文档库 最新最全的文档下载
当前位置:文档库 › ASME铸钢探伤A609

ASME铸钢探伤A609

ASME铸钢探伤A609
ASME铸钢探伤A609

Designation:A609/A609M–91(Reapproved2002)

Standard Practice for

Castings,Carbon,Low-Alloy,and Martensitic Stainless Steel,Ultrasonic Examination Thereof1

This standard is issued under the?xed designation A609/A609M;the number immediately following the designation indicates the year of original adoption or,in the case of revision,the year of last revision.A number in parentheses indicates the year of last reapproval.

A superscript epsilon(e)indicates an editorial change since the last revision or reapproval.

1.Scope

1.1This practice2covers the standards and procedures for the pulse-echo ultrasonic examination of heat-treated carbon, low-alloy,and martensitic stainless steel castings by the longitudinal-beam technique.

1.2This practice is to be used whenever the inquiry, contract,order,or speci?cation states that castings are to be subjected to ultrasonic examination in accordance with Prac-tice A609/A609M.

1.3This practice contains two procedures for ultrasonic inspection of carbon,low-alloy,and martensitic stainless steel castings;that is,Procedure A and Procedure B.Procedure A is the original A609/A609M practice and requires calibration using a series of test blocks containing?at bottomed holes.It also provides supplementary requirements for angle beam testing.Procedure B requires calibration using a back wall re?ection from a series of solid calibration blocks.

N OTE1—Ultrasonic examination and radiography are not directly comparable.This examination technique is intended to complement Guide E94in the detection of discontinuities.

1.4The values stated in either inch-pound units or SI units are to be regarded separately as standard.Within the text,the SI units are shown in brackets.The values stated in each system are not exact equivalents;therefore,each system must be used independently of the https://www.wendangku.net/doc/ac697776.html,bining values from the two systems may result in nonconformance with this practice.

1.5This standard does not purport to address all of the safety concerns,if any,associated with its use.It is the responsibility of the user of this standard to establish appro-priate safety and health practices and determine the applica-bility of regulatory limitations prior to use.

2.Referenced Documents

2.1ASTM Standards:

A217/A217M Speci?cation for Steel Castings,Martensitic Stainless and Alloy,for Pressure-Containing Parts,Suit-able for High-Temperature Service3

E94Guide for Radiographic Examination4

E317Practice for Evaluating Performance Characteristics of Ultrasonic Pulse-Echo Examination Instruments and Systems Without the Use of Electronic Measurement Instruments4

2.2Other Document:

SNT-TC-1A Recommended Practice for Non-Destructive Testing Personnel Quali?cation and Certi?cation5

3.Ordering Information

3.1The inquiry and order should specify which procedure is to be used.If a procedure is not speci?ed,Procedure A shall be used.

3.2Procedure A—Flat-Bottomed Hole Calibration Proce-dure:

3.2.1When this practice is to be applied to an inquiry, contract,or order,the purchaser shall furnish the following information:

3.2.1.1Quality levels for the entire casting or portions thereof,

3.2.1.2Sections of castings requiring longitudinal-beam examination,

3.2.1.3Sections of castings requiring dual element exami-nation,

3.2.1.4Sections of castings requiring supplementary exami-nation,using the angle-beam procedure described in Supple-mentary Requirement S1in order to achieve more complete examination,and

3.2.1.5Any requirements additional to the provisions of this practice.

3.3Procedure B:Back-Wall Re?ection Calibration Procedure—When this procedure is to be applied to an inquiry, contract,or order,the purchaser shall designate the quality levels for the entire casting or applicable portions.

1This practice is under the jurisdiction of ASTM Committee A01on Steel, Stainless Steel,and Related Alloys and is the direct responsibility of Subcommittee A01.18on Castings.

Current edition approved Dec.15,1991.Published July1992.Originally published as A609–https://www.wendangku.net/doc/ac697776.html,st previous edition A609/A609M–90.

2For ASME Boiler and Pressure Vessel Code applications,see related Speci?-cation SA-609of Section II of that Code.

3Annual Book of ASTM Standards,V ol01.02.

4Annual Book of ASTM Standards,V ol03.03.

5Available from American Society for Nondestructive Testing,P.O.Box28518, 1711Arlingate Ln.,Columbus,OH43228-0518.

1

Copyright?ASTM International,100Barr Harbor Drive,PO Box C700,West Conshohocken,PA19428-2959,United States.

PROCEDURE A—FLAT-BOTTOMED HOLE

CALIBRATION PROCEDURE

4.Apparatus

4.1Electronic Apparatus:

4.1.1An ultrasonic,pulsed,re?ection type of instrument that is capable of generating,receiving,and amplifying fre-quencies of at least1to5MHz.

4.1.2The ultrasonic instrument shall provide linear presen-tation(within65%)for at least75%of the screen height (sweep line to top of screen).Linearity shall be determined in accordance with Practice E317or equivalent electronic means.

4.1.3The electronic apparatus shall contain a signal attenu-ator or calibrated gain control that shall be accurate over its useful range to610%of the nominal attenuation or gain ratio to allow measurement of signals beyond the linear range of the instrument.

4.2Search Units:

4.2.1Longitudinal Wave,internally grounded,having a?to 1!in.[13to28mm]diameter or1-in.[25-mm]square piezo-electric elements.Based on the signals-to-noise ratio of the response pattern of the casting,a frequency in the range from1to5MHz shall be used.The background noise shall not exceed25%of the distance amplitude correction curve (DAC).Transducers shall be utilized at their rated frequencies.

4.2.2Dual-Element,5-MHz,?by1-in.[13by25-mm],12°included angle search units are recommended for sections1in. [25mm]and under.

4.2.3Other frequencies and sizes of search units may be used for evaluating and pinpointing indications.

4.3Reference Blocks:

4.3.1Reference blocks containing?at-bottom holes shall be used to establish test sensitivity in accordance with8.2.

4.3.2Reference blocks shall be made from cast steels that give an acoustic response similar to the castings being exam-ined.

4.3.3The design of reference blocks shall be in accordance with Fig.1,and the basic set shall consist of those blocks listed in Table1.When section thicknesses over15in.[380-mm]are to be inspected,an additional block of the maximum test thickness shall be made to supplement the basic set.

4.3.4Machined blocks with3?32-in.[2.4-mm]diameter?at-bottom holes at depths from the entry surface of1?8in.[3mm], 1?2in.[13mm],or1?2t and3?4in.[19mm],or3?4t(where t= thickness of the block)shall be used to establish the DAC for

the dual-element search units(see Fig.2).

4.3.5Each reference block shall be permanently identi?ed along the side of the block indicating the material and the block identi?cation.

4.4Couplant—A suitable couplant having good wetting characteristics shall be used between the search unit and examination surface.The same couplant shall be used for calibrations and examinations.

5.Personnel Requirements

5.1The manufacturer shall be responsible for assigning quali?ed personnel to perform ultrasonic examination in con-formance with the requirements of this practice.

5.2Personnel performing ultrasonic examinations in accor-dance with this practice shall be familiar with the following: 5.2.1Ultrasonic terminology,

5.2.2Instrument calibration,

5.2.3Effect of transducer material,size,frequency,and mode on test results,

5.2.4Effect of material structure(grain size,cleanliness, etc.)on test results,

5.2.5Effect of test distance on test results,

5.2.6Effect of nonlinearity on test results,

5.2.7Effect of thickness and orientation of discontinuities on test results,and

5.2.8Effect of surface roughness on test

results.

N OTE1—Opposite ends of reference block shall be?at and parallel within0.001in.[0.025mm].

N OTE2—Bottom of?at-bottom hole shall be?at within0.002-in.

[0.051mm]and the?nished diameter shall be1?4+0.002in.[6.4+0.050]. N OTE3—Hole shall be straight and perpendicular to entry surface within0°,30min and located within1?32in.[0.80mm]of longitudinal axis.

N OTE4—Counter bore shall be1?2in.[15.0mm]diameter by1?8in.[5 mm]deep.

FIG.1Ultrasonic Standard Reference Block

TABLE1Dimensions and Identi?cation of Reference Blocks in

the Basic Set(See Fig.1)

Hole Diameter

in1?64ths,in.

[mm]

Metal

Distance

(B),in.A

[mm]

Overall

Length

(C),in.

[mm]

Width or

Diameter

(D),min,

in.[mm]

Block

Identi?-

cation

Number

16[6.4]1[25]13?4[45]2[50]16-0100

16[6.4]2[50]23?4[70]2[50]16-0200

16[6.4]3[75]33?4[95]2[50]16-0300

16[6.4]6[150]63?4[170]3[75]16-0600

16[6.4]10[255]103?4[275]4[100]16-1000

16[6.4]B B+3?4[B+20]5[125]16-B00B

A Tolerance61?8in.[3mm].

B Additional supplemental blocks for testing thickness greater than10in.[250 mm],see

4.3.3.

5.3A quali?cation record (see Note 2)of personnel consid-ered suitable by the manufacturer to perform examinations in accordance with this practice shall be available upon request.

N OTE 2—SNT-TC-1A,Ultrasonic Testing Method,provides a recom-mended procedure for qualifying personnel.Other personnel quali?cation requirement documents may by used when agreed upon between the purchaser and the supplier.

6.Casting Conditions

6.1Castings shall receive at least an austenitizing heat treatment before being ultrasonically examined.

6.2Test surfaces of castings shall be free of material that will interfere with the ultrasonic examination.They may be as cast,blasted,ground,or machined.

6.3The ultrasonic examination shall be conducted prior to machining that prevents an effective examination of the cast-ing.

7.Test Conditions

7.1To assure complete coverage of the speci?ed casting section,each pass of the search unit shall overlap by at least 10%of the width of the transducer.

7.2The rate of scanning shall not exceed 6in./s [150mm/s].7.3The ultrasonic beam shall be introduced perpendicular to the examination surface.

8.Procedure

8.1Adjust the instrument controls to position the ?rst back re?ection for the thickness to be tested at least one half of the distance across the cathode ray tube.

8.2Using the set of reference blocks spanning the thickness of the casting being inspected,mark the ?at-bottom hole indication height for each of the applicable blocks on the cathode ray tube shield.Draw a curve through these marks on the screen or on suitable graph paper.The maximum signal amplitude for the test blocks used shall peak at approximately three-fourths of the screen height above the sweep by use of the attenuator.This curve shall be referred to as the 100%distance amplitude correction (DAC)curve.If the attenuation of ultra-sound in the casting thickness being examined is such that the system’s dynamic range is exceeded,segmented DAC curves are permitted.

8.3The casting examination surface will normally be rougher than that of the test blocks;consequently,employ a transfer mechanism to provide approximate compensation.In order to accomplish this,?rst select a region of the casting that has parallel walls and a surface condition representative of the rest of the casting as a transfer point.Next,select the test block whose overall length,C (Fig.1),most closely matches the re?ection amplitude through the block length.Place the search unit on the casting at the transfer point and adjust the instrument gain until the back re?ection amplitude through the casting matches that through the test https://www.wendangku.net/doc/ac697776.html,ing this transfer technique,the examination sensitivity in the casting may be expected to be within 630%or less of that given by the test blocks.

8.4Do not change those instrument controls and the test frequency set during calibration,except the attenuator,or calibrated gain control,during acceptance examination of

a

N OTE 1—Entrant surface shall be 250μin.[6.3μm]or ?ner.

N OTE 2—The 3?32-in.[2.4mm]?at-bottom hole must be ?at within 0.002in.[0.05mm].Diameter must be within +0.005in.[0.13mm]of the required diameter.Hole axis must be perpendicular to the block and within an angle of 0°,30min.N OTE 3—Hole shall be plugged following checking for ultrasonic response.

in.[mm]in.[mm]1?8[3]11?4[32]1?4

[6]11?2[38]1?2[13]13?4[44]3?4[19.0]2[50]1

[25]

10

[254]

FIG.2Ultrasonic Standard Reference Block for Dual-Search Unit

Calibration

given thickness of the casting.Make a periodic calibration during the inspection by checking the amplitude of response from the1?4-in.[6.4-mm]diameter?at-bottom hole in the test block utilized for the transfer.

N OTE3—The attenuator or calibrated gain control may be used to change the signal amplitude during examination to permit small amplitude signals to be more readily detected.Signal evaluation is made by returning the attenuator or calibrated gain control to its original setting.

8.5During examination of areas of the casting having parallel walls,recheck areas showing75%or greater loss of back re?ection to determine whether loss of back re?ection is due to poor contact,insufficient couplant,misoriented discon-tinuity,etc.If the reason for loss of back re?ection is not evident,consider the area questionable and further investigate.

9.Report

9.1The manufacturer’s report of?nal ultrasonic examina-tion shall contain the following data and shall be furnished to the purchaser:

9.1.1The total number,location,amplitude,and area when

possible to delineate boundaries by monitoring the movement of the center of the search unit of all indications equal to or greater than100%of the DAC,

9.1.2Questionable areas from8.5that,upon further inves-tigation,are determined to be caused by discontinuities,

9.1.3The examination frequency,type of instrument,types of search units employed,couplant,manufacturer’s identifying numbers,purchaser’s order number,and data and authorized signature,and

9.1.4A sketch showing the physical outline of the casting, including dimensions of all areas not inspected due to geomet-ric con?guration,with the location and sizes of all indications in accordance with9.1.1and9.1.2.

10.Acceptance Standards

10.1This practice is intended for application to castings with a wide variety of sizes,shapes,compositions,melting processes,foundry practices,and applications.Therefore,it is impractical to specify an ultrasonic quality level that would be universally applicable to such a diversity of products.Ultra-sonic acceptance or rejection criteria for individual castings should be based on a realistic appraisal of service requirements and the quality that can normally be obtained in production of the particular type of casting.

10.2Acceptance quality levels shall be established between the purchaser and the manufacturer on the basis of one or more of the following criteria:

10.2.1No indication equal to or greater than the DAC over an area speci?ed for the applicable quality level of Table2.

10.2.2No reduction of back re?ection of75%or greater that has been determined to be caused by a discontinuity over an area speci?ed for the applicable quality level of Table2.

10.2.3Indications producing a continuous response equal to or greater than the DAC with a dimension exceeding the maximum length shown for the applicable quality level shall be unacceptable.

10.2.4Other criteria agreed upon between the purchaser and the manufacturer.

10.3Other means may be used to establish the validity of a rejection based on ultrasonic inspection.

N OTE4—The areas for the ultrasonic quality levels in Table2of Practice A609/A609M refer to the surface area on the casting over which a continuous indication exceeding the DAC is maintained.

N OTE5—Areas are to be measured from dimensions of the movement of the search unit by outlining locations where the amplitude of the indication is100%of the DAC or where the back re?ection is reduced by 75%,using the center of the search unit as a reference point to establish the outline of the indication area.

N OTE6—In certain castings,because of very long metal path distances or curvature of the examination surfaces,the surface area over which a given discontinuity is detected may be considerably larger or smaller than the actual area of the discontinuity in the casting;in such cases,other criteria that incorporate a consideration of beam angles or beam spread must be used for realistic evaluation of the discontinuity.

PROCEDURE B—BACK-WALL REFLECTION

CALIBRATION PROCEDURE

11.Apparatus

11.1Apparatus shall be kept on a regular six month main-tenance cycle during which,as a minimum requirement,the vertical and horizontal linearities,sensitivity,and resolution shall be established in accordance with the requirements of Practice E317.

11.2Search Units—Ceramic element transducers not ex-ceeding1.25in.[32mm]diameter or1in.2[645mm2]shall be used.

11.3Search Units Facing—A soft urethane membrane or neoprene sheet,approximately0.025in.[0.64mm]thick,may be used to improve coupling and minimize transducer wear caused by casting surface roughness.

11.4Calibration/Testing—The same system,including the urethane membrane,used for calibration shall be used to inspect the casting.

11.5Other Inspections—Other frequencies and type search units may be used for obtaining additional information and pinpointing of individual indications.

TABLE2Rejection Level

N OTE1—The areas in the table refer to the surface area on the casting over which a continuous indication exceeding the amplitude reference line or a continuous loss of back re?ection of75%or greater is maintained. N OTE2—Areas shall be measured from the center of the search unit. N OTE3—In certain castings,because of very long test distances or curvature of the test surface,the casting surface area over which a given discontinuity is detected may be considerably larger or smaller than the actual area of the discontinuity in the casting;in such cases a graphic plot that incorporates a consideration of beam spread should be used for realistic evaluation of the discontinuity.

Ultrasonic Testing

Quality Level

Area,in.2[cm2]

(see10.2.1and

10.2.2)

Length,max,

in.[mm]

10.8[5] 1.5[40]

2 1.5[10] 2.2[55]

33[20] 3.0[75]

45[30] 3.9[100]

58[50] 4.8[120]

612[80] 6.0[150]

716[100] 6.9

[175]

11.6Couplant—A suitable liquid couplant,such as clean SAE30motor oil or similar commercial ultrasonic couplant, shall be used to couple the search unit to the test surface.Other couplants may be used when agreed upon between the pur-chaser and supplier.

11.7Reference Standards—Reference standards in accor-dance with Fig.3shall be used to calibrate the instrument for inspecting machined and cast surfaces.Reference standards shall be?aw free and machined within tolerances indi-cated.

12.Ultrasonic Instrument

12.1Type—Pulsed ultrasonic re?ection instrument capable of generating,receiving,and amplifying frequencies of1MHz to5MHz shall be used for testing.

12.2Voltage—Line voltage shall be suitably regulated by constant voltage equipment and metal housing must be grounded to prevent electric shock.

12.3Linearity—The instrument must provide a linear pre-sentation(within65%)of at least1.5in.[40mm]sweep to peak(S/P).

12.4Calibrated Gain Control of Attenuator—The instru-ment shall contain a calibrated gain control or signal attenuator (accurate within610%)which will allow indications beyond the linear range of the instrument to be measured.

12.5Time-Corrected Gain—The instrument shall be equipped to compensate for signal decay with distance.A method should be available to equalize signal response at different depths.

13.Quali?cation

13.1The requirements for pre-production quali?cation are as follows:

13.1.1Personnel—The personnel quali?cation require-ments of SNT-TC-1A are applicable.Other personnel quali?-cation requirement documents may be used when agreed upon between the purchaser and the supplier.Records of all person-nel shall be available to customers upon request.

13.1.2Equipment—The equipment shall be capable of meeting the requirements in Section12.

14.Preparation

14.1Time of Inspection—The?nal ultrasonic acceptance inspection shall be performed after at least an austenitizing heat treatment and preferably after machining.In order to avoid time loss in production,acceptance inspection of cast surfaces may be done prior to machining.Machined surfaces shall be acceptance inspected as soon as possible after machining. Repair welds may be inspected before the postweld heat treatment.

14.2Surface Finish:

14.2.1Machined Surfaces—Machined surfaces subject to ultrasonic inspection shall have a?nish that will produce an ultrasonic response equivalent to that obtained from a250μin.

[6.3μm]surface.The surface?nish shall also permit adequate movement of search units along the surface.

14.2.2Casting Surfaces—Casting surfaces to be ultrasoni-cally inspected shall be suitable for the intended type and quality level(Table3and Table4)of inspection as judged acceptable by a quali?ed individual as speci?ed in13.1.1. 14.2.3Surface Condition—All surfaces to be inspected shall be free of scale,machining or grinding particles,exces-sive paint thickness,dirt,or other foreign matter that may interfere with the inspection.

14.3Position of Casting—The casting shall be positioned such that the inspector has free access to the back wall for the purpose of verifying change in contour.

15.Calibration

15.1Calibration Blocks—Determine the thickness of the material to be ultrasonically inspected.For material thickness of3in.[75mm]or less,use the series of3blocks,1?2,2,5in. [13,50,125mm](Fig.3,B dimension)for calibration.For

a

Dimensions,in.[mm]Material

2[50]1?2[13]Speci?cation A217/A217M,

2[50]2[50]Grade WC6or acoustically similar within

620%or2dB.

3[75]5[125]

6[150]10[250]

Tolerance

All sides to be?at within0.0002in.[0.01mm]and parallel with0.001in.[0.03

mm].

FIG.3Calibration Blocks

TABLE3Acceptance Criteria for Single Isolated Indications

N OTE1—The area measured by movement of the center of the

transducer over the casting surface.

N OTE2—O=outer wall1?3,or inner wall1?3.

C=mid wall1?3.

E=entire wall.

Quality Level

Maximum Non-Linear Indica-

tion,Area,in.2[cm2]

Position of

Indication

10E

21[6]E

31[6]O

2[13]C

43[19]E

53[19]O

5[32]C

65[32]E

75[32]O

7[45]C

87[45]E

97[45]O

9[58]C

109[58]E

119[58]O

11[71]

C

material thickness greater than3in.,use the series of3blocks, 2,5,10in.[50,125,250mm](Fig.3,B dimension)for calibration.

15.2Calibration of Search Units—For the thickness of material to be inspected,as determined in15.1,use the following search units:

15.2.1For materials3in.[75mm]or less in thickness,use a21?4MHz,?in.[13mm]diameter search unit.

15.2.2For material greater than3in.[75mm]in thickness, use a21?4MHz,1in.[25mm]diameter search unit.

15.3Calibration Procedure:

15.3.1Set the frequency selector as required.Set the reject control in the“OFF”position.

15.3.2Position the search unit on the entrant surface of the block that completely encompasses the metal thickness to be inspected(Fig.3)and adjust the sweep control such that the back re?ection signal appears approximately,but not more than three-quarters along the sweep line from the initial pulse signal.

15.3.3Position the search unit on the entrant surface of the smallest block of the series of3blocks selected for calibration and adjust the gain until the back re?ection signal height (amplitude)is1.5in.[40mm]sweep to peak(S/P).Draw a line on the cathode-ray screen(CRT),parallel to the sweep line, through the peak of the1.5in.(S/P)amplitude.

15.3.4Position the search unit on the entrant surface of the largest block of the series of3blocks selected for calibration, and adjust the distance amplitude control to provide a back re?ection signal height of1.5in.[40mm](S/P).

15.3.5Position the search unit on the entrant surface of the intermediate calibration block of the series of3blocks being used for calibration and con?rm that the back re?ection signal height is approximately1.5in.[40mm](S/P).If it is not, obtain the best compromise between this block and the largest block of the series of3blocks being used for calibration.

15.3.6Draw a line on the cathode ray tube screen parallel to the sweep line at0.5in.[13mm](S/P)amplitude.This will be the reference line for reporting discontinuity amplitudes. 15.3.7For tests on machined surfaces,position the search unit on a machined surface of casting where the walls are reasonably parallel and adjust the gain of the instrument until the back re?ection signal height is1.5in.[40mm](S/P). Increase the inspection sensitivity by a factor of three times(10 dB gain)with the calibrated attenuator.Surfaces that do not meet the requirements of14.2.1shall be inspected as speci?ed in15.3.8.

15.3.8For inspections on cast surfaces,position the search unit on the casting to be inspected at a location where the walls are reasonably parallel and smooth(inside and outside diam-eter)and the surface condition is representative of the surface being inspected.Adjust the gain of the instrument until the back re?ection signal height is1.5in.[40mm](S/P).Increase the inspection sensitivity by a factor of six times(16dB)by use of the calibrated control or attenuator.A signi?cant change in surface?nish requires a compensating adjustment to the gain.

15.3.8.1Rejectable indications on as-cast surfaces may be reevaluated by surface preparation to250μin.[6.3μm]?nish or better,and re-inspected in accordance with15.3.7of this practice.

15.3.8.2It should be noted that some instruments are equipped with decibel calibrated gain controls,in which case the decibel required to increase the sensitivity must be added. Other instruments have decibel calibrated attenuators,in which case the required decibel must be removed.Still other instru-ments do not have calibrated gains or attenuators.They require external attenuators.

16.Scanning

16.1Grid Pattern—The surface of the casting shall be laid out in a12by12in.[300by300mm]or any similar grid pattern for guidance in scanning.Grid numbers shall be stenciled on the casting for record purposes and for grid area identity.The stenciled grid number shall appear in the upper right hand corner of the grid.When grids are laid out on the casting surface and they encompass different quality levels, each speci?c area shall be evaluated in accordance with the requirements of the speci?c quality level designated for that area.

16.2Overlap—Scan over the surface allowing10%mini-mum overlap of the working diameters of the search unit. 16.3Inspection Requirements—All surfaces speci?ed for ultrasonic(UT)shall be completely inspected from both sides, whenever both sides are accessible.The same search unit used for calibration shall be used to inspect the casting.

17.Additional Transducer Evaluation

17.1Additional information regarding any ultrasonic indi-cation may be obtained through the use of other frequency, type,and size search unit.

18.Acceptance Criteria

18.1Rejectable Conditions—The locations of all indica-tions having amplitudes greater than the0.5in.[13mm]line

TABLE4Acceptance Criteria for Clustered Indications

Quality Level Cumulative Area

of Indications,

in.2[cm2]A,B

Minimum Area in

Which Indications

Must be Dispersed,

in.2[cm2]C

100

2–32[13]36[232]

4–54[26]36[232]

6–76[39]36[232]

8–98[52]36[232]

10–1110[64]36[232]

A Regardless of wall location,that is midwall1?3,innermost1?3,or outermost1?3.

B Each indication that equals or exceeds the0.5-in.[18mm]reference line shall be traced to the position where the indication is equal to0.25in.[6mm].The area of the location,for the purpose of this evaluation,shall be considered the area that is con?ned within the outline established by the center of the transducer during tracing of the?aw as required.Whenever no discernible surface tracing is possible,each indication which equals or exceeds the0.5in.reference amplitude shall be considered0.15in.2[1cm2](three times the area of the1?4diameter[6 mm]?at bottomed hole to compensate for re?ectivity degradation of natural?aw) for the cumulative area estimates.

C The indications within a cluster with the cumulative areas traced shall be dispersed in a minimum surface area of the casting equal to36in.2[230cm2].If the cumulative areas traced are con?ned with a smaller area of distribution,the area shall be repair welded to the extent necessary to meet the applicable quality

level.

given in15.3.6,when amplitude three times(machined sur-faces)or six times(cast surfaces)shall be marked on the casting surface.The boundary limits of the indication shall be determined by marking a sufficient number of marks on the casting surfaces where the ultrasonic signal equals one half the reference amplitude,0.25in.[6mm].To completely delineate the indication,draw a line around the outer boundary of the center of the number of marks to form the indication area. Draw a rectangle or other regular shape through the indication in order to form a polygon from which the area may be easily computed.It is not necessary that the ultrasonic signal exceed the amplitude reference line over the entire area.At some locations within the limits of the indication,the signal may be less than the reference line,but nevertheless still present such that it may be judged as a continuous,signal indication. Rejectable conditions are as follows and when any of the conditions listed below are found,the indications shall be removed and repair welded to the applicable process speci?-cation.

18.2Linear Indications—A linear indication is de?ned as one having a length equal to or greater than three times its width.An amplitude of?in.[13mm],such as would result from tears or stringer type slag inclusion,shall be removed.

18.3Non-Linear Indications:

18.3.1Isolated Indications—Isolated indications shall not exceed the limits of the quality level designated by the customer’s purchase order listed in Table 3.An isolated indication may be de?ned as one for which the distance between it and an adjacent indication is greater than the longest dimension of the larger of the adjacent indications.

18.3.2Clustered Indications—Clustered indications shall be de?ned as two or more indications that are con?ned in a1 in.[25mm]cube.Clustered indications shall not exceed the limits of the quality level designated by the customer purchase order in Table4.Where the distance between indications is less than the lowest dimension of the largest indication in the group,the cluster shall be repair welded.

18.3.3The distance between two clusters must be greater than the lowest dimension of the largest indication in either cluster.If they are not,the cluster having the largest single indication shall be removed.

18.3.4All indications,regardless of their surface areas as indicated by transducer movement on the casting surface and regardless of the quality level required,shall not have a through wall distance greater than1?3T,where T is the wall thickness in the area containing the indication.

18.3.5Repair welding of cluster-type indications need only be the extent necessary to meet the applicable quality level for that particular area.All other types of rejectable indications shall be completely removed.

18.3.6Repair welds of castings shall meet the quality level designated for that particular area of the casting.

18.3.7Any location that has a75%or greater loss in back re?ection and exceeds the area of the applicable quality level, and whose indication amplitudes may or may not exceed the 0.5in.[13mm]rejection line,shall be rejected unless the reason for the loss in back re?ection can be resolved as not being caused by an indication.If gain is added and back echo is achieved without indication percent amplitude exceeding the 0.5in.[13mm]rejection line,the area should be accepted.

19.Records

19.1Stenciling—Each casting shall be permanently sten-ciled to locate inspection zones or grid pattern for ease in locating areas where rejectable indications were observed. 19.2Sketch—A report showing the exact depth and surface location in relation to the stencil numbers shall be made for each rejectable indicator found during each inspection.

19.2.1The sketch shall also include,but not be limited to, the following:

19.2.1.1Part identi?cation numbers,

19.2.1.2Purchase order numbers,

19.2.1.3Type and size of supplemental transducers used, 19.2.1.4Name of inspector,and

19.2.1.5Date of inspection.

20.Product Marking

20.1Any rejectable areas(those indications exceeding the limits of Section19)shall be marked on the casting as the inspection progresses.The point of marking shall be the center of the search unit.

21.Keywords

21.1carbon and low-alloy steel;castings;martensitic stainless steel;

ultrasonic

SUPPLEMENTARY REQUIREMENTS

The following supplementary requirement shall be applied only when agreed upon between the purchaser and the supplier to achieve an effective examination of a critical casting area that cannot be effectively examined using a longitudinal beam as a result of casting design or possible discontinuity orientation.

S1.Angle Beam Examination of Steel Castings S1.1Equipment:

S1.1.1Examination Instrument —Examination shall be con-ducted with an ultrasonic,pulsed-re?ection type of system generating frequencies of at least 0.4to 5MHz.Properties of the electronic apparatus shall be the same as those speci?ed in 4.1.

S1.1.2Search Units —Angle-beam search units shall pro-duce an angle beam in steel in the range from 30to 75°inclusive,measured to the perpendicular of the entry surface of the casting being examined.It is preferred that search units shall have frequency of 0.4to 5MHz.

S1.1.3Calibration Blocks —A set of blocks,as shown in Fig.S1.1,with as cast surface equivalent to SCRATA Com-parator A36and of a thickness comparable to the sections being examined with side-drilled holes at 1?4t ,1?2t ,and 3?4t (where t =thickness of the block)shall be used to establish an amplitude reference line (ARL).

S1.2Calibration of Equipment:

S1.2.1Construct the distance amplitude correction curve by utilizing the responses from the side-drilled holes in the basic calibration block for angle beam examination as shown in Fig.S1.1and Table S1.1.

S1.2.1.1Resolve and mark the amplitudes of the 1?4t and 1?2t side-drilled holes from the same surface.The side-drilled

6

Available from Steel Founders Society of America,205Park Ave.,Barrington,IL

60010-4332.

L =length of block determined by the angle of search unit and the vee-path used,T =thickness of basic calibration block (see Table S1.1),D =depth of side-drilled hole (see Table S1.1),d =diameter of side-drilled hole (see Table S1.1),t =nominal production material thickness.

FIG.S1.1Basic Calibration Block for Angle Beam

Examination

hole used for the 1?4t amplitude may be used to establish the 3?4t amplitude from the opposite surface or a separate hole may be used.

S1.2.1.2Connect the 1?4t ,1?2t ,and 3?4t amplitudes to establish the applicable DAC.

S1.2.2The basic calibration blocks shall be made of mate-rial that is acoustically similar to the casting being examined.S1.2.3Do not use basic calibration blocks with as cast surface equivalent to SCRATA Comparator A3to examine castings with surface rougher than SCRATA Comparator https://www.wendangku.net/doc/ac697776.html,e a machined calibration block for machined surfaces.

S1.2.4The search unit and all instrument control settings remain unchanged except the attenuator or calibrated gain control.

S1.2.4.1The attenuator or calibrated gain control may be used to change the signal amplitude during examination to permit small amplitude signals to be more readily detected.Signal evaluation is made by returning the attenuator or calibrated gain control to its original setting.

S1.3Data Reporting —The supplier’s report of ?nal ultra-sonic examination shall contain the following data:

S1.3.1The total number,location,amplitude,and area of all indications equal to or greater than 100%of the distance amplitude curve.

S1.3.2The examination frequency,type of instrument,type,and size of search units employed,couplant,transfer method,examination operator,supplier’s identifying numbers,purchase order number,date,and authorized signature.

S1.3.3A sketch showing the physical outline of the casting,including dimensions of all areas not examined due to geomet-ric con?guration,with the location of all indications in accor-dance with S1.3.1.

S1.4Acceptance Standards —Acceptance quality levels shall be established between the purchaser and the manufac-turer on the basis of one or more of the following criteria:S1.4.1No indication equal to or greater than the DAC over an area speci?ed for the applicable quality level of Table 2.S1.4.2Other criteria agreed upon between the purchaser and the manufacturer.

ASTM International takes no position respecting the validity of any patent rights asserted in connection with any item mentioned in this https://www.wendangku.net/doc/ac697776.html,ers of this standard are expressly advised that determination of the validity of any such patent rights,and the risk of infringement of such rights,are entirely their own responsibility.

This standard is subject to revision at any time by the responsible technical committee and must be reviewed every ?ve years and if not revised,either reapproved or withdrawn.Your comments are invited either for revision of this standard or for additional standards and should be addressed to ASTM International Headquarters.Your comments will receive careful consideration at a meeting of the responsible technical committee,which you may attend.If you feel that your comments have not received a fair hearing you should make your views known to the ASTM Committee on Standards,at the address shown below.

This standard is copyrighted by ASTM International,100Barr Harbor Drive,PO Box C700,West Conshohocken,PA 19428-2959,United States.Individual reprints (single or multiple copies)of this standard may be obtained by contacting ASTM at the above address or at 610-832-9585(phone),610-832-9555(fax),or service@https://www.wendangku.net/doc/ac697776.html, (e-mail);or through the ASTM website (https://www.wendangku.net/doc/ac697776.html,).

TABLE S1.1Dimensions of Calibration Blocks for Angle–Beam

Examination

N OTE 1—Dimensions of Calibration Blocks for Angle-Beam Examina-tion For each increase in thickness of 2in.[50mm],or a fraction thereof,the hole diameter shall increase 1?16in.[1.6mm].

N OTE 2—For block sizes over 3in.[75mm]in thickness,T ,the distance from the hole to the end of the block shall be 1?2T ,min,to prevent coincident re?ections from the hole and the corner.Block fabricated with a 2-in.[50-mm]minimum dimension need not be modi?ed if the corner and hole indications can be easily resolved.

Nominal Production Material Thickness

(t),in.[mm]Basic Calibration Block Thickness

(T),in.[mm]Hole Diameter (d),in 1.002[mm 60.05]Minimum Depth

(D),in.[mm]Up to 1[25]incl.1[25]or t 3?32

[2.4]11?2[40]Over 1to 2[25–50]2[50]or t 1?8[3.2]11?2[40]Over 2to 4[50–100]4[100]or t 3?16[4.8]11?2[40]Over 4to 6[100–150]6[150]or t 1?4[6.3]11?2[40]Over 6to 8[150–200]8[200]or t 5?16[7.9]11?2[40]Over 8to 10[200–250]10[250]or t 3?8[9.5]11?2[40]Over 10[250]

t

See Note 1

11?2

[40]

铸钢件检验规范

《铸钢件检验规范》执行情况会议纪要 2009年09月24日下午1点在福建海源公司四楼会议室,我司有关技术人员与三重技术人员就《检验规范》进行探讨,并针对近期铸钢件质量下滑等问题进行讨论。现将会议主要内容纪要如下: 一、关于《检验规范》使用:我司王总工程师提出,《检验规范》的制订是根据我司二十年压机制造过程中,结合实际情况,参照国家铸造标准范围内的,外协铸造厂家完全能做到的。三重张总工程师也同意了以上观点,双方同意以《检验规范》为产品检验判定标准。 二、会议就近期铸钢件质量下滑提出暂时解决方案,要求三重铸锻公司在一个月之内(过渡时间为一个月),需达到我司《检验规范》的质量要求。出厂的产品因铸造缺陷而进行焊补,导致我司上下架超出两次,第二次及以上由此引起的经济损失(如机加工费)由铸造厂家负责,并按最后成品的时间来考核交货时间,超出时间,按合同规定执行。因尺寸缺陷而进行焊补的,由此引起的延误工期,按合同规定的超出时间,给予扣款执行。 三、会议就因质量问题判定退回厂家进行返工的,如大面焊补,较大裂纹等,请厂家按合同规定,返工送达我司时,需提供缺料报告,焊补与修复工艺,退火纪录,探伤报告,与质量承诺书。 四、关于判定废品的程序。在我司检验部门按公司规定程序执行,不合格品判定,按规定销毁,不得重复交付废品的铸件。 五、对现场四件HF1100上梁返工回我司,要求三重铸锻公司派探伤人员现场与我司质检人员共同探伤复检,9月26日之前人员到位。 六、关于新产品图纸进行技术交流问题,要求铸造厂接到新产品图纸时,因铸造工艺需要,需与我司技术中心沟通,并以文字形式备案。 参加人员 三重公司:张总工程师与高伟峰经理 海源公司:王总、曹工、管代、郑祥光、唐建新、林森清、蒋荣辉、何建新

铸钢件超声探伤及质量评级方法

铸钢件超声探伤及质量评级方法(摘要) GB 7233-87 本标准系铸钢件超声探伤的通用标准。 本标准规定了厚度等于或大于30mm的碳钢和低合金钢铸件的超声探伤方法;以及根据超声探伤的结果对铸件进行质量评级的方法。所用的超声探伤方法仅限于A型显示脉冲反射法。 在定货时,由供需双方商定铸钢件超声探伤的以下要求: a.检测的区域及使用的探头; b.纵波直探头探伤灵敏度; c.铸钢件质量的合格等级,允许对平面型缺陷和非平面型缺陷提出不同的质量等级要求。 本标准不适用于奥氏体不锈钢铸件的检测。 1术语 1.1平面型缺陷(Planar discontinuity):用本标准规定的方法检测一个缺陷,如果只能测出它的两维尺寸,则称为平面型缺陷。属于这种类型的缺陷有裂纹、冷隔、未熔合等。 1.2非平面型缺陷(Nonplanar discontinuity):用本标准规定的方法检测一个缺陷,如果能够测出它的三维尺寸,则称为非平面型缺陷。属于这种类型的缺陷有气孔、缩松、缩孔、夹砂、夹渣等。 1.3透声性(Permeability to ultrasound):超声纵波垂直入射到测试面与其背面平行的无缺陷的铸钢材料中,超声波在其中往返传播一次所引起的声压降。单位为分贝(dB)。通常用纵波直探头测试的第二次与第一次底面回波幅度所差的分贝数表示。 2仪器、试块、耦合剂 2.1仪器仪器应符合ZBy230—84的规定,并满足下列要求: a.使用2~2.5Mt的探伤频率,纵波直探头测试的灵敏度余量不得小于30dB,横波斜探头测试的灵敏度余量不得小于50dBc, b.在相应的探伤频率范围,纵波直探头和横波斜探头测试的分辨力应满足表1的规定。

铸钢件超声波探伤中应注意的几个问题

文章编号!"##$%&#’()*##’+#,%##(*%#* 铸钢件超声波探伤中应注意的几个问题 万升云 )华中科技大学-湖北武汉./0012+ 摘要!结合探伤实践-对铸钢件超声波探伤时探头频率选择和缺陷波形定性等几个相关的问题 作了详细的分析3 关键词!铸钢4超声波4探伤4频率 中图分类号!52607/.文献标识码!8 超声波检测是常规的无损检测方法之一-在探测铸钢件及其补焊区域时所应用的标准为98:2// ;<:=铸钢件超声波探伤及质量评级方法>3由于铸钢件存在着晶粒粗大-内部金属分布不均匀-其外形几何形状复杂-表面粗糙等原因-给超声波检测带来了许多困难3根据多年的探伤实践认为!目前铸钢件超声波探伤过程中存在以下几个值得注意的问题3 "探伤频率的选择原则 铸钢件探伤困难的根本原因是其晶粒粗大-内部组织分布极不均匀-加之外形复杂-表面粗糙等3在98:2//;<:中-对频率的选择规定也比较抽象-不易掌握-因而探伤时的探测频率的选择就显得非常重要3众所周知-一旦被探测的工件确定-则声波在其中的传播速度也一定-由关系式?@A B C 式中!?DD波长4 E DD波速4 C DD波的频率3 由上式可知-频率越高-波长越短-而脉冲反射法超声波探伤的最大检测能力为?B2-这是因为声波具有绕过障碍物传播的绕射现象-绕射现象的存在限制了脉冲反射法超声波探伤对最小缺陷的检测能力3当缺陷尺寸小于?B2时-绕射占主导地位-该缺陷就不具备产生反射回波的条件-反射法探伤就无法检测出此缺陷3所以-对于同一工件而言-采用高的探测频率-可以提高小缺陷的检测能力-防止漏检3但频率过高时-铸钢件本身存在着晶粒粗大的问题-这样一来-工件对声波的吸收衰减和散射 收稿日期4200/%0F%21 作者简介!万升云)1G66%+-男-1G

铸钢件冒口的设计规范.

铸钢件冒口的设计规范 钢水从液态冷却到常温的过程中,体积发生收缩。在液态和凝固状态下,钢水的体积收缩可导致铸件产生缩孔、缩松。冒口的作用就是补缩铸件,消除缩孔、缩松缺陷。另外,冒口还具有出气和集渣的作用。 1、冒口设计的原则和位置 1.1冒口设计的原则 1.1.1、冒口的凝固时间要大于或等于铸件(或铸件被补缩部分)的凝固时间。 1.1.2、冒口所提供的补缩液量应大于铸件(或铸件被补缩部分)的液态收缩、凝固收缩和型腔扩大量之和。 1.1.3、冒口和铸件需要补缩部分在整个补缩的过程中应存在通道。 1.1.4、冒口体内要有足够的补缩压力,使补缩金属液能够定向流动到补缩对象区域,以克服流动阻力,保证铸件在凝固的过程中一直处于正压状态,既补缩过程终止时,冒口中还有一定的残余金属液高度。 1.1.5、在放置冒口时,尽量不要增大铸件的接触热节。 1.2、冒口位置的设置 1.2.1、冒口一般应设置在铸件的最厚、最高部位。 1.2.2、冒口不可设置在阻碍收缩以及铸造应力集中的地方。 1.2.3、要尽量把冒口设置在铸件的加工面或容易清除的部位。 1.2.4、对于厚大件一般采用大冒口集中补缩,对于薄壁件一般采用小冒口分散补缩。 1.2.5、应根据铸件的技术要求、结构和使用情况,合理的设置冒口。

1.2.6、对于清理冒口困难的钢种,如高锰钢、耐热钢铸件的冒口,要少放或不放,非放不可的,也尽量采用易割冒口或缩脖型冒口。 2、设置冒口的步骤与方法 冒口的大小、位置及数量对于铸钢件的质量至关重要。对于大型铸钢件来说,必须把握技术标准及使用情况,充分了解设计意图,分清主次部位,集中解决关键部位的补缩。以模数法为例,冒口设计的步骤如下:2.1、对于大、中型铸钢件,分型面确定之后,首先要根据铸件的结构划分补缩范围,并计算铸件的模数(或铸件被补缩部分的模数)M铸。 2.2、根据铸件(或铸件被补缩部分)的模数M铸,确定冒口模数M冒。 2.3、计算铸件的体收缩ε。 2.4、确定冒口的具体形状和尺寸。 2.5、根据冒口的补缩距离,校核冒口的数量。 2.6、根据铸件结构,为了提高补缩距离,减少冒口的数量,或者使冒口的补缩通道畅通,综合设置内外冷铁及冒口增肉。 2.7、校核冒口的补缩能力,要求ε(V冒+V件)≤V冒η。 3、设计冒口尺寸的方法 3.1、模数法 在铸件的材料、铸型的性质和浇注条件确定之后,铸件的凝固时间决定于铸件的模数。 模数M=V/A(厘米),V—体积(厘米3);A—散热面积(厘米2)。 随着办公条件的改善,计算机的普及,模数可以用计算机进行计算。方法是:用SolidWorks软件画出铸件(或铸件被补缩部分)的立体图,计

铸钢件探伤标准解析

?中国钢企网 ?百科首页 ?登录 ?注册 ?帮助 ? ? ? ? ? ? ? ? 进入词条搜索词条 ? ? 全民共同撰写的百科全书已收录词条个 词条统计 ?浏览次数: 136 次 ?编辑次数: 1 次历史版本 ?更新时间: 2010-03-02 wwwwww 超级管理员 词条创建者发短消息中国钢铁百科 >> 钢铁冶金>> 连铸 最新历史版本 :铸钢件超声探伤及质量评级方法(摘要) GB 7233-87 返回词条?编辑时间:2010-03-02 10:37 历史版本编辑者:wwwwww历史版本:

?内容长度:208130 图片数:0目录数:0 ?修改原因: 铸钢件超声探伤及质量评级方法(摘要) GB 7233-87 本标准系铸钢件超声探伤的通用标准。 本标准规定了厚度等于或大于30mm的碳钢和低合金钢铸件的超声探伤方法;以及根据超声探伤的结果对铸件进行质量评级的方法。所用的超声探伤方法仅限于A型显示脉冲反射法。 在定货时,由供需双方商定铸钢件超声探伤的以下要求: a.检测的区域及使用的探头; b.纵波直探头探伤灵敏度; c.铸钢件质量的合格等级,允许对平面型缺陷和非平面型缺陷提出不同的质量等级要求。 本标准不适用于奥氏体不锈钢铸件的检测。 1术语 1.1平面型缺陷(Planar discontinuity):用本标准规定的方法检测一个缺陷,如果只能测出它的两维尺寸,则称为平面型缺陷。属于这种类型的缺陷有裂纹、冷隔、未熔合等。 1.2非平面型缺陷(Nonplanar discontinuity):用本标准规定的方法检测一个缺陷,如果能够测出它的三维尺寸,则称为非平面型缺陷。属于这种类型的缺陷有气孔、缩松、缩孔、夹砂、夹渣等。 1.3透声性(Permeability to ultrasound):超声纵波垂直入射到测试面与其背面平行的无缺陷的铸钢材料中,超声波在其中往返传播一次所引起的声压降。单位为分贝(dB)。 通常用纵波直探头测试的第二次与第一次底面回波幅度所差的分贝数表示。 2仪器、试块、耦合剂 2.1仪器仪器应符合ZBy230—84

铸件检验标准1

表一、铸件和钢料材质化学成分表 材质 FC205 HT300 MoCr QT600 CH-1 M-190 S45C SK3 SKD11 (GM241) (FCD550) 化学成分 碳(C) 3.1~3.4 2.9~3.3 2.9~3.3 3.3~3.8 0.7~0.75 0.4~0.5 0.17~0.32 1.0~1.1 1.4~1.6 硅(Si) 1.7~2.2 1.6~2.1 1.6~2.4 2.2~2.8 0.9~1.0 0.2~0.5 0.2~0.5 ≤0.35≤0.4锰(Mn) 0.6~0.8 0.6~0.9 0.6~1.0 0.3~0.8 0.9~1.2 0.9~1.2 0.35~0.9 ≤0.5 ≤0.6 磷(P) ≤0.1≤0.1≤0.1≤0.08 ≤0.02 ≤0.02 ≤0.05 ≤0.03 硫(S) ≤0.1≤0.1≤0.1≤0.02 ≤0.02 ≤0.02 ≤0.05 ≤0.03 镁(Mg) ≤0.04 铬(Cr) 0.35~0.6 0.95~1.2 0.8~1.1 0.25~OPT 11.0~13.0 钼(Mo) 0.35~0.6 0.2~0.4 0.35~0.5 0.8~1.2 钒(V) 0.1~0.15 ≤0.15 0.2~0.5 铜(Cu) 0.5~0.7OPT ≤0.25 镍(Ni) 0.1~OPT ≤0.25 表二、铸件和钢料硬度、抗拉强度表 种类型号抗拉强度 硬度(HB) 硬度(HRC) 淬火温度 淬火后硬度(kg/mm2) (HRC) 灰口铸铁FC250 25~28 149~241 6~23 FC300 30~40 169~269 6~28 FCD550 55~60 170~241 6~23 火焰淬火930℃水冷40~52 FCD650 55~60 170~241 6~23 火焰淬火930℃水冷40~52 球 铸铁FCD700 55~60 170~241 6~23 火焰淬火930℃水冷40~52 墨 GM241 30~40 169~241 6~23 火焰淬火930℃水冷40~52 铸 MoCr 30~40 169~241 6~23 火焰淬火930℃水冷40~52 铁 KSCD800I 火焰淬火930℃水冷48~55 KSCD800IS 火焰淬火930℃水冷48~55 结构碳钢钢材SS400 火焰淬火930℃水冷40~50 S45C 火焰淬火930℃水冷40~50 钢材SFH 火焰淬火900℃空冷55~60 空冷钢M-190 ≥50火焰淬火900℃空冷55~60 铸钢ICD-5 ≥50235~286 22~30 火焰淬火900℃空冷55~60 SK3 >212 >16 火焰淬火930℃水冷55~60 锻钢钢材SKD11 >225 >20 整体淬火1025℃空冷56~62 Cr12MOV 整体淬火1025℃空冷56~62 Cr12MOV1 整体淬火1025℃空冷56~62 表三、铸件尺寸允收公差表: 铸件尺寸(mm) 公差(mm) 铸件尺寸(mm) 公差(mm) 铸件尺寸(mm) 公差(mm) 0~10 ±0.3>100~160 ±1.8>1500~2000 ±4 >10~16 ±0.5 >160~250 ±2.3>2000~2500 ±4.5 >16~25 ±0.8>250~400 ±2.5>2500~3000 ±5 >25~40 ±1.0>400~630 ±2.8>3000~3500 ±5.5 >40~63 ±1.3>630~1000 ±3.0>3500~4000 ±6 >63~100 ±1.5>1000~1500 ±3.5

EN 12680-2-2003 中文版 锻造超声波检验.第2部分高应力零部件用钢铸件

EN 12680-2-2003(E)-CN 铸件---超声检测---第二部分:受高压铸钢件 前言: 本欧洲标准由德国工业标准秘书处的CEN/TC 190“铸件”技术委员会制定,本欧洲标准可以作为国家标准,最迟于2003年6月以等效版本或签署文件发行,与之冲突的相关国家标准最迟在2003年6月作废。根据工作程序,CEN/TC 190技术委员会组织CEN/TC 190/WG4.10“内部缺陷”具体编制了如下标准: EN 12680-2铸件---超声检测---第二部分:受高压铸钢件 本标准为欧洲铸件检测标准之一,其余见下: EN 12680-1铸件---超声检测---第一部分:通用铸钢件 EN 12680-1铸件---超声检测---第三部分:球墨铸铁件 附件A和B 根据CEN/CENELEC内部规定如下国家的国家标准组织应采用此欧洲标准:澳大利亚,比利时,捷克共和国,丹麦,芬兰,法国,德国,希腊,冰岛,爱尔兰,意大利,卢森堡,

1.总则 本欧洲标准规定了受高压的(铁素体)铸钢件超声检测的目的和要求以及用脉冲回波技术测定内部不连续的方法。其适用于晶粒细化后的壁厚小于等于600mm的铸钢件超声检测,当壁厚超过此时,对于检测工艺和记录级别应特殊协商。本欧洲标准不适用奥氏体刚和焊接件。 2 参考文件 本部分在其中适当的位置引用了下列的有发布日期和无发布日期的标准,对于无发布日期的标准采用的为最新版本,对于有发布日期的标准根据随后对标准的修订和更新来相应修改本标准。 EN 583—1超声检测—第一部分:通用原理 EN 583—2超声检测-第二部分:灵敏度和范围调整 EN 583—5超声检测—第五部分:不连续的测长和特征 EN 12223 超声检测—1号校准试块规范 EN 12668-1 无损检测—超声设备的特征和验证—第一部分:仪器 EN 12668-2 无损检测—超声设备的特征和验证—第二部分:探头 EN 12668-3 无损检测—超声设备的特征和验证—第三部分组合设备 EN 27963 钢焊缝—焊缝超声检测用2号校准试块 3.术语和定义 本欧洲标准规定如下术语和定义 注:本标准中的其它术语和定义见EN 583—1,EN 583—2,EN 583—5和EN1330—4 3.1参考不连续回波尺寸 在超声检测评价时期需要记录的最小显示,通常用平底孔当量直径来表示 3.2点状不连续 尺寸小于或等于声束宽度的不连续 3.3复杂不连续 尺寸大于声束宽度的不连续注: 本标准中的尺寸指长度,宽度和沿壁厚方向的尺寸 3.4 平面不连续 在两个方向可以测量的不连续 3.5体积不连续 有三个方向可以测量的不连续 3.6特殊边缘区域 有特殊要求的外部边缘区域(如:机加工面,高应力区,和密封面) 3.7工艺焊接 在最终供货前加工时期的焊接 3.7.1焊接 用于将部件装配为一个整体的工艺焊接 3.7.2焊接加工 为保证铸件的质量等级而实施的工艺焊接 4.要求 4.1订货信息 在订货和询价时应包括如下的信息 -超声检测的铸件的区域和百分比(检测体积和范围) -铸件不同区域或面积处采用的严重等级(验收标准)

铸钢件探伤验收规则

超声波探伤要求 (摘自GBT7233-87铸钢件超声波探伤及质量评级方法) 1、厚度等于或大于30mm的碳钢和低合金钢铸件的超声波探伤 2、铸钢件探伤的表面粗糙度应满足一下要求: a、机械加工表面,Ra等于或小于10um b、铸造表面,Ra等于或小于12.5um 3、平面型缺陷质量等级2级 4、非平面型缺陷质量等级2级

磁粉探伤 (摘自QJ033-2004验收规则) 1 范围 本标准规定了钢铁材料及其制品磁粉探伤的一般方法及缺陷磁痕的等级分类。 本标准适用于检验钢铁材料及其制品(以下称试件)表面或近表面的裂纹和其他缺陷。 2 规范性引用文件 下列文件中的条款通过本标准的引用而成为本标准的条款。凡是注日期的引用文件,其随后所有的修改单(不包括勘误的内容)或修订版均不适用于本标准,然而,鼓励根据本标准达成协议的各方研究是否可使用这些文件的最新版本。凡是不注日期的引用文件,其最新版本适用于本标准。 GB/T15822 磁粉探伤方法 JB4730 压力容器无损检测 JB/T6063 磁粉探伤用磁粉技术条件 JB/T6065 磁粉探伤用标准试片 JB/T8290 磁粉探伤机 JB/T9218 渗透探伤方法 3 术语 有效探伤范围 在实际探伤条件下,被检试件上能达到必要磁化状态和所需探伤灵敏度的范围。 4 探伤人员资格 4.1 从事探伤的人员,应具备必要的专业知识,并取得国家主管部门颁发的与其工作相适应的资格证书。 4.2 色盲及矫正后视力低于1.0的不得从事探伤工作。 5 探伤装置 5.1 磁化装置:用电流磁化的装置,应能向试件提供检测缺陷所需的磁势,应符合JB/T8290 所规定的技术要求。 5.2 磁悬液施加装置:应在磁悬液槽内设置搅拌机构,使均匀弥散着磁粉的磁悬液能稳定地施加到试件上去,而不影响已生成的磁痕。 5.3 退磁装置应能根据试件的用途将剩磁减小到指定的限度,剩磁感应强度应低于

铸件检验规范

铸件检验规范修订:0 页码:共23页 第1页 MY1.5s/se风力发电机组 铸件检验规范 编 制: 校 对: 审 核: 批 准: 日 期: 广东明阳风电产业集团有限公司

铸件检验规范修订:0 页码:共23页 第2页 1、目的 为了对外协球墨铸铁件质量进行有效控制,保证所监造的铸件质量符合公司技术规定要求。 2、范围 本指导书适用于明阳公司生产的1.5MW风力发电机组外协轮毂、530轴承座、670轴承座、制动器支座、偏航制动器(以下简称铸件)的监造及验收。 3、引用标准 GB/T 1348-88 《球墨铸铁件》 DIN EN 1563 《铸造 球墨铸铁》 GB6414-86 《铸件尺寸公差》 EN ISO 945-1994 《铸铁显微组织的分类》 GB/T9445 EN 10002-1 《金属材料.拉力试验.第1部分:室温下的试验方法》 GB228 GB/T 231.1-2002 《金属材料布氏硬度试验》 EN1003-1 GB/T 229-2007 《金属材料夏比摆锤冲击试验方法》 EN10045 GB/T 1184-1996 《未注形状和位置公差》 GB/T 1804-2000 《未注线性和角度尺寸公差》 EN 12680-3 《铸件超声波探伤》 EN 1371 《铸件渗透探伤》 EN 1369 《铸件磁粉探伤》 0MF.502.004 《轮毂技术规范》 0MF.502.032 《主机防腐技术规范》 4、检验流程 4.1、检验流程图,见图1。 4.2、毛坯监造项目,见图2。 4.3、成品监造项目,见图3。 5、检验内容 5.1 铸造检验

毛 坯 监 造 项 目 材 质 尺 寸无损探伤防腐防护 油漆合格证、有效期 仪器校准,灵敏度、参数调量具校验、检 测设备保养 取样过程,仪 器校验

引用 铸钢件超声波探伤检测标准

引用铸钢件超声波探伤检测标准 本文引用自一次记忆《铸钢件超声波探伤检测标准》 引用 一次记忆的铸钢件超声波探伤检测标准 中标与美标之差异 深圳市建设工程质量检测中心——弓明 学习运用两国标准让我们来共同分析一下,两种国情体系下的标准,在超声波探伤检测铸钢件时对铸钢件内部质量要求的差异吧。 铸钢件检测标准 1、《铸钢件超声探伤及质量评定方法》GB7233-87(中国标准文中简称中标) 2、《碳钢、低合金钢和马氏体不锈钢铸件超声波检验标准》ASTM-609/609M:1991(美国标准文中简称美标) 关于适用范围 中标规定:本标准规定了厚度等于或者大于30㎜的碳钢和低合金钢铸件的超声波探伤方法;以及根据超声探伤的结果对铸件进行质量评级的方法。所用的超声探伤方法仅限于A型显示脉冲反射法。 美标规定:1.1本方法包括了用脉冲反射纵波法,对经热处理的碳钢、低合金钢和马氏体不锈钢铸件进行超声波检验的标准和工艺。 4.2.2 双晶探头探测等于或小于1英寸(25mm)的截面,推荐使用5MHz,晶片尺寸为1/2英寸×1英寸(13mm×25mm)夹角为12°的探头。 中标当时制定的时候是把厚度小于30㎜铸钢件排除在本标准以外的。而美标则明确了等于或小于25㎜的铸钢件的具体检测方法。分析两国当时的铸造水平及探伤手段不难看出,中国当时的铸造件还停留在“傻大笨粗”,检测设备也是比较低端的,当时国内有能力生产双晶探头的厂家少,探伤人员可选择的探头有局限性,而且探伤人员很少接触到薄壁探伤,自然双晶探头很少使用甚至没用过。这和我国当时的国情密切相关,而现在我国铸造水平提高很快,此标准“本标准规定了厚度等于或者大于30㎜的碳钢和低合金钢铸件的超声波探伤方法”的开头对不少从事这个行业的工作人员造成不小的误导。很容易让人误认为厚度小于30㎜的铸钢件是不适合超声探伤检测的。其实不然,时代在变,不应用老方法去看待新事物。 关于定量和定性

铸件检验规范

采购物品检验规范(铸件) 目的:为了加强本公司对铸件质量控制,保证本公司的产品质量,特制订潍坊中云机器有限公司铸件进厂检验办法。 适用范围:进入本公司的所有铸件。 内容:铸件的检验主要包括铸件表面质量的检验和铸件内在质量以及铸件质量的综合评定。本公司主要进行铸件表面质量的检验,其他均不做检验。 铸件表面质量的检验: 1、铸件表面不得有明显孔眼(气孔、缩孔、渣眼、砂眼、铁豆),裂纹(热裂、冷裂、温裂),表面缺陷(粘砂、结疤、夹砂、冷隔),形状缺陷(多肉、浇不足、变形、料口毛刺)等影响产品的外观和强度缺陷。 2、进厂的铸件表面必须清砂干净,铸件缺陷修补部位应打磨平整,无凹凸、裂纹等缺陷。 3、铸造的毛坯材质符合图纸资料要求,检测铸铁、铸钢铸铝等毛坯件具体的化学成分不作分析。 4、定期对零件的硬度进行抽检,抽检率10%。 5、模具毛坯的几何形状和尺寸符合图纸资料要求,要求加工处要留有足够的加工量,错型公差符合要求(检测以单边最小数为准),具体尺寸见下表(单位:mm): 6、铸件表面不能有裂纹,毛坯的浇口、顶杆痕迹允许留有痕迹,但必须留有加工量,可以通过加工去除表面痕迹。 9、铸件加工后的表面不允许有铸态表皮存在。 10、铸件螺纹孔内螺丝旋入四个螺距之内不允许有缺陷,四个螺距之外缺陷直径不大于1.5mm,且整个螺纹孔内不多于2个。 11铸件的尺寸检验公差值按照下表执行,一般取其最低的一级执行: 铸件尺寸公差值(GB6414—1999)

12、为避免成批铸件因尺寸不合格报废、保证铸件满足机械加工和使用性能要求,在检验铸件尺寸时应遵循以下规定: 铸件的尺寸和几何形状应符合零件图与铸件图要求。 外购铸件首次必须将模样或首件送检,并认真填写检验记录。 铸件进厂应按10%进行抽检,若铸件尺寸不合格时,应逐件进行检验,不合格的铸件予以报废。

铸件检验标准

铸件检验标准 1.铸件质量检测仪:用于检测合金性能、组织、表面状态等铸件质量的仪器。 2.铸件公称重量检验:根据铸件图计算或根据供需双方认定合格的标准样品铸件的称重结果订出的铸件重量。包括铸件机械加工余量及其他工艺余量。 3.铸件重量公差检验:用占铸件公称重量的百分比表示的铸件实际重量与公称重量之差的最大允许值。与铸件尺寸公差对应的分为16个等级,以MT1-MT16表示。 4.铸件重量偏:铸件重量与公称重量之间的正偏差或负偏差。 5.铸件尺寸公差:铸件各部分尺寸允许的极限偏差。 6.铸件尺寸稳定性:铸件在使用和存放过程中保持原来尺寸不变的性能。 7.铸件机械加工余量:为保证铸件加工面尺寸和零件精度,在铸件工艺设计时预先增加而在机械加工时切去的金属层厚度。 8.铸造表面粗糙度:铸造表面上由微小间距和峰谷组成的微观几何特征。 铸造工段铸件质量检验标准 根据目前的生产情况,在初期对我单位的铸件检验制定了以下检验标准,随着以后生产和技术的进一步完善对此标准将逐步细化: 1. *铸件外表面应平整,1000mm范围内的平整度(或变形量)不大于3mm(特殊要求例外),表面不允许存在高度长度大于3mm和直径大于3mm的铁瘤、脉纹;*不允许存在深度和直径大于3mm的孔洞类缺陷(砂眼、气孔、渣孔、缩孔、缩松等),如果此类缺陷存在面积大于150x150mm而失去修复价值视为废品,可以修复的必须经过焊补并打磨光洁后重新检验; *外型尺寸如有图纸要求公差的应严格按照图纸执行,未注公差的自由尺寸的偏差不能大于该尺寸的光洁度最低一级国家铸件标准规定; *铸件表面不能存在各种严重的裂纹缺陷,如果非加工表面存在长度不大于20mm的轻微裂纹,在请示技术部门后允许采用热焊补的办法进行修复; *铸件表面的粘砂必须清理干净,各种飞刺存在的面积不允许超过200x200mm,否则必须返工; 2. *铸件水口冒口经过切割后不得留有高度大于2mm的根部,水口冒口根部的缩松、缩孔必须经过焊补,否则视为废品; *对比较重要的加工面,如果从外表发现各种皮下缺陷应及时反映到工段并对此铸件跟踪,一旦发现加工后存在大量气孔、渣孔、缩松等缺陷应立即将同类产品封存不得出厂并督促工段技术人员改进工艺; 3. *每一批次铸件的材质要求单据在质监部门都应有存底,当炉次化验结果和要求对比后可以评判化学成分是否合乎要求;

铸件尺寸划线检测规范00

划线检测规范 1、目的/范围 1.1 目的:规范我司铸件毛坯产品划线方法及过程要求;提高划线检测结果的准确性。 1.2 范围:目前测量精度一般在0.1mm 以上。 2、职责 2.1 铸造工艺部:负责图纸编号,划线基准以及技术要求的输出。 2.2 品管部:负责依据产品划线要求进行尺寸检测。 2.3 其他部门:配合产品划线规范的实施。 3、工具 3.1 划线工具:平台、高度尺、划针、游标卡尺、深度尺、万能角度尺、R 规、划规、划卡、直角尺、方箱、垫高块、千斤顶、V 形块、托轮、划线盘、 C 形夹头、计算器等。 3.2 标识工具:笔(红:代表少肉、黑:代表加工量、蓝:代表多肉、绿:代表0)、蓝色涂料(喷在铸件上,便于划线做标记) 4、划线准备工作 4.1 将所有需用的量检具用无尘布擦洗干净并检查其是否在有效期内 4.2将被检产品喷上一层蓝色涂料便于线条清晰可见(厚度0.1mm,涂料颜色的轻重以线条清晰程度为准),在方便的前提下在产品上打点便于支撑用。 4.4产品图纸上的所有尺寸按图纸页面、图幅位置顺序编号。 5、对被检产品的要求 5.1.基准必须光滑平整,表面清理干净.毛坯浇冒口、出气口、多肉、飞翅和毛刺去除残根,粘砂、氧化皮清理干净

5.2.毛坯不允许有缩孔、夹砂、裂纹、冷隔、断芯等影响尺寸检测的铸造缺 6 划线基准选择 6.1 按铸件产品图纸标注的定位基准点,A、B、C 基准进行划线。 6.2 铸件产品图纸未标注基准,按工艺部书面给出的临时标准进行划线;并在出具划线报告的首页,说明划线基准要素的选择。 6.3 划线基准要求: 6.3.1 基准必须光滑平整,不得有影响检测结果缺陷如多肉、粘沙等。 6.3.2A基准三点找平面,B基准两点找一条线,C基准找一点;误差控制:控制在0.05mm 以内。 6.3.3找正线和平台的垂直度误差控制;找正线长度150-250m m,垂直度控制在10〃;找正线长度250-350mm,垂直度控制在6〃;找正线长度350- 450mm,垂直度控制在4〃;找正线长度450mm以上,垂直度控制在2; 7、划线步骤 7.1 找正.根据图纸上所给的基准将产品放正,基准一般遵循3.2.1 的原则, 即三点确定一个面,两点确定一条线,第三点定方向。 7.2先用3个点将产品放正(三点的平面度应控制在0.05mm 范围内),在 测量方便的基础上划一条辅助线便于划第二个方向找正用,再将高度尺按照图纸调至该方向的“0线”就可以测量第一方向的尺寸了。 7.3第一方向划完后将件翻转90度再划第二方向,利用第一方向所划的辅助线和两个基准点,即用角尺将辅助线调至与水平垂直方向,再用高度尺将两个基准点按照图纸调至某一高度,这样产品就已找正,再划一条辅助线便于第三个方向找正用,测量方法同 2.2. 7.4第二方向划完后将件翻转90度利用上两次所划的辅助线和角尺将产品放正,再将高度尺调至该方向的“0位”就可以测量第三方向的尺寸。在划线测量时若是测量搭子则将划线刀口搭在搭子上下面的同一高度上(注意搭子是否有 锥度),若测量孔位时则将划线刀口的尖端搭在孔的最上or 最下端并使其在同一深

无损探伤标准

精心整理 无损探伤标准 一、通用基础 1、GB5616-1985常规无损探伤应用导则 2、GB/T9445-1999无损检测人员技术资格鉴定通则 3、GB/T14693-1993焊缝无损检测符号 4、GB16357-1996工业X射线探伤放射卫生防护标准 5、 6、 二、 1、 2、 3、 4、 5、 6、 7、 8、 9、 10、 11、 12、 13、 14、JB/T9215-1999控制射线照相图像质量的方法 15、JB/T9217-1999射线照相探伤方法 16、DL/T541-1994钢熔化焊角焊缝射线照相方法和质量分级 17、DL/T821-2002钢制承压管道对接焊接接头射线检验技术规程 18、TB/T6440-92阀门受压铸钢件射线照相检验 三、超声波检测㈠ 1、GB1786-1990锻制圆饼超声波检验方法

2、GB/T2970-1991中厚钢板超声波检测方法 3、GB/T3310-1999铜合金棒材超声波探伤方法 4、GB/T4162-1991锻轧钢棒超声波检验方法 5、GB4163-1984不锈钢管超声波探伤方法 6、GB5193-1985钛及钛合金加工产品超声波探伤方法 7、GB/T5777-1996无缝钢管超声波探伤检验方法 8、 9、 10、 11、 12、 13、 14、 15、 16、 17、 18、 19、 20、 21、GB/T13315-1991锻钢冷轧工作辊超声波探伤方法 22、GB/T13316-1991铸钢轧辊超声波探伤方法 23、GB15830-1995钢制管道对接环焊缝超声波探伤方法和检验结果的分级 24、GB/T18256-2000焊接钢管(埋弧焊除外)用于确认水压密实性的超声波检测方法 25、JB1152-1981锅炉和钢制压力容器对接焊缝超声波探伤

铸件检验作业指导书

铸件检验作业指导书 摩迪能源技术服务有限公司 编制

铸件检验作业指导书 ●内容概要 首先对铸件的制造工艺、铸件冷却凝固过程的特点和铸件中的常见缺陷进行了简要介绍,然后对铸钢件情况和铸件对超声波探伤的影响作了简要说明。最后对矿山破碎机铸件、泵体铸件和海洋沉块铸件的检验项目、遇到的问题和注意事项进行了简要介绍。 一、铸件的制造工艺简介 金属铸件由熔融金属液注入铸模,冷却凝固形成。按材质分类,有铸钢、铸铁、铸铝、铸铜等不同的金属铸件。涉及铸造合金及其熔炼,共有以下三方面的内容: -铸铁合金及其熔炼; -铸钢合金及其熔炼; -有色合金及其熔炼 铸造可按金属液的浇注工艺分为重力铸造和压力铸造。重力铸造是指金属液在地球重力作用下注入铸型的工艺。广义的重力铸造包括砂型浇铸、金属型浇铸、熔模铸造、消失模铸造、泥模铸造等;窄义的重力铸造专指金属型浇铸。压力铸造是指金属液在其他外力(不含重力)作用下注入铸型的工艺。广义的压力铸造包括压铸机的压力铸造和真空铸造、低压铸造、离心铸造等;窄义的压力铸造专指压铸机的金属型压力铸造,简称压铸。 在机械制造、造船工业中以铸钢、铸铁件用的较多,在航空工业中以有色合金件用的较多,汽车工业要用到铸铁、铸钢和铝镁合金铸件。 矿山破碎机铸件中上壳体、下壳体、中壳体、横梁和横梁帽都是铸钢件。磨煤机中端盖是铸钢件, 大法兰可以是铸钢件,可以由锻件焊接而成。泵体铸件中有的是铸钢件(如壳体、导流壳和叶轮等),有的是铸铁件(如壳体、导流壳和叶轮等)。海洋沉块是用于固定系泊链的,要求不高,也不需要机加工,属于要求一般的铸钢件。 铸件的形成过程就是液态金属冷却再结晶的过程,具有以下特点: ①液态金属温度只有在结晶温度(即凝固点或熔点)以下时才产生极小的晶核,随着冷 却时间的延长,温度的降低,晶核数量越来越多;同时已形成的晶核也在长大,直到 液态金属完全结晶成为固态金属时为止。

国内外铸件无损检验标准对比分析完整版

国内外铸件无损检验标 准对比分析 HUA system office room 【HUA16H-TTMS2A-HUAS8Q8-HUAH1688】

国内外铸件无损检验标准对比分析 对于工件的无损检测,检验标准是最重要的工作依据。从工件的检测方法选择、检测过程的注意事项到工件的最终评定、报告的参数出据,往往都需要遵循一定的、供需双方均认可的标准规范。随着改革开放的不断深入,我们和国外的交流也日益广泛。其中,涉及到产品质量验收时应该遵循何种标准、采取怎样的验收级别,往往是供需双方讨论的焦点之一。因此,将国内铸钢、铸铁件无损检测标准和国外、国际标准进行一定的对比,分析其在日常生产中的应用,对于我们的工作是非常有好处的。 1国内、外铸件无损检测标准 铸件的检验,一般是由铸件制造厂根据设计的图纸或订货方(需方)提供的图纸上的技术要求或技术合同进行。对于铸件,通常的检验包括尺寸检查、形状和外观的表面质量目视检查。而对于设计要求比较重要的铸件,或者需方认定的比较重要的铸件或局部,或者铸造工艺上容易产生问题的铸件,一般除了要做化学成分分析和力学性能试验外,还需要进行无损检测。对于一般铸钢、铸铁件的无损检测,常用的方法有磁粉检测或渗透检测(主要用于表面或近表面缺陷的检测)、超声波检测或射线检测(主要用于内部缺陷的检测)。 下面给出国内、外常用的关于铸件的无损检测标准。 ASTME186厚壁铸钢件[2.0~4.5英寸(51~114mm)]射线检验标准底片 ASTME192航空用熔模铸钢件射线检验标准底片

ASTME280大厚度(4~12in,114~305mm)铸钢件参考射线照相底片 ASTME4462英寸(51mm)以下铸钢件的射线检验标准底片 ASTMA609/A609M铸造碳钢、低合金钢和马氏体不锈钢的超声检测方法 ASTME689球墨铸铁件的射线检验标准底片 ASTME802厚度4.5in(114mm)以内的灰铸铁参考射线照相底片 ASTME1030金属铸件的射线透照检测方法 ASTME1734铸件射线成像检测方法 EN1369铸件磁粉检测 EN1371铸件渗透检测 GB/T5677铸钢件射线照相及底片等级分类方 法GB/T7233铸钢件超声探伤及质量评级方法 GB/T9443铸钢件渗透探伤及缺陷显示迹痕的评级方法 GB/T9444铸钢件磁粉探伤及质量评级方法 ISO4986铸钢件磁粉检测 ISO4987铸钢件渗透检测

铸钢件探伤标准

中国钢企网 百科首页 登录 注册帮助 进入词条搜索词条 全民共同撰写的百科全书已收录词条个 词条统计 浏览次数: 136 次 编辑次数: 1 次历史版本 更新时间: 2010-03-02 wwwwww 超级管理员 词条创建者发短消息 中国钢铁百科>> 钢铁冶金>> 连铸 最新历史版本:铸钢件超声探伤及质量评级方法(摘要) GB 7233-87 返回词条 编辑时间:2010-03-02 10:37 历史版本编辑者:wwwwww历史版本: 内容长度:208130 图片数:0目录数:0 修改原因: 铸钢件超声探伤及质量评级方法(摘要) GB 7233-87

本标准系铸钢件超声探伤的通用标准。 本标准规定了厚度等于或大于30mm的碳钢和低合金钢铸件的超声探伤方法;以及根据超声探伤的结果对铸件进行质量评级的方法。所用的超声探伤方法仅限于A型显示脉冲反射法。 在定货时,由供需双方商定铸钢件超声探伤的以下要求: a.检测的区域及使用的探头; b.纵波直探头探伤灵敏度; c.铸钢件质量的合格等级,允许对平面型缺陷和非平面型缺陷提出不同的质量等级要求。 本标准不适用于奥氏体不锈钢铸件的检测。 1术语 1.1平面型缺陷(Planar discontinuity):用本标准规定的方法检测一个缺陷,如果只能测出它的两维尺寸,则称为平面型缺陷。属于这种类型的缺陷有裂纹、冷隔、未熔合等。 1.2非平面型缺陷(Nonplanar discontinuity):用本标准规定的方法检测一个缺陷,如果能够测出它的三维尺寸,则称为非平面型缺陷。属于这种类型的缺陷有气孔、缩松、缩孔、夹砂、夹渣等。1.3透声性(Permeability to ultrasound):超声纵波垂直入射到测试面与其背面平行的无缺陷的铸钢材料中,超声波在其中往返传播一次所引起的声压降。单位为分贝(dB)。通常用纵波直探头测试的第二次与第一次底面回波幅度所差的分贝数表示。 2仪器、试块、耦合剂 2.1仪器仪器应符合ZBy230—84的规定,并满足下列要求: a.使用2~2.5Mt的探伤频率,纵波直探头测试的灵敏度余量不得小于30dB,横波斜探头测试的灵敏度余量不得小于50dBc, b.在相应的探伤频率范围,纵波直探头和横波斜探头测试的分辨力应满足表1的规定。 表1仪器系统分辨力的下限值 2.4试块 2.4.1对比试块用铸造碳钢或低合金钢材料制做,其超声衰减系数应与被探伤铸钢件材料的衰减系数相同或相近。 制做对比试块的材料必须预先进行超声探伤,不允许存在等于或大于同声程562当量平底孔的缺陷。 对比试块侧面要标明试块的名称、编号、材质、透声性。 2.4.2供纵波直探头用的zGz系列对比试块见附录A(补充件)。当被探伤铸钢件的厚度大于250mm 时,要制做最大探测距离等于铸钢件厚度的试块。 zGz系列对比试块仅在用试块调整纵波直探头探伤灵敏度时才使用。 2.4.3供纵波双晶探头用的ZGS对比试块见附录B(补充件)。

相关文档