文档库 最新最全的文档下载
当前位置:文档库 › 甘油催化加氢制备丙二醇反应研究

甘油催化加氢制备丙二醇反应研究

甘油催化加氢制备丙二醇研究

中科合成油技术有限公司

中国科学院山西煤炭化学研究所

朱玉雷

2010.4

中国科学院煤炭化学研究所,中科合成油技术有限公司2010.4

报告内容

?技术背景

?甘油催化加氢生成1,2-丙二醇

?甘油催化加氢生成1,3-丙二醇

中国科学院煤炭化学研究所,中科合成油技术有限公司

中国科学院煤炭化学研究所,中科合成油技术有限公司

中国科学院煤炭化学研究所,中科合成油技术有限公司

中国科学院煤炭化学研究所,中科合成油技术有限公司

中国科学院煤炭化学研究所,中科合成油技术有限公司

中国科学院煤炭化学研究所,中科合成油技术有限公司

各种金属催化剂在高压釜内的活性评价结果a

中国科学院煤炭化学研究所,中科合成油技术有限公司

固定床内Ni/Al

2O

3

上反应温度对甘油氢解反应的作用a

中国科学院煤炭化学研究所,中科合成油技术有限公司

固定床内Cu/ZnO/Al

2O

3

上反应温度对甘油氢解反应的作用a

中国科学院煤炭化学研究所,中科合成油技术有限公司

固定床内Cu/ZnO/Al

2O

3

上反应压力对甘油氢解反应的作用a

中国科学院煤炭化学研究所,中科合成油技术有限公司

文献中提到的1,2-丙二醇形成机理路线

中国科学院煤炭化学研究所,中科合成油技术有限公司

中国科学院煤炭化学研究所,中科合成油技术有限公司

Cu/ZnO/Al

2O

3

的催化性能和稳定性

反应条件:190o C、0.36 MPa、重量空速0.08 h-1和氢料比140

中国科学院煤炭化学研究所,中科合成油技术有限公司

新鲜的、还原的和失活后催化剂的XRD表征和织构性能

中国科学院煤炭化学研究所,中科合成油技术有限公司

失活催化剂的TG-DTG谱图(A)空气氛中(B)Ar氛中

中国科学院煤炭化学研究所,中科合成油技术有限公司

各催化剂在TG-MS中的MS谱图

中国科学院煤炭化学研究所,中科合成油技术有限公司

-TPR谱图新鲜的、失活的和再生的催化剂反应性能和H

2

中国科学院煤炭化学研究所,中科合成油技术有限公司2010.4

小结

1.在Cu/ZnO/Al2O3上,甘油氢解反应主要产物为1,2-丙二醇和羟

基丙酮;

2. 在190℃、0.36MPa、无溶剂和气相连续固定床条件下,实现

甘油高收率(90%)转化为1,2-丙二醇;

3. 结合热力学计算和反应证明1,2-丙二醇是通过中间体羟基丙酮

加氢生成;

4. 氢解催化剂Cu/ZnO/Al2O3失活,主要是积碳造成, 在350o C可实

现催化剂的再生。

中国科学院煤炭化学研究所,中科合成油技术有限公司

第二部分甘油氢解制备1,3-丙二醇

催化加氢总结

催化加氢学习知识总结 一、概述 催化加氢是石油馏分在氢气的存在下催化加工过程的通称。 ?炼油厂的加氢过程主要有两大类: ◆加氢处理(加氢精制) ◆加氢裂化 ?加氢精制/ 加氢处理 ◆产品精制 ◆原料预处理 ◆润滑油加氢 ◆临氢降凝 ?加氢裂化 ◆馏分油加氢裂化 ◆重(渣)油加氢裂化 ?根据其主要目的或精制深度的不同有: ◆加氢脱硫(HDS) ◆加氢脱氮(HDN) ◆加氢脱金属(HDM) 加氢精制原理流程图 1-加热炉;2-反应器;3-分离器; 4-稳定塔;5-循环压缩机 ◆加氢裂化:在较高的反应压力下,较重的原料在氢压及催化剂存在下进行裂解和加 氢反应,使之成为较轻的燃料或制取乙烯的原料。可分为: ●馏分油加氢裂化 ●渣油加氢裂化 加氢精制与加氢裂化的不同点:在于其反应条件比较缓和,因而原料中的平均分子量和分子的碳骨架结构变化很小。 二、催化加氢的意义

1、具有绿色化的化学反应,原子经济性。 催化加氢一般生成产物和水,不会生成其它副产物(副反应除外),具有很好的原子经济性。绿色化学是当今科研和生产的世界潮流,我国已在重大科研项目研究的立项上向这个方向倾斜。 2、产品收率高、质量好 普通的加氢反应副反应很少,因此产品的质量很高。 3、反应条件温和; 4、设备通用性 三、国内外几家主要公司的馏分油加氢裂化催化剂 四、加氢过程的主要影响因素 1 反应压力 反应压力的影响往往是通过氢分压来体现的,系统的氢分压取决于操作压力、氢油比、循环氢纯度和原料的汽化率等 ①汽油加氢精制 ?氢分压在2.5MPa~3.5PMa后,汽油加氢精制反应的深度不受热力学控制,而是取 决于反应速度和反应时间。 ?在气相条件下进行,提高反应压力使汽油的反应时间延长,压力对它的反应速度影 响很小,因此加氢精制深度提高。 ?如果压力不变,通过氢油比来提高氢分压,则精制深度下降。 ②柴油加氢精制 ?在精制条件下,可以是气相也可是气液混相。 ?处于气相时,提高反应压力使汽油的反应时间延长,因此加氢精制深度提高。 ?但在有液相存在时,提高压力将会使精制效果变差。氢通过液膜向催化剂表面扩散

对甘油制备1,3-丙二醇工艺进行设计

对甘油制备1,3-丙二醇工艺进行设计 -发酵法制备1,3-丙二醇 摘要:本设计以甘油为原料,在无氧条件下,利用克雷伯氏菌发酵生产1,3-丙二醇,符合绿色化学的特点。通过测定菌体生物量、葡萄糖浓度、蛋白质浓度、甘油脱水酶、丙醛的浓度,可以初步判定发酵进行程度。设计实验对克雷伯氏菌发酵特性进行研究,分别研究温度、PH、甘油初始浓度、氮源对菌体生长和 1,3-PD 合成的影响。 关键词:1,3-丙二醇、甘油、克雷伯氏菌、厌氧发酵 1 前言 1,3-丙二醇(1,3-PD)是一种重要的化工原料,它可作为化学和医药工业中多种润滑剂、有机溶剂和前体的合成原料。它作为聚酯、聚醚和聚氨酯的重要单体原料合成的聚合物具有生物可降解性、安全无毒、可循环利用等优点,不仅在服装和工程塑料领域得到了广泛应用,在食品、药品和化妆品等领域也开始崭露头角。以 1,3-丙二醇为原料合成的食品添加剂丙二醇酯,是世界六大食品乳化剂之一,目前已被美国、日本和中国等国家及欧盟,联合国粮农组织和世界卫生组织批准使用[]1。20世纪90年代中期,工业上成功开发出了以1,3-PD为原料的新型聚酯材料-聚对苯二甲酸丙二醇酯(PTT), PTT性能优良,因此研究开发低成本的1, 3-PD生产技术成为关注的热点。1,3-PD的生产方法有化学法和生物转化法。 生物法合成 1,3-PD 符合“绿色化学”的特点,利用甘油或葡萄糖等可再生资源为原料,生产清洁,对环境无污染,符合我国可持续发展的需要。近几年,随着以大豆油与菜籽油为原料生产生物柴油产量的迅速增长,产生了大量副产物甘油;用甘油合成附加值更高的 1,3-丙二醇有利于资源的综合利用,引起了如杜邦公司、陶氏化学公司、亨斯迈公司等公司的关注[]2。发酵工程作为生物法合成 1,3-PD 的关键环节更是人们关注的热点。2003 年美国环境保护机构向杜邦授予“绿色化学总统奖”,专门用于表彰该公司对生物基 1,3-PD 工艺开发所作的研究。

甘油催化转移氢解制备丙二醇及其反应机理

第40卷第3期2012年6月 浙江工业大学学报 JOURNAL OF ZHEJIANG UNIVERSITY OF  TECHNOLOGYVol.40No.3 Jun.2012 收稿日期:2011-03- 04基金项目:浙江省钱江人才计划基金资助项目(2006R10017 )作者简介:李 菲(1986—),女,山西太原人,硕士研究生,研究方向为生物能源,E-mail:lifeil_290@sohu.com. 通信作者:计伟荣教授,E-mail:weirong.ji@zj ut.edu.cn.甘油催化转移氢解制备丙二醇及其反应机理 李 菲,夏 燕,应惠娟,计伟荣 (浙江工业大学化学工程与材料学院,浙江杭州310032 )摘要:以Raney  Ni为催化剂,甲醇为供氢体,水为溶剂,对甘油催化转移氢解反应进行了研究,探讨了反应温度和甘油浓度对氢解反应的影响, 并对甘油催化转移氢解反应机理进行了初步探索.与传统氢解方法相比,甘油催化转移氢解在较为温和的条件下得到了1,2-丙二醇.在温度为210℃,甘油初始浓度为0.64mol/L,反应时间为12h的条件下,甘油转化率达到54.7%,1,2-丙二醇的选择性为74.1%.一般情况下,在Raney Ni的催化作用下,甘油优先脱去伯位的羟基生成丙酮醇,随后加氢生成1,2-丙二醇. 关键词:甘油;甲醇;1,2-丙二醇;转移氢解;Raney Ni中图分类号:TQ028.4 文献标志码:A 文章编号:1006-4303(2012)03-0275- 04The study  of catalytic transfer hydrogenolysis of glycerol topropy lene glycol and it s mechanismLI Fei,XIA Yan,YING Hui-juan,JI Wei-rong (College of Chemical Engieering &Materials Science,Zhejiang University  of Technology,Hangzhou 310032,China)Abstract:Catalytic transfer hydrogenolysis(CTH)of glycerol was carried out over Raney Nicatalyst in aqueous media with methanol as the hydrogen donor.The effects of the temperatureand initial molar concentration of glycerol on the reaction were investig ated.A reactionmechanism was proposed.In comparison with the glycerol hydrogenolysis using hydrogen gas,the CTH of glycerol could be carried out under relatively mild reaction conditions.At 210℃a54.7%conversion of glycerol was achieved after 12hour reaction with an initial gly cerolconcentration of 0.64mol/L,and the selectivity of 1,2-propylene glycol was up to 74.1%.Ingeneral,the cleavage of the primary hydroxyl group was in preference to the secondary  one overRaney Ni catalyst to produce acetol,which could be hydrogenated further to become 1,2-propylene gly cerol.Key words:glycerol;methanol;1,2-propylene glycerol;transfer hydrogenolysis;Raney Ni 近年来, 生物柴油产业的发展使得其副产物甘油大量生成,导致目前甘油市场严重过剩[1- 3].寻找甘油利用的新途径,对降低生物柴油成本,提高生物 柴油产业链的经济效益有重要意义[4- 5]. 目前,国内外已有许多关于甘油催化氢解生产高附加值产品的 报导,其主要产物为1,2-丙二醇和1,3-丙二醇.1,2-丙二醇和1,3-丙二醇都是重要的化工原料,常作为抗冻剂、溶剂、保护剂等应用于食品、医药、化妆品和涂料等行业中.此外,1,3-丙二醇还是合成新型聚酯 PTT的单体之一[6].早在1987年,Celanese公司[7 ]

3催化转移加氢及其在有机合成中的应用

有机化工与催化 收稿日期:2003212215 作者简介:郑纯智(1972-),男,博士研究生,讲师,主要从事催化及有机合成方面的研究。 催化转移加氢及其在有机合成中的应用 郑纯智,张继炎,王日杰 (天津大学化工学院工业催化科学与工程系,天津300072) 摘 要:催化转移加氢法是有机合成中常用的一种加氢方法,由于使用的氢源不是氢气,而是其他一些含有氢的多原子化学物质,使得其加氢过程与用氢气的加氢过程相比,具有安全性高、反应温度低、设备要求低和选择性高等优点。催化转移加氢法在均相有机合成中的应用十分广泛,尤其在不对称合成中应用更为广泛。此外,在多相催化加氢中也有十分广泛的用途,并对催化转移加氢法的特点及在有机合成中的主要用途进行了评述。关键词:催化转移加氢;氢解;氢给予体;有机合成 中图分类号:O643.38;TQ426.94 文献标识码:A 文章编号:100821143(2004)0320029207 C atalytic transfer hydrogenation and its application in organic synthesis ZH EN G Chun 2z hi ,ZHA N G Ji 2yan ,W A N G Ri 2jie (Department of Catalysis Science and Technology , Faculty of Chemical Engineering ,Tianjin University ,Tianjin 300072,China ) Abstract :Catalytic transfer hydrogenation is a method widely used in organic synthesis ,using other hydrogen 2containing multi 2atoms substance as the hydrogen sources instead of hydrogen.This method features high safety ,low reaction temperature ,low requirement on equipment and higher selectivity.It is widely adopted in both homogeneous organic synthesis ,especially in asymmetric synthesis ,and heterogeneous https://www.wendangku.net/doc/ac782050.html,test advances in catalytic transfer hydrogenation were reviewed.K ey w ords :catalytic transfer hydrogenation ;hydrogenolysis ;hydrogen donor ;organic synthesis C LC number :O643.38;TQ426.94 Docum ent code :A A rticle I D :100821143(2004)0320029207 催化转移加氢(CTH )是有机合成中的一种有效还原手段。它采用含氢的多原子分子作氢源(称作氢给予体,如甲酸及其盐、肼、烃、醇等),反应中氢从氢给予体转移给反应底物(氢受体)。由于反应中不直接使用H 2,且多在常压下进行,反应温度较低,对设备要求也不高,因此,降低了反应的危险性。此外,CTH 反应中氢源的多样性又为提高反应的选择性提供了一种新途径。因此,无论在实验室还是工业生产中,CTH 法均具有广阔的应用前景。 Sivanandaiah K M 与其合作者早在20世纪30 年代就开始进行CTH 的研究,但由于早期研究不够成功,产率一般,因而未能得到重视。随着催化剂 负载量的增大和不同有效氢给予体的出现,情况发生了很大改变。现在此法已越来越受到人们的重视,并已有以工业化为目的的研究[1]。虽然国内有研究者事实上在反应中使用了CTH 法,但多数集中于均相催化剂的应用,而采用多相催化[2-4]的则较少,更无人对其近期的进展进行系统的报道。为此,本文对CTH 法的反应条件及应用范围等的近期研究进行评述等。 1 反应条件 在CTH 反应的研究中,几个关键的条件是:催化剂及其制备条件,氢给予体种类,反应温度, 2004年3月第12卷第3期 工业催化INDUSTRIAL CA TAL YSIS Mar.2004 Vol.12 No.3

以甘油为原料两步法制备1,2-丙二醇的工艺研究

以甘油为原料两步法制备1,2-丙二醇的工艺研究利用生物质转化为高附加值的化学产品是绿色化学的一个重要研究方向[1,2]。绿色化学所追求的目标是化学过程不产生污染,并实现高效、高选择性的化学反应,尽可能不生成副产物,实现“零排放”,以达到“原子经济性”反应[3]。 甘油作为一种理想的可再生原料,以其为平台可以提供一条绿色且经济的生产大量化学产品的途径。它作为生物柴油的副产物大量生成,每生产9Kg生物柴油约产生1Kg粗甘油[4,5]。随着生物柴油持续升温,寻找和开发甘油的新用途,将其作为原材料加工成其他产品,不但可以降低生物柴油的生产成本,提高综合经济效益,还可以解决甘油的过剩问题。 目前国外两家公司作开发了利用微生物发酵甘油生成 1,3 -丙二醇的技术。国内清华大学和大连理工大学等单位也在生物发酵法制备 1,3-丙二醇方面进行了研究。并取得了一定成果。虽然微生物对甘油转化为1,3-丙二醇的选择性很高,且反应条件温和操作简单,但是在产率的提高和菌种的选择性上还存在着很多困难。 甘油催化氢解制备丙二醇的机理如下: 甘油催化氢解制备丙二醇的甘油催化氢解制备丙二醇的反应见下图。在催化剂作用和氢气存在的条件下,通过一次C-O断裂,甘油可以转化成1,2-丙二醇和1-3丙二醇。但是由于催化剂种类及反应参数的不同,可能发生以下副反应:在甘油过度氢解时,即经过2~3次C-O键断裂后,得到一元醇( 正丙醇、丙醇)和丙烷。如果经历1次C-C键的断裂则会生成乙二醇。经过2次C -C键的断裂将生成甲醇。甘油经过C-O键和C-C键同时或者交替的断裂可能得到正丙醇、丙醇、甲醇、和甲烷。 甘油的氢解反应甘油催化氢解的反应机理是比较复杂的,由于反应条件、催化剂的不同,甘油氢解制丙二醇的机理也存在着一定的差异。当反应在酸性或者中性条件下进行时,一般认为反应是下面的机理进行。脱水,生间产物烯醇及酮(醛)式互变异构体,之后中间产物进一步发生加氢反应生成1,2 -丙二醇或l,3-丙二醇。实验表明,反应体系中加入钨酸可以加快反应速率,变反应的选择性。但是在使用其他的无机酸如盐酸时,反应转率并不理想。这说明钨酸的酸性并不

甘油制备1.3-丙二醇

甘油制备1.3-丙二醇 l,3-丙二醇是一种重要的有机化工原料.广泛应用于增塑剂、洗涤剂、防腐剂、乳化剂、聚酯和聚氨酯的合。也可用作防冻剂、溶剂、保护剂等,其中最重要的应用是制备聚对苯二甲酸丙二醇酯(PTT)。PTT是一种性能优异的聚酯材料,是目前国际上合成纤维开发的热点,被专家预测为2l世纪最主要的新纤维品种之一。 世界上已实现工业化生产1。3一丙二醇的合成路线有两条:一种方法是Shell公司的环氧乙烷羰基化法;另一种方法是Degussa公司的丙烯醛水合氧化法。其中环氧乙烷羰基化法设备投资大.技术难度高.其催化剂体系相当复杂.制备工艺苛刻且不稳定.配位体还有剧毒。丙烯醛水合氢化法成本较高.特别是丙烯醛本身属剧毒、易燃和易爆物品,难于储存和运输。由此可见.研究开发以生物柴油副产甘油为原料制备l,3一雨二醇的技术很具竞争性和发展潜力。目前国内外做了大量的研究,主要形成催化氢解法和微生物发酵法两项技术。(1)催化氢解法甘油催化氢解制备1.3一丙二醇是一个较复杂和困难的过程.目前人们刚刚在这方面开始研究。在均相催化体系中加入钨酸和碱性物质如胺或酰胺等,在3lMPa的合成气压力和200℃的温度下反应24h,甘油催化氢解生成1.3丙二醇的产率为21%,选择性为45%。Schiaf等选用Ru配合物为催化剂,在四氢噻吩砜、甲苯和1一甲基吡咯烷酮的混合溶剂中,在5.2MPa的氢压力和110℃的温度下反应19h,l,3丙二醇的选择性为44%,但转化率仅为5%。Shell公司于2000年开发了一种均相体系合成1.3一丙二醇.该法以含铂系金属的配合物为催化剂.加入甲磺酸或i氟甲磺酸作添加物.在水或环丁砜的溶剂中甘油被氢解生成1.3一丙二醇.其选择性可达30.8%。Chaminand等采用氧化锌、活性炭或三氧化二铝负载的cu、Pd或Rh作为催化剂.以钨酸作添加物.在水、环丁砜或二氧杂环已烷等溶剂中研究了甘油催化氢解反应。当温度为180℃、氢压为8MF,a时,产物中1,3一丙二醇与1.2丙二醇的摩尔比最好时可达到2.并认为Fe和Cu等有利于提高1.3一丙二醇的选择性。根据目前的研究结果来看,利用甘油催化氢解制备1,3一丙二醇研究还相对较少,且存在甘油转化率低和产品选择性差的问题,结果不太理想.因此还有待进一步对高效催化剂研究和开发。 (2)生物发酵法与催化氢解法相比,生物发酵法生产1,3丙二醇具有选择性高、操作条件温和等优点,近年来受到特别的重视。德国国家生物技术研究巾心(GBF)、美国杜邦和Genencor 公司等投人大量人力物力研究1.3丙二醇的发酵生产技术。目前研究主要集中在两个方向:其一是从工业甘油出发研究发酵生产1,3一丙二醇;其二是运用现代基因1_程改造菌种.试图将转化葡萄糖为甘油和将甘油转化为1,3丙二醇的两组基因重组到同一细胞内.但基因重组困难,且重组后基因的传代稳定性还有待长时间考验。2001年DuaPont与Denencor申请了多项以葡萄糖为底物.用基因工程菌直接生产1.3丙二醇的专利,已投资建成年产j 万吨的发酵法生产l,3丙二醇的装置。 国内生物法生产l,3一丙二醇的研究起步较晚,研究重点多集中于菌种筛选和发酵工艺优化方面。清华大学、大连理工大学等单位开展生物发酵法生产1,3一丙二醇的研究.虽然比德、美等国起步晚,但研究水平已赶上甚至超过国际先进水平。清华大学以葡萄糖或粗淀粉(如木薯粉)为原料.采用双菌种两步发酵法生产1,3丙二醇的技术.避开了杜邦公司的专利,开发出了直接利用生物柴油的副产粗甘油发酵生产1,3一丙二醇的技术,该技术通过5000L发酵罐实验表明:1,3丙二醇浓度可达70g/L,实现了酶法制备生物柴油和生物柴油副产物甘油发酵生产l,3丙二醇的工艺耦合。在后提取的过程中.研究人员针对发酵过程副产大量的有机酸(盐)的特点.在国际上率先将电渗析脱盐技术引入提取T艺。通过絮凝、浓缩和精馏等工序,制得的1,3一丙二醇产品纯度达到99.92%.收率达80%以上.填补了我国生物法生产1,3一丙二醇的空白。大连理工大学也已在实验室采用膜过滤将脂肪酶催化甲醇与油脂反应生成生物柴油和微生物转化甘油为1,3丙二醇两个过程耦联起来开

催化加氢技术及催化剂讲解

催化加氢技术及催化剂 作者: buffaloli (站内联系TA) 发布: 2009-03-03 一、意义 1.具有绿色化的化学反应,原子经济性。 催化加氢一般生成产物和水,不会生成其它副产物(副反应除外),具有很好的原子经济性。绿色化学是当今科研和生产的世界潮流,我国已在重大科研项目研究的立项上向这个方向倾斜。 2.产品收率高、质量好,普通的加氢反应副反应很少,因此产品的质量很高。 3.反应条件温和; 4.设备通用性 二、催化加氢的内容 1.加氢催化剂 Ni系催化剂 骨架Ni (1)应用最广泛的一类Ni系加氢催化剂,也称Renay-Ni,顾名思义,即为Renay发明。具有很多微孔,是以多孔金属形态出现的金属催化剂,该类形态已延伸到骨架铜、骨架钴、骨架铁等催化剂,制备骨架形催化剂的主要目的是增加催化剂的表面积,提高催化剂的反应面,即催化剂活性。 (2)具体的制备方法:将Ni和Al, Mg, Si, Zn等易溶于碱

的金属元素在高温下熔炼成合金,将合金粉碎后,再在一定的条件下,用碱溶至非活性组分,在非活性组分去除后,留下很多孔,成为骨架形的镍系催化剂。 (3)合金的成分对催化剂的结构和性能有很大的影响,镍、铝合金实际上是几种金属化合物,通常所说的固溶体,主要组分为NiAl3, Ni2Al3, NiAl, NiAl2等,不同的固熔体在碱中的溶解速度有明显差别,一般说,溶解速度快慢是NiAl3>Ni2Al3>NiAl>NiAl2,其中后二种几乎不溶,因此,前二种组分的多少直接影响骨架Ni催化剂的活性。 (4)多组分骨架镍催化剂,就是在熔融阶段,加入不溶于碱的第二组分和第三组分金属元素,如添加Sn, Pb, Mn, Cu, Ag, Mo, Cr, Fe, Co等,这些第二组分元素的加入,一般能增加催化剂的活性,或改善催化剂的选择性和稳定性。 (5)使用骨加镍催化剂需注意:骨架镍具有很大表面,在催化剂的表面吸符有大量的活化氢,并且Ni本身的活性也很,容易氧化,因此该类催化剂非常容易引起燃烧,一般在使用之前均放在有机溶剂中,如乙醇等。也可以采用钝化的方法,降低催化剂活性和保护膜等,如加入NaOH稀溶液,使骨架镍表面形成很薄的氧化膜,在使用前再用氢气还原,钝化后的骨架镍催化剂可以与空气接触。 其它镍系催化剂 从1897年Sabatier将乙烯和氢气通到还原镍使之生成乙烷开

催化加氢还原芳香硝基化合物制备芳胺的技术进展

58 精细石油化工 SPECIALITYPETROCHEMICALS 第23卷第4期 2006年7月 催化加氢还原芳香硝基化合物 制备芳胺的技术进展 徐善利陈宏博李树德 (大连理工大学化工学院,辽宁大连116024) 摘要:综述了催化加氢还原芳香硝基化合物制备芳胺及其衍生物的近况,讨论了影响催化加氢反应的主要因 素和工艺条件,并展望了催化加氢法制备芳胺工艺的应用前景和发展方向。 关键词:催化加氢香硝基化合物芳胺 中图分类号:TQ246.3文献标识码:A 芳胺及其衍生物广泛应用于化工、医药、染 料、农药等领域,绝大多数的芳胺及其衍生物系列产物都是由相应的芳香硝基化合物还原而来的。芳香硝基化合物还原为芳胺的方法主要有经典化学还原法、电解还原法、CO/H:O体系还原法和催化加氢还原法。经典化学还原法主要包括铁粉法、甲醛法、硫化碱法、水合肼法等。这些方法工艺流程长,三废多,对环境污染大,代之以清洁生产工艺势在必行;电解还原法由于设备投资较大,能耗相对较高,工业生产还存在一定的技术难题;Co/H。o还原体系对催化剂要求较高,存在贵金属催化剂回收问题,且反应大多需高温高压,目前还多处在实验室研究阶段[1],但是该法具有设备通用性好、反应易控制、原料来源容易等优点,是催化加氢法的一个良好补充[21;催化加氢法具有产品质量好、三废少、后处理容易以及反应选择性可控制等优点使其在工业生产上具有较好的应用前景,是目前实验研究和技术开发的重要领域。 1催化加氢还原法 芳香硝基化合物催化加氢还原按反应物料的状态可分为气相催化加氢法和液相催化加氢法。气相催化加氢法是以气态反应物进行的催化加氢还原,实际上为气固反应,此法仅适用于沸点较低,容易气化或在蒸发温度下,仍能保持稳定状态的芳香硝基化合物的还原。硝基苯制苯胺是气相催化加氢的典型实例。液相催化加氢法是在液相介质中进行的加氢还原。一般采用固体催化剂,实质上为气一液一固三相反应。如果催化剂溶于反应体系相则为气、液两相反应,称之为均相催化,是目前研究的热点之一。由二硝基甲苯催化加氢制备二氨基甲苯是液相催化加氢的典型实例[3]。 以下针对催化加氢法还原芳香硝基化合物制备芳胺的主要影响因素(催化剂性能和反应条件)作进一步的论述。 1.1催化剂 在催化加氢还原反应中,催化剂的性能是影响反应的主要因素,其对反应的温度、压力、反应活性、反应的选择性、产物质量和收率有着显著的影响。 用于催化加氢反应的催化剂主要为过渡金属,可分为贵金属系和一般金属系。贵金属以铂、钯为主,此外还有铑、锇、钌等,其特点是催化活性高,反应条件温和,适用于中性或酸性反应,虽然铂的活性最好,但其价格相对较高,限制了它的应用。钯的活性介于铂和镍之间,其中以Pd/C催化剂较常用,价格较便宜。金属铑催化剂在氯代硝基芳烃的催化加氢过程中可使脱氯现象大为减少[4],但铑可使苯环加氢。近年来,铑以其良好的选择性而再次引起人们的关注。一般金属系以镍为主,其次是铜、钼、钴、铁等。 常用的催化剂可以是金属单质的粉末,如铂黑、钯黑等,可直接以金属氧化物还原制得;或者是骨架型,如Raney-Ni。为了使活性金属能和原料充 收稿日期:2006一03一09;修改稿收到日期:2006一06—19。 作者简介:徐善利(1980一),男,硕士,从事染料中闻体合成的研究。

甘油绿色化学法制1,3-丙二醇

脱水-水合-加氢三段工艺 Degussa公司[15]在专利中报道一种同时生产1,3-丙二醇和1,2-丙二醇的方法,如图1所示,工艺包括3段:①将质量分数10%~40%甘油水溶液在固体酸催化剂作用下脱水为含丙烯醛和羟基丙酮的水溶液,反应温度在250~340℃,专利强调酸性催化剂的Hammett酸强度在-3.0~-8.2,包括酸性分子筛、负载的无机酸及其盐和氧化物等;②将①中得到的水溶液在酸性催化剂作用下进行水合反应,以将丙烯醛水和成3-羟基丙醛,水合温度控制在30~120℃;③将②中得到的3-羟基丙醛和羟基丙酮水溶液催化加氢得到1,2-丙二醇和1,3-丙二醇的混合物,其中1,2-丙二醇收率达10%,1,3-丙二醇收率可达60%。 该工艺1,3-丙二醇选择性高,并且后两段反应单元与传统的Degussa公司商业化生产1,3-丙二醇过程[16]相同,能够最大限度地利用现有的工艺,因此该工艺得到人们的普遍关注。不过甘油气相脱水制备丙烯醛的催化剂尚还不成熟,因此该工艺的核心部分为甘油脱水制备丙烯醛反应与丙烯醛产品的分离精制过程。以下对近期来甘油气相脱水制备丙烯醛反应的研究进行单独的总结。 Ott等[17]报道在亚临界或超临界状态下(25~35MPa和250~290℃),以硫酸锌盐为催化剂,在优化条件下丙烯醛收率75%,并发现通过增加溶液酸性可促进反应的进行,使丙烯醛的收率得到增加。Degussa公司[18]申请一个甘油水溶液在液相或者气相条件下脱水制备丙烯醛的专利,根据专利催化剂的寿命和丙烯醛选择性可以通过提高水含量实现,对于液相和气相适宜反应温度分别为250~340℃和270~320℃,并报道酸性催化剂的Hammett酸强度在-3.0~-8.2。在示例的Al2O3负载的磷酸催化剂上催化剂的转化率在62.2%~75%之间。柴松海等[19]研究了甘油在一系列的不同Hamm

催化加氢技术以及催化剂

催化加氢技术以及催化剂 一、意义 1、具有绿色化的化学反应,原子经济性。 催化加氢一般生成产物和水,不会生成其它副产物(副反应除外),具有很好的原子经济性。绿色化学是当今科研和生产的世界潮流,我国已在重大科研项目研究的立项上向这个方向倾斜。 2、产品收率高、质量好 普通的加氢反应副反应很少,因此产品的质量很高。 3、反应条件温和; 4、设备通用性 二、催化加氢的内容 1、加氢催化剂 Ni系催化剂 l骨架Ni (1)应用最广泛的一类Ni系加氢催化剂,也称Renay-Ni,顾名思义,即为Renay发明。具有很多微孔,是以多孔金属形态出现的金属催化剂,该类形态已延伸到骨架铜、骨架钴、骨架铁等催化剂,制备骨架形催化剂的主要目的是增加催化剂的表面积,提高催化剂的反应面,即催化剂活性。 (2)具体的制备方法:将Ni和Al, Mg, Si, Zn等易溶于碱的金属元素在高温下熔炼成合金,将合金粉碎后,再在一定的条件下,用碱溶至非活性组分,在非活性组分去除后,留下很多孔,成为骨架形的镍系催化剂。 (3)合金的成分对催化剂的结构和性能有很大的影响,镍、铝合金实际上是几种金属化合物,通常所说的固溶体,主要组分为NiAl3, Ni2Al3, NiAl, NiAl2等,不同的固熔体在碱中的溶解速度有明显差别,一般说,溶解速度快慢是NiAl3>Ni2Al3 >NiAl>NiAl2,其中后二种几乎不溶,因此,前二种组分的多少直接影响骨架Ni催化剂的活性。 (4)多组分骨架镍催化剂,就是在熔融阶段,加入不溶于碱的第二组分和第三组分金属元素,如添加Sn, Pb, Mn, Cu, Ag, Mo, Cr, Fe, Co等,这些第二组分元素的加入,一般能增加催化剂的活性,或改善催化剂的选择性和稳定性。 (5)使用骨加镍催化剂需注意:骨架镍具有很大表面,在催化剂的表面吸符有大量的活化氢,并且Ni本身的活性也很,容易氧化,因此该类催化剂非常容易引起燃烧,一般在使用之前均放在有机溶剂中,如乙醇等。也可以采用钝化的方法,降低催化剂活性和保护膜等,如加入NaOH 稀溶液,使骨架镍表面形成很薄的氧化膜,在使用前再用氢气还原,钝化后的骨架镍催化剂可以与空气接触。 其它镍系催化剂 从1897年Sabatier将乙烯和氢气通到还原镍使之生成乙烷开始,这是最古老的镍催化剂,工业上几乎没有单独使用镍的,而广泛使用的却是加有各种单体或助催化剂的镍,一般的制法是把硅藻土加进硝酸镍水溶液中,一边搅拌一边加碳酸钠,使碱式碳酸镍(或氢氧化镍)沉淀在硅藻土上。充分地水洗过滤干燥。将制成的催化剂在使用之前,在350-4500C的氢气流中进行还原。鉴于还原的催化剂与空气接触会着火而失去活性,使用必须注意。 此外,还有把硝酸镍溶液和硅藻土的混合物蒸干,在400-5000C热分解为NiO-硅藻土后,用氢气还原的方法。通常,还把少量金属氧化物作为助催化剂加到NiO-硅藻土中,例如NiO-氧化钍-硅藻土[40],NiO-Cu-硅藻土等[41],均属于高活性的催化剂。 可用作载体的物质还有浮石、氧化铝、硅胶、酸性白土、氧化锌、CaSO4、MgSO4、木炭、石墨等。.

催化加氢方程式

催化加氢方程式 石油馏分中的硫化物主要有硫醇、硫醚、二硫化合物及杂环硫化物,在加氢条件下发生氢解反应,生成烃和H2S. 主要反应如下: RSH +H2RH+H2S R S R+2H2+H2S (RS)2+3H22RH+2H2S S +4H2R C4H9+H2S R S +2H 2+H2S 石油馏分中的氮化物主要是杂环氮化物和少量的脂肪胺或芳香胺,在加氢条件下反应生成烃和NH3. 主要反应如下: R CH2NH2+H R CH3+NH3 N +5H2C5H12+NH3 N +7H2C3H7+NH3 N H +4H2C4H10+NH3 石油馏分中的含氧化合物主要是环烷酸及少量的酚、脂肪酸、醛、醚及酮,含氧化合物在加氢条件下通过氢解生成烃和H2O. 主要反应如下: OH+H 2+H2O COOH +3H2CH3+2H2O 石油馏分中的金属主要有镍、钒、铁、钙等,主要存在于重质馏分中,尤其是渣油中。这些金属对石油炼制过程,尤其对各种催化剂参与的反应影响较大,必须除去。渣油中的金属可分为卟啉化合物(如镍和钒的络合物)和非卟啉化合物(如环烷酸铁、钙、镍)。以非卟啉化合物存在的金属反应活性高,很容易在

H 2/H 2S 存在条件下,转化为金属硫化物沉积在催化剂表面上。而以卟啉型存在的金属化合物先可逆地生成中间产物,然后中间产物进一步氢解,生成的硫化态镍以固体形式沉积在催化剂上。加氢脱金属反应如下: 22,''H H S R M R MS RH R H --???→++ 烯烃在加氢条件下主要发生加氢饱和及异构化反应。烯烃饱和是将烯烃通过 加氢转化为相应的烷烃;烯烃异构化包括双键位置的变动和烯烃链的空间形态发生变动。这两类反应都有利于提高产品的质量。其反应描述如下: R -CH=CH 2 + H 2 → R -CH 2-CH 3 R -CH=CH -CH=CH 2 + 2H 2→ R -CH 2-CH 2-CH 2-CH 3 nC n H 2n →iC n H 2n (异构化) iC n H 2n + H 2 →iC n H 2n +2 值得注意的是,烯烃加氢饱和反应是放热效应,且热效应较大,因此对不饱和烃含量高油品加氢时,要注意控制反应温度,避免反应床层超温。

催化转移加氢

催化转移加氢 舒畅郑纯智王日杰*张继炎 (天津大学化工学院天津 300072) 摘要催化转移加氢是有机合成中一种有效的还原方法,与一般的氢气催化加氢法相比,具有反应条件温和、设备要求低等优点。本文综述了催化转移加氢反应机理及催化剂、氢供体、反应 温度和溶剂对于转移加氢反应的影响,介绍了转移加氢在有机合成中的主要应用,并对应用前景做 了分析。 关键词催化转移加氢机理氢供体应用 Catalytic Transfer Hydrogenation and its Applications in Organic Synthesis Shu Chang, Zheng Chunzhi, Wang Rijie*, Zhang Jiyan (School of Chemical Engineering & Technology, Tianjin University Tianjin 300072) Abstract Catalytic transfer hydrogenation (CTH) is an effective reduction method, which conducts at a mild reaction condition and with simple facilities comparing to common catalytic hydrogenation. In this article, the mechanism of CTH and the main reaction factors including catalyst, hydrogen donor, temperature and solvent were reviewed, the applications of CTH in organic synthesis were summarized, and the future prospect of CTH was analyzed. Key word Catalytic transfer hydrogenation, Mechanism, Hydrogen donor, Application 催化转移加氢(CTH)是有机合成中的一种有效还原手段,是指某些有机化合物在催化剂存在下成为氢的给予体,定量释放氢,而进行加氢反应的过程。应当指出,这里释放的氢并不是变成氢气后参与反应,否则就与通常的加氢无异。其中氢的转移可以是发生在同一个分子内、同一种分子间或不同分子之间。其中研究得较多的是不同分子间的转移加氢,这也是本文讨论的重点。 CTH与用H2作氢源的催化加氢的根本区别是,它采用含氢的多原子分子作氢源(称作氢供体或氢给予体,如甲酸及其盐﹑肼﹑烃﹑醇等)。反应中氢从氢供体转移给反应底物(氢受体)。由于反应中不直接使用氢气,多在常压下进行,且反应温度较低,降低了反应的危险性,对设备要求也不高。此外,CTH反应中氢源的多样性又为提高反应的选择性提供了一种新的途径。因此,CTH法成为一种无论在实验室中还是在工业生产中都极有应用前景的合成方法。 Sivanandaiah等早在上世纪30年代就开始进行CTH的研究,但由于早期的研究不够成功,产率一般,未能得到重视。随着催化剂负载量的增大和不同的有效氢供体的出现,情况发生了 舒畅男,25岁,硕士生,现从事催化应用研究。*联系人,E-mail: rjwang@https://www.wendangku.net/doc/ac782050.html,

催化氢化在药物合成中的应用

药物合成作业 题目:催化氢化在药物合成中的应用 班级药物制剂1002班 学号 10240220 姓名宋灵云 2013年6月20号

催化氢化在药物合成中的应用 【摘要】:氢化还原反应是化学工业中应用极为广泛的一类化学反应类型。在我们日常生活中所使用的化学制品的生产过程中,人们治疗疾病时所使用的药品及发展生产的大批农药的生产合成中都要出现氢化还原反应。例如: 用于麻醉的药品“普鲁卡因”是由对硝基甲苯做为原料开眙合成的,其中重要的一步就是硝基氢化还原反应转为胺基。催化氢化包括氢化和氢解。 【关键词】:催化氢化有机化合物氢化氢解化学制品药品及发展在化学反应中,使有机物分子中碳原子总的氧化态降低的反应称为还原反应,即在还原剂的作用下,能使有机分子得到电子或使参加反应的碳原子上的电子云密度增加的反应。直观的讲,可视为有机分子中增加氢或减少氧的反应。 根据采用还原方法的不同,还原反应分为三大类:(1)在催化剂存在下,反应底物与分子氢进行的加氢反应,称为氢化催化反应;(2)使用化学物质作为还原剂进行的反应,称为化学还原反应;(3)使用微生物发酵或活性酶进行底物中特定结构的还原反应,称为生物还原反应。 催化氢化反应(catalytic hydrogenation),在催化剂的作用下氢分子加成到有机化合物的不饱和基团上的反应,例如: 几乎所有的不饱和基团都可以直接加氢成为饱和基团,其从易到难的顺序大致为:酰氯、硝基、炔、醛、烯、酮、腈、多核芳香环、酯和取代酰胺、苯环。各种不饱和基团对于催化氢化的活性次序与催化剂的品种和反应条件有关。 催化氢化的关键是催化剂。它们大致分为两类:①低压氢化催化剂,主要是高活性的兰尼镍、铂、钯和铑,低压氢化可在 1~4 个大气压和较低的温度下进行;②高压氢化催化剂,主要是一般活性的兰尼镍和铬酸亚铜等。高压氢化通常在100~300个大气压和较高的温度下进行。镍催化剂应用最广泛,有兰尼镍、硼化镍等各种类型。贵金属铂和钯催化剂的特点

催化加氢

第6章催化加氢 知识目标: ●了解催化加氢生产过程的作用和地位、发展趋势; ●熟悉催化加氢生产原料来源及组成、主要反应原理及特点、催化剂的组成及性质、工艺 流程及操作影响因素分析; ●初步掌握催化加氢生产原理和方法。 能力目标: ●能根据原料的来源和组成、催化剂的组成和结构、工艺过程、操作条件对加氢产品的组 成和特点进行分析判断; ●能对影响加氢生产过程的因素进行分析和判断,进而能对实际生产过程进行操作和控制。 6.1 概述 石油炼制工业发展目标是提高轻质油收率和提高产品质量,一般的石油加工过程产品收率和质量往往是矛盾的,而催化加氢过程却能几乎同时满足这两个要求。 催化加氢是在氢气存在下对石油馏分进行催化加工过程的通称,催化加氢技术包括加氢处理和加氢裂化两类。 加氢处理是指在加氢反应过程中,只有≤10%的原料油分子变小的加氢技术,包括对原料处理和产品精制,如催化重整、催化裂化、渣油加氢等原料的加氢处理;石脑油、汽油、喷气燃料、柴油、润滑油、石蜡和凡士林加氢精制等。 加氢处理的目的在于脱除油品中的硫、氮、氧及金属等杂质,同时还使烯烃、二烯烃、芳烃和稠环芳烃选择加氢饱和,从而改善原料的品质和产品的使用性能。加氢处理具有原料油的范围宽,产品灵活性大,液体产品收率高,产品质量高,对环境友好,劳动强度小等优点,因此广泛用于原料预处理和产品精制。 加氢裂化是指在加氢反应过程中,原料油分子中有10%以上变小的加氢技术。包括高压加氢裂化和中压加氢裂化技术。依照其所加工的原料油不同,可分为馏分油加氢裂化、渣油加氢裂化。 加氢裂化的目的在于将大分子裂化为小分子以提高轻质油收率,同时还除去一些杂质。其特点是轻质油收率高,产品饱和度高,杂质含量少。 一、催化加氢在炼油工业中的地位和作用 石油加工过程实际上就是碳和氢的重新分配过程,早期的炼油技术主要通过脱碳过程提

相关文档