文档库 最新最全的文档下载
当前位置:文档库 › 高光谱成像检测技术.

高光谱成像检测技术.

高光谱成像检测技术.
高光谱成像检测技术.

高光谱成像检测技术

一、高光谱成像技术的简介

高光谱成像技术是近二十年来发展起来的基于非常多窄波段的影像数据技术, 其最突出的应用是遥感探测领域, 并在越来越多的民用领域有着更大的应用前景。它集中了光学、光电子学、电子学、信息处理、计算机科学等领域的先进技术,是传统的二维成像技术和光谱技术有机的结合在一起的一门新兴技术。高光谱成像技术的定义是在多光谱成像的基础上,在从紫外到近红外 (200-2500nm 的光谱范围内,利用成像光谱仪,在光谱覆盖范围内的数十或数百条光谱波段对目标物体连续成像。在获得物体空间特征成像的同时, 也获得了被测物体的光谱信息。

高光谱成像技术具有超多波段 (上百个波段、高的光谱分辨率 (几个 nm 、波段窄(≤ 10-2λ、光谱范围广(200-2500nm 和图谱合一等特点。优势在于采集到的图像信息量丰富, 识别度较高和数据描述模型多。由于物体的反射光谱具有“指纹” 效应, 不同物不同谱, 同物一定同谱的原理来分辨不同的物质信息。二、高光谱成像系统的组成和成像原理

高光谱成像技术的硬件组成主要包括光源、光谱相机 (成像光谱仪 +CCD 、装备有图像采集卡的计算机。光谱范围覆盖了 200-400nm 、 400-1000nm 、 900-1700 nm 、 1000-2500 nm。

光谱相机的主要组成部分有:准直镜、光栅光谱仪、聚焦透镜、面阵 CCD 。

高光谱成像仪的扫描过程:面阵 CCD 探测器在光学焦面的垂直方向上做横向排列完成横向扫描(X 方向 ,横向排列的平行光垂直入射到透射光栅上时,形成光栅光谱。这是一列像元经过高光谱成像仪在 CCD 上得到的数据。它的横向是 X 方向上的像素点,即扫描的一列像元;它的纵向是各像元所对应的光谱信息。

同时, 在检测系统输送带前进的过程中, 排列的探测器扫出一条带状轨迹从而完成纵向扫描(Y 方向。

综合横纵扫描信息就可以得到样品的三维高光谱图像数据。

三、高光谱成像系统的应用

1 在农业中的应用

● 检测水果的产量、破损和坚实度等方面。

● 食品安全检测,包括农药残留,病虫害分析,糖度、成分的测量。

● 肉类畜产品的检测方向主要包括皮肤肿瘤、表面污染物、嫩度、颜色、滴水

损失、 pH 值、胴体大理石花纹和预测肉的食用品质、细菌总数等。

● 对茶叶的等级进行分类, 根据茶叶中的水分含量对不同年份的茶叶进行鉴别。● 小麦,玉米,大豆,水稻等粮食作物的产量和水分研究。

● 也可检测种子水分,物质含量等。

2 在地物检测方面的应用

● 土壤中金属污染的检测, 可应用于考古的土质探测分析, 分辨各朝代的土壤。

● 矿石种类分析,对岩矿进行分类、填图和地质勘查,快速实时的分类岩芯。● 水体泥沙含量,水质监测,赤潮,水体富营养化。

● 森林覆盖,病虫害,植被覆盖面积。

● 洪涝灾害预测。

3 在刑事侦查方面的应用

● 分析鉴定数字和签字的修改和涂覆,鉴别文件的真伪,以及对指纹,血迹的

鉴定。

4 药品成分检测 :

● 可分析出药品的配比,混合均匀性等

5 在艺术品鉴定中的应用

● 对油画、国画、壁画等艺术品的真伪鉴别, 分析画作成分以利于文物修复等。 6 在医疗诊断中的应用

● 器官、手臂、足部等生物体的检测,快速准确的发现表皮病变,例如牙病、

舌苔的检查等。

7军事

●检测与识别伪装、诱饵和真实目标之间的区别。●针对反伪装侦查进行伪装。

●打击效果的评估。

●精细战场地物分类。

高光谱成像专业技术进展(光电检测专业技术大作业)

高光谱成像技术进展 By 130405100xx 一.高光谱成像技术的简介 高光谱成像技术的出现是一场革命,尤其是在遥感界。它使本来在宽波段不可探测的物质能够被探测,其重大意义已得到世界公认。高光谱成像技术光谱分辨率远高于多光谱成像技术,因此高光谱成像技术数据的光谱信息更加详细,更加丰富,有利于地物特征分析。有人说得好,如果把多光谱扫描成像的MSS(multi-spectral scanner)和TM(thematic mapper)作为遥感技术发展的第一代和第二代的话, 那么高光谱成像( hyperspectral imagery) 技术则是第三代的成像技术。 高光谱成像技术的具体定义是在多光谱成像的基础上,从紫外到近红外(200-2500nm)的光谱范围内,利用成像光谱仪,在光谱覆盖范围内的数十或数百条光谐波段对目标物体连续成像。在获得物体空间特征成像的同时,也获得了被测物体的光谱信息。 (一)高光谱成像系统的组成和成像原理 而所谓高光谱图像就是在光谱维度上进行了细致的分割,不仅仅是传统所谓的黑、白或者R、G、B的区别,而是在光谱维度上也有N个通道,例如:我们可以把400nm-1000nm分为300个通道。因此,通过高光谱设备获取到的是一个数据立方,不仅有图像的信息,并且在光谱维度上进行展开,结果不仅可以获得图像上每个点的光谱数据,还可以获得任一个谱段的影像信息。 目前高光谱成像技术发展迅速,常见的包括光栅分光、声光可调谐滤波分光、棱镜分光、芯片镀膜等。下面分别介绍下以下几种类别: (1)光栅分光光谱仪 空间中的一维信息通过镜头和狭缝后,不同波长的光按照不同程度的弯散传播,这一维图像上的每个点,再通过光栅进行衍射分光,形成一个谱带,照射到探测器上,探测器上的每个像素位置和强度表征光谱和强度。一个点对应一个谱段,一条线就对应一个谱面,因此探测器每次成像是空间一条线上的光谱信息,为了获得空间二维图像再通过机械推扫,完成整个平面的图像和光谱数据采集。如下

高光谱成像检测技术

高光谱成像检测技术 一、高光谱成像技术的简介 高光谱成像技术是近二十年来发展起来的基于非常多窄波段的影像数据技术,其最突出的应用是遥感探测领域,并在越来越多的民用领域有着更大的应用前景。它集中了光学、光电子学、电子学、信息处理、计算机科学等领域的先进技术,是传统的二维成像技术和光谱技术有机的结合在一起的一门新兴技术。 高光谱成像技术的定义是在多光谱成像的基础上,在从紫外到近红外(200-2500nm)的光谱范围内,利用成像光谱仪,在光谱覆盖范围内的数十或数百条光谱波段对目标物体连续成像。在获得物体空间特征成像的同时,也获得了被测物体的光谱信息。 高光谱成像技术具有超多波段(上百个波段)、高的光谱分辨率(几个nm)、波段窄(≤10-2λ)、光谱范围广(200-2500nm)和图谱合一等特点。优势在于采集到的图像信息量丰富,识别度较高和数据描述模型多。由于物体的反射光谱具有“指纹”效应,不同物不同谱,同物一定同谱的原理来分辨不同的物质信息。 二、高光谱成像系统的组成和成像原理 高光谱成像技术的硬件组成主要包括光源、光谱相机(成像光谱仪+CCD)、装备有图像采集卡的计算机。光谱范围覆盖了200-400nm、400-1000nm、900-1700 nm、1000-2500 nm。 CCD 光源光栅光谱仪成像镜头

光谱相机的主要组成部分有:准直镜、光栅光谱仪、聚焦透镜、面阵CCD。 高光谱成像仪的扫描过程:面阵CCD探测器在光学焦面的垂直方向上做横向排列完成横向扫描(X方向),横向排列的平行光垂直入射到透射光栅上时,形成光栅光谱。这是一列像元经过高光谱成像仪在CCD上得到的数据。它的横向是X方向上的像素点,即扫描的一列像元;它的纵向是各像元所对应的光谱信息。 同时,在检测系统输送带前进的过程中,排列的探测器扫出一条带状轨迹从而完成纵向扫描(Y方向)。

高光谱成像检测技术.

高光谱成像检测技术 、高光谱成像技术的简介 高光谱成像技术是近二十年来发展起来的基于非常多窄波段的影像数据技术, 其最突出的应用是遥感探测领域, 并在越来越多的民用领域有着更大的应用前景。 它集中了光学、光电子学、电子学、信息处理、计算机科学等领域的先进传统的二维成像技术和光谱技术有机的结合在一起的一门新兴技术。 技术,是高光谱成像 技术的定义是在多光谱成像的基础上,在从紫外到近红外(200-2500nm 的光谱范围内,利用成像光谱仪,在光谱覆盖范围内的数十或数百条光谱波段对目标物体连续成 像。在获得物体空间特征成像的同时, 也获得了被测物体的光谱信息。 高光谱成像技术具有超多波段(上百个波段、高的光谱分辨率(几个nm 、波 段窄(<1-2入光谱范围广(200-2500nm和图谱合一等特点。优势在于采集到的图像信息量丰富, 识别度较高和数据描述模型多。由于物体的反射光谱具有“指纹” 效应, 不同物不同谱, 同物一定同谱的原理来分辨不同的物质信息。、高光谱成像系统的组成和成像原理 高光谱成像技术的硬件组成主要包括光源、光谱相机(成像光谱仪+CCD 、装备有图像采集 卡的计算机。光谱范围覆盖了200-400nm 、400-1000nm 、900-1700 nm 、1000-2500 nm。

CC D 朮源「一光栅壯谱以 —a I \、 「维电移台 . 样品 A CCD。 光谱相机的主要组成部分有:准直镜、光栅光谱仪、聚焦透镜、面阵

高光谱成像仪的扫描过程:面阵CCD探测器在光学焦面的垂直方向上做横向排列完成横向扫描(X方向,横向排列的平行光垂直入射到透射光栅上时,形成光栅光谱。这是一列像元经过高光谱成像仪在CCD上得到的数据。它的横向是X方 向上的像素点,即扫描的一列像元;它的纵向是各像元所对应的光谱信息。 同时,在检测系统输送带前进的过程中,排列的探测器扫出一条带状轨迹从而完成纵向扫描(丫方向。 1\ 综合横纵扫描信息就可以得到样品的三维高光谱图像数据。

高光谱图像分辨率增强及在小目标检测中的应用研究

高光谱图像分辨率增强及在小目标检测中的应用研究 高光谱遥感是在测谱学基础上逐渐发展起来的新型遥感技术,除了空间图像信息外,其所具有的精细光谱信息,克服了宽波段遥感探测的局限,被广泛应用于多种领域,成为对地观测最重要的信息源之一。但由于成像原理与制造技术等因素的限制,高光谱图像的空间分辨率相对较低,给进一步应用,如特定目标的检测识别带来一系列的问题。 为此,论文分别从信息融合和混合像素分解角度研究了高光谱图像的分辨率增强方法,旨在提高基于图谱结合的高光谱图像目标检测的性能。论文首先对遥感成像中涉及到的电磁波理论进行简单的介绍,分析了遥感图像的空间分辨率与光谱分辨率间的关系,即随着光谱分辨率的增加,在CCD等性能参数不变下,遥感图像的空间分辨率下降的原理。 并在介绍了高光谱图像特性的基础上,对PCA、MNF及LDA变换的降维算法的原理进行了分析,研究其各种算法的特点及应用范围。降维算法是重要的高光谱图像预处理技术,这一部分的工作为后文的开展打下一个基础。 然后对常用的高光谱图像目标检测算法进行了介绍。通过对支持向量数据描述的研究,分析并验证了其单类分类的性能及其适用范围;针对传统纯像素目标检测算法大部分无法解决目标与背景样本数量不平衡的问题,论文提出了基于SVDD的高光谱图像目标检测算法,把目标检测问题转化为单类分类问题。 实验结果表明,与经典的光谱角度制图和有约束能量最小化算法相比,该算法仅需要较少的目标类训练样本就可以得到与前两者相近的检测结果,当增加背景样本时,本文方法可以将目标更容易的从背景中分离出来,为利用空间信息进一步检测提高了便利,使最终的检测结果优于上述两种算法。针对空间分辨率的

高光谱图像分类

《机器学习》课程项目报告 高光谱图像分类 ——基于CNN和ELM 学院信息工程学院 专业电子与通信工程 学号 35 学生姓名曹发贤 同组学生陈惠明、陈涛 硕士导师杨志景 2016 年 11 月

一、项目意义与价值 高光谱遥感技术起源于 20 世纪 80年代初,是在多光谱遥感技术基础之上发展起来的[1]。高光谱遥感能够通过成像光谱仪在可见光、近红外、短波红外、中红外等电磁波谱范围获取近似连续的光谱曲线,将表征地物几何位置关系的空间信息与表征地物属性特征的光谱信息有机地融合在了一起,使得提取地物的细节信息成为可能。随着新型成像光谱仪的光谱分辨率的提高,人们对相关地物的光谱属性特征的了解也不断深入,许多隐藏在狭窄光谱范围内的地物特性逐渐被人们所发现,这些因素大大加速了遥感技术的发展,使高光谱遥感成为 21 世纪遥感技术领域重要的研究方向之一。 在将高光谱数据应用于各领域之前,必须进行必要的数据处理。常用的数据处理技术方法包括:数据降维、目标检测、变化检测等。其中,分类是遥感数据处理中比较重要的环节,分类结果不但直接提取了影像数据有效信息,可以直接运用于实际需求中,同时也是实现各种应用的前提,为后续应用提供有用的数据信息和技术支持,如为目标检测提供先验信息、为解混合提供端元信息等。 相对于多光谱遥感而言,由于高光谱遥感的波谱覆盖范围较宽,因此我们可以根据需要选择特定的波段来突显地物特征,从而能够精确地处理地物的光谱信[2]。目前,许多国家开展大量的科研项目对高光谱遥感进行研究,研制出许多不同类型的成像光谱仪。高光谱遥感正逐步从地面遥感发展到航空遥感和航天遥感,并在地图绘制、资源勘探、农作物监测、精细农业、海洋环境监测等领域发挥重要的作用。

高光谱成像仪市场调研报告

目录 一.高光谱成像仪的简介 (2) 二.高光谱成像仪市场现状 (2) 三.产品类型分类 (4) 四.主要产品供应商 (5) 五.高光谱成像应用实例 (10)

一.高光谱成像仪的简介 高光谱成像(HSI)是光谱技术和成像技术的结合,通常也被成为成像光谱技术。高光谱成像是加入了彩色三维成像的技术,包括目标频谱数据的反射图像,通过数据处理得到电磁光谱图像中每个像素。高光谱成像系统一般包括高光谱成像仪,摄像机,光源,数据软件和计算机等。 二.高光谱成像仪市场现状 2017年全球高光谱成像系统产量达到395台,销售额约6849万美元。预计2023年将达到13456万美元,年复合增长率(CAGR)为11.91%。 2019年全球高光谱成像系统产量达到549台,销售额约9042万美元。从全球范围看,北美是最大生产地区,主要生产企业也集中在这一地区,比如美国Headwall Photonics,美国Resonon,美国Surface Optics,美国康宁(并购NovaSol),加拿大ITRES,加拿大Telops和美国Brimrose等。北美地区2019产量共318套,占全球的58.01%,其次是欧洲,主要生产商有芬兰Specim,欧洲微电子研究中心(IMEC),挪威纳斯克电子光学公司(Norsk Elektro Optikk AS)等。

图1 2017年全球不同分类高光谱成像系统产量份额 图2 2017年全球高光谱成像系统主要应用领域消费量份额

三.产品类型分类 1. 紫外光谱(10~380 nm) 军事领域:飞机发动机尾焰紫外追踪,导弹预警,紫外预警目标观察,紫外火控目标瞄准系统 公安刑侦:现场侦查痕迹,可观察指纹印、体液、火药、麻药 航天领域:空间探测 2. 可见光谱(380~780nm) 农业领域:防病虫害 增强视场:获取高光谱分辨率和高空间分辨率 公安刑侦:手印显现 3. 近红外光谱(780-2526nm) 生物医学领域:测定脑血流量和脑血管中CO2的活性、血或血清中血红蛋白载氧量、PH、葡萄糖、尿素等含量 农业、食品、纺织、聚合物、药物、石油化工、生化和环保。 4. 中红外光谱(2.5-25μm) 在军事、环境监测、医学治疗以及基础研究等领域 环境监测:监测甲烷和氧化亚氮 生物医学:蛋白质分析、液相色谱/生物反应器监控、无标签数字病理学、纳米成像5.远红外光谱(25-1000μm) 基础研究:半导体监测,超导体监测、等离子体诊断、天体物理研究。

高光谱成像国内外研究与应用

前言 随着科学技术的发展,人们的感官得到了延伸,认识事物的能力也不断的提高,其中光谱成像和雷达成像成为其中的佼佼者,高谱和图像使人们能够在大千世界更好的认识到事物。高光谱成像技术作为一项优点显著,实用的成像技术,从20世纪80年代开始得到了世界各国的重视,经过深入的研究和发展如今已经被广泛地应用于各个领域。 高光谱遥感是当前遥感技术的前沿领域,它利用很多很窄的电磁波波段从感兴趣的物体获得有关数据,它包含了丰富的空间、辐射和光谱三重信息。高光谱遥感的出现是遥感界的一场革命,它使本来在宽波段遥感中不可探测的物质,在高光谱遥感中能被探测。 高光谱成像技术是基于非常多窄波段的影像数据技术,其中最突出的应用是在遥感探测领域,并在民用领域有着更大的应用前景。 本文通过分析介绍高光谱图像的成像原理,探讨了高光谱图像在国内外发展现状及其应用。

1.高光谱图像成像原理及特点 1.1高光谱遥感基本概念 高光谱遥感是通过高光谱传感器探测物体反射的电磁波而获得地物目标的空间和频谱数据,成立于20世纪初期的测谱学就是它的基础。高光谱遥感的出现使得许多使用宽波段无法探查到的物体,更加容易被探测到,所以高光谱遥感的出现时成功的是革命性的。 1.2高光谱图像成像原理 光源相机(成像光谱仪+ccd)装备有图像采集卡的计算机是高光谱成像技术的硬件组成,其光谱的覆盖范围为200-400nm,400-1000nm,900-1700nm,1000-2500nm。其中光谱相机的主要组成部分为准直镜,光栅光谱仪,聚焦透镜以及面阵ccd。 其扫描过程是当ccd探测器在光学焦面的垂直方向上做横向扫描(x),当横向的平行光垂直入射到投身光栅是就形成了光栅光谱,这是象元经过高光谱仪在ccd上得出的数据,它的横向式x方向上的像素点也就是扫描的象元,它的总想是各象元对应的信息。在检测系统输送前进是排列的他测器完成纵向扫面(y)。综合扫描信息即可得到物体的三围高光谱数据。 1.3高光谱遥感的特点 (1)波段多且宽度窄能够使得高光谱遥感探测到别的宽波段无法探测到的物体。 (2)光谱响应范围更广和光谱分辨率高使得它能够更加精细的发硬出被探测物的微小特征。 (3)它可以提供空间域和光谱域信息也就是“谱像合一”。 (4)数据量大和信息冗余多,由于高光谱数据的波段多,其数据量大,而且和相邻波段的相关性比较高就使得信息冗余度增加很多。 (5)高光谱遥感的数据描述模型多能够分析的更灵活。经常使用的3种模型有:图像,光谱和特征模型。 1.4高光谱的优势 随着高光谱成像的光谱分辨率的提高,其探测能力也有所增强。因此,与全色和多光谱成像相比较,高光谱成像有以下显著优著: (1)有着近似连续的地物光谱信息。高光谱影像在经过光谱反射率重建后,能获取与被探测物近似的连续的光谱反射率曲线,与它的实测值相匹配,将实验室中被探测物光谱分析模型应用到成像过程中。 (2)对于地表覆盖的探测和识别能力极大提高。高光谱数据能够探测具有诊断性光谱

高光谱图像的异常目标检测及亚像元定位研究

硕士学位论文 高光谱图像的异常 目标检测及亚像元定位研究 RESEARCH ON ANOMALY TARGET DETECTION AND SUBPIXEL MAPPING IN HYPERSPECTRAL IMAGERY 朱凤阳 哈尔滨工业大学 2009年6月

国内图书分类号:TN911.73 学校代码:10213 国际图书分类号:621.3 密级:公开 硕士学位论文 高光谱图像的异常 目标检测及亚像元定位研究 硕士研究生:朱凤阳 导 师:张钧萍教授 申请学位:工学硕士 学科:信息与通信工程 所在单位:电子与信息工程学院 答辩日期:2009年6月 授予学位单位:哈尔滨工业大学

Classified Index: TN911.73 U.D.C.: 621.3 Dissertation for the Master Degree in Engineering RESEARCH ON ANOMALY TARGET DETECTION AND SUBPIXEL MAPPING IN HYPERSPECTRAL IMAGERY Candidate:Zhu Fengyang Supervisor:Prof. Zhang Junping Academic Degree Applied for:Master of Engineering Specialty:Information and Communication Engineering Affiliation: School of Electronics and Information Engineering Date of Defence: June, 2009 Degree-Conferring-Institution:Harbin Institute of Technology

机器视觉之高光谱成像技术分析

高光谱成像技术 高光谱成像技术起源于地质矿物识别填图研究,逐渐扩展为植被生态、海洋海岸水色、冰雪、土壤以及大气的研究中。对空间探测、军事安全、国土资源、科学研究等领域都具有非常重要的意义。 所谓高光谱图像就是在光谱维度上进行了细致的分割,不仅仅是传统所谓的黑、白或者R、G、B的区别,而是在光谱维度上也有N个通道,例如:我们可以把400nm-1000nm分为300个通道。因此,通过高光谱设备获取到的是一个数据立方,不仅有图像的信息,并且在光谱维度上进行展开,结果不仅可以获得图像上每个点的光谱数据,还可以获得任一个谱段的影像信息。 目前高光谱成像技术发展迅速,常见的包括光栅分光、声光可调谐滤波分光、棱镜分光、芯片镀膜等。 原理: 光栅分光原理: 在经典物理学中,光波穿过狭缝、小孔或者圆盘之类的障碍物时,不同波长的光会发生不同程度的弯散传播,再通过光栅进行衍射分光,形成一条条谱带。也就是说:空间中的一维信息通过镜头和狭缝后,不同波长的光按照不同程度的弯散传播,这一维图像上的每个点,再通过光栅进行衍射分光,形成一个谱带,照射到探测器上,探测器上的每个像素位置和强度表征光谱和强度。一个点对应一个谱段,一条线就对应一个谱面,因此探测器每次成像是空间一条线上的光谱信息,为了获得空间二维图像再通过机械推扫,完成整个平面的图像和光谱数据采集。 经过狭缝的光由于不同波长照射到不同的探测器像元上,光能量很低,因此需要选择高灵敏相机,同时需要加光源。例如系统如下:

声光可调谐滤波分光(AOTF)原理: AOTF由声光介质、换能器和声终端三部分组成。射频驱动信号通过换能器在声光介质内激励出超声波。改变射频驱动信号的频率,可以改变AOTF衍射光的波长,从而实现电调谐波长的扫描。 最常用的AOTF晶体材料为TeO2即非共线晶体,也就是说光波通过晶体之后以不同的出射角传播。如上图所示:在晶体前端有一个换能器,作用于不同的驱动频率,产生不同频率的振动即声波。不同的驱动频率对应于不同振动的声波,声波通过晶体TeO2之后,使晶体中晶格产生了布拉格衍射,晶格更像一种滤波器,使晶体只能通过一种波长的光。光进入晶体之后发生衍射,产生衍射光和零级光。 l AOTF系统组成: AOTF系统组成:成像物镜+准直镜+偏振片+晶体+偏振片+物镜+detector,入射光经过物镜会聚之后进入准平行镜(把所有的入射光变成平行光),准平行光进入偏振片通过同一方向的传播的光,平行光进入晶体之后,平行于光轴的光按照原来方向前行,非平行光进行衍射,分成两束相互垂直o光和e光(入射光的波长不同经过晶体之后的o光与e光的角度也不同,因此在改变波长的过程中,图像会出现漂移);o 光和e光及0级光分别会聚在不同的面上。

无人机载高光谱成像系统

无人机载高光谱成像系统 主要参数应优于以下参数。 波长范围:400-1000nm;像素扭曲不超过一个像素, 空间通道数:≥620;光谱通道数:≥250; 光谱采样间隔:优于2.4nm/pixel; 光谱分辨率在20μm狭缝时优于6nm; 最大数值孔径:F/2.5; 重量:<0.6kg(含内部的采集控制模块); 反射率标准布:不小于3m x 3m,包含3种反射率,可以为计算地物反射率提供标准参考; 定制3轴云台,通电后自动垂直向下,无需手动调平衡; 可在地面站软件上看到云台上图传相机的实时画面; 云台重量:≤0.8kg;

无人机载多光谱/热红外成像系统 主要参数应优于以下参数。 重量≤800 g 光谱波段:EO即电力光学:蓝色、绿色、红色、红边、近红外(NIR)LW IR(长波红外辐射) / 热红外: 8-14um 传感器分辨率:不低于2064*1544(每个EO(即电力光学)波段3.2 MP)/热红外线:不低于160*120

北斗GPS定位系统 仪器参数应优于以下主要参数。 解算技术:超越传统(固定/浮动)技术的 HD-GNSS处理引擎算法,比传统GNSS技术提供的误差估算评定更加精确。 卫星跟踪:360全星座技术,能够跟踪包括GPS、GLONASS、Galileo、北斗和QZSS卫星信号同步跟踪: –– GPS:L1C/A、L1C、L2C、L2E、L5; –– GLONASS:L1C/A、L1P、L2C/A、L2P、L3; –– SBAS:L1C/A、L5; –– Galileo:E1、E5A、E5B; ––北斗:B1、B2、B3 多星多频:不止于接收卫星数量,同时接收GPS、GLANASS、伽利略、北斗的第三频段 信号通道:接收机通道数不少于440个通道,支持更多的卫星信号同步跟踪 高精度静态精度:平面3mm+0.1ppm 高程3.5mm+0.4ppm RTK实时动态精度:平面8mm+1ppm 高程15mm+1ppm 网络RTK精度:平面8mm+0.5ppm 高程15mm+0.5ppm 定位速率:1Hz、2Hz、5Hz 10Hz和20Hz 数据格式:CMR+, CMRx, RTCM 2.1, RTCM 2.3, RTCM 3.0, RTCM 3.1, RT CM 3.2的输入输出 星站差分功能:具有OmniSTAR HP、XP、G2、VBS定位功能 智能化程度:接收机可以通过WBUI管理界面,实现远程管理,下载数据等 工作温度:-40℃~65℃ 防水/防尘:满足IP67等级,可侵入水下1米深 可以承受从2米高测杆处跌落 数据存储:主机4G内存:可以3年以上原始观测数据通讯链路:电台与

光谱图像与高光谱图像的区别介绍

光谱图像与高光谱图像的区别介绍 光谱分辨率在10l数量级范围内的光谱图像称为高光谱图像(Hyperspectral Image)。遥感技术经过20世纪后半叶的发展,无论在理论上、技术上和应用上均发生了重大的变化。其中,高光谱图像技术的出现和快速发展无疑是这种变化中十分突出的一个方面。通过搭载在不同空间平台上的高光谱传感器,即成像光谱仪,在电磁波谱的紫外、可见光、近红外和中红外区域,以数十至数百个连续且细分的光谱波段对目标区域同时成像。在获得地表图像信息的同时,也获得其光谱信息,第一次真正做到了光谱与图像的结合。与多光谱遥感影像相比,高光谱影像不仅在信息丰富程度方面有了极大的提高,在处理技术上,对该类光谱数据进行更为合理、有效的分析处理提供了可能。因而,高光谱图像技术所具有的影响及发展潜力,是以往技术的各个发展阶段所不可比拟的,不仅引起了遥感界的关注,同时也引起了其它领域(如医学、农学等)的极大兴趣。 高光谱图像:是指一系列包含一些列可见/近红外光谱,一般有400-1000 nm,已经包含了可见光(400-780 nm)和近红外(780-1000nm)。 多光谱图像简介多光谱图像是指包含很多带的图像,有时只有3个带(彩色图像就是一个例子)但有时要多得多,甚至上百个。每个带是一幅灰度图像,它表示根据用来产生该带的传感器的敏感度得到的场景亮度。在这样一幅图像中,每个像素都与一个由像素在不同带的数值串,即一个矢量相关。这个数串就被称为像素的光谱标记。 1.用不相关或独立的其他带替换当前带;这个问题特别与遥感应用有关,但在一般的图像处理中,如果要从多光谱图像生成一幅单带灰度图像也与此有关。 2.使用一个像素的光谱标记来识别该像素所表示的目标种类。这是一个模式识别问题,它取决于下列图像处理问题的解:消除一个像素的光谱标记对图像采集所用光谱的依赖性。这是一个光谱恒常性问题。 3.处理多光谱图像的特定子集,它包括在电磁谱里仅光学部分的3个带,它需要以或者替换或者模仿人类感知颜色的形式来进行处理。 4.在特定应用中使用多光谱图像,并对它们进行常规的操作。这里的一个问题是,现在

高光谱成像技术进展(光电检测技术大作业)

高光谱成像技术进展 By 130405100xx 一.高光谱成像技术的简介 高光谱成像技术的出现是一场革命,尤其是在遥感界。它使本来在宽波段不可探测的物质能够被探测,其重大意义已得到世界公认。高光谱成像技术光谱分辨率远高于多光谱成像技术,因此高光谱成像技术数据的光谱信息更加详细,更加丰富,有利于地物特征分析。有人说得好,如果把多光谱扫描成像的MSS ( multi-spectral scanner) 和TM( thematic mapper) 作为遥感技术发展的第一代和第二代的话, 那么高光谱成像( hyperspectral imagery) 技术则是第三代的成像技术。 高光谱成像技术的具体定义是在多光谱成像的基础上,从紫外到近红外(200-2500nm)的光谱范围内,利用成像光谱仪,在光谱覆盖范围内的数十或数百条光谐波段对目标物体连续成像。在获得物体空间特征成像的同时,也获得了被测物体的光谱信息。 (一)高光谱成像系统的组成和成像原理 而所谓高光谱图像就是在光谱维度上进行了细致的分割,不仅仅是传统所谓的黑、白或者R、G、B的区别,而是在光谱维度上也有N个通道,例如:我们可以把400nm-1000nm分为300个通道。因此,通过高光谱设备获取到的是一个数据立方,不仅有图像的信息,并且在光谱维度上进行展开,结果不仅可以获得图像上每个点的光谱数据,还可以获得任一个谱段的影像信息。 目前高光谱成像技术发展迅速,常见的包括光栅分光、声光可调谐滤波分光、棱镜分光、芯片镀膜等。下面分别介绍下以下几种类别: (1)光栅分光光谱仪 空间中的一维信息通过镜头和狭缝后,不同波长的光按照不同程度的弯散传播,这一维图像上的每个点,再通过光栅进行衍射分光,形成一个谱带,照射到探测器上,探测器上的每个像素位置和强度表征光谱和强度。一个点对应一个谱段,一条线就对应一个谱面,因此探测器每次成像是空间一条线上的光谱信息,为了获得空间二维图像再通过机械推扫,完成整个平面的图像和光谱数据采集。

基于高光谱技术的葡萄糖度无损检测方法研究

基于高光谱技术的葡萄糖度无损检测方法研究 发表时间:2018-11-13T20:07:56.373Z 来源:《电力设备》2018年第20期作者:吕茁源[导读] 摘要:葡萄作为世界十大水果之一,其种植面积和年生产量始终处于世界水果生产前列。 (北京四中) 摘要:葡萄作为世界十大水果之一,其种植面积和年生产量始终处于世界水果生产前列。在2015年,中国以1260万吨的葡萄产量(含鲜食葡萄),成为世界第一大葡萄生产国(占全球总量的 17%),逐渐从原来传统的农业与工业混合型朝着现代农业转型。但与世界发达国家相比,中国葡萄的优质化、标准化生产以及市场运作还处于初级阶段,葡萄浆果的产后处理,品质鉴别检测一直是农产品加工研究的重要课题。目前我国葡萄含糖量测试方法是从每穗摘取1至3粒葡萄,获得葡萄汁再进行糖度的测量,这样的方法耗时耗力,还会对葡萄造成损伤,并且不能满足现代农业生产的需求。本课题采用可见——近红外光谱技术,实现葡萄的无损糖度测量。 关键词:特征光谱,光谱鉴别,糖度分析 一、引言 国外非常重视水果产后的商品化处理,所有果品上市前必须经过分选包装线,根据超市要求,对果品进行严格分选和包装,常年满足超市的供货需求。在澳大利亚太平洋世纪集团的一个农场里所出的水果,无论是葡萄、柑橘、柠檬,还是荔枝等等,百分之百都经过水果加工的生产线进行预冷、清洗、挑选、杀虫、杀菌、打蜡、分选、包装冷藏后再推向市场,因而他们的葡萄在市场上可以卖到300至600元/箱,而新疆的“红地球葡萄”在市面上也只能卖至70至150元/箱,其价格相差5至6倍[1]。 葡萄浆果的含糖量是葡萄品质评定的重要指标,尤其在作为酿酒原料时,由于要适应葡萄酒的种类及其酿造工艺,对葡萄浆果的含糖量要严格控制。传统的葡萄浆果含糖量的检测方法是从每穗摘取1至3粒葡萄,取一定数量的浆果以获得250mL左右的葡萄汁再进行含糖量的测定,这样的测量方式耗时费力,对葡萄进行损伤,易造成样本变质,人为误差较大。利用近红外光谱分析技术具有快速、非破坏性、无需前期处理以及多组分类同时定量分析、测试等优势。可充分利用全谱或多谱长下的光谱数据进行定性和定量分析[2-3]。另外,快速无损的糖度检测方法给工业化、无人化农业生产提供了可能。果农可通过数据实时监测水果的成熟情况,从而科学地种植、采摘甚至运输,大幅度地降低生产、运输损耗,提高生产效率,降低生产成本。 二、近红外光谱分析技术发展现状 无损检测技术是在不损坏被检测对象的性质和使用效果的前提下,以光学、化学、声学、电学、物理、图像视觉等方法为手段,借助先进的技术和设备[3],对物体表面与内部的结构、性质、状态进行检查或测试的一种检测手段,经过国内外研究人员不断地深入研究,无损检测技术正逐步与高精度化、低辐射化、智能化、信息化接轨[1]。近年来,现代光纤通讯技术飞速发展,带动小型化的半导体激光器LD,发光二极管LED等新型光源器件不断涌现,为开发小型化的专用水果糖度检测仪器提供了技术支持[2]。通过可见光近红外光谱技术对水果的检测也在不断地发展和拓展,在越来越多种的水果种植中提供生产信息[4]。 三、可见光——近红外光谱技术对葡萄的检测方法 (一)选定实验器材。实验中选用钨灯作为光源,将波长量程在390-1100nm左右的光谱仪和折光糖度仪作为实验仪器使用。 (二)选定实验材料。考虑到季节因素,所测试时间为冬季,选用市场上的的四种提子,表皮颜色不同,分别为青提、黑提、红提和小红提。将新鲜的样品储存在冰箱中,实验前两小时取出,洗净,分离果粒,并选择分别从四种提子中选取各1至3粒颗粒饱满的果粒待测。 (三)预实验。首先需要控制测试温度、测试湿度、测试光线等变量,找到适合本实验的测试方法以提高实验数据的准确性,然后通过测试剔除异常样本。因为正常葡萄表面都会有“白霜”,属于葡萄在生长过程中合成的天然物质。为保证实验结果的准确性,试验时选取葡萄样本上最接近原本表皮颜色的区域上一点作为测试点。 (四)实验。第一步,打开光谱仪与光源并进行预热三十分钟,保持设备的稳定性。第二步,打开光谱仪软件,将待测葡萄置于白板上,分别测量并保存三种葡萄的光谱数据。第三步,将葡萄样本分别转入带有标记的纸杯中,准备下一步糖度测量。第四步,室温下,用滴管吸取少量蒸馏水,滴加在折光仪上,待显示折光仪示数为0可以开始实验。第五步,挤压果粒,将汁液覆盖折射仪镜面并直接读取数值,重复取样测量 3 次,计算平均值作为该串葡萄样本的最终 SSC 值。每次平行测定之间只需纸巾擦去汁液,两个样品之间需用蒸馏水冲洗镜面擦干后再进行测定,并做好相关记录。 四、实验数据处理与模型建立 (一)葡萄籽粒提取可溶性固形物样本的选取。在建立葡萄可溶固形物定量模型时,我们进行了异常样本的剔除,选用了39个葡萄样本。 建模样本与检测样本的合理选择直接影响葡萄可溶固形物数学模型的建立和预测效果的好坏。通常建模样本的性质需要具有广泛代表性及一定数量,所建立的数学模型才具有通用性,也才能对未知的葡萄样本做出比较好的预测结果。因此,对于每个品种均从中随机选取67%作为校正集,其余33%作为验证集。表1为提子可溶固形物模型建立的建模样本和检测样本的选取情况。 表1 建模样本与检测样本的选取 (二)葡萄籽粒可溶性固形物含量PLS模型的建立与检验。按照 GB-12295《水果、蔬菜制品可溶性固形物含量的测定》中规定的方法来测定葡萄可溶性固形物的含量,用数字式糖度折射仪,仪器的精度为0.1°Brix,测量范围为 0~45°Brix。以穗为单位,去除代表该穗葡萄的 12 颗葡萄样本非可食部分,将可食部分压榨后用滤纸过滤获得葡萄汁混匀。测试前,需用蒸馏水进行零点校正,将汁液覆盖折射仪镜面并直接读取数值,重复取样测量 3 次,计算平均值作为该串葡萄样本的最终 SSC 值。每次平行测定之间只需纸巾擦去汁液,两个样品之间需用蒸馏水冲洗镜面擦干后再进行测定,并做好相关记录。

多光谱高光谱及成像光谱仪的区别

光谱技术知识讲堂1.2 多光谱、高光谱与高光谱成像仪的区别 高光谱成像是新一代光电检测技术,兴起于20世纪80年代,目前仍在迅猛发展中。高光谱成像是相对多光谱成像而言,高光谱成像方法获得的高光谱图像与多光谱图像相比具有更丰富的图像和光谱信息。如果根据传感器的光谱分辨率对光谱成像技术进行分类,光谱成像技术一般可分成3类。 (1) 多光谱仪——光谱分辨率在10-1λ数量级范围内称为多光谱(Multi-spectral),传感器在可见光和近红外区域一般只有几个波段,不能成像。 (2) 高光谱仪——光谱分辨率在10-2λ数量级范围内称为高光谱(Hyper-spectral),这样的传感器在可见光和近红外区域有几十到数百个波段,光谱分辨率可达nm级,但不能成像。 (3) 高光谱成像仪——光谱分辨率小于10nm,传感器在可见光和近红外区域可达数百个波段,而且测量结果以图像方式表达出来,每一个像元均由光谱曲线组成,可以更为准确地获取目的物的反射光谱。比起高光谱仪,高光谱成像仪对样品的测量定位更为精准。 众所周知,光谱技术能检测到被测物体的物理结构、化学成分等指标。多光谱仪及高光谱仪是基于点的测量,而高光谱成像仪的测量所得到是目的物面上的光谱图。因此,高光谱成像技术是光谱分析技术和图像分析技术发展的必然结果,是二者完美结合的产物。高光谱成像技术不仅具有光谱分辨能力,还具有图像分辨能力,利用高光谱成像技术不仅可以对待检测物体进行定性和定量分析,而且还能进对其进行定位分析。 高光谱成像系统的主要工作部件是成像光谱仪,它是一种新型传感器,研制这类仪器的目的是为获取大量窄波段连续光谱图像数据,使每个像元具有几乎连续的光谱数据。它是一系列光波在不同波长处的光学图像,通常包含数十到数百个波段,光谱分辨率一般为小于l0nm(如美国SOC公司的SOC730,具有300个波段,光谱分辨率达2nm)。由于高光谱成像所获得的高光谱图像对图像中的每个像素都能提供一条几乎连续的光谱曲线,其在待测物上获得空间信息的同时又能获得比多光谱更为丰富光谱数据信息,这些数据信息可用来生成复杂模型,来进行判别、分类、识别图像中的材料。 通过高光谱成像获取待测物的高光谱图像包含 了待测物的丰富的空间、光谱和辐射三重信息。这些 信息不仅表现了地物空间分布的影像特征,同时也可 能以其中某一像元或像元组为目标获取它们的辐射强 度以及光谱特征。影像、辐射与光谱是高光谱图像中 的3个重要特征,这3个特征的有机结合就是高光谱 图像。 高光谱图像数据为数据立方体(cube)。通常图像 像素的横坐标和纵坐标分别用z和Y来表示,光谱的 波长信息以(Z即轴)表示。该数据立方体由沿着光谱 轴的以一定光谱分辨率间隔的连续二维图像组成。 地面使用的成像光谱仪多为推扫式,配备旋转位移台或线形位移台,以产生两种效果:成像光谱仪运动而待测物目标静止,或者成像光谱仪静止而待测目标运动的效果。目前,已经有新型的地面成像光谱仪,如美国SOC710,利用仪器内部的扫描装置实现推扫成像,即光谱仪和被测物均不运动即可完成高光谱成像,而不需要配备位移云台,重量仅3kg,仪器更为轻巧便携,便于野外使用。 (本节完) 18

(完整word版)高光谱目标检测文献综述

基于核方法的高光谱图像目标检测技术研究 ----文献选读综述报告 1前言 20 世纪80 年代遥感领域最重要的发展之一就是高光谱遥感的兴起。从20 世纪90 年代开始,高光谱遥感已成为国际遥感技术研究的热门课题和光电遥感的最主要手段。高光谱遥感图像目标检测在民用和军事上都具有重要的理论价值和应用前景,是当前目标识别及遥感信息处理研究领域中的一个热点研究问题。 2 研究目的及意义 高光谱遥感图像是在电磁波谱的紫外、可见光、近红外和中红外区域,利用成像光谱仪获取的许多非常窄且光谱连续的图像数据(如图1.1所示)。成像光谱仪为每个像元提供数十至数百个窄波段(通常波段宽度小于10 nm)的光谱信息,能产生一条完整而连续的光谱曲线。 图1.1 成像光谱仪探测地物目标示意图[1] 高光谱遥感技术主要利用各种地物(例如某种土壤、岩石和作物)对不同的光谱波长具有各不相同的吸收率和反射率的原理,根据每种物质所拥有的独特光

谱反射曲线来进行检测和分类。 利用高光谱遥感技术,能够很好地提取目标的辐射特性参量,使地表目标的定量分析与提取成为可能。然而,高光谱遥感成像机理复杂、影像数据量大,这导致影像的大气纠正、几何纠正、光谱定标、反射率转换等预处理困难。由于成像光谱仪获取的地物光谱特征曲线近乎连续,波段间相关性很高,数据冗余信息很多。在使用传统目标检测方法对高光谱影像中感兴趣目标进行检测时,波段多且相关性高,会导致训练样本相对不足,致使分类模型参数的估计不可靠,检测分类存在维数灾难现象。 因此,高光谱影像给地物分类识别带来了巨大机遇,同时给传统的目标检测方法也带来了挑战。为了充分发挥高光谱遥感技术的优势,必须在影像检测分类基本算法的基础之上,结合高光谱影像分类的特点,研究新的适用于高光谱影像的理论、模型和算法〕。在国内外,许多研究机构在理论和应用上进行了探索,取得了不少成果。 自从上世纪90年代中期核方法在支持向量机分类中得到成功应用以后,人们开始尝试利用核函数将经典的线性特征提取与分类识别方法推广到一般情况,在理论和应用中都有许多成果,引起了继经典统计线性分析、神经网络与决策树非线性分析后第三次模式分析方法的变革,成为机器学习、应用统计、模式识别、数据挖掘等许多学科的研究热点,在人脸识别、语音识别、字符识别、机器故障分类等领域得到成功应用[2]。 基于核方法的非线性特征提取与分类,为高光谱影像分析提供了一条新的途径。 3 核方法理论发展概况 3.1 核理论基础 核的理论比较古老,Mercer定理可追溯到1909年,早在20世纪40年代,A.N.Kolmogorov和N.Aronszajn就已经开展了有关再生核理论的研究。该理论最早被引入机器学习领域是在1964年,M.Aizermann、E.Bravermann和L.Rozoener在势函数方法中应用Mercer定理把核解释为特征空间中的内积。1975年Poggiio首次用到了多项式核函数,然而一直到20世纪90年代中期,B.Boser、I.Guyon和V.N.Vapnik提出支持向量机(SVM)算法后,该理论的实际价值才开始被人们所广泛认识。并且在经过 B.Scholkopf等人后续的工作以后,逐渐形成了如下的“核技巧”:任何一个只依赖于内积的算法都可以被“核化”[3]。 近年来核方法和基于核函数的算法在许多领域都获得了重要的应用。这些应用主要包括图象和计算机视觉(人脸识别、手写体识别等),文本分类,生物信息

高光谱图像分类

高光谱图像分类

《机器学习》课程项目报告 高光谱图像分类 ——基于CNN和ELM 学院信息工程学院 专业电子与通信工程学号 2111603035 学生姓名曹发贤 同组学生陈惠明、陈涛 硕士导师杨志景 2016 年11 月

一、项目意义与价值 高光谱遥感技术起源于20 世纪80年代初,是在多光谱遥感技术基础之上发展起来的[1]。高光谱遥感能够通过成像光谱仪在可见光、近红外、短波红外、中红外等电磁波谱范围获取近似连续的光谱曲线,将表征地物几何位置关系的空间信息与表征地物属性特征的光谱信息有机地融合在了一起,使得提取地物的细节信息成为可能。随着新型成像光谱仪的光谱分辨率的提高,人们对相关地物的光谱属性特征的了解也不断深入,许多隐藏在狭窄光谱范围内的地物特性逐渐被人们所发现,这些因素大大加速了遥感技术的发展,使高光谱遥感成为21 世纪遥感技术领域重要的研究方向之一。 在将高光谱数据应用于各领域之前,必须进行必要的数据处理。常用的数据处理技术方法包括:数据降维、目标检测、变化检测等。其中,分类是遥感数据处理中比较重要的环节,分类结果不但直接提取了影像数据有效信息,可以直接运用于实际需求中,同时也是实现各种应用的前提,为后续应用提供有用的数据信息和技术支持,如为目标检测提供先验信息、为解混合提供端元信息等。 相对于多光谱遥感而言,由于高光谱遥感的波谱覆盖范围较宽,因此我们可以根据需要选择特定的波段来突显地物特征,从而能够精确地处理地物的光谱信[2]。目前,许多国家开展大量的科研项目对高光谱遥感进行研究,研制出许多不同类型的成像光谱仪。高光谱遥感正逐步从地面遥感发展到航空遥感和航天遥感,并在地图绘制、资源勘探、农作物监测、精细农业、海洋环境监测等领域发挥重要的作用。高光谱遥感技术虽然是遥感领域的新技术,但是高光谱图像的分类一直制约着高光谱遥感的应用[3,4],因此对其进行研究显得尤为重要。 高光谱遥感图像较高的光谱分辨率给传统的图像分类识别算法提出严峻的挑战。波段维数的增加不仅加重了数据的存储与传输的负担,同时也加剧了数据处理过程的复杂性,并且由于波段与波段间存在着大量的冗余信息,从而使得传统图像分类算法并不适用于高光谱遥感图像的分类。传统的分类方法往往需要很多数目的已知类别的训练样本,从而导致计算量大,时

GaiaSky-mini无人机高光谱成像系统

GaiaSky-mini无人机高光谱成像系 统

仪器设备名称: 无人机高光谱成像系统-GaiaSky-mini 生产厂商:四川双利合谱科技有限公司 仪器主要功能、主要组成及主要技术参数: A.主要功能: ?辅助取景摄像头实现真正的所见即所得 ?图像实时回传,监控拍摄效果 ?400-1000nm波段高光谱图像 ?自动扫描速度匹配、自动曝光 ?数据预览及校正功能:辐射校正、反射率校正、区域校正 ?目标识别、伪装与反伪装等军事活动 ?地面物体与水体遥测 ?农作物生长状况、虫害监控、作物估产等现代精细农业检测 ?遥感考古 ?矿产资源勘测 B.主要组成: ?高光谱成像仪(含光谱成像仪、面阵探测器(CCD)、成像镜头) ?悬翼无人机(大疆M600 pro) ?高空下落缓速系统 ?采集控制系统 ?电池(16000mAh,22.2V,355.2Wh) ?增稳平台 ?99%的标准参考白板 ?SpecView数据采集控制软件 ?高精度组合航姿系统 ?无线数据链路 C.主要技术参数: 波长范围:400-1000nm 光谱分辨率(30um):(4 ±0.3nm@V10) 传感器:Sony ICX285,逐行扫描有效狭缝长度:8.9 mm 总效率:>50% 相对孔径:F/2.8 横向视场:27@18.5mm,21@23mm 扫描视场:33.5@18.5mm,26@23mm 像素数(空间×光谱):1392 ×1040 像素尺寸(空间×光谱):6.6 ×8.8mm 像素间距:6.45um 拍摄方式:悬停(内置扫描)

2、GaiaSky-mini无人机高光谱成像系统说明 2.1高光谱成像原理 高光谱成像技术的定义是在多光谱成像的基础上,在紫外到近红外(200- 2500nm)的光谱范围内,利用成像光谱仪,在光谱覆盖范围内的数十或数百条光谱波段对目标物体连续成像。在获得物体空间特征成像的同时,也获得了被测物体的光谱信息。 高光谱成像过程为:每次成一条线上的像后(X方向),在检测系统输送带前进的过程中,排列的探测器扫出一条带状轨迹从而完成纵向扫描(Y方向)。综合横纵扫描信息就可以得到样品的三维高光谱图像数据,如图1为高光谱成像的原理图。 图1 高光谱成像原理图 2.2 GaiaSky-mini无人机高光谱成像系统影像采集原理 GaiaSky-mini高光谱成像系统是针对小型旋翼无人机开发的高性价比机载高光谱成像系统。采用专利的内置扫描系统和增稳系统,成功克服了小型无人机系统搭载推扫式高光谱相机时,由于无人机系统的震动造成的成像质量差的问题。为高光谱成像技术在目标识别、伪装与反伪装等军事领域,地面物体与水体遥测、现代精细农业等生态环境监测、遥感考古、矿产资源勘测、水污染监测、高光谱立体摄影测量等领域的广泛应用奠定了基础。图2为GaiaSky-mini无人机高光谱成像系统野外测试的实体图。

相关文档