文档库 最新最全的文档下载
当前位置:文档库 › 产生jitter的原因

产生jitter的原因

图2:串扰例子 DJ来自于哪里? DJ是典型的由串扰、EMI、同步开关输出(SSO)、设备功能从属和其它有规律发生的干扰信号引起的,当一根受影响的线(一个电路板上的一根走线或一个电缆中的2根邻近的线)被一根驱动线上产生的磁场影响时,串扰发生。(图2)受影响的导体的感应系数的增加将使感应磁场转换为感应电流,感应电流的累加(正极或负极)将使被影响的线的电流逐渐增加或电压逐渐减小,电压的逐渐减小将在被影响的线上引起jitter。 图3总出示了一个EMI辐射图表,一根受影响的线被来自于一个EMI源(开关电源、AC电源线、RF信号源等等)的磁场所影响,这与串扰产生的jitter非常相似,在串扰情况下,一个磁场将感应出一个感应电流,该感应电流(正极或负极)将使被影响的线上的电流增加, 因此在被影响的线上产生jitter。

图3:EMI例子 图4出示了一个噪声参考平面的例子,当电源平面的噪声引起下游逻辑门的门限电压的参考改变时,DJ的这种形式发生。这个改变与输入信号的回转率成比例,当Vt在门上被超过,输出晶体管将导通。 当地参考平面在Vt 有一个改变时,这个电压的改变将导致门的开关的超前或滞后,由此产生的时间误差引起jitter。

图4:噪声参考平面图表 同步开关输出(SSO)是DJ的另一个来源,一个SSO图表在图5中显示,如果几个输出管脚转换到同一个状态,将在Vcc和GND平面上感应出一个电流尖峰。 这些尖峰电流可以引起门限电压判断点的改变,由于模式的敏感性和由于SSO造成的jitter边缘幅度的跳跃,这被认为是DJ。 图5:同步开关输出(SSO)图表 下面的四个DJ成分被指定到数据。 符号间干扰(ISI)定义 “数据从属确定性jitter是由信号从比特序列(符号)的不同位置开始并到达接收器门限所必需的时间差异所引起的。例如,当使用那些削弱由交替的0,1,0,1组成的比特序列的峰值幅度比由0,0,0,0,1,1,1,1组成的比特序列的峰值幅度多的媒体时,使用0,1,0,1达到接收器门限所必需的时间比来自于0,0,0,0,1,1,1,1所必需的时间少。4比特序列的运行长度产生一个更高的幅度,这将在比特值改变时花费更多的时间来克服,因此与1比特序列运行长度比较将产生一个时间差。当不同运行长度的比特序列在同一个传输中混合应用时,不同的比特序列(符号)将互相干扰。is expected 无论任何一种具有频率成分的比特序列被传输媒体以不同的速度传输时,ISI将发生。 图6:DDJ/ISI例子 数据从属Jitter(DDJ)定义 当传输模式从一个时钟模式改变到一个非时钟模式时,Jitt

er被产生,包括ISI。 图6出示了一个DDJ/ISI影响一个光纤信道K285模式的例子,在一个1,0,1,0,1,1转换后面跟着5个0。这5个连续的0与1,0,1,0,1,1部分期间立即跳回到1的两个0相比较转变为一个较低的电压。 占空比失真(DCD)定义 在一个时钟(重复的0,1,0,1,….)比特序列中,一个“1”脉冲的平均脉冲宽度与一个“0”脉冲的平均脉冲宽度项比较的差异。DCD是DJ分布的一部分并在理想的接收器门限点被测量。 跳跃的不相关的Jitter定义 “确定性jitter由被测信号上的不同的数据所引起。

jitter的频域表示——相位噪声 相位噪声是对信号时序变化的另一种测量方式,其时间抖动(jitter)在频率域中的显示。图2用一个振荡器信号来解释相位噪声。 如果没有相位噪声,那么振荡器的整个功率都应集中在频率f=fo处。但相位噪声的出现将振荡器的一部分功率扩展到相邻的频率中去,产生了边带(sideband)。从图2中可以看出,在离中心频率一定合理距离的偏移频率处,边带功率滚降到1/fm,fm是该频率偏离中心频率的差值。 相位噪声通常定义为在某一给定偏移频率处的dBc/Hz值,其中,dBc是以dB为单位的该频率处功率与总功率的比值。一个振荡器在某一偏移频率处的相位噪声定义为在该频率处1Hz带宽内的信号功率与信号的总功率比值。

相关文档
相关文档 最新文档