文档库 最新最全的文档下载
当前位置:文档库 › 线性表+课后习题答案

线性表+课后习题答案

线性表+课后习题答案
线性表+课后习题答案

第2章线性表

1.选择题

(1)一个向量第一个元素的存储地址是100,每个元素的长度为2,则第5个元素的地址是()。

A.110 B.108C.100 D.120

(2)在n个结点的顺序表中,算法的时间复杂度是O(1)的操作是()。

A.访问第i个结点(1≤i≤n)和求第i个结点的直接前驱(2≤i≤n)

B.在第i个结点后插入一个新结点(1≤i≤n)

C.删除第i个结点(1≤i≤n)

D.将n个结点从小到大排序

(3)向一个有127个元素的顺序表中插入一个新元素并保持原来顺序不变,平均要移动的元素个数为()。

A.8 B.63.5C.63 D.7

(4)链接存储的存储结构所占存储空间()。

A.分两部分,一部分存放结点值,另一部分存放表示结点间关系的指针

B.只有一部分,存放结点值

C.只有一部分,存储表示结点间关系的指针

D.分两部分,一部分存放结点值,另一部分存放结点所占单元数

(5)线性表若采用链式存储结构时,要求内存中可用存储单元的地址()。

A.必须是连续的B.部分地址必须是连续的

C.一定是不连续的D.连续或不连续都可以

(6)线性表L在()情况下适用于使用链式结构实现。

A.需经常修改L中的结点值B.需不断对L进行删除插入

C.L中含有大量的结点D.L中结点结构复杂

(7)单链表的存储密度()。

A.大于1 B.等于1 C.小于1 D.不能确定

(8)将两个各有n个元素的有序表归并成一个有序表,其最少的比较次数是()。

A.n B.2n-1 C.2n D.n-1

(9)在一个长度为n的顺序表中,在第i个元素(1≤i≤n+1)之前插入一个新元素时须向后移动()个元素。

A.n-i B.n-i+1 C.n-i-1 D.i

(10) 线性表L=(a1,a2,……a n),下列说法正确的是()。

A.每个元素都有一个直接前驱和一个直接后继

B.线性表中至少有一个元素

C.表中诸元素的排列必须是由小到大或由大到小

D.除第一个和最后一个元素外,其余每个元素都有一个且仅有一个直接前驱和直接后继。

(11) 若指定有n个元素的向量,则建立一个有序单链表的时间复杂性的量级是()。

A.O(1) B.O(n) C.O(n2) D.O(nlog2n)

(12) 以下说法错误的是()。

A.求表长、定位这两种运算在采用顺序存储结构时实现的效率不比采用链式存储结构时实现的效率低

B.顺序存储的线性表可以随机存取

C.由于顺序存储要求连续的存储区域,所以在存储管理上不够灵活

D.线性表的链式存储结构优于顺序存储结构

(13) 在单链表中,要将s所指结点插入到p所指结点之后,其语句应为()。

A.s->next=p+1; p->next=s;

B.(*p).next=s; (*s).next=(*p).next;

C.s->next=p->next; p->next=s->next;

D.s->next=p->next; p->next=s;

(14) 在双向链表存储结构中,删除p所指的结点时须修改指针()。

A.p->next->prior=p->prior; p->prior->next=p->next;

B.p->next=p->next->next; p->next->prior=p;

C.p->prior->next=p; p->prior=p->prior->prior;

D.p->prior=p->next->next; p->next=p->prior->prior;

(15) 在双向循环链表中,在p指针所指的结点后插入q所指向的新结点,其修改指针的操作是()。

A.p->next=q; q->prior=p; p->next->prior=q; q->next=q;

B.p->next=q; p->next->prior=q; q->prior=p; q->next=p->next;

C.q->prior=p; q->next=p->next; p->next->prior=q; p->next=q;

D.q->prior=p; q->next=p->next; p->next=q; p->next->prior=q;

2.算法设计题

(1)将两个递增的有序链表合并为一个递增的有序链表。要求结果链表仍使用原来两个链表的存储空间, 不另外占用其它的存储空间。表中不允许有重复的数据。

void MergeList_L(LinkList &La,LinkList &Lb,LinkList &Lc){

pa=La->next; pb=Lb->next;

Lc=pc=La; //用La的头结点作为Lc的头结点

while(pa && pb){

if(pa->datadata){ pc->next=pa;pc=pa;pa=pa->next;}

else if(pa->data>pb->data) {pc->next=pb; pc=pb; pb=pb->next;}

else {// 相等时取La的元素,删除Lb的元素

pc->next=pa;pc=pa;pa=pa->next;

q=pb->next;delete pb ;pb =q;}

}

pc->next=papa:pb; //插入剩余段

delete Lb; //释放Lb的头结点}

(2)将两个非递减的有序链表合并为一个非递增的有序链表。要求结果链表仍使用原来两个链表的存储空间, 不另外占用其它的存储空间。表中允许有重复的数据。

void union(LinkList& La, LinkList& Lb, LinkList& Lc, ) {

pa = La->next; pb = Lb->next; // 初始化

Lc=pc=La; //用La的头结点作为Lc的头结点

Lc->next = NULL;

while ( pa || pb ) {

if ( !pa ) { q = pb; pb = pb->next; }

else if ( !pb ) { q = pa; pa = pa->next; }

else if (pa->data <= pb->data ) { q = pa; pa = pa->next; }

else { q = pb; pb = pb->next; }

q->next = Lc->next; Lc->next = q; // 插入

}

delete Lb; //释放Lb的头结点}

(3)已知两个链表A和B分别表示两个集合,其元素递增排列。请设计算法求出A与B的交集,并存放于A链表中。

void Mix(LinkList& La, LinkList& Lb, LinkList& Lc, ) {

pa=la->next;pb=lb->next;∥设工作指针pa和pb;

Lc=pc=La; //用La的头结点作为Lc的头结点

while(pa&&pb)

if(pa->data==pb->data)∥交集并入结果表中。

{ pc->next=pa;pc=pa;pa=pa->next;

u=pb;pb=pb->next; delete u;}

else if(pa->datadata) {u=pa;pa=pa->next; delete u;}

else {u=pb; pb=pb->next; delete u;}

while(pa){ u=pa; pa=pa->next; delete u;}∥释放结点空间

while(pb) {u=pb; pb=pb->next; delete u;}∥释放结点空间

pc->next=null;∥置链表尾标记。

delete Lb; ∥注:本算法中也可对B表不作释放空间的处理

(4)已知两个链表A和B分别表示两个集合,其元素递增排列。请设计算法求出两个集合A和B 的差集(即仅由在A中出现而不在B中出现的元素所构成的集合),并以同样的形式存储,同时返回该集合的元素个数。

void Difference(LinkedList A,B,*n)

∥A和B均是带头结点的递增有序的单链表,分别存储了一个集合,本算法求两集合的差集,存储于单链表A中,*n是结果集合中元素个数,调用时为0

{p=A->next;∥p和q分别是链表A和B的工作指针。

q=B->next;pre=A;∥pre为A中p所指结点的前驱结点的指针。

while(p!=null && q!=null)

if(p->datadata){pre=p;p=p->next;*n++;} ∥A链表中当前结点指针后移。

else if(p->data>q->data)q=q->next;∥B链表中当前结点指针后移。

else {pre->next=p->next;∥处理A,B中元素值相同的结点,应删除。

u=p;p=p->next;delete u;} ∥删除结点

(5)设计算法将一个带头结点的单链表A分解为两个具有相同结构的链表B、C,其中B表的结点为A表中值小于零的结点,而C表的结点为A表中值大于零的结点(链表A的元素类型为整型,要求B、C表利用A表的结点)。

(6)设计一个算法,通过一趟遍历在单链表中确定值最大的结点。

ElemType Max (LinkList L ){

if(L->next==NULL) return NULL;

pmax=L->next; //假定第一个结点中数据具有最大值

p=L->next->next;

while(p != NULL ){//如果下一个结点存在

if(p->data > pmax->data) pmax=p;

p=p->next;

}

return pmax->data;

(7)设计一个算法,通过遍历一趟,将链表中所有结点的链接方向逆转,仍利用原表的存储空间。

void inverse(LinkList &L) {

// 逆置带头结点的单链表L

p=L->next; L->next=NULL;

while ( p) {

q=p->next; // q指向*p的后继

p->next=L->next;

L->next=p; // *p插入在头结点之后

p = q;

}

}

(8)设计一个算法,删除递增有序链表中值大于mink且小于maxk的所有元素(mink 和maxk是给定的两个参数,其值可以和表中的元素相同,也可以不同)。

void delete(LinkList &L, int mink, int maxk) {

p=L->next; //首元结点

while (p && p->data<=mink)

{ pre=p; p=p->next; } //查找第一个值>mink的结点

if (p) {

while (p && p->datanext;

// 查找第一个值≥maxk 的结点

q=pre->next; pre->next=p; // 修改指针

while (q!=p)

{ s=q->next; delete q; q=s; } // 释放结点空间

}//if

}

(9)已知p指向双向循环链表中的一个结点,其结点结构为data、prior、next三个域,写出算法change(p),交换p所指向的结点和它的前缀结点的顺序。

知道双向循环链表中的一个结点,与前驱交换涉及到四个结点(p结点,前驱结点,前驱的前驱结点,后继结点)六条链。

void Exchange(LinkedList p)

∥p是双向循环链表中的一个结点,本算法将p所指结点与其前驱结点交换。

{q=p->llink;

q->llink->rlink=p;∥p的前驱的前驱之后继为p

p->llink=q->llink;∥p的前驱指向其前驱的前驱。

q->rlink=p->rlink;∥p的前驱的后继为p的后继。

q->llink=p;∥p与其前驱交换

p->rlink->llink=q;∥p的后继的前驱指向原p的前驱

p->rlink=q;∥p的后继指向其原来的前驱

}∥算法exchange结束。

(10)已知长度为n的线性表A采用顺序存储结构,请写一时间复杂度为O(n)、空间复杂度为O(1)的算法,该算法删除线性表中所有值为item的数据元素。

[题目分析] 在顺序存储的线性表上删除元素,通常要涉及到一系列元素的移动(删第i 个元素,第i+1至第n个元素要依次前移)。本题要求删除线性表中所有值为item的数据元素,并未要求元素间的相对位置不变。因此可以考虑设头尾两个指针(i=1,j=n),从两端向中间移动,凡遇到值item的数据元素时,直接将右端元素左移至值为item的数据元素位置。

void Delete(ElemType A[ ],int n)

∥A是有n个元素的一维数组,本算法删除A中所有值为item的元素。

{i=1;j=n;∥设置数组低、高端指针(下标)。

while(i

{while(i

if(i

if(i

}

[算法讨论] 因元素只扫描一趟,算法时间复杂度为O(n)。删除元素未使用其它辅助空间,最后线性表中的元素个数是j。

线性代数(李建平)习题答案详解__复旦大学出版社

线性代数课后习题答案 习题一 1.2.3(答案略) 4. (1) ∵ (127435689)415τ=+= (奇数) ∴ (127485639)τ为偶数 故所求为127485639 (2) ∵(397281564)25119τ=+++= (奇数) ∴所求为397281564 5.(1)∵(532416)421106τ=++++= (偶数) ∴项前的符号位()6 11-=+ (正号) (2)∵325326114465112632445365a a a a a a a a a a a a = (162435)415τ=+= ∴ 项前的符号位5(1)1-=- (负号) 6. (1) (2341)(1)12n n τ-?L L 原式=(1)(1)!n n -=- (2)()((1)(2)21) 1(1)(2)21n n n n n n τ--??---??L L 原式=(1)(2) 2 (1) !n n n --=- (3)原式=((1)21) 12(1)1(1) n n n n n a a a τ-?--L L (1) 2 12(1)1(1)n n n n n a a a --=-L 7.8(答案略) 9. ∵162019(42)0D x =?-?+?--?= ∴7x = 10. (1)从第2列开始,以后各列加到第一列的对应元素之上,得 []11(1)1110 01(1)1110 (1)1 1 (1)1 1 1 x x n x x x n x x x n x x n x x +-+--==+-+--L L L L L L L L L L L L L L L L L L L L L []1(1)(1)n x n x -=+-- (2)按第一列展开: 11100000 (1)(1)0 0n n n n n y x y D x x y x y x y -++=?+-=+-L L L L L L L L

北大版 线性代数第一章部分课后答案详解

习题1.2: 1 .写出四阶行列式中 11121314212223243132333441 42 43 44 a a a a a a a a a a a a a a a a 含有因子1123a a 的项 解:由行列式的定义可知,第三行只能从32a 、34a 中选,第四行只能从42a 、44a 中选,所以所有的组合只有() () 13241τ-11233244a a a a 或() () 13421τ-11233442a a a a ,即含有因子1123a a 的项 为11233244a a a a 和11233442a a a a 2. 用行列式的定义证明111213141521 22232425 31 3241425152 000000000 a a a a a a a a a a a a a a a a =0 证明:第五行只有取51a 、52a 整个因式才能有可能不为0,同理,第四行取41a 、42a ,第三行取31a 、32a ,由于每一列只能取一个,则在第三第四第五行中,必有一行只能取0.以第五行为参考,含有51a 的因式必含有0,同理,含有52a 的因式也必含有0。故所有因式都为0.原命题得证.。 3.求下列行列式的值: (1)01000020;0001000 n n -L L M M M O M L L (2)00100200100000 n n -L L M O M O M L L ; 解:(1)0100 0020 0001 000 n n -L L M M M O M L L =()()23411n τ-L 123n ????L =()1 1!n n --

线性代数课后习题答案-复旦大学出版社-熊维玲

线性代数课后习题答案-复旦大学出版社-熊维玲

第一章 3.如果排列n x x x 2 1是奇排列,则排列1 1 x x x n n 的奇偶 性如何? 解:排列 1 1x x x n n 可以通过对排列 n x x x 21经过 (1)(1)(2)212 n n n n L 次邻换得到,每一次邻换都 改变排列的奇偶性,故当2)1( n n 为偶数时,排列 1 1x x x n n 为奇排列,当2)1( n n 为奇数时,排列1 1 x x x n n 为 偶排列。 4. 写出4阶行列式的展开式中含元素13 a 且带负 号的项. 解:含元素13a 的乘积项共有13223144 (1)t a a a a ,13223441 (1)t a a a a , 13213244 (1)t a a a a ,13213442 (1)t a a a a ,13243241 (1)t a a a a ,13243142 (1)t a a a a 六项, 各项列标排列的逆序数分别为(3214)3t , (3241)4t , (3124)2 t , (3142)3 t , (3421)5t ,(3412)4 t , 故所求为13223144 1a a a a , 132134421a a a a , 13243241 1a a a a 。 5.按照行列式的定义,求行列式 n n 0 000100200100 的

值. 解:根据行列式的定义,非零的乘积项只有 1,12,21,1(1)t n n n nn a a a a L , 其中(1)(2) [(1)(2)21]2 n n t n n n L ,故行列式的值等于: (1)(2) 2 (1) ! n n n 6. 根据行列式定义,分别写出行列式x x x x x 1 11 1231112 1 2 的 展开式中含4 x 的项和含3 x 的项. 解:展开式含4 x 的乘积项为 4 11223344 (1)(1)22t a a a a x x x x x 含3 x 的乘积项为13 12213344 (1)(1)1t a a a a x x x x 8. 利用行列式的性质计算下列行列式: 解 : (1) 41 131123421 1234 1111 1 1 1 1 410234123410121 10310 ()341234120121 2412341230321 r r r r r r r r r r r

线性系统理论历年考题

说明: 姚老师是从07还是08年教这门课的,之前的考题有多少参考价值不敢保证,也只能供大家参考了,重点的复习还是以课件为主,把平时讲的课件内容复习好了,考试不会有问题(来自上届的经验)。 祝大家考试顺利! (这个文档内部交流用,并感谢董俊青和兰天同学,若有不足请大家见谅。) 2008级综合大题 []4001021100101 1 2x x u y x ???? ????=-+????????-????= 1 能否通过状态反馈设计将系统特征值配置到平面任意位置? 2 控规范分解求上述方程的不可简约形式? 3 求方程的传递函数; 4 验证系统是否渐近稳定、BIBO 稳定、李氏稳定; 5 可能通过状态反馈将不可简约方程特征值配置到-2,-3?若能,确定K ,若不能,请说明理由; 6 能否为系统不可简约方程设计全阶状态观测器,使其特征值为-4,-5; 7画出不可简约方程带有状态观测器的状态反馈系统结构图。 参考解答: 1. 判断能控性:能控矩阵2 14161 24,() 2.0 0M B AB A B rank M ?? ?? ??==-=???????? 系统不完全可控,不能任意配置极点。

2 按可控规范型分解 取M 的前两列,并加1与其线性无关列构成1 1 401200 1P -?? ??=-?????? ,求得120331 1066 00 1P ?? ????? ?=-????????? ? 进行变换[] 1 1 20831112,0,2 2 26000 1 A PAP B PB c cP --? ? ?? ???? ????=-====???? ??????????? ? 所以系统不可简约实现为[]08112022x x u y x ?????=+???????????=? 3. 1 2(1)(1)2(1)()()(4)(2)(1) (4)(2) s s s G s c sI A B s s s s s --+-=-= = -++-+ 4. det()(4)(2)(1)sI A s s s -=-++, 系统有一极点4,位于复平面的右部,故不是渐近稳定。 1 2(1)()()(4)(2) s G s c sI A B s s --=-= -+,极点为4,-2,存在位于右半平面的极点,故系统不 是BIBO 稳定。 系统发散,不是李氏稳定。 5. 可以。令11 228,12T k k k k A Bk k +???? =+=??? ??? ?? 则特征方程[]2 112()det ()(2)28f s sI A Bk s k s k k =-+=-++-- 期望特征方程* 2 ()(2)(3)56f s s s s s =++=++

线性代数课后习题答案全)习题详解

线性代数课后习题答案全)习题详解 第一章 行列式 1.利用对角线法则计算下列三阶行列式: (1)381141102---; (2)b a c a c b c b a ; (3)222111c b a c b a ; (4)y x y x x y x y y x y x +++. 解 (1)=---3 811411 02811)1()1(03)4(2??+-?-?+?-?)1()4(18)1(2310-?-?-?-?-??- =416824-++-=4- (2)=b a c a c b c b a cc c aaa bbb cba bac acb ---++3333c b a abc ---= (3)=2 221 11c b a c b a 222222cb ba ac ab ca bc ---++))()((a c c b b a ---= (4)y x y x x y x y y x y x +++yx y x y x yx y y x x )()()(+++++=333)(x y x y -+-- 33322333)(3x y x x y y x y y x xy ------+= )(233y x +-=

2.按自然数从小到大为标准次序,求下列各排列的逆序数: (1)1 2 3 4; (2)4 1 3 2; (3)3 4 2 1; (4)2 4 1 3; (5)1 3 … )12(-n 2 4 … )2(n ; (6)1 3 … )12(-n )2(n )22(-n … 2. 解(1)逆序数为0 (2)逆序数为4:4 1,4 3,4 2,3 2 (3)逆序数为5:3 2,3 1,4 2,4 1,2 1 (4)逆序数为3:2 1,4 1,4 3 (5)逆序数为 2 ) 1(-n n : 3 2 1个 5 2,5 4 2个 7 2,7 4,7 6 3个 ……………… … )12(-n 2,)12(-n 4,)12(-n 6,…,)12(-n )22(-n )1(-n 个 (6)逆序数为)1(-n n 3 2 1个 5 2,5 4 2个 ……………… … )12(-n 2,)12(-n 4,)12(-n 6,…,)12(-n )22(-n )1(-n 个 4 2 1个 6 2,6 4 2个 ……………… … )2(n 2,)2(n 4,)2(n 6,…,)2(n )22(-n )1(-n 个 3.写出四阶行列式中含有因子2311a a 的项.

线性代数课后习题答案

线性代数课后题详解 第一章 行列式 1.利用对角线法则计算下列三阶行列式: 相信自己加油 (1) 3811411 02 ---; (2)b a c a c b c b a (3) 2 2 2 111 c b a c b a ; (4) y x y x x y x y y x y x +++. 解 注意看过程解答(1)=---3 81141 1 2811)1()1(03)4(2??+-?-?+?-? )1()4(18)1(2310-?-?-?-?-??- =416824-++- =4- (2) =b a c a c b c b a cc c aaa bbb cba bac acb ---++ 3333c b a abc ---= (3) =2 2 2 1 11c b a c b a 222222cb ba ac ab ca bc ---++ ))()((a c c b b a ---= (4) y x y x x y x y y x y x +++ yx y x y x yx y y x x )()()(+++++=333)(x y x y -+-- 33322333)(3x y x x y y x y y x xy ------+= )(233y x +-= 2.按自然数从小到大为标准次序,求下列各排列的逆序数:耐心成就大业 (1)1 2 3 4; (2)4 1 3 2; (3)3 4 2 1; (4)2 4 1 3; (5)1 3 … )12(-n 2 4 … )2(n ; (6)1 3 … )12(-n )2(n )22(-n … 2. 解(1)逆序数为0

(2)逆序数为4:4 1,4 3,4 2,3 2 (3)逆序数为5:3 2,3 1,4 2,4 1,2 1 (4)逆序数为3:2 1,4 1,4 3 (5)逆序数为2 ) 1(-n n : 3 2 1个 5 2,5 4 2个 7 2,7 4,7 6 3个 ……………… … )12(-n 2,)12(-n 4,)12(-n 6,…,)12(-n )22(-n )1(-n 个 (6)逆序数为)1(-n n 3 2 1个 5 2,5 4 2个 ……………… … )12(-n 2,)12(-n 4,)12(-n 6,…,)12(-n )22(-n )1(-n 个 4 2 1个 6 2,6 4 2个 ……………… … )2(n 2,)2(n 4,)2(n 6,…,)2(n )22(-n )1(-n 个 3.写出四阶行列式中含有因子 2311a a 的项. 解 由定义知,四阶行列式的一般项为 43214321)1(p p p p t a a a a -,其中t 为4321p p p p 的逆序数.由于3,121==p p 已固定, 4321p p p p 只能形如13□□,即1324或1342.对应的t 分别为 10100=+++或22000=+++ ∴44322311a a a a -和42342311a a a a 为所求. 4.计算下列各行列式: 多练习方能成大财 (1)?? ??????? ???711 00251020214214; (2)????? ? ??? ???-26 0523******** 12; (3)???? ??????---ef cf bf de cd bd ae ac ab ; (4)?? ??? ???????---d c b a 100 110011001 解 (1) 7110025102021421434327c c c c --0 1001423102 02110214--- =34)1(14 3102211014+-?---

新版哈尔滨工程大学电子信息考研经验考研参考书考研真题

备考的时候唯一心愿就是上岸之后也可以写一篇经验贴,来和学弟学妹们分享这一年多的复习经验和教训。 我在去年这个时候也跟大家要一样在网上找着各种各样的复习经验贴,给我的帮助也很多,所以希望我的经验也可以给你们带来一定帮助,但是每个人的学习方法和习惯都不相同,所以大家还是要多借鉴别人的经验,然后找到适合自己的学习方法,并且坚持到底! 时间确实很快,痛也快乐着吧。 我准备考研的时间也许不是很长,希望大家不要学我,毕竟考研的竞争压力是越来越大,提前准备还是有优势的,另外就是时间线只针对本人,大家可以结合实际制定自己的考研规划。 在开始的时候我还是要说一个老生常谈的话题,就是你要想明白自己为什么要考研,想明白这一点是至关重要的。如果你是靠自我驱动,是有坚定的信心发自内心的想要考上研究生,就可以减少不必要的内心煎熬,在复习的过程中知道自己不断的靠近自己的梦想。 好了说了一些鸡汤,下面咱们说一下正经东西吧,本文三大部分:英语+政治+专业课,字数比较多,文末分享了真题和资料,大家可自行下载。 哈尔滨工程大学电子信息的初试科目为: (101)思想政治理论(202)俄语(301)数学一(810)自动控制原理 或(101)思想政治理论(203)日语(301)数学一(810)自动控制原理 或(101)思想政治理论(201)英语一(301)数学一(810)自动控制原理 参考书目为: 《自动控制原理》,刘胜编著,哈尔滨工程大学出版社,2015年;

《线性系统理论》,郑大钟编著,清华大学出版社,2002 跟大家先说一下英语的复习吧。 学英语免不了背单词这个难关,词汇量上不去,影响的不仅是考试成绩,更是整体英语能力的提升;背单词也是学习者最感到头痛的过程,不是背完了转身就忘,就是背的单词不会用,重点单词主要是在做阅读的时候总结的,我把不认识不熟悉的单词全都挑出来写到旁边,记下来反复背直至考前,总之单词这一块贵在坚持,背单词的日程一定要坚持到考研前一天。 因此,学会如何高效、科学地记忆词汇,养成良好的记单词习惯,才能达到事半功倍的学习效果,我用的是《木糖英语单词闪电版》,里面的高频词汇都给列出来了,真的挺方便的,并且刷真题我用的《木糖英语真题手译》这本书,我感觉对我帮助特别大,里面的知识点讲解的通俗易懂,而且给出的例子都很经典,不容易忘记。 前期,在这段时间最重要的是积累,也就是扩充自己的词汇量,基础相对差一些的同学可以背考研单词,而基础相对好一些的同学考研单词相对于你来说就会比较简单,这时就不必浪费时间,可以进行外刊阅读。由于考研英语阅读的文章全部都是从外刊中摘录的,所以进行外刊阅读就可以把其当作“真题”的泛读。 中期,在期末考试和小学期结束之后就要开始做真题了,我从最早的那年开始一路做下来,留了三套考前模拟,大概是有二十多套。我一般会第一天做一套然后后面花1~2天的时间对文章进行精读及分析错误原因。早些年的英语出题有相当难度,考察的有不少都是很复杂的句式及熟词僻义,这与近几年的考察角度是完全不同的,所以我建议时间不多的同学完全可以放弃早些年的真题,然后时间比较充足的同学可以做一做,但是不需要因为错很多,而丧失信心,我记得

同济大学线性代数第五版课后习题答案

第一章 行列式 1 利用对角线法则计算下列三阶行列式 (1)3811 411 02--- 解 3 811411 02--- 2(4)30(1)(1)118 0 132(1)8 1( 4) (1) 248164 4 (2)b a c a c b c b a 解 b a c a c b c b a acb bac cba bbb aaa ccc 3abc a 3b 3c 3 (3)2 221 11c b a c b a

解 2 221 11c b a c b a bc 2ca 2ab 2ac 2ba 2cb 2 (a b )(b c )(c a ) (4)y x y x x y x y y x y x +++ 解 y x y x x y x y y x y x +++ x (x y )y yx (x y )(x y )yx y 3(x y )3x 3 3xy (x y )y 33x 2 y x 3y 3x 3 2(x 3 y 3) 2 按自然数从小到大为标准次序 求下列各排列的逆 序数 (1)1 2 3 4 解 逆序数为0 (2)4 1 3 2 解 逆序数为4 41 43 42 32 (3)3 4 2 1

解逆序数为5 3 2 3 1 4 2 4 1, 2 1 (4)2 4 1 3 解逆序数为3 2 1 4 1 4 3 (5)1 3 (2n1) 2 4 (2n) 解逆序数为 2)1 ( n n 3 2 (1个) 5 2 5 4(2个) 7 2 7 4 7 6(3个) (2n1)2(2n1)4(2n1)6 (2n1)(2n2) (n1个) (6)1 3 (2n1) (2n) (2n2) 2 解逆序数为n(n1) 3 2(1个) 5 2 5 4 (2个) (2n1)2(2n1)4(2n1)6

空军工程大学博士研究生入学试题[001]

空军工程大学2016年博士研究生入学试题 考试科目:线性系统理论(A卷)科目代码3003 说明:答题时必须答在配发的空白答题纸上,答题可不抄题,但必须写清题号,写在试题上不给分;考生不得在试题及试卷上做任何其它标记,否则试卷作废,试题必须同试卷一起交回。 一、填空题(每空2分,共20分) (1)状态变量组数学上表征为一个极大变量组。(2)线性系统时域运动分析的核心在于揭示系统状态相对于和 的演化规律。 (3)系统完全能控和系统完全互为等价关系。 (4)系统的稳定性可分为稳定性和稳定性,其中,前者又被称为“BIBO稳定性”。 (5)对连续时间线性时不变系统,系统则必定为BIBO稳定,反之则未必。 (6)控制系统的综合归结为。 (7)一般来说,反馈的类型可分为和。 二、计算题(每小题5分,共15分) (1)确定微分方程3523 &&&&&&的一个状态空间描述。 y y y y u +-+=

(2)计算下列状态空间描述的传递函数G(s) 140321[10]x x u y x ????=+????--????=& (3)化以下线性系统为约当标准型 010341[20]x x u y x ????=+????--???? =& 三、(15分)假设系统状态方程如下 112201230x x u x x ????????=+????????--? ???????&&1 [20]y x = 请: (1)计算状态转移矩阵 (2)求解状态方程的解 (3)判断系统的能控能观性 四、(15分)利用Lyapunov 稳定性判据,分析如下系统的稳定性。 (1) 22121122221212() ()x x cx x x x x cx x x =++=-++&& (2)

线性代数课后习题答案分析

线性代数课后题详解 第一章 行列式 1.利用对角线法则计算下列三阶行列式: 相信自己加油 (1) 3811411 02 ---; (2)b a c a c b c b a (3) 2 2 2 111 c b a c b a ; (4) y x y x x y x y y x y x +++. 解 注意看过程解答(1)=---3 81141 1 2811)1()1(03)4(2??+-?-?+?-? )1()4(18)1(2310-?-?-?-?-??- =416824-++- =4- (2) =b a c a c b c b a cc c aaa bbb cba bac acb ---++ 3333c b a abc ---= (3) =2 2 2 1 11c b a c b a 222222cb ba ac ab ca bc ---++ ))()((a c c b b a ---= (4) y x y x x y x y y x y x +++ yx y x y x yx y y x x )()()(+++++=333)(x y x y -+-- 33322333)(3x y x x y y x y y x xy ------+= )(233y x +-= 2.按自然数从小到大为标准次序,求下列各排列的逆序数:耐心成就大业 (1)1 2 3 4; (2)4 1 3 2; (3)3 4 2 1; (4)2 4 1 3; (5)1 3 … )12(-n 2 4 … )2(n ; (6)1 3 … )12(-n )2(n )22(-n … 2. 解(1)逆序数为0

线性系统理论多年考题和答案

2008级综合大题 []400102110010112x x u y x ????????=-+????????-????=& 1 能否通过状态反馈设计将系统特征值配置到平面任意位置? 2 控规范分解求上述方程的不可简约形式? 3 求方程的传递函数; 4 验证系统是否渐近稳定、BIBO 稳定、李氏稳定;(各种稳定之间的关系和判定方法!) 5 可能通过状态反馈将不可简约方程特征值配置到-2,-3?若能,确定K ,若不能,请说明理由; 6 能否为系统不可简约方程设计全阶状态观测器,使其特征值为-4,-5; 7画出不可简约方程带有状态观测器的状态反馈系统结构图。 参考解答: 1. 判断能控性:能控矩阵21416124,() 2.000M B AB A B rank M ?? ????==-=???? ???? 系统不完全 可控,不能任意配置极点。 2 按可控规范型分解 取M 的前两列,并加1与其线性无关列构成1140120001P -????=-??????,求得1203311066 001P ?? ?? ?? ??=-?????? ???? 进行变换[]11 20831112,0,22260001A PAP B PB c cP --? ??????? ????=-====???? ???????? ????

所以系统不可简约实现为[]08112022x x u y x ?????=+?????????? ?=? & 3. 12(1)(1)2(1) ()()(4)(2)(1)(4)(2) s s s G s c sI A B s s s s s --+-=-= =-++-+ 4. det()(4)(2)(1)sI A s s s -=-++,系统有一极点4,位于复平面的右部,故不是渐近稳定。 12(1) ()()(4)(2) s G s c sI A B s s --=-= -+,极点为4,-2,存在位于右半平面的极点,故系统不 是BIBO 稳定。 系统发散,不是李氏稳定。 5. 可以。令11228,12T k k k k A Bk k +???? =+=???????? 则特征方程[]2 112()det ()(2)28f s sI A Bk s k s k k =-+=-++-- 期望特征方程*2 ()(2)(3)56f s s s s s =++=++ 比较上两式求得:728T k -?? =??-?? 6. 可以。设12l L l ??=????,则11222821222l l A LC l l --?? -=? ?--?? 特征方程2 2121()(222)1628f s s l l s l l =+-++-- 期望特征方程*2 ()(4)(5)920f s s s s s =++=++ 比较得:103136L ???? =????????

线性代数课后习题答案(陈维新)

第一章 行列式 习题1.1 1. 证明:(1)首先证明)3(Q 是数域。 因为)3(Q Q ?,所以)3(Q 中至少含有两个复数。 任给两个复数)3(3,32211Q b a b a ∈++,我们有 3 )()3()3)(3(3)()()3()3(3)()()3()3(2121212122112121221121212211b a a b b b a a b a b a b b a a b a b a b b a a b a b a +++=++-+-=+-++++=+++。 因为Q 是数域,所以有理数的和、差、积仍然为有理数,所以 ) 3(3)()3()3)(3()3(3)()()3()3()3(3)()()3()3(2121212122112121221121212211Q b a a b b b a a b a b a Q b b a a b a b a Q b b a a b a b a ∈+++=++∈-+-=+-+∈+++=+++。 如果0322≠+b a ,则必有22,b a 不同时为零,从而0322≠-b a 。 又因为有理数的和、差、积、商仍为有理数,所以 )3(33) (3)3() 3)(3()3)(3(3 32 2 22212122222121222222112211Q b a b a a b b a b b a a b a b a b a b a b a b a ∈--+--= -+-+= ++。 综上所述,我们有)3(Q 是数域。 (2)类似可证明)(p Q 是数域,这儿p 是一个素数。 (3)下面证明:若q p ,为互异素数,则)()(q Q p Q ?。 (反证法)如果)()(q Q p Q ?,则q b a p Q b a +=? ∈?,,从而有 q ab qb a p p 2)()(222++==。 由于上式左端是有理数,而q 是无理数,所以必有02=q ab 。 所以有0=a 或0=b 。 如果0=a ,则2 qb p =,这与q p ,是互异素数矛盾。 如果0=b ,则有 a p =,从而有“有理数=无理数”成立,此为矛盾。 所以假设不成立,从而有)()(q Q p Q ?。

工程数学线性代数同济大学第六版课后习题答案

第一章 行列式 1、 利用对角线法则计算下列三阶行列式: (1)3 81141102---; 解 3 81141102--- =2?(-4)?3+0?(-1)?(-1)+1?1?8 -0?1?3-2?(-1)?8-1?(-4)?(-1) =-24+8+16-4=-4、

(2)b a c a c b c b a ; 解 b a c a c b c b a =acb +bac +cba -bbb -aaa -ccc =3abc -a 3-b 3-c 3、 (3)2 22111c b a c b a ; 解 2 22111c b a c b a =bc 2+ca 2+ab 2-ac 2-ba 2-cb 2 =(a -b )(b -c )(c -a )、 (4)y x y x x y x y y x y x +++、 解 y x y x x y x y y x y x +++ =x (x +y )y +yx (x +y )+(x +y )yx -y 3-(x +y )3-x 3 =3xy (x +y )-y 3-3x 2 y -x 3-y 3-x 3 =-2(x 3+y 3)、 2、 按自然数从小到大为标准次序, 求下列各排列的逆序数: (1)1 2 3 4;

解逆序数为0 (2)4 1 3 2; 解逆序数为4:41, 43, 42, 32、(3)3 4 2 1; 解逆序数为5: 3 2, 3 1, 4 2, 4 1, 2 1、(4)2 4 1 3; 解逆序数为3: 2 1, 4 1, 4 3、 (5)1 3 ??? (2n-1) 2 4 ??? (2n); 解逆序数为 2)1 (- n n : 3 2 (1个) 5 2, 5 4(2个) 7 2, 7 4, 7 6(3个) ?????? (2n-1)2, (2n-1)4, (2n-1)6,???, (2n-1)(2n-2) (n-1个) (6)1 3 ???(2n-1) (2n) (2n-2) ??? 2、 解逆序数为n(n-1) : 3 2(1个) 5 2, 5 4 (2个) ?????? (2n-1)2, (2n-1)4, (2n-1)6,???, (2n-1)(2n-2) (n-1个) 4 2(1个) 6 2, 6 4(2个)

线性系统理论试卷

湘潭大学研究生考试试题 考试科目:线性系统理论/现代控制理论考生人数:20考试形式:闭卷 适用专业: 双控单控/电传 适用年级:一年级 试卷类型: A 类 一、给定多项式矩阵如下: 22121()1 2s s s s D s s s ?? ?????? ++++= ++ 1. 计算矩阵的行次数,判断系统是否行既约? 2. 计算矩阵的列次数,判断系统是否列既约? 3. 寻找单模矩阵,将多项式矩阵()D s 化为史密斯型。 二、设系统的传递函数矩阵为右MFD 1()()N s D s -,其中: 210 ()21s D s s s s ? ? ????? ? -= +-+,()11N s s s ???? =-+ 试判断{}(),()N s D s 是否右互质;如果不是右互质,试通过初等运算找出其最大右公因子。 三、给定()G s 的一个左MFD 为: 1 210 1 0()112 1s s G s s s s -? ? ?? ?????????? ? ? -+= +-+ 试判断这个MFD 是否是最小阶的;如果不是,求出其最小阶MFD 。 四、确定下列传递函数矩阵的一个不可简约左MFD : 21 1 0()102 2s s s G s s s s s ????????? ? ?? += +++ 五、给定系统的传递函数矩阵为

22 3 (1)(2)(1)(2)()31(1)(2) (2)s s s s s s G s s s s s s ???? ?? ??????? ? +++++= +++++ 试计算出相应的评价值,并写出其史密斯--麦克米伦型。 六、给定传递函数矩阵如下: 2 2221156()1253 43s s s s s G s s s s s ???? ?? ??? ? ?? +-++= ++++ 试定出其零、极点,并计算出其结构指数。 七、给定系统的传递函数矩阵如下: 2 2211 154()14 3 712s s s s G s s s s s ???? ?? ??? ? ?? +-++= ++++ 试求出一个控制器型实现。 八、确定下列传递函数矩阵()G s 的一个不可简约的PMD 2 2 141()143 32s s s s G s s s s s ?? ?? ?? ??? ??? ++-= ++++ 九、给定系统的传递函数矩阵如下: 1 2 2 430 11()221 21s s s s G s s s s s -?????? ??????? ?? ? ++-+= +++ 试设计一个状态反馈K,使得状态反馈系数的极点为: 12λ*=-, 23λ*=-, 4,5 42j λ* =-±

北航线性系统理论完整版答案

1-1 证明:由矩阵 可知A 的特征多项式为 n n n n n n n n n n n n n n n a a a a a a a a a a a a a a a a a a a a a a a A I ++++++=+++++=+++=++=+= -+λλλλλλλλλλ λλλλλ λλλλ λλλλ1-3-32-21-11-3-31 22 -2-1-n 1 3-n 2-n 2 1 -1n 1 2-n 1-n 12-n 1-n n 1- )1(-)1(- 0 0 0 1- )1(-)1(- 0 0 0 1- 1 0 1- 0 0 0 1- 若i λ是A 的特征值,则 所以[] T i i 1-n i 2 1 λλλ 是属于i λ的特征向量。 1-7 解:由于()τ τ--t e t g =,,可知当τ≤-=-=αα ββαβαt u t u P u Q P 而()()?? ?+>+≤-=???>≤=βαβαβααβαβ t 0 t t 0 t t u t u Q u P Q ,故u P Q u Q P αββα≠,所以系统是时变的。 又因为()()()()()?? ?>≤=???>≤=ααααα,,T T t u t u P u P P T T min t 0 min t t 0 t 而()()()()()()() ?? ?>≤=???>≤=ααααα,,,,T T t u T T t u P u P P P T T T min t 0 min t min t 0 min t ,故()()u P P P u P P T T T αα=,所以系统具有因果性。 1-11 解:由题设可知,()τ-t g 随τ变化的图如下所示。

线性代数第四版同济大学课后习题答案04

第四章 向量组的线性相关性 1. 设v 1=(1, 1, 0)T , v 2=(0, 1, 1)T , v 3=(3, 4, 0)T , 求v 1-v 2及3v 1+2v 2-v 3. 解 v 1-v 2=(1, 1, 0)T -(0, 1, 1)T =(1-0, 1-1, 0-1)T =(1, 0, -1)T . 3v 1+2v 2-v 3=3(1, 1, 0)T +2(0, 1, 1)T -(3, 4, 0)T =(3?1+2?0-3, 3?1+2?1-4, 3?0+2?1-0)T =(0, 1, 2)T . 2. 设3(a 1-a )+2(a 2+a )=5(a 3+a ), 求a , 其中a 1=(2, 5, 1, 3)T , a 2=(10, 1, 5, 10)T , a 3=(4, 1, -1, 1)T . 解 由3(a 1-a )+2(a 2+a )=5(a 3+a )整理得 )523(6 1 321a a a a -+= ])1 ,1 ,1 ,4(5)10 ,5 ,1 ,10(2)3 ,1 ,5 ,2(3[61 T T T --+= =(1, 2, 3, 4)T . 3. 已知向量组 A : a 1=(0, 1, 2, 3)T , a 2=(3, 0, 1, 2)T , a 3=(2, 3, 0, 1)T ; B : b 1=(2, 1, 1, 2)T , b 2=(0, -2, 1, 1)T , b 3=(4, 4, 1, 3)T , 证明B 组能由A 组线性表示, 但A 组不能由B 组线性表示. 证明 由 ????? ??-=3121 23111012421301 402230) ,(B A ??? ? ? ??-------971820751610402230 421301 ~r ???? ? ? ?------531400251552000751610 421301 ~r ??? ? ? ? ?-----000000531400751610 421301 ~r 知R (A )=R (A , B )=3, 所以B 组能由A 组线性表示.

现代控制理论试卷答案与解析

现代控制理论试卷作业 一.图为R-L-C 电路,设u 为控制量,电感L 上的支路电流 11121222121212010Y x U R R R R Y x R R R R R R ????????????=+????????-????+++???????? 和电容C 上的电压2x 为状态变量,电容C 上的电压2x 为输出量,试求:网络的状态方程和输出方程(注意指明参考 方向)。 解:此电路没有纯电容回路,也没有纯电感电路,因有两个储能元件,故有独立变量。 以电感L 上的电流和电容两端的电压为状态变量,即令:12,L c i x u x ==,由基尔霍夫电压定律可得电压方程为: 从上述两式可解出1x ?,2x ? ,即可得到状态空间表达式如下: ??????21y y =????????++-211212110R R R R R R R ??????21x x +u R R R ????????+2120 二、考虑下列系统: (a )给出这个系统状态变量的实现; (b )可以选出参数K (或a )的某个值,使得这个实现或者丧失能控性,或者丧失能观性,或者同时消失。 解:(a )模拟结构图如下: 则可得系统的状态空间表达式: (b ) 因为 3023A -??=??? 0013 k k a -??-??-? 110b ????=?????? 所以:当1a =时,该系统不能控;当1a ≠时,该系统能控。 又因为:[2C = 1 ]0 所以:当0k =或1a =时,该系统不能观;当0k ≠且1a ≠时,该系统能观。 综上可知:当1a =时或0k =且1a =时,该系统既不能控也不能观。 三、已知系统. Ax x =?的状态转移矩阵为: (1)试确定矩阵A ,并验证At e 确为上式。

信息光学习题答案

信息光学习题答案 第一章 线性系统分析 1.1 简要说明以下系统是否有线性和平移不变性. (1)()();x f dx d x g = (2)()();?=dx x f x g (3)()();x f x g = (4)()()()[];2 ? ∞ ∞ --= αααd x h f x g (5) ()()απξααd j f ?∞ ∞ --2exp 解:(1)线性、平移不变; (2)线性、平移不变; (3)非线性、平移不变; (4)线性、平移不变; (5)线性、非平移不变。 1.2 证明)()ex p()(2x comb x j x comb x comb +=?? ? ??π 证明:左边=∑∑∑∞ -∞ =∞-∞=∞-∞=-=??? ???-=??? ??-=??? ??n n n n x n x n x x comb )2(2)2(2122δδδ ∑∑∑∑∑∑∞ -∞ =∞ -∞ =∞ -∞=∞ -∞=∞ -∞ =∞ -∞ =--+-= -+-=-+-= +=n n n n n n n n x n x n x jn n x n x x j n x x j x comb x comb ) () 1()() ()exp()() ()exp()()exp()()(δδδπδδπδπ右边 当n 为奇数时,右边=0,当n 为偶数时,右边=∑∞ -∞ =-n n x )2(2δ 所以当n 为偶数时,左右两边相等。 1.3 证明)()(sin x comb x =ππδ 证明:根据复合函数形式的δ函数公式 0)(,) () ()]([1 ≠''-=∑ =i n i i i x h x h x x x h δδ 式中i x 是h(x)=0的根,)(i x h '表示)(x h 在i x x =处的导数。于是 )() ()(sin x comb n x x n =-=∑∞ -∞ =π δπ ππδ

线性代数课后习题答案 1.3

习题1.3 1. 设11 1213 21 22233132330a a a D a a a a a a a ==≠, 据此计算下列行列式(要求写出计算过程): (1) 31 3233 21 2223111231a a a a a a a a a ; (2) 11 1312 1221232222313332 32 235235235a a a a a a a a a a a a ---. 分析 利用行列式得性质找出所求行列式与已知行列式的关系. 解 (1) 31 323321 222311 12 31 a a a a a a a a a 13 R 111213 21 222331 3233 a a a a a a a a a -=a -. (4) 方法一 11 13121221 23222231 333232 235235235a a a a a a a a a a a a ---23 5C C +111312212322313332 232323a a a a a a a a a 提取公因子 11 13122123223133 32 6a a a a a a a a a 23 C 111213 21 222331 32 33 6a a a a a a a a a -=6a -. 方法二 注意到该行列式的第二列均为2个数的和, 可用行列式的性质5将该行列式分成2个行求和, 结果与方法一相同. 2. 用行列式性质计算下列行列式(要求写出计算过程): (1) 19981999 20002001 20022003200420052006; (2) 1 11 a b c b c a c a b +++; (3) 11121321 22233132 33 x y x y x y x y x y x y x y x y x y ; (4) 10 010220 033040 04 --; (5) 111112341410204004; (6) 111011 01101101 11 ; (7) 2 11 4 1 120110299 ---; (8) 222222a b c a a b b c a b c c c a b ------. 分析 第(1)至第(4)小题可利用行列式性质求解; 第(5)至第(9)小题是采用归结化简为上 (下)三角行列式求解.

相关文档
相关文档 最新文档