文档库 最新最全的文档下载
当前位置:文档库 › 在函数fn1()中定义一个静态变量n,fn1()中对n的值加1,在主函数中,调用fn1()十次,显示n的值

在函数fn1()中定义一个静态变量n,fn1()中对n的值加1,在主函数中,调用fn1()十次,显示n的值

在函数fn1()中定义一个静态变量n,fn1()中对n的值加1,在主函数中,调用fn1()十次,显示n的值

在函数fn1()中定义一个静态变量n,fn1()中对n的值加1,在主函数中,调用fn1()十次,显示n的值。

#include

using namespace std;

int n;

void fn1()

{

n=3;

}

int main()

{

n = 2;

fn1();

cout << "n的值为" <

}

函数定义域、值域经典习题及答案

复合函数定义域和值域练习题 一、 求函数的定义域 1、求下列函数的定义域: ⑴y = (2 )01(21)111 y x x = +-+- 2、设函数f x ()的定义域为[]01,,则函数f x ()2 的定义域为_ _ _;函数f x ()-2的定义域为 ________; 3、若函数(1)f x +的定义域为[]-23,,则函数(21)f x -的定义域是 ;函数1(2)f x +的定义域为 。 4、 已知函数f x ()的定义域为 [1,1]-,且函数()()()F x f x m f x m =+--的定义域存在,求实数m 的取 值范围。 二、求函数的值域 5、求下列函数的值域: ⑴223y x x =+- ()x R ∈ ⑵2 23y x x =+- [1,2]x ∈

⑶311x y x -=+ ⑷31 1 x y x -=+ (5)x ≥ ⑸ y = 三、求函数的解析式 1、 已知函数2(1)4f x x x -=-,求函数()f x ,(21)f x +的解析式。 2、 已知()f x 是二次函数,且2(1)(1)24f x f x x x ++-=-,求()f x 的解析式。 3、 已知函数()f x 满足2()()34f x f x x +-=+,则()f x = 。 4、设()f x 是R 上的奇函数,且当[0,)x ∈+∞时, ()(1f x x =,则当(,0)x ∈-∞时()f x =____ _ ()f x 在R 上的解析式为 5、设()f x 与()g x 的定义域是{|,1}x x R x ∈≠±且,()f x 是偶函数,()g x 是奇函数,且 1 ()()1 f x g x x += -,求()f x 与()g x 的解析表达式

函数定义域几种类型及其求法

函数定义域几种类型及其求法 河北省承德县一中 黄淑华 一、已知函数解析式型 即给出函数的解析式的定义域求法,其解法是由解析式有意义列出关于自变量的不等式或不等式组,解此不等式(或组)即得原函数的定义域。 例1、求函数8315 22-+--=x x x y 的定义域。 解:要使函数有意义,则必须满足?????≠-+≥--0 8301522x x x 即???-≠≠-<>11535x x x x 且或 解得1135-≠-<>x x x 且或 即函数的定义域为{}1135-≠-<>x x x x 且或。 二、抽象函数型 抽象函数是指没有给出解析式的函数,不能用常规方法求解,一般表示为已知一个抽象函数的定义域求另一个抽象函数的定义域,一般有两种情况。 (一)已知)(x f 的定义域,求[])(x g f 的定义域。 其解法是:已知)(x f 的定义域是],[b a 求[])(x g f 的定义域是解b x g a ≤≤)(,即为所求的定义域。 例2、已知)(x f 的定义域为]2,2[-,求)1(2-x f 的定义域。 解:22≤≤-x ,2122≤-≤-∴x ,解得33≤≤- x 即函数)1(2-x f 的定义域为{}33≤≤-x x (二)已知[])(x g f 的定义域,求)(x f 的定义域。 其解法是:已知[])(x g f 的定义域是],[b a 求)(x f 的定义域的方法是:b x a ≤≤,求)(x g 的值域,即所求)(x f 的定义域。 例3、已知)12(+x f 的定义域为]2,1[,求)(x f 的定义域。 解:21≤≤x ,422≤≤∴x ,5123≤+≤∴x 。 即函数)(x f 的定义域是{}53|≤≤x x 。

19.1.1《变量与函数》反思

19.1.1《变量与函数》教学反思 本节课是八年级学生初步接触函数的入门课,必须让学生准确认识变量与常量的特征,初步感受现实世界各种变量之间相互联系的复杂性,同时感受到数学研究方法的化繁为简,知道在初中阶段主要研究两个变量之间的特殊对应关系。 函数定义的关键词是:“两个变量”、“唯一确定”、“与其对应”;函数的要点是:1 有两个变量,2 一个变量的值随另一个变量的值的变化而变化,3 一个变量的值确定另一个变量总有唯一确定的值与其对应;函数的实质是:两个变量之间的对应关系;学习函数的意义是:用运动变化的观念观察事物。与学习进行仔细的研究,有助于函数意义的理解,但是,不可能在一课的学时内真正理解函数的意义,继续布置作业:每个同学列举出几个反映函数关系的实例,培育学生用函数的观念看待现实世界,最后,我还说明了,函数的学习,是我们数学认识的第二个飞跃,代数式的学习,是数学认识的第一次飞跃:由具体的数、孤立的数到一般的具有普遍意义的数,函数的学习,是由静止的不变的数到运动变化的数。 在函数概念的教学中,应突出“变化”的思想和“对应”的思想。从概念的起源来看,函数是随着数学研究事物的运动、变化而出现的,他刻画了客观世界事物间的动态变化和相互依存的关系,这种关系反映了运动变化过程中的两个变量之间的制约关系。因此,变化是函数概念产生的源头,是制约概念学习的关节点,同时也是概念教学的一个重要突破口。教师可以通过大量的典型实例,让学生反复观察、反复比较、反复分析每个具体问题的量与量之间的变化关系,把静止的表达式看动态的变化过程,让他们从原来的常量、代数式、方程式和算式的静态的关系中,逐步过渡到变量、函数这些表示量与量之间的动态的关系上,使学生的认识实现 为了快速明了的引出课题,课前让学生收集一些变化的实例,从学生的生活入手,开门见山,来指明本节课的学习内容。本课的引例较为丰富,但有些内容学生解决较为困难,于是我采取了三种不同的提问方式:1.教师问,学生答; 2.学生自主回答; 3.学生合作交流回答。为了较好的突出重点突破难点,在处理教学活动过程中,让学生思考每个变化活动中反映的是哪个量随哪个量的变化而变化,并提出一个量确定时另一个量是否唯一确定的问题,在得出变量和常量概念的同时渗透函数的概念.为了更好的让学生理解变量和常量的意义,由“问题中分别涉及哪些量?哪些量是变化的,哪些量是始终不变的?”一系列问题,在借助生活实例回答的过程中,归纳总结出变量与常量的概念,并能指出具体问题中的变量与常量。函数的概念是把学生由常量数学的学习引入变量数学的学习的过程,学生初步接触函数的概念,难以理解定义中“唯一确定”的准确含义,我设置了以下二个问题:1.在前面研究的每个问题中,都出现了几个变量?它们之间是相互影响,相互制约的。2.在二个变量中,一个量在变化的过程中每取一个值,另一个量有多少个值与它对应?来理解具体实例中二个变量的特殊对应关系,初步理解函数的概念。为了进一步让学生理解“唯一对应”关系,借助函数图像,使学生直观的感受二个变量之间特殊对应关系-----唯一对应。通过这种从实际问题出发的探究方式,使学生体验从具体到抽象的认识过程,及时给出函数的定义。再从抽象转化到实际应用中去,加深学生对函数概念的理解。为了加强学生辨析函数的能力,我准备了一道思考题,Y2=X中对于X的每一个值Y都

高中数学-函数定义域、值域求法总结

函数定义域、值域求法总结 一.求函数的定义域需要从这几个方面入手: (1)分母不为零 (2)偶次根式的被开方数非负。 (3)对数中的真数部分大于0。 (4)指数、对数的底数大于0,且不等于1 (5)y=tanx 中x ≠k π+π/2;y=cotx 中x ≠k π等等。 ( 6 )0x 中x 0≠ 二、值域是函数y=f(x)中y 的取值范围。 常用的求值域的方法: (1)直接法 (2)图象法(数形结合) (3)函数单调性法 (4)配方法 (5)换元法 (包括三角换元)(6)反函数法(逆求法) (7)分离常数法 (8)判别式法 (9)复合函数法 (10)不等式法 (11)平方法等等 这些解题思想与方法贯穿了高中数学的始终。 定义域的求法 1、直接定义域问题 例1 求下列函数的定义域: ① 2 1 )(-=x x f ;② 23)(+=x x f ;③ x x x f -+ +=211)( 解:①∵x-2=0,即x=2时,分式 2 1 -x 无意义, 而2≠x 时,分式 21 -x 有意义,∴这个函数的定义域是{}2|≠x x . ②∵3x+2<0,即x<-32 时,根式23+x 无意义, 而023≥+x ,即3 2 -≥x 时,根式23+x 才有意义, ∴这个函数的定义域是{x |3 2 -≥x }.

③∵当0201≠-≥+x x 且,即1-≥x 且2≠x 时,根式1+x 和分式x -21 同时有意义, ∴这个函数的定义域是{x |1-≥x 且2≠x } 另解:要使函数有意义,必须: ? ??≠-≥+0201x x ? ???≠-≥21 x x 例2 求下列函数的定义域: ①14)(2 --= x x f ②2 14 3)(2-+--= x x x x f ③= )(x f x 11111++ ④x x x x f -+= 0)1()( ⑤3 7 3132+++-=x x y 解:①要使函数有意义,必须:142 ≥-x 即: 33≤≤-x ∴函数14)(2--= x x f 的定义域为: [3,3-] ②要使函数有意义,必须:???≠-≠-≤≥?? ??≠-+≥--131 40210432x x x x x x x 且或 4133≥-≤<--

函数的定义域及其求法(知识点)(教师版)

函数的定义域及其求法(知识点) 一.定义域 定义域、值域、对应法则合称为函数的三要素.本词条主要介绍函数定义域的概念及其求法. 二.函数定义域的概念 函数的定义域就是指自变量x 的取值范围,它是构成函数的重要组成部分.定义域必须是非空数集,且必须写成区间或集合的形式. 例如:一次函数()(0)f x kx b k =+≠的定义域为 (或写成(,)-∞+∞). 三.函数定义域的求法 在处理函数的相关问题时,首先应明确函数的定义域是什么,求函数定义域主要包括具体函数的定义域、抽象函数的定义域以及实际问题中函数的定义域三种. 四.具体函数的定义域 对于已知解析式的具体函数,如果未加特殊说明,函数的定义域就是指能使表达函数的式子各部分都有意义的所有实数x 的取值集合.常见情形如下: 1. 若函数()f x 为整式,则其定义域为实数集 . 例如,二次函数2()1f x x x =++的定义域为. 2. 若函数()f x 是分式,则其定义域是使分母不为零的全体实数的集合. 例如,函数1()1 f x x =-的定义域为{1}x x ≠. 3. 若函数()f x 是偶次根式,则其定义域是使得根号内的式子大于或等于零的全体实数构成的集合. 例如,函数()f x =[1,)-+∞. 4. 若函数()f x 是由几个部分的数学式子构成的,则函数的定义域是使是使各部分都有意义的实数的集合, 即交集. 例如,函数1()1 f x x =-[1,1)(1,)-+∞. 5. 若函数0()f x x =,则其定义域是{0}x x ∈≠. 注:除了上述情形,还应注意指数函数和对数函数均需满足底数大于零且不等于1,对数函数的真数必须大于零,以及三角函数的定义域,如正切函数的定义域为ππ,2x x k k ??≠+∈???? 例 :求下列函数的定义域:①y = 2310x y x x --;③() f x =. 解:①由80,30,x x +??-?≥≥得83x -≤≤.所以原函数的定义域为[]8,3-. ②由220,3100,x x x +???--≠?? ≥解得()() 2250x x x -???+-≠??≥所以2,2,5,x x x -??≠-≠?≥即25x -<<或5x >.所以原函数的定义域为()()2,55,-+∞.

2.1.1(一)变量与函数的概念教案

第二章函数 §2.1函数 2.1.1 函数 第1课时变量与函数的概念 【学习要求】 1.通过丰富实例,加深对函数概念的理解,学会用集合与对应的语言来刻画函数,体会对应关系在刻 画函数概念中的作用. 2.了解构成函数的三要素. 3.能够正确使用“区间”的符号表示某些集合. 【学法指导】 通过实例体会函数是描述变量之间的依赖关系的重要数学模型,在此基础上学习用集合与对应的语言来刻画函数,体会用集合与对应刻画函数的必要性的重要性. 填一填:知识要点、记下疑难点 1.函数的概念:设集合A是一个非空的数集,对A中的任意数x,按照确定的法则f,都有唯一确定的数y与它对应,则这种对应关系叫做集合A上的一个函数.记作y=f(x),x∈A.其中x叫做自变量,自变量的取值范围(数集A)叫做这个函数的定义域. 2.区间概念:设a,b∈R,且aa,x≤a,x

高中数学函数的定义域教案人教版必修一

第二章--------函数的定义域 函数的独立元素:解析式 定义域 值域 性质 一、由函数解析式求定义域 基础练习A: 1.求下列函数的定义域: (1)y=lg(4x+3) (2)y=1/lg(4x+3) (3)y=(5x-4)0 (4)y=x 2/lg(4x+3)+(5x-4)0 2.用长为L 的铁丝弯成下部的矩形,上部分为半圆的框架(如图),若矩形的底边长为2x ,求此框架围成面积y 与x 的函数,写出的定义域。 例1、求下列函数的定义域 变1:使解析式 无意义的x 的取值范围是 变2:已知y 是x 的函数t t t t t t y x -+----+=+=222244,22其中t ∈R ,求 y=f(x)的函数解析式及其定义域 x x y )2lg(1-=、02)45()34lg(2-++=x x x y 、)39lg(|2|713x x y -+--=、3)12(23log )(4-=-x x f x 、x x y cos lg 2552+-=、C B 3442log 22+-+--x x x x

二、由y=f(x)的定义域,求复合函数y=f(g(x))的定义域;或者反过 来。 例2、设函数f(x)的定义域为[-2,9),求下列函数的定义域: (1)f(x+2) (2)f(3x) (3)f(x2) (4)f(lgx+5) (5) g(x)=f(-x)+f(x) 实质:已知中间变量u=g(X)的值域,求x的范围。 变:已知函数f(x)的定义域为[-1,1),则F(x)=f(1―x)+f(1―x2)的定义域为__。 例3、(1) 函数f(3x-2)的定义域是[-2,1),则f(x)的定义域为 (2)函数f(x2)的定义域是[-1,1),则f(x)的定义域为 x)的定义域为 (3)函数f(x2)的定义域是[-1,1],则f(log 2 ______ 例4、已知函数f(x)=1/(x+1),则f[f(x)]的定义域为 实质:由中间变量u=g(x)的值域求f(x)的定义域

C语言中变量和函数的声明与定义

变量 在将变量前,先解释一下声明和定义这两个概念。声明一个变量意味着向编译器描述变量的类型,但并不为变量分配存储空间。定义一个变量意味着在声明变量的同时还要为变量分配存储空间。在定义一个变量的同时还可以对变量进行初始化。 局部变量通常只定义不声明,而全局变量多在源文件中定义,在头文件中声明。 局部变量 在一个函数的内部定义的变量是内部变量,它只在本函数范围内有效。自动变量auto 函数中的局部变量,其缺省格式是自动变量类型。例如,在函数体中int b, c=3。和auto int b, c=3。是等价的。 自动变量是动态分配存储空间的,函数结束后就释放。自动变量如不赋初值,则它的值是一个不确定的值。 静态局部变量static 静态局部变量是指在函数体内声明和定义的局部变量,它仅供本函数使用,即其他函数不能调用它。静态局部变量的值在函数调用结束后不消失而保留原值,即其占用的存储单元不释放,在下一次函数调用时,该变量已有值,就是上一次函数调用结束时的值。 静态局部变量在静态存储区分配存储单元,在程序的整个运行期间都不释放。静态局部变量是在编译时赋初值的,即只赋初值一次。

在SDT编译器中,建议对静态局部变量赋初值,否则该静态局部变量的初值为不确定值。在其他编译器中,未初始化的静态局部变量的初值可能为零,这由具体的编译器所决定,使用前最好测试一下。 寄存器变量register 带register修饰符的变量暗示(仅仅是暗示而不是命令)编译程序本变量将被频繁使用,如果可能的话,应将其保留在CPU的寄存器中,以加快其存取速度。 对于现有的大多数编译程序,最好不要使用register修饰符。因为它是对早期低效的C编译程序的一个很有价值的补充。随着编译程序技术的进步,在决定哪些变量应当被存到寄存器中时,现在的C编译程序能比程序员做出更好的决定。 全局变量 在函数之外定义的变量称为外部变量,外部变量是全局变量,它可以为本文件中其他函数所共用。全局变量都是静态存储方式,都是在编译时分配内存,但是作用范围有所不同。 静态外部变量static 静态外部变量只能在本文件中使用。所以静态外部变量应该在当前源文件中声明和定义。 外部变量extern 定义函数中的全局变量时,其缺省格式是外部变量类型。外部变量应该在一个头文件中声明,在当前源文件中定义。外部变量允许其他文件引用。

高一数学知识点总结:函数的定义域

高一数学知识点总结:函数的定义域 导语:高中数学相对于初中来说在学习方法和解题难度上都会有所增加,所以我们要熟悉每个重点知识点,以此来找到更好的学习方法。以下是为大家精心的高一数学知识点总结:函数的定义域,欢迎大家参考! 定义域 (高中函数定义)设A,B是两个非空的数集,如果按某个确定的对应关系f,使对于集合A中的任意一个数x,在集合B中都有唯一确定的数f(x)和它对应,那么就称f:A--B为集合A到集合B的一个函数,记作y=f(x),x属于集合A。其中,x叫作自变量,x的取值范围A叫作函数的定义域; 值域 名称定义 函数中,应变量的取值范围叫做这个函数的值域函数的值域,在数学中是函数在定义域中应变量所有值的集合 常用的求值域的方法 (1)化归法;(2)图象法(数形结合), (3)函数单调性法, (4)配方法,(5)换元法,(6)反函数法(逆求法),(7)判别式法,(8)复合函数法,(9)三角代换法,(10)基本不等式法等 关于函数值域误区

定义域、对应法则、值域是函数构造的三个基本“元件”。平时数学中,实行“定义域优先”的原则,无可置疑。然而事物均具有二重性,在强化定义域问题的同时,往往就削弱或谈化了,对值域问题的探究,造成了一手“硬”一手“软”,使学生对函数的掌握时好时坏,事实上,定义域与值域二者的位置是相当的,绝不能厚此薄皮,何况它们二者随时处于互相转化之中(典型的例子是互为反函数定义域与值域的相互转化)。如果函数的值域是无限集的话,那么求函数值域不总是容易的,反靠不等式的运算性质有时并不能奏效,还必须联系函数的奇偶性、单调性、有界性、周期性来考虑函数的取值情况。才能获得正确答案,从这个角度来讲,求值域的问题有时比求定义域问题难,实践证明,如果加强了对值域求法的研究和讨论,有利于对定义域内函的理解,从而深化对函数本质的认识。 “范围”与“值域”相同吗? “范围”与“值域”是我们在学习中经常遇到的两个概念,许多同学常常将它们混为一谈,实际上这是两个不同的概念。“值域”是所有函数值的集合(即集合中每一个元素都是这个函数的取值),而“范围”则只是满足某个条件的一些值所在的集合(即集合中的元素不一定都满足这个条件)。也就是说:“值域”是一个“范围”,而“范围”却不一定是“值域”。

函数的定义域常见求法-含答案

【知识要点】 一、函数的定义域的定义 函数的定义域是指使函数有意义的自变量的取值范围. 二、求函数的定义域的主要依据 1、分式的分母不能为零. 2(2,)n k k N *=∈其中中0,x ≥奇次方根 (21,)n k k N *=+∈其中中,x R ∈. 3、指数函数x y a =的底数a 必须满足01,a a x R >≠∈且. 4、对数函数log a y x =的真数x 必须大于零,底数a 必须满足01a a >≠且. 5、零次幂的底数不能为零,即0x 中0x ≠. 6、正切函数tan y x =的定义域是{|,}2 x x k k z π π≠+∈. 7、复合函数的定义域的求法 (1)已知原函数()f x 的定义域为(,)a b ,求复合函数[()]f g x 的定义域:只需解不等式()a g x b <<,不等式的解集即为所求函数的定义域. (2)已知复合函数[()]f g x 的定义域为(,)a b ,求原函数()f x 的定义域:只需根据a x b <<求出函数 ()g x 的值域,即得原函数()f x 的定义域. 8、求函数()()y f x g x =+的定义域 一般先分别求函数()y f x =和函数()y g x =的定义域A 和B ,再求A B ,则A B 就是所求函数的 定义域. 9、求实际问题中函数的定义域 不仅要考虑解析式有意义,还要保证满足实际意义. 三、函数的定义域的表示 函数的定义域必须用集合表示,不能用不等式表示.函数的定义域也可以用区间表示,因为区间实际上

是集合的一种特殊表示形式. 四、求函数的定义域常用的方法有直接法、求交法、抽象复合法和实际法. 五、函数的问题,必须遵循“定义域优先”的原则. 研究函数的问题,不管是具体的函数,还是抽象的函数,不管是简单的函数,还是复杂的函数,必须优先考虑函数的定义域.之所以要做到这一点,不仅是为了防止出现错误,有时还会为解题带来方便. 【方法讲评】 【例1】求函数y . 【点评】对于类似例题的结构单一的函数,可以直接列出不等式再解答即得到函数的定义域. 【反馈检测1】求函数y =. B ,A B 就是函数 【例2】求函数y =3log cos x 的定义域. 【解析】由题得?? ? ??∈+<<-≤≤-∴???>≥-z k k x k x x x 22225 50cos 0252π πππ ∴}52 3 22235|{≤<<<--<≤-x x x x ππππ或或 所以函数的定义域为}52 3 22235|{≤<<<--<≤-x x x x ππππ或或

两个随机变量和与商的分布函数和密度函数

设(X ,Y )的联合密度函数为f (x ,y ),现求Z=X+Y 的概率密度。 令{(,)|}z D x y x y z =+≤,则Z 的分布函数为: (){} {}(,)((,))Z D z z y F z P Z z P X Y z f x y dxdy f x y dx dy +∞--∞ -∞ =≤=+≤==??? ? (1.1) 固定z 和y 对积分 (,)z y f x y dx --∞ ?作换元,令x y u +=,得 (,)(,)z y z f x y dx f u y y du --∞ -∞ =-?? (1.2) 于是 ()(,)[(,)]z z Z F z f u y y dudy f u y y dy du +∞+∞ -∞-∞ -∞ -∞ =-=-???? (1.3) 由概率论定义,即得Z 的概率密度为 ()(,)Z f z f z y y dy +∞-∞ =-? (1.4) 由X 与Y 的对称性,又可得 ()(,)Z f z f x z x dx +∞-∞ =-? , (1.5) 特别的,当X 与Y 相互独立时,有 ()()()()()Z X Y X Y F z f z y f y dx f x f z x dx +∞ +∞ -∞ -∞ =-=-? ? (1.6) 其中,()X f x 、()Y f y 分别是X 和Y 的密度函数。 式(1.6)又称为()X f x 和()Y f y 的卷积,常记为*()X Y f f z 。因此式(1.6)又称为独立和分布的卷积公式。

设(X ,Y )的联合密度函数为f (x ,y ),又X Z Y =,现求X Z Y =的概率密度,Z 的分布函数为 1 2 (){} (,)(,)Z D D F z P Z z f x y dxdy f x y dxdy =≤=+???? (2.1) 而 1 (,)(,)yz D f x y dxdy f x y dxdy +∞ -∞=?? ? ? (2.2) 对于固定的z ,y ,积分 (,)yz f x y dx -∞ ?作换元x u y = (这里y>0),得 (,)(,)yz z f x y dx yf yu y du -∞ -∞ =?? (2.3) 于是 01 (,)(,)(,)z D z f x y dxdy yf yu y dudy yf yu y dydu +∞-∞+∞ -∞==????? ? (2.4) 类似的可得 2 (,)(,)(,)yz D z f x y dxdy f x y dxdy yf yu y dydu +∞ -∞-∞-∞ ==-??? ? ? ? (2.5) 故有 12 0()(,)(,)[(,)(,)][(,)]Z D D z z F z f x y dxdy f x y dxdy yf yu y dy yf yu y dy du y f yu y dy du +∞-∞ -∞ +∞-∞-∞ =+=-=?????? ? ?? (2.6) 有概率密度定义可得X Z Y = 的概率密度为 ()(,)Z f z y f yz y dy +∞ -∞ =? (2.7) 特别的,当X 与Y 相互独立时,有 ()()()Z X Y f z y f yz f y dy +∞-∞ =? (2.8)

变量与函数教案

变量与函数 教学目的: 1.了解常量与变量的意义,能分清实例中的常量与变量; 2.了解自变量与函数的意义,能列举函数的实例,并能写出简单的函数关系式; 3.通过函数概念,初步形成学生利用函数的观点认识现实世界的意识和能力。经历函数概念的抽象概括过程,体会函数的模型思想。让学生主动地从事观察、操作、交流、归纳等探索活动,形成自己对数学知识的理解和有效的学习模式。 教学重点:函数概念的形成过程。 教学难点:理解函数概念。 教学过程: 一、创设情境 问题1:图1是某地一天内的气温变化图.这张图告诉我们哪些信息? 看出回答: (1)这天的6时,10时和14时的气温分别为多少?任意给出这天中的某一时刻,说出这一时刻的气温. (2)这一天中,最高气温是多少?最低气温是多少? (3)这一天中,什么时候的气温在逐渐升高?什么时候的气温在逐渐降低? 思考:这张图是怎样来展示这天各时刻的温度和刻画这天的气温变化规律的?

问题2:银行对各种不同的存款方式都规定了相应的利率,下表是20XX年7月中国工商银行为”整存整取”的存款方式规定的年利率. 观察上表,说一说随着存期x的增长,相应的年利率y是如何变化的? 问题3:收音机的刻度盘的波长和频率分别是用米(m)和千赫兹(kHz)为单位标刻的.下面是一些对对应的数值: 仔细的观察你能发现什么? 问题4:圆的面积是随着半径增大而增大的.如果用r表示圆的半径,S表示圆面积,则S与r之间满足什么关系?利用这个关系式,试求出半径为 1cm,1.5cm,2cm,2.6cm,3.2cm时圆的面积,并将结果填入下表: 由此你可以得到什么结论? 二、形成概念 (一)变量与常量概念的形成过程 1.举例、归纳 问题1:某地一天内的气温变化图(示图)学生观察气温随时间变化的情况,引出“变量”。 问题2:学生观察随着存期x的增长,相应的年利率y是如何变化的过程,加深对变量的认识,引出“常量”。 设问:一个量变化,具体地说是它的什么在变?什么不变呢? 引导学生观察发现:是量的数值变与不变。 归纳变量与常量的定义并板书。 在其他二个问题中有哪些是变量?哪些是常量?

高中数学函数的定义定义域值域解析式求法

课题7:函数的概念(一) 一、复习准备: 1. 讨论:放学后骑自行车回家,在此实例中存在哪些变量?变量之间有什么关系? 2.回顾初中函数的定义: 在一个变化过程中,有两个变量x 和y ,对于x 的每一个确定的值,y 都有唯一的值与之对应,此时y 是x 的函数,x 是自变量,y 是因变量。 表示方法有:解析法、列表法、图象法. 二、讲授新课: (一)函数的定义: 设A 、B 是两个非空的数集,如果按照某种确定的对应关系f ,使对于集合A 中的任意一个数x ,在集合B 中都有唯一确定的数()f x 和它对应,那么称:f A B →为从集合A 到集合B 的一个函数(function ),记作: (),y f x x A =∈ 其中,x 叫自变量,x 的取值范围A 叫作定义域(domain ),与x 的值对应的y 值叫函数值,函数值的集合{()|}f x x A ∈叫值域(range )。显然,值域是集合B 的子集。 (1)一次函数y=ax+b (a ≠0)的定义域是R ,值域也是R ; (2)二次函数2 y ax bx c =++ (a ≠0)的定义域是R ,值域是B ;当a>0时,值域244ac b B y y a ??-??=≥?????? ;当a ﹤0时,值域244ac b B y y a ??-??=≤?????? 。 (3)反比例函数(0)k y k x =≠的定义域是{}0x x ≠,值域是{}0y y ≠。 (二)区间及写法: 设a 、b 是两个实数,且a≤<的实数x 的集合分别表示为[)(),,,,a a +∞+∞(](),,,b b -∞-∞。 巩固练习:用区间表示R 、{x|x ≥1}、{x|x>5}、{x|x ≤-1}、{x|x<0} (三)例题讲解: 例1.已知函数2()23f x x x =-+,求f(0)、f(1)、f(2)、f(-1)的值。 变式:求函数223, {1,0,1,2}y x x x =-+∈-的值域 例2.已知函数1()2f x x =+, (1) 求()()2 (3),(),33f f f f --的值;(2) 当a>0时,求(),(1)f a f a -的值。 (四)课堂练习: 1. 用区间表示下列集合: {}{}{}{}4,40,40,1,02x x x x x x x x x x x x ≤≤≠≤≠≠-≤>且且或 2. 已知函数f(x)=3x 2+5x -2,求f(3)、f(-2)、f(a)、f(a+1)的值; 3. 课本P 19练习2。

高中数学函数定义域值域求法总结

函数定义域、值域求法总结 一。求函数得定义域需要从这几个方面入手: (1)分母不为零 (2)偶次根式得被开方数非负。 (3)对数中得真数部分大于0。 (4)指数、对数得底数大于0,且不等于1 (5)y=tanx中x≠kπ+π/2;y=cotx中x≠kπ等等。 ( 6 )中x 二、值域就是函数y=f(x)中y得取值范围。 常用得求值域得方法: (1)直接法(2)图象法(数形结合) (3)函数单调性法 (4)配方法 (5)换元法 (包括三角换元)(6)反函数法(逆求法) (7)分离常数法 (8)判别式法 (9)复合函数法 (10)不等式法 (11)平方法等等 这些解题思想与方法贯穿了高中数学得始终。 定义域得求法 1、直接定义域问题 例1 求下列函数得定义域: ①;②;③ 解:①∵x—2=0,即x=2时,分式无意义, 而时,分式有意义,∴这个函数得定义域就是、 ②∵3x+2〈0,即x<-时,根式无意义, 而,即时,根式才有意义, ∴这个函数得定义域就是{|}. ③∵当,即且时,根式与分式同时有意义, ∴这个函数得定义域就是{|且} 另解:要使函数有意义,必须: 例2 求下列函数得定义域: ①② ③④ ⑤ 解:①要使函数有意义,必须: 即: ∴函数得定义域为: []

②要使函数有意义,必须: ∴定义域为:{ x|} ③要使函数有意义,必须: ? ∴函数得定义域为: ④要使函数有意义,必须: ∴定义域为: ⑤要使函数有意义,必须: 即 x< 或 x〉∴定义域为: 2定义域得逆向问题 例3若函数得定义域就是R,求实数a得取值范围(定义域得逆向问题) 解:∵定义域就是R,∴ ∴ 练习: 定义域就是一切实数,则m得取值范围; 3复合函数定义域得求法 例4 若函数得定义域为[-1,1],求函数得定义域 解:要使函数有意义,必须: ∴函数得定义域为: 例5 已知f(x)得定义域为[—1,1],求f(2x—1)得定义域。 分析:法则f要求自变量在[-1,1]内取值,则法则作用在2x-1上必也要求2x-1在[-1,1]内取值,即-1≤2x-1≤1,解出x得取值范围就就是复合函数得定义域;或者从位置上思考f(2x-1)中2x-1与f(x)中得x位置相同,范围也应一样,∴—1≤2x-1≤1,解出x得取值范围就就是复合函数得定义域。 (注意:f(x)中得x与f(2x-1)中得x不就是同一个x,即它们意义不同。) 解:∵f(x)得定义域为[—1,1], ∴—1≤2x-1≤1,解之0≤x≤1, ∴f(2x-1)得定义域为[0,1]。 例6已知已知f(x)得定义域为[-1,1],求f(x2)得定义域。 答案:—1≤x2≤1 x2≤1-1≤x≤1 练习:设得定义域就是[-3,],求函数得定义域 解:要使函数有意义,必须: 得: ∵≥0 ∴ ∴函数得定域义为: 例7 已知f(2x-1)得定义域为[0,1],求f(x)得定义域 因为2x-1就是R上得单调递增函数,因此由2x-1, x∈[0,1]求得得值域[-1,1]就是f(x)得定义域、 练习: 1已知f(3x-1)得定义域为[—1,2),求f(2x+1)得定义域。) (提示:定义域就是自变量x得取值范围) 2已知f(x2)得定义域为[-1,1],求f(x)得定义域

高中函数定义域的求法

例1,求下列分式的定义域。 2 求函数y =23-x +30323-+x x ) (的定义域 解:(1)依题意可得,须是分母不能为零并且该根式也必须有意义,则 解得 x ≥3或x <2 因此函数的定义域为{X ︱x ≥3或x <2}。 (2) 要使函数有意义,则?????≠+≠-≥-. 03032023x x x ,,所以原函数的定义域为{x|x ≥32,且x ≠32}. 评注:对待此类有关于分式、根式的问题,切记关注函数的分母与被开方数即可,两者要同时考虑,所求“交集”即为所求的定义域。 例2,求下列关于对数函数的定义域 例1 函数x x y --=312log 2的定义域为 。 分析:对数式的真数大于零。 解:依题意知:0312>--x x 即0)3)(12(>--x x 解之,得321<--x x 已包含03≠-x 的情况,因此不再列出。 例3、⑴已知f(x)的定义域为[-1,1],求f(2x-1)的定义域。 (2)已知f(x)的定义域为[0,2],求函数f(2x-1)的定义域。 (3)已知f(x)的定义域为[0,2],求f(x 的平方)的定义域。 (4)已知f(2x-1)的定义域为(-1,5],求函数f(x)的定义域。 (5)已知f(2x-5)的定义域为(-1,5],求函数f(2-5x)的定义域。 例4,将长为a 的铁丝折成矩形,求矩形的面积y 关于一边长x 的函数解析式,并求函数的定义域。 总的来说,中学阶段研究的函数都还只是函数领域中的皮毛而已。但是不要因为这样,就高兴的太早了。毕竟还有很多同学对这方面一窍不通。对于每一个确定的函数,,其定义域是确定的,为了更明确、更深刻地揭示函数的本质,就产生了求函数定义域的问题。要全面认识定义域,深刻理解定义域,在实际寻求函数的定义域时,应当遵守下列规则: (1) 分式的分母不能为零; (2) 偶次方根的被开方数应该为非负数; (3) 有限个函数的四则运算得到新函数其定义域是这有限个函数的定义域交集(作 除法时还要去掉使除式为零的x 值); 的定义域求函数265)(:12-+-= x x x x f 020652≠-≥+-x x x

随机变量的特征函数

第四章 大数定律与中心极限定理 4.1特征函数 内容提要 1. 特征函数的定义 设X 是一个随机变量,称)()(itX e E t =?为X 的特征函数,其表达式如下 (),()().(), 在离散场合, 在连续场合,itx i i itX itx x e P X x t E e t e p x dx ?+∞-∞ ?=?==-∞<<+∞???∑? 由于1sin cos 22=+=tx tx e itx ,所以随机变量X 的特征函数)(t ?总是存在的. 2. 特征函数的性质 (1) 1)0()(=≤??t ; (2) ),()(t t ??=-其中)(t ?表示)(t ?的共 轭; (3) 若Y =aX +b ,其中a ,b 是常数.则);()(at e t X ibt Y ??= (4) 若X 与Y 是相互独立的随机变量,则);()()(t t t Y X Y X ????=+ (5) 若()l E X 存在,则)(t X ?可l 次求导,且对l k ≤≤1,有);()0()(k k k X E i =? (6) 一致连续性 特征函数)(t ?在),(+∞-∞上一致连续 (7) 非负定性 特征函数)(t ?是非负定的,即对任意正整数n ,及n 个实数 n t t t ,,,21 和n 个复数n z z z ,,21,有 ;0)(11≥-∑∑==j k j n k n j k z z t t ? (8) 逆转公式 设F (x )和)(t ?分别为X 的分布函数和特征函数,则对F (x )的任意两个点21x x <,有

=-+--+2)0()(2)0()(1122x F x F x F x F ;)(21 lim 2 1dt t it e e T T itx itx T ?π?-+∞→- 特别对F (x )的任意两个连续点21x x <,有 ;)(21 lim )()(2 112dt t it e e x F x F T T itx itx T ?π ?-+∞→-=- (9) 唯一性定理 随机变量的分布函数有其特征函数唯一决定; (10) 若连续随机变量X 的密度函数为p (x ),特征函数为).(t ?如果 +∞

17.1.1变量与函数

17.1.1变量与函数 知识技能目标 1.掌握常量和变量、自变量和因变量(函数)基本概念; 2.了解表示函数关系的三种方法:解析法、列表法、图象法,并会用解析法表示数量关系. 过程性目标 1.通过实际问题,引导学生直观感知,领悟函数基本概念的意义; 2.引导学生联系代数式和方程的相关知识,继续探索数量关系,增强数学建模意识,列出函数关系式. 教学过程 一、创设情境 在学习与生活中,经常要研究一些数量关系,先看下面的问题. 问题1如图是某地一天内的气温变化图. 看图回答: (1)这天的6时、10时和14时的气温分别为多少?任意给出这天中的某一时刻,说出这一时刻的气温. (2)这一天中,最高气温是多少?最低气温是多少? (3)这一天中,什么时段的气温在逐渐升高?什么时段的气温在逐渐降低? 解(1)这天的6时、10时和14时的气温分别为-1℃、2℃、5℃; (2)这一天中,最高气温是5℃.最低气温是-4℃; (3)这一天中,3时~14时的气温在逐渐升高.0时~3时和14时~24时的气温在逐渐降低. 从图中我们可以看到,随着时间t(时)的变化,相应地气温T(℃)也随之变化.那么在生活中是否还有其它类似的数量关系呢? 二、探究归纳 问题2 小蕾在过14岁生日的时候,看到了爸爸为她记录的各周岁时的体重,如下表:

观察上表,说说随着年龄的增长,小蕾的体重是如何变化的?在哪一段时间内体重增加较快? 解随着年龄的增长,小蕾的体重也随着增长,且在1-2岁增加较快. 问题3 收音机刻度盘的波长和频率分别是用米(m)和千赫兹(kHz)为单位标刻的.下面是一些对应的数值: 观察上表回答: (1)波长l和频率f数值之间有什么关系? (2)波长l越大,频率f就________. 解(1) l 与f的乘积是一个定值,即 lf= 或者说 (2)波长 问题4 S与r之间满 时圆的面积,并将结果填入下表: 解S= 圆的半径越大,它的面积就越大. 在上面的问题中,我们研究了一些数量关系,它们都刻画了某些变化规律.这里出现了各种各样的量,特别值得注意的是出现了一些数值会发生变化的量.例如问题1中,刻画气温变化规律的量是时间t和气温T,气温T随着时间t的变化而变化,它们都会取不同的数值.像这样在某一变化过程中,可以取不同数值的量,叫做变量(variable). 上面各个问题中,都出现了两个变量,它们互相依赖,密切相关.一般地,如果在一个变化过程中,有两个变量,例如x和y,对于x的每一个值,y都有惟一的值与之对应,我们就说x是自变量

相关文档
相关文档 最新文档