里的体型系数也是参考美国的,规程中解释已经考虑了阵风系数。这与荷载规范GB5009中的体型系数不一样。) 《建筑结构荷载规范》(GB5009-2001)在计算风荷载时提到了这两个系数,但是在结合实际工程使用中,结构上的风荷载可分为两种成分:平均风和脉动风。对应地,风对结构的作用也有静力的平均风作用和动力的脉动风作用。平均风的作用可用静力方法计算,而脉动风是随机荷载,它引起结构的振动,一般采用随机振动理论对其振动进行分析。风振系数是指结构总响应与平均风压引起的结构响应的比值。 阵风系数是考虑到瞬时风较平均风大而乘的系数,一般是阵风风速与时距10min的平均风速之间的比值。 风荷载影响较大的结构一般都要考虑风振系数,具体如何取值只能参考以往的相关类似工程。对于屋盖结构(如大跨度的看台)不应当成“围护结构”而只考虑阵风系数。 对于风振系数βz,中国建筑科学研究院建筑结构研究所规范室的意见是:高度小于30m的单层工业厂房仍可按以往实践经验不考虑风振系数,即取βz=1。 对于阵风系数βgz,中国建筑科学研究院建筑结构研究所规范室的意见是:现行规范提供的阵风系数主要是对高层建筑的玻璃幕墙结构参考国外规范而加以制定的,但低矮房屋是否合适,仍需通过今后的设计和科研实践给以完善。《门式刚架轻型房屋钢结构技术规程》(CECS 102:2002)提供的风荷载计算,是根据美国有关设计手册中的试验资料确定,更能符合实际,不妨按此参考执行。 风振系数把风成份中的脉动风引起的风振效应转换成等效静力荷载所乘的系数。 阵风系数是在不考虑风振系数时,考虑到瞬时风比平均风要大所乘的系数。

产排污系数目录及使用说明

使用说明 第一次全国污染源普查工业污染源产排污系数手册(以下简称手册),涵盖了占我国工业污染物产排量绝大部分的351个小类行业。其中、259个小类行业的产排污系数通过实测核算得出,92个小类行业的产排污系数采用类比方法获得。 本使用手册共十册。 第一分册内容包括:0610烟煤和无烟煤的开采洗选、0620褐煤的开采洗选、0690其他煤炭采选、0710天然原油和天然气开采、0790与石油和天然气开采有关的服务活动、0810铁矿采选、0890其他黑色金属矿采选、0911铜矿采选、0912铅锌矿采选、0913镍钴矿采选、0914锡矿采选、0915锑矿采选、0916铝矿采选、0917镁矿采选、0921金矿采选、0931钨钼矿采选、0932稀土金属矿采选、1011石灰石和石膏开采、1012建筑装饰用石开采、1013耐火土石开采、1019粘土及其他土砂石开采、1020化学矿采选、1030采盐、1091石棉和云母矿采选、1092石墨和滑石采选、1093宝石和玉石开采行业等26个小类行业产排污系数。 第二分册内容包括:1310谷物磨制、1320饲料加工、1331食用植物油加工、1332非食用植物油加工、1340制糖、1351畜禽屠宰、1352肉制品及副产品加工、1361水产品冷冻加工、1362鱼糜制品及水产品干腌制加工、1363水产饲料制造、1364鱼油提取及制品的制造、1369其他水产品加工、1370蔬菜、水果和坚果加工、1391淀粉及淀粉制品的制造、1392豆制品制造、1393蛋品加工、1411糕点、面包制造、1419饼干及其他焙烤食品制造、1421糖果、巧克力制造、1422蜜饯制造、1431米、面制品制造、1432速冻食品制造、1439方便面及其他方便食品制造、1440液体乳及乳制品制造、1451肉、禽类罐头制造、1452水产品罐头制造、1453蔬菜、水果罐头制造、1461味精制造、1462酱油、食醋及类似制品的制造、1469其他调味品、发酵制品制造、1492冷冻饮品及食用冰制造、1493盐加工、1494食品及饲料添加剂制造等33个小类行业产排污系数。 第三分册内容包括:1510酒精制造、1521白酒制造、1522啤酒制造、1523黄酒制造、1524葡萄酒制造、1531碳酸饮料制造、1533果菜汁及果菜汁饮料制造、1534含乳饮料和植物蛋白饮料制造、1535固体饮料制造、1539茶饮料及其他软饮料制造、1711棉、化纤纺织加工、1712棉、化纤印染精加工、1721毛条加工、1722毛纺织、1723毛染整精加工、1730麻纺织、1741缫丝加工、1742绢纺和丝织加工、1743丝印染精加工、1751棉及化纤制品制造、1752毛制品制造、1753麻制品制造、1755绳、索、缆的制造业、1754丝制品制造、1756纺织带和帘子布制造、1757无纺布制造、1761 棉、化纤针织品及编织品制造、1762

大跨度平屋面的风振响应及风振系数(精)

第19卷第2期 J: 程 山学 Voll9No2 竺:三』旦 文章编号:1000-4750(2002)02.052-06 !翌2些!型2些皇竺窒 墅!:坠 大跨度平屋面的风振响应及风振系数 陆锋,楼文娟,孙炳楠 {浙江太学土木系.杭州310027) 摘要:本文在有限元分析的基础上建立了大跨度平屋面结构在风荷载作用下的M振响应谱分析方法.并采用Davenport谱和由风洞试验得到的屋盖表面的平均风压分布系数计算了屋面的风振响应及风振系数。文中还深入探讨了屋面刚度、来流风速及风向等参数对太跨度平屋面竖向风振响应及风振系数的影响。计算表明:①大跨度平尾面的竖向风振响应丰要是由第一振型所支配,高阶振型对属面板竖向风振响应的影响很小;②屋面刚度及来流风速对人跨度平屋面的轻向风振响应影响比较大,但对位移风振系数的影响不太明显:③在工程设计中,建议粟用位移风振系数来计算大跨度平屋面的等效静力风荷载。 关键词:大跨度平屋面;有限元;谱分折方法;风振响应:风振系数中图分类号:TU3II.3 文献标识码:A 1 前言 对于风流场中的屋面结构.由于在檐角处出现 本文的主要目的是结合有限元方法推导出大跨度平屋面结构在风荷载作用下的风振响应谱分析方法;然后采用Davenport谱和由风洞试验得到的屋盖表面的平均风压分布系数来计算这种屋面的风振响应及风振系数:最后通过讨论屋面刚度、来流风速及风向等参数对大跨度平屋面竖向风振响应及风振系数的影响,得出~些有益的结论,为进一步深入研究奠定基础。 来流附面层的分离而引起复杂的绕流现象以及作用在屋面结构上的气动力的复杂性,使得它常常成为风工程研究的主要对象。许多研究者对某些特定外形的屋面风荷载进行了研究,并做了大量的风洞试验,例如:双坡屋面…、四坡屋面121、有女儿墙的平屋面pJ、弧状屋面H1及柱形和球形屋面【5I等。由于这

生活源产排污系数及使用说明

生活源产排污系数 及使用说明 第一部分生活源废气污染物产排污系数及使用说明1-2页第二部分生活源污水污染物产生系数及使用说明3-37页 环境保护部华南环境科学研究所 2010.1.13

第一部分生活源废气污染物产排污系数及使用说明 根据第一次污染源普查的生活能源的研究成果(详见《第一次全国污染源普查:城镇生活源产排污系数手册》),结合动态更新调查制度的相关说明,确定生活能源污染物排放系数及其核算方法如下: 1.生活烟气排放量采用排放系数法估算: 烟气:1kg煤产生8.5m3烟气 2.生活燃煤二氧化硫采用物料衡算法进行核算: SO2:Q=G×2×R×S 式中:G-耗煤量;R—硫转化率,取0.8;S-煤中含硫量,见表1~2。 表1 中国商品煤平均含硫量,% 表2 中国各省分区 3.生活氮氧化物排放量采用排放系数法估算: NOx排放系数:1 t煤产生2.0kgNOx 4.生活燃煤烟尘排放量核算方法: (1)集中供热锅炉采暖用煤的烟尘排放量,按照工业锅炉燃煤排放烟尘的核算方法和排放系数计算,详见《第一次全国污染源普查工业污染源产排污系数

手册》。 (2)居民生活以及社会生活用煤的烟尘排放量,按照燃用的民用型煤和原煤,分别采用不同的核算方法: 民用型煤:烟尘排放量=型煤消费量(t)×(1~2)‰ 原煤:烟尘排放量=原煤消费量(t)×(8~10)‰ 5.其他燃料类型(煤气、天然气和液化石油气)核算方法 其他类型燃料类型采用排放系数法估算,其核算公式: Q=G×f 式中:G为各类燃气消费量,f为污染物排放系数,见表3。 表3 燃气排污系数 注:*生活能源中燃料油主要用于机动车燃油,由于机动车污染物排放有独立核算方法,此处仅供参考。

建筑结构荷载规范风振系数

建筑结构荷载规范·风荷载·顺风向风振和风振系数 编制日期:2002-3-1 点击:344 人次如果公式不能正确显示,您需要安装IE6和MathPlayer 7.4.1对于基本自振周期T1 大于0.25s 的工程结构,如房屋、屋盖及各种高耸结构,以及对于高度大于30m 且高宽比大于1.5 的高柔房屋,均应考虑风压脉动对结构发生顺风向风振的影响。风振计算应按随机振动理论进行,结构的自振周期应按结构动力学计算。 注:近似的基本自振周期T1 可按附录E 计算。 7.4.2对于一般悬臂型结构,例如构架、塔架、烟囱等高耸结构,以及高度大于30m,高宽比大于1.5 且可忽略扭转影响的高层建筑,均可仅考虑第一振型的影响,结构的风荷载可按公式(7.1.1-1)通过风振系数来计算,结构在z 高度处的风振系数βz可按下式计算: `β_z=1+(ξv varphi_z)/μ_z`(7.4.2) 式中`ξ`—脉动增大系数; `v`—脉动影响系数; `v varphi_z`—振型系数; `μ_z`—风压高度变化系数。 7.4.3脉动增大系数,可按表7.4.3 确定。

注:计算`ω_0T_1^2`时,对地面粗糙度B 类地区可直接代入基本风压,而对A 类、C 类和D 类地区应按当地的基本风压分别乘以1.38、0.62 和0.32 后代入。 7.4.4脉动影响系数,可按下列情况分别确定。 1结构迎风面宽度远小于其高度的情况(如高耸结构等): 1) 若外形、质量沿高度比较均匀,脉动系数可按表7.4.4-1 确定。 2) 当结构迎风面和侧风面的宽度沿高度按直线或接近直线变化,而质量沿高度按连续规律变化时,表7.4.4-1 中的脉动影响系数应再乘以修正系数`θ_B`和`θ_voθ_B`应为构筑物迎风面在z 高度处的宽度Bz 与底部宽度`B_o` 的比值;`θ_ν`可按表7.4.4-2 确定。

常见的排污系数表

烧一吨煤,产生1600×S%千克SO2,1万立方米废气,产生200千克烟尘。 烧一吨柴油,排放2000×S%千克SO2,1.2万立米废气;排放1千克烟尘。 烧一吨重油,排放2000×S%千克SO2,1.6万立米废气;排放2千克烟尘。 大电厂,烟尘治理好,去除率超98%,烧一吨煤,排放烟尘3-5千克。 普通企业,有治理设施的,烧一吨煤,排放烟尘10-15千克; 砖瓦生产,每万块产品排放40-80千克烟尘;12-18千克二氧化硫。 规模水泥厂,每吨水泥产品排放3-7千克粉尘;1千克二氧化硫。 乡镇小水泥厂,每吨水泥产品排放12-20千克粉尘;1千克二氧化硫。 物料衡算公式: 1吨煤炭燃烧时产生的SO2量=1600×S千克;S含硫率,一般0.6-1.5%。若燃煤的含硫率为1%,则烧1吨煤排放16公斤SO2 。 1吨燃油燃烧时产生的SO2量=2000×S千克;S含硫率,一般重油 1.5-3%,柴油0.5-0.8%。若含硫率为2%,燃烧1吨油排放40公斤SO2 。 排污系数:燃烧一吨煤,排放0.9-1.2万标立方米燃烧废气,电厂可取小值,其他小厂可取大值。燃烧一吨油,排放1.2-1.6万标立方米废气,柴油取小值,重油取大值。 【城镇排水折算系数】 0.7~0.9,即用水量的70-90%。 【生活污水排放系数】采用本地区的实测系数。。 【生活污水中COD产生系数】60g/人.日。也可用本地区的实测系数。 【生活污水中氨氮产生系数】7g/人.日。也可用本地区的实测系数。使用系数进行计算时,人口数一般指城镇人口数;在外来较多的地区,可用常住人口数或加上外来人口数。 【生活及其他烟尘排放量】 按燃用民用型煤和原煤分别采用不同的系数计算: 民用型煤:每吨型煤排放1~2公斤烟尘 原煤:每吨原煤排放8~10公斤烟尘

风振系数及其计算取值

风振系数及其计算取值 科技名词定义 中文名称:风振系数英文名称:wind vibration coefficient 定义:脉动风压引起高耸建筑物的动力作用。此时风压应再乘以风振系数B z。风振系数B z与风速、脉动结构的尺度、结构固有频率、振型、结构组织以及地面粗糙度等有关。应用学科:资源科技(一级学科) ;气候资源学(二级学科) 风振系数是指风对建筑物的作用是不规则的,风压随风速、风向的紊乱变化而不停地改变。通常把风作用的平均值看成稳定风压或平均风压,实际风压是在平均风压上下波动的。平均风压使建筑物产生一定的侧移,而波动风压使建筑物在该侧移附近左右振动。对于高度较大,刚度较小的高层建筑,波动风压会产生不可忽略的动力效应,在设计中必须考虑。目前采用加大风荷载的办法来考虑这个动力效应,在风压值上乘以风振系数。当房屋高度大于30m高宽比大于1.5时,以及对于构架、塔架、烟囱等高耸结构,均考虑风振。(PS:对于30m以下且高宽比小于 1.5的房屋建 筑,可以不考虑脉动风压影响,此时风振系数取B( z) =1.0。对于低矮、刚度比较大的结构,脉动风压引起的结构振 动效应比较小,一般不需要考虑脉动风振作用,而仅考虑平均风压作用。但是为了考虑脉动风压的影响,还是引入一个与风振系数不同的参数:阵风系数。阵风系数考虑的是脉动风压的瞬间增大系数,即脉动风压的变异效应。门式钢架也只需要考虑阵风系数。但是门式钢架规程中没有采用阵风系数。而参照美国的规范弄的,这个规范里的体型系数也是参考美国的,规程中解释已经考虑了阵风系数。这与荷载规范GB5009中的体型系数不一样。) 《建筑结构荷载规范》(GB5009-2001)在计算风荷载时提到了这两个系数,但是在结合实际工程使用中,结构上的风荷载可分为两种成分:平均风和脉动风。对应地,风对结构的作用也有静力的平均风作用和动力的脉动风作用。平均风的作用可用静力方法计算,而脉动风是随机荷载,它引起结构的振动,一般采用随机振动理论对其振动进行分析。风振系数是指结构总响应与平均风压引起的结构响应的比值。 阵风系数是考虑到瞬时风较平均风大而乘的系数,一般是阵风风速与时距10min 的平均风速之间的比值。 风荷载影响较大的结构一般都要考虑风振系数,具体如何取值只能参考以往的相关类似工程。对于屋盖结构(如大跨度的看台)不应当成“围护结构”而只考虑阵风系数。 对于风振系数B z,中国建筑科学研究院建筑结构研究所规范室的意见是:高度小于30m的单层工业厂房仍可按 以往实践经验不考虑风振系数,即取B z= 1。 对于阵风系数B gz,中国建筑科学研究院建筑结构研究所规范室的意见是:现行规范提供的阵风系数主要是对高层建筑的玻璃幕墙结构参考国外规范而加以制定的,但低矮房屋是否合适,仍需通过今后的设计和科研实践给以完善。《门式刚架轻型房屋钢结构技术规程》 (CECS 102:2002)提供的风荷载计算,是根据美国有关设计手册中的试验资料确定,更能符合实际,不妨按此参考执行。 风振系数把风成份中的脉动风引起的风振效应转换成等效静力荷载所乘的系数。 阵风系数是在不考虑风振系数时, 考虑到瞬时风比平均风要大所乘的系数。

风振系数和阵风系数

风振系数和阵风系数 众所周知,自然风可以认为由长周期的平均风和短周期的脉动风组成。因此风作用也应由平均风荷载作用和脉动风荷载作用组成。平均风由于作用时长较大,因此可以近似看成静荷载作用。而规范中对脉动风荷载作用的考虑采取的是一种简化近似计算方法,即将脉动风荷载作用按照平均风荷载作用乘以影响系数(学过抗风的就知道这部分主要由背景分量和共振分量组成,背景分量主要是由风速瞬时变化引起,而共振分量是由于结构振动引起的)的方法计取,这也就是我们抗风中荷载等效的方法之一。 由此可以知道风振系数实质就是前述影响系数加1,也即总风荷载作用与平均风荷载作用的比值。 而对于围护结构,我们一般要特别考虑的是其局部风压作用,而围护结构的局部结构刚度一般相对较大,风荷载作用后围护结构局部振动一般很小可以忽略不计,因此在计取其脉动风荷载作用是可以不考虑结构振动引起的共振分量。正因为此,脉动风荷载作用可以按照脉动风速可以近似认为平均风速乘以瞬时风速瞬间增 大系数后按照平均风荷载作用处理方法计取。 由此可以知道阵风系数实质上就是脉动风速瞬时增大系数加1,也即忽略了结构自身振动影响的总风荷载作用与平均风荷载作用的比值。 综上所述,风振系数和阵风系数都是考虑脉动风荷载作用的增大系数,但是不同之处是阵风系数是根据结构自身特性进行的进一步简化计算结果。 有了上述分析我们就很容易理解“随建筑高度的增大,阵风系数反而是减小的; 随地面粗糙度的增大,阵风系数也是增大”这句话了。 而风振系数不具有这样特性主要是由于随建筑高度的增大,结构振动响是逐渐变大的,虽然脉动风瞬时影响引起的风振作用减小,但两者一起考虑后,随着建筑高度的增大,风振系数不一定逐渐减小。

相关文档