文档库 最新最全的文档下载
当前位置:文档库 › catia DMU运动机构解读

catia DMU运动机构解读

catia DMU运动机构解读
catia DMU运动机构解读

CATIA数字样机仿真机构分析

CA TIA数字样机仿真机构分析 (1)

绪论 (2)

细节分析 (3)

运动仿真的流程 (4)

相关概念 (5)

重点——理解各运动副的概念和创建要素 (7)

基本运行与位置调整 (10)

基于运动函数的模拟 (10)

综合模拟 (11)

序列编辑与重放 (13)

基于运动仿真的数字样机分析 (14)

运动副运动规律的查看与保存 (15)

运动参数测量 (15)

机构运动轨迹分析 (16)

扫掠包络体 (17)

空间分析 (18)

绪论

相对于物理样机,数字样机的优点不言而喻,在很大程度上可以代替物理样机的作用,随着数字样机技术的发展和日益成熟,今后会在更大的程度和更多的方面取代物理样机,提高产品的研发效率和技术水平。

学习Catia数字样机需要掌握主要几大块内容:

1、工作窗口的构成和功能

2、运动仿真流程的掌握

3、各种运动副的运用

4、基本运动学原理的掌握

5、仿真机构的运行与重放

6、基于运动仿真的数字样机分析技术

细节分析

该模块位置:CATIA→Digital Mock Up→DMU kinematics

工具栏主要:有DMU运动机构

DMU一般动画

运动机构更新以及DMU空间分析四大块。

各工具按钮的作用需要在实践操作中一步步掌握和数字,非一朝一夕的功夫可以消化,其基本功能都是相对简单的,但是要综合运用,必须勤加练习细细领悟。

运动仿真的流程

3D数字模型→数字样机准备→静态装配(包括全面静态装配后删除限制运动的约束后自动创建运动副、全面静态装配后通过对话框利用相关约束手动创建运动副)或者直接手动创建运动副→所有必要基础运动副创建完成→分析是否需要建立关联运动副并创建→定于仿真过程中的固定件(机械装置自由度DOF变为1)→施加驱动&制定运动法则(直到机械装置自由度DOF为0)→运动模拟与分析。

相关概念

1、完整的静态约束:具有装配关系的两个零部件间有3个能够限制或者规定其3D空间全部自由度的约束,保证数字样机上每一个零部件均具有空间中的唯一位置。

2、运动副分类:包括基础运动副和关联运动副,基础运动副分为低副(面接触)和高副(点线面接触),关联运动副是指一个运动副内包含3个以上零部件或者包含两对低副。

3、运动副的创建方法:装配约束转化法(自动创建和手动创建)、直接创建法(不根据静态装配约束,直接利用模型的几何要素创建)、构建要素创建法(不便于通过前两者创建的)、关联运动副(将两个基础运动副关联或者在其对话框内直接建立两个基础运动副后将其关联即可),在实际操作过程中,可以根据实际情况综合运用各种方法建立运动仿真需要的运动副。

4、构建要素:所谓构建要素,就是在相关零件上建立或点或线或者面的要素,建立两者间的滑动或滚动关系。

5、固定件定义:用于为各运动提供基准和参考,是机构运动的必要条件,一般只有1个固定件,其余没有相对运动的零部件均要与其建立刚性联接。固定件可以在第一步创建,也可以在最后创建,为了观察自由度DOF方便,有时在第一步建立。

6、施加驱动:所有运动副(联接)及固定件创建完成之后,机械装置剩余多少自由度就必须添加多少驱动,因为只有当整个装置的自由度DOF变为0后,才具有固定的运动方式,也才可以进行模拟,否则

计算机不可能进行自我选择。

机构的运动模拟有两种方式,一是通过命令进行模拟的方式,一是采用法则曲线(程序命令)进行模拟的方式,要是只检验一般的运动效果,采用命令驱动模拟的方式居多。

重点——理解各运动副的概念和创建要素

1、旋转运动副:两构建间相对运动为转动,创建要素为两条相合轴线及两个轴向限制面;

2、棱形副:两构件相对运动为沿着某一条公共直线滑动,创建要素为分属两个零部件的两条相合直线及与直线平行或者重合的两条相合平面;

3、圆柱运动副:两个零部件之间既可沿着公共轴线转动,又能像棱形副一样沿着这一轴线滑动的运动副,基本要素是分属两零部件的相合轴线;

4、螺钉副:两零部件之间沿着公共轴线转动,以及沿着这一轴线的滑动以“螺距”为约束联动的运动副,基本创建要素与圆柱副一样,为两条分属两零部件的相合轴线;

5、球面副:两零部件之间仅被一公共点或一公共球面约束的多自由度运动副,可以实现多方向的摆动与转动,创建要素是分属两零部件的两个相合的点(不能单独驱动);

6、平面副:两零部件之间以一个公共的平面为约束,具有除沿平面法向移动及绕平面坐标轴转动外的3个运动自由度,创建要素是分属两构建的相合平面(不能单独驱动)。

以上6个运动副属于低副的范畴,构件之间通过面接触。有的运动副不能单独驱动,必须配合其他运动副一起发挥作用。

以下几个属于点线面接触运动副,属于高副的范畴(不能直接构成驱动,需配合其他运动副使用)。

1、点曲线:两构建之间通过点与曲线的相合而构成的运动副,创建要素是一个零部件上的一条线及另一运动副构件上与该线相合的一个点(不能单独驱动);

2、滑动曲线:两构件间通过一对相切的曲线,实现互为约束的、切点速度不为零的运动,创建要素是分属不同零部件上相切的两条曲线或者直线与曲线(不能单独驱动)

3、滚动曲线:两构件通过一对相切的曲线,实现互为约束、切点速度为零的运动,创建要素是分属不同零部件商的两条曲线或者直线与曲线(不能单独驱动);

4、点曲面:两构件之间通过点与曲面的相合而构成的运动副,创建要素是运动副一个零部件上的曲面与另一构件上与该曲面处于相合状态的一个点(不能单独驱动,本身也没有驱动命令)。

关联运动副包括U型接合,CV接合,齿轮接合,齿轮齿条接合,电缆接合及刚性结合,除了刚性结合,其他的都是用特定的方式关联旋转副或者棱形副。

1、U型接合用于同步关联两条轴线相交的旋转,不依赖相关零部件的物理连接,用在不易传动过程为重点的运动机构创建过程中能够简化结构并减少操作,创建要素是分属于不同零件上的两条相交轴线或者已经建立的两个旋转副。

2、CV接合用于通过中间轴同步关联两个特定位置的两个旋转副。可以不依赖相关部件的物理连接,用在不以传动为重点过程的运动机构建立过程中能够简化结构和操作过程,创建要素是分属于不同零部件

上的三轴线,或已建立的三个旋转,基本条件是三条轴线相交并处于同一平面,且起始端轴线与中间轴线夹角相同。

3、齿轮传动用于以一定比率关联两个旋转运动副,可以创建平行轴、交叉轴和相交轴的各种齿轮运动机构,以正比率关联还可以模拟带传动和链传动,创建要素是建立在同一零件或者建立在刚性连接体上的两旋转运动副。

4、齿轮齿条传动用于以一定比率关联一个旋转和一个棱形运动副,创建要素是建立在同一零部件上的旋转和棱形运动副或者建立在刚性连接体上的也可。

5、缆绳接合用于以一定比率关联两个棱形运动副,实现具有一定配合关系的两个直线运动,创建要素是统一运动机构中的任意两个棱形运动副。

基于轴系的运动副其基本原理同以上运动副是一样的,只是以轴系的形式定义而已,只要明白其本质,形式只是表面现象而已,在这里关键是如何创建轴系以及轴系在运动过程中担当的作用。

仿真机构的运行与重放

基本运行与位置调整

如果数字样机仿真机构中具有多个机械装置(可以具有多个),可以在“机械装置”选项栏中选择不同的机械装置进行模拟。使用命令进行模拟适用于运动机构完成后对运动情况的基本测试,不适于作进一步的运动分析。

位置调整时,单击“运动机构更新”中的,根据需要选择重置的方式,如果要将当前位置设置为初始位置,可编辑相应命令,选择“重置为零”,则当前位置被设置为初始位置。

基于运动函数的模拟

即将命令以函数的形式表现出来,重点是函数的编制,函数对话框的操作方法。可以在结构树上编辑命令,引出公式编辑对话框,也可以直接应用知识工程工具栏中的函数工具,设定相应命令后引出公式编辑器。这里,要关注一下,常用命令的编辑格式,熟练后才可编制成熟的运动公式。

综合模拟

综合模拟中,运动模拟对话框中使用命令模拟和使用曲线模拟两种选项是如何出现的?为什么有的模拟没有?

此部分包括基本模拟以及模拟过程的记录,可以手动亦可以自动,插入越多图片,则记录越精细。

3.1教程中出现了一个多驱动手动控制的机械手夹持工件的运动机构,第一种方法为手动控制,对多个动作命令分别添加相应的命令控制指令,在综合模拟模块,设置好相应动作后,在编辑模拟对话框中插入该动作步骤,所有动作完成后点击“OK”,添加重放功能即可观看机构的运动模拟动画。

当然,除了手动输入动作外,还可用程序控制机械手的运行。设置关联运动的时候,可以编辑一个命令的公式,使其与需要关联的运动命令相等即可。

编制程序:start→knowledgeadvisor→工具栏中的rule→命名确定,在规则编辑器文本框中输入程序即可,这里对程序的格式要有一定的要求。编辑完成后单击确定,则laws下生成rule1。程序控制与运动函数一样,通过“使用法则曲线进行模拟”。

模拟记录查看:可以在结构树中选择查看,也可以在工具栏中综合模拟中查看,不过在结构树中选择时编辑模拟对话框是激活的。若选择“动画视点”复选框,除播放机构的运动过程外,还附带有模拟记录过程时对机构的视点操作,此时鼠标对机构的控制就无效了。

3.2 模拟编辑与重放

“重放replay”是在已有模拟的基础上,在catia环境中转换为视频段的形式并记录在结构树上,可简化查看程序,在运动分析时可代替模拟成为分析目标,提高计算机运算速度。在制作时如选中动画视点复选框,则会记录动画视点,重放事也会显示出来。生成重放或者动画文件的操作很简单,这里就不再赘述。

序列编辑与重放

对于结构树上有多个“模拟”的运动机构,使用序列设置可以编排模拟的播放顺序,用于多种运动状态的连续观察与功能展示。在一般动画工具栏中选中,即可打开序列编辑对话框,对照相应的顺序,根据需要对号入座即可,完成后点击确定“OK”,在结构树上生成sequence节点。需要播放时,双击该选项或者用一般播放器均可。

基于运动仿真的数字样机分析

机械装置分析,对话框会显示运动机构相关信息,如下图

在列表中选中任意运动副时,相关的零件均会高亮显示,当选中复选框接合可视化时,在图形中会以箭头形式显示运动状况,便于分析与观察复杂运动机构运动副的构成情况;点击save按钮,信息会以表格的形式记录下来;点击Laws,可以显示出运动函数规定的驱动命令以时间为变量的变化规律。

运动副运动规律的查看与保存

各功能在视图窗口可以选择。

运动参数测量

运动参数测量,这里主要是速度与加速度的测量,首先要设置需测量要素上的参考点,而后在相对运动部件上设置参考轴系,放置传感器后通过模拟运动,激活传感器,在传感器对话框中选择需要观察的参数,查看完成后也可以保存数据。如下图所示:

机构运动轨迹分析

运动轨迹分析基于运动机构驱动命令的运动函数、动作程序或者结构树上生成的重放。

设置好模拟运动的参数(时间和步骤)后,点开轨迹trace对话框,如下图所示

目标可以是基于运动机构的重放,也可以是机械机构。需要描绘轨迹的元素可以是单一元素(单一轨迹),也可以是多个元素(合成轨迹),然后选择参考体(测量元素相对于某个部件需要作出轨迹),设置步骤数(一般是固定的),最后是轨迹目标,即轨迹的几何图形集是生成在参考部件下还是以新的零件名称单独生成。

扫掠包络体

扫掠包络体功能可描绘机构运动部件几何体在整个运动过程中所扫掠的空间范围,用于运动区域观察、外壳设计或干涉的检查,基本要求是结构树上具有有效的运动函数、程序或重放。

选择项中可以选择机械装置或者重放作为扫掠基础,默认情况下,系统将除固定件外所有部件作为扫掠体,参考元素默认为固定件,当然,

都可以自行选择。设置过滤精度后单击预览,即可生成相应的扫掠描述,由于计算机配置、扫掠精度、扫描件数量,结果出来的速度会有所不同。若勾选简化结果复选框,则扫掠结果的显示会有区别。

空间分析

1、干涉与碰撞

动态检测

在DMU一般动画模式下,选择使用法则;在DMU一般动画碰撞模式工具栏中选择检测模式,如“碰撞检测停止”,然后进行模拟,当两部件接触时,机构运动会停止,且碰撞区域的轮廓线突出显示,若只设置“碰撞检测打开”,机构运动不会停止,仅仅显示碰撞轮廓线。此工具也可以在传感器对话框中激活。

静态检测

检测设置

类型下拉框中包含4种类型

1、接触+碰撞(contact+clash):检查干涉和接触;

2、间隙+接触+碰撞(clearance+contact+clash):检查干涉和接触的同时检测两对象间的最小距离是否超过规定值;

3、已授权的贯通(authorized penetration):允许产生用户给定的渗透深度而不报告为干涉;

4、碰撞规则(clash rules):基于知识工程而编制的规则进行干涉检查。

在选择范围内也有几种选项,用户可以根据自己需要进行选择,确定需要检测的零部件的范围,然后查看结果即可。

2、距离与区域分析

类型对话框中有4种选择,分别是

1、最小值(Minimum):测量两零部件间的最小距离

2、沿X(along X):沿罗盘X轴方向测量间距

3、沿Y(along Y):沿罗盘Y轴方向测量间距

4、沿Z(along Z):沿罗盘Z轴方向测量间距

5、区域分析(band analysis):根据设定的距离范围和精度测量零部件间的位置,并以不同的颜色显示用户规定的最短距离和处于规定范围内的区域。

同样选择范围内也有不同的选项可供用户自由选择。

距离可随着机构运动不同位置而更新,但是必须在机构运动停止后才会自动更新。注意:预览区域仅显示被选中零部件及它们之间的分析结果,对于复杂的运动机构来说,这无疑更加清晰明了地显示了要分析部件的关系。

机构运动简图绘制实验

1 机构运动简图绘制实验 一、实验目的 1.通过对机构运动简图的绘制,了解各种运动副及构件的结构形式,学会分析机构运 动关系,掌握绘制机构运动简图的方法。 2.掌握机构自由度的概念及计算方法。 二、实验要求 1.所有对于机构运动无关的尺寸和结构不予考虑,只需按影响机构运动的有关尺寸, 定出各运动副的位置,用规定的构件画法及运动副的表示符号,绘制机构运动简图。 2.认真观察分析各种构件的类型,各种运动副的结构形式及其特点。 3.如果所绘机构含有若干机构时,应按顺序分别对各 个机构进行仔细分析,并注意每个机构间的运动传递情况。 4.机构运动简图绘制完成后,计算其机构自由度,并 根据保证平面机构具有确定运动的条件,检查所绘制的运动 简图是否正确。 三、实验内容 1.对缝纫机头各指定的主要机构,根据构件相对运动 关系进行观察和分析,用规定符号绘制机构运动简图。 (1)缝针机构(该机构轴测剖视图如图1示)。 (2)摆梭机构(机构轴测简图如图2示) (3)送布机构(机构轴测简图如图3示) 1.实验原理 (1)合理选择投影面 本实验所指定的机构都是平面机构。平面机构运动简图是在运动平面中表示运动链的构 件及其运动副运动关系的简图。所以绘图时是将构件的运动平面作为简图的主平面(投影面)。做摆动或旋转运动构件的运动平面一定是转动副轴线的垂直面,这类构件的运动平面最易判别。所以在选择简图的主平面(投影面)时,首先通过机构中某一转动构件找出其运 动平面作为投影面,则其余构件的运动平面均为此平面的平行平面。 (2)绘图原理 图1表示缝纫机缝针机构的轴剖视图。机架、曲柄、连杆和针杆分别用数字1、2、3、 4表示。原动件是曲柄2,其运动平面为垂直于轴线A A A ''' ——的平面,以此 平面作为运动简图的投影平面。构件2由皮带轮(飞轮)拖动,连杆3由活动铰 链B 和C 分别与件2和3相连,作平面连杆3使针杆4沿固定的直孔(移动副D )上下移动。由此可知,该机构是由4个低副及4个构件(其中一个为机架、三个活动构件)组成的平面曲柄滑块机构。图示时刻的机构简图如图4所示。 2.实验步骤 (1)使被测机构缓慢运动、仔细观察分析,确认机构中的固定构件与活动构件数目,确定主动件及其数目。 (2)自主动件开始,按运动传递的顺序,根据其联接构件间的接触形式及相对运动性质,确定各运动副的种类。 (3)合理选择运动平面,按构件联接次序,画出机构运动草

常见运动功能的机构选型汇总

第三部分机械原理与设计课程设计 常用资料与参考图例 第七章常见运动功能的机构选型 第一节连续回转机构选型 能实现连续回转的机构除了教材中讲到的齿轮机构、摩擦轮机构、双曲柄机构、转动导杆机构、双万向铰链机构、反平行四边形机构、带传动、链传动、行星轮系等以外,实际中还用到下面一些机构。 1)平行四边形机构(图7-1) 图7-1中ABCD是一个平行四边形机构,两连架杆AB、CD作同速转动,连杆BC作平动。图示机构为多个平行四边形机构的组合,在多头钻床中就应用了此机构。

图7-1 图7-2 2)摆动齿轮行星减速机构(图7-2) 图7-2中主动件1与导杆3,上的内齿轮3固联,而齿轮2从动。当曲柄1匀速回转时,齿轮2变速回转,其平均转速为: 式中为主动件1的转速,、为齿轮2、3的齿数。 3)极限四杆机构(图7-3) 图7-3中构件长度l1= l2,l3= l4。构件1和3的转向相同。杆1转一周时,杆3转两周。 图7-3 图7-4 4)以曲柄滑块为基础的转动导杆机构(图7-4) 图7-4中的曲柄滑块机构ABC与导杆机构CDE串接在一起。当

时,导杆5可作整周转动。 5)齿轮-连杆机构(图7-5) 图7-5a)中的四杆机构ABCD上装有一对齿轮2'和5。行星齿轮2'和连杆2固联,而中心轮5与曲柄1共轴线并可分别自由转动。当主动曲柄1以ω1等速转动时,从动齿轮5作非匀速转动,其角速度为: 式中为连件2的角速度,、为齿轮2'、5的齿数。 通过改变杆长和齿轮节圆半径,可是从动齿轮5作单方向的非匀速转动,或作瞬时停歇的转动或带逆转的转动。 图7-5b)所示为用于铁板传输机构中的齿轮-连杆组合机构。齿轮1与曲柄固联,齿轮2、3、4及构件DE组成差动论系。该轮系的中心论2由齿轮1带动,而系杆DE由四杆机构带动作变速运动,因此,使从动轮4实现变速转动。

四大波谱基本概念以及解析综述

四大谱图基本原理及图谱解析 一.质谱 1.基本原理: 用来测量质谱的仪器称为质谱仪,可以分成三个部分:离子化器、质量分析器与侦测器。其基本原理是使试样中的成分在离子化器中发生电离,生成不同荷质比的带正电荷离子,经加速电场的作用,形成离子束,进入质量分析器。在质量分析器中,再利用电场或磁场使不同质荷比的离子在空间上或时间上分离,或是透过过滤的方式,将它们分别聚焦到侦测器而得到质谱图,从而获得质量与浓度(或分压)相关的图谱。 在质谱计的离子源中有机化合物的分子被离子化。丢失一个电子形成带一个正电荷的奇电子离子(M+·)叫分子离子。它还会发生一些化学键的断裂生成各种 碎片离子。带正电荷离子的运动轨迹:经整理可写成: 式中:m/e为质荷比是离子质量与所带电荷数之比;近年来常用m/z表示质荷比;z表示带一个至多个电荷。由于大多数离子只带一个电荷,故m/z就可以看作离子的质量数。 质谱的基本公式表明: (1)当磁场强度(H)和加速电压(V)一定时,离子的质荷比与其在磁场中运动半径的平方成正比(m/z ∝r2m),质荷比(m/z)越大的离子在磁场中运动的轨道半径(rm)也越大。这就是磁场的重要作用,即对不同质荷比离子的色散作用。 (2)当加速电压(V)一定以及离子运动的轨道半径(即收集器的位置)一定时,离子的质荷比(m/z)与磁场强度的平方成正比(m/z∝H2)改变H即所谓的磁场扫描,磁场由小到大改变,则由小质荷比到大质荷比的离子依次通过收集狭缝,分别被收集、检出和记录下来。 (3)若磁场强度(H)和离子的轨道半径(rm)一定时,离子的质荷比(m/z)与加速电压(V)成反比(m/z∝1/V),表明加速电压越高,仪器所能测量的质量范

四大图谱综合解析

2013/12/2四大图谱综合解析[解] 从分子式CHO,求得不饱和度为零,故未知物应为512饱和脂肪族化合物。 1 某未知物分子式为CHO,它的质谱、红外光谱以及核磁共振谱如图,512未知物的红外光谱是在CCl溶液中测定的,样品的CCl稀溶液它的紫外吸收光谱在200 nm以上没有吸收,试确定该化合物结构。44-1的红外光谱在3640cm处有1尖峰,这是游离O H基的特征吸收峰。样品的CCl4浓溶液在3360cm-1处有1宽峰,但当溶液稀释后复又消失,说明存在着分子间氢键。未知物核磁共振谱中δ4. 1处的宽峰,经重水交换后消失。上述事实确定,未知物分子中存在着羟基。未知物核磁共振谱中δ0.9处的单峰,积分值相当3个质子,可看成是连在同一碳原子上的3个甲基。δ3.2处的单峰,积分值相当2个质子,对应1个亚甲基,看来该次甲基在分子中位于特丁基和羟基之间。质谱中从分子离子峰失去质量31(-CHOH)部分而形成基2峰m/e57的事实为上述看法提供了证据,因此,未知物的结构CH是3CCl稀溶液的红外光谱, CCl浓溶液44 CHOH C HC在3360cm-1处有1宽峰23 CH3 2. 某未知物,它的质谱、红外光谱以及核磁共振谱如图,它的根据这一结构式,未知物质谱中的主要碎片离子得到了如下紫外吸收光谱在210nm以上没有吸收,确定此未知物。解释。CH CH3+3.+ +C CH HCOH CHOH C HC3223 m/e31CH CH33 m/e88m/e57-2H -CH-H-CH33m/e29 CH m/e73CHC23+ m/e41 [解] 在未知物的质谱图中最高质荷比131处有1个丰度很小的峰,应从分子量减去这一部分,剩下的质量数是44,仅足以组为分子离子峰,即未知物的分子量为131。由于分子量为奇数,所以未成1个最简单的叔胺基。知物分子含奇数个氮原子。根据未知物的光谱数据中无伯或仲胺、腈、CH3N酞胺、硝基化合物或杂芳环化合物的特征,可假定氮原子以叔胺形式存CH3在。红外光谱中在1748 cm-1处有一强羰基吸收带,在1235 cm-1附近有1典型正好核磁共振谱中δ2. 20处的单峰(6H ),相当于2个连到氮原子上的宽强C-O-C伸缩振动吸收带,可见未知物分子中含有酯基。1040 的甲基。因此,未知物的结构为:-1cm处的吸收带则进一步指出未知物可能是伯醇乙酸酯。O核磁共振谱中δ1.95处的单峰(3H),相当1个甲基。从它的化学位移来CH3N看,很可能与羰基相邻。对于这一点,质谱中,m/e43的碎片离子CHCHCHOC223CH(CHC=O)提供了有力的证据。在核磁共振谱中有2个等面积(2H)的三重33峰,并且它们的裂距相等,相当于AA’XX'系统。有理由认为它们是2个此外,质谱中的基峰m /e 58是胺的特征碎片离子峰,它是由氮原子相连的亚甲-CH-CH,其中去屏蔽较大的亚甲基与酯基上的氧原子22的β位上的碳碳键断裂而生成的。结合其它光谱信息,可定出这个相连。碎片为至此,可知未知物具有下述的部分结构:CHO3NCH2CHCHCHOCCH32231 2013/12/23.某未知物CH的UV、IR、1H NMR、MS谱图及13C NMR数据如下,推[解] 1. 从分子式CH,计算不饱和度Ω=4;11161116导未知物结构。 2. 结构式推导未知物碳谱数据UV:240~275 nm 吸收带具有精细结构,表明化合物为芳烃;序号δc序号δc碳原子碳原子IR ::695、740 cm-1 表明分子中含有单取代苯环;(ppm)个数(ppm)个数MS :m/z 148为分子离子峰,其合理丢失一个碎片,得到m/z 91的苄基离子;1143.01632.01 313C NMR:在(40~10)ppm 的高场区有5个sp杂化碳原子;2128.52731.51 1H NMR:积分高度比表明分子中有1个CH和4个-CH-,其中(1.4~1.2)3128.02822.5132 ppm为2个CH的重叠峰;4125.51910.012因此,此化合物应含有一个苯环和一个CH的烷基。511536.01 1H NMR 谱中各峰裂分情况分析,取代基为正戊基,即化合物的结构为:23

实验一机构运动简图绘制

实验一机构运动简图绘制 实验二齿轮范成原理二 实验三带传动实验……. 实验四齿轮效率实验二 实验五减速器拆装·…… 实验一机构运动简图的测绘和分析 实验目的 1. 2. 学会根据实际机构或模型的构造测绘机构运动简图的技能。 通过实验进一步理解机构的组成和机构自由度的意义及其计算方法。 二.实验设备 1.衫L械实物及机械模型。 2.钢板尺,游标卡尺,内、外卡尺。

3.三角板,铅笔,橡皮,草稿纸等(自各)。 三.原理和方法 1.原理 机构运动的性质与机构中构件的数目和运动副的类型、数日、相对位置有关。因此画机构运动简图时,应以规定的符号代表运动副,并以一定的比例尺按实际尺寸定出运动副间的相对位置,用尽可能简单的线条表示机构中各构件。这种用比例尺绘出的机构简单图形称为机构运动简图,若不按比例尺绘出,则称为}J L构示意图。 2.测绘方法 }1)缓慢驱动被测机构,仔细观察各构件的运动,分清各运动单元,从而确定湘L构构件的数日。 }2)根据相连接两构件的接触情况及相对运动性质,确定各运动副的类型。 }3)在草稿纸上绘出机构示意图。用1,2,3.二依次标注各构件,用A,H,C}二分别标注各运动副,在原动件上标出表示运动方向的箭头。 (4}测量与机构运动有关的尺寸,并标注在草图上。 (5)选长度比例尺}r 实际长度 图示长度 rrtlrnm )。在实验报告纸上画出机构运动 简图

实验二齿轮范成原理 一实验目的 1.掌握用范成法加工渐升线齿轮的基本原理,观察齿廓曲线的形成。 2,了解渐升线齿轮的根切现象和齿顶变尖现象,分析比较标准齿轮和变位齿轮的异同点。 二.实验设备与工具

NMR,VU,IR,MS四大图谱解析解析

13C-NMR谱图解析 13C-NMR谱图解析流程 1.分于式的确定 2.由宽带去偶语的谱线数L与分子式中破原子数m比较,判断分子的对称性. 若L=m,每一个碳原子的化学位移都不相同,表示分子没有对称性;若L

基团类型Qc/ppm 烷0-60 炔60-90 烯,芳香环90-160 羰基160 4.组合可能的结构式 在谱线归属明确的基础上,列出所有的结构单元,并合理地组合成一个或几个可能的工作结构。 5.确定结构式 用全部光谱材料和化学位移经验计算公式验证并确定惟一的或

可能性最大的结构式,或与标准谱图和数据表进行核对。经常使用的标准谱图和数据表有: 经验计算参数 1.烷烃及其衍生物的化学位移 一般烷烃灸值可用Lindeman-Adams经验公式近似地计算: ∑ Qc5.2 =nA - + 式中:一2.5为甲烷碳的化学位移九值;A为附加位移参数,列于下表,为具有某同一附加参数的碳原子数。 表2 注:1(3).1(4)为分别与三级碳、四级碳相连的一级碳;2(3)为与三级碳相连的二级碳,依此类推。 取代烷烃的Qc为烷烃的取代基效应位移参数的加和。表4一6给出各种取代基的位移参数

四大图谱综合解析

2013/12/2
四大图谱综合解析
1 某未知物分子式为C5 H12 O,它的质谱、红外光谱以及核磁共振谱如图,
它的紫外吸收光谱在200 nm以上没有吸收,试确定该化合物结构。
CCl4稀溶液的红外光谱, CCl4浓溶液 在3360cm-1处有1宽峰
[解] 从分子式C5H12O,求得不饱和度为零,故未知物应为 饱和脂肪族化合物。 未知物的红外光谱是在CCl4溶液中测定的,样品的CCl4稀溶液 的红外光谱在3640cm-1处有 1尖峰,这是游离 O H基的特征吸收 峰。样品的CCl4浓溶液在 3360cm-1处有 1宽峰,但当溶液稀释 后复又消失,说明存在着分子间氢键。未知物核磁共振谱中δ4. 1处的宽峰,经重水交换后消失。上述事实确定,未知物分子 中存在着羟基。 未知物核磁共振谱中δ0.9处的单峰,积分值相当3个质子,可 看成是连在同一碳原子上的3个甲基。δ3.2处的单峰,积分值 相当2个质子,对应1个亚甲基,看来该次甲基在分子中位于特 丁基和羟基之间。 质谱中从分子离子峰失去质量31(- CH2 OH)部分而形成基 峰m/e57的事实为上述看法提供了证据,因此,未知物的结构 CH3 是
H3C
C
CH3
CH2OH
根据这一结构式,未知物质谱中的主要碎片离子得到了如下 解释。
CH 3
2. 某未知物,它的质谱、红外光谱以及核磁共振谱如图,它的 紫外吸收光谱在210nm以上没有吸收,确定此未知物。
CH2
+ OH m/e31 -2H
+ . CH2OH
H3C
CH3
H3C
C
CH 3
C+
CH3
m/e88 -CH3 m/e29 m/e73
m/e57 -CH3 -H CH 3 C + CH 2
m/e41
[解] 在未知物的质谱图中最高质荷比131处有1个丰度很小的峰,应 为分子离子峰,即未知物的分子量为131。由于分子量为奇数,所以未 知物分子含奇数个氮原子。根据未知物的光谱数据中无伯或仲胺、腈、 酞胺、硝基化合物或杂芳环化合物的特征,可假定氮原子以叔胺形式存 在。 红外光谱中在1748 cm-1处有一强羰基吸收带,在1235 cm-1附近有1典型 的宽强C-O-C伸缩振动吸收带,可见未知物分子中含有酯基。1040 cm-1处的吸收带则进一步指出未知物可能是伯醇乙酸酯。 核磁共振谱中δ1.95处的单峰(3H),相当1个甲基。从它的化学位移来 看,很可能与羰基相邻。对于这一点,质谱中,m/e43的碎片离子 (CH3C=O)提供了有力的证据。在核磁共振谱中有2个等面积(2H)的三重 峰,并且它们的裂距相等,相当于AA’XX'系统。有理由认为它们是2个 相连的亚甲-CH2-CH2,其中去屏蔽较大的亚甲基与酯基上的氧原子 相连。 至此,可知未知物具有下述的部分结构:
O CH 2 CH 2 O C CH 3
从分子量减去这一部分,剩下的质量数是 44,仅足以组 成1个最简单的叔胺基。
CH 3 CH3 N
正好核磁共振谱中δ2. 20处的单峰(6H ),相当于2个连到氮原子上 的甲基。因此,未知物的结构为:
CH3 CH3 O N CH2 CH2 O C CH3
此外,质谱中的基峰m /e 58是胺的特征碎片离子峰,它是由氮原子 的β位上的碳碳键断裂而生成的。结合其它光谱信息,可定出这个 碎片为
CH3 CH3 N CH 2
1

四大谱图综合解析

3 待鉴定的化合物(I)和(II)它们的分子式均为C8H12O4。它们的质谱、红外光谱和核磁共振谱见图。也测定了它们的紫外吸收光谱数据:(I)λmax223nm,δ4100;(II)λmax219nm,δ2300,试确定这两个化合物。 未之物(I)的质谱 未之物(II)质谱

化合物(I)的红外光谱 化合物(II)的红外光谱 化合物(I)的核磁共振谱

化合物(II)的核磁共振谱 [解] 由于未知物(I)和(II)的分子式均为C8H12O4,所以它们的不饱和度也都是3,因此它们均不含有苯环。(I)和(II)的红外光谱呈现烯烃特征吸收,未知物(I):3080cm-1,(υ=C-H),1650cm-1(υ=C-C) 未知物(II)::3060cm-1 (υ=C-H),1645cm-1(υ=C-C) 与此同时两者的红外光谱在1730cm-1以及1150~1300 cm-1之间均具有很强的吸收带,说明(I)和(II)的分子中均具有酯基; (I)的核磁共振谱在δ6.8处有1单峰,(II)在δ6.2处也有1单峰,它们的积分值均相当2个质子。显然,它们都是受到去屏蔽作用影响的等同的烯烃质子。另外,(I)和(II )在δ4. 2处的四重峰以及在δ1.25处的三重峰,此两峰的总积分值均相当10个质子,可解释为是2个连到酯基上的乙基。因此(I)和(II)分子中均存在2个酯基。这一点,与它们分子式中都含有4个氧原子的事实一致。 几何异构体顺丁烯二酸二乙酯(马来酸二乙酯)和反丁烯二酸二乙酯(富马酸二乙酯)与上述分析结果一致。现在需要确定化合物([)和(II)分别相当于其中的哪一个。 COOEt COOEt COOEt EtOOC 顺丁烯二酸二乙酯反丁烯二酸二乙酯 利用紫外吸收光谱所提供的信息,上述问题可以得到完满解决。由于富马酸二乙酯分子的共平面性很好,在立体化学上它属于反式结构。而在顺丁烯二酸二乙酯中,由于2个乙酯基在空间的相互作用,因而降低了分子的共平面性,使共轭作用受到影响,从而使紫外吸收波长变短。

机构运动简图的绘制

机构运动简图的绘制 【一】能力目标 能根据实物绘制机构运动简图 【二】知识目标 1.了解机构组成原理 2.理解自由度、运动副、约束的概念及三者的关系 【三】教学的重点与难点 重点:平面机构的运动简图的绘制。 难点:绘制简图时构件及运动副的表示。 【四】教学方法与手段 多媒体教学,采用动画演示、实例分析、启发引导的教学方式。 【五】教学任务及内容 一、机构的组成 (一)运动副 运动副:两构件直接接触并能保持一定形式的相对运动的联接称为运动副。如图a),轴承中的滚动体与内外圈的滚道、图b)啮合中的一对齿廓、图c)滑块与导槽,均保持直接接触,并产生一定的相对运动。因而它们都构成了运动副。构件上参与接触的点、线、面,称为运动副的元素。

根据运动副对构件运动形式的约束及两构件接触方式的不同,运动副可如下分类: 1、 高副 两构件通过点或线接触组成的运动副称为高副。如图所示,凸轮与从动杆及两齿轮分别在其接触处组成高副。 2、低副 两构件通过面接触组成的运动副称为低副。平面低副可分为转动副和移动副。 (1)转动副 若运动副只允许两构件作相对转动,则称该运动副为转动副,也称铰链。 如图所示各构件的联接就是转动副。如果转动副的两构件之一是固定不动的,则称该转动副为固定铰链。若转动副中两构件都是运动的,则称该转动副为活动铰链。 (2)移动副 若运动副只允许两构件沿接触面某一方向相对滑移,则称该运动副为移动副。如图所示。 y O 1 2 x

(二)自由度和运动副的约束 1、构件的自由度 在平面运动中,每一个独立的构件,其运动均可分为三个独立的运动,即沿x轴和y 轴的移动及在xoy平面内的转动。构件的这三种独立的运动称为其自由度,分别用x、y及α为三个独立参数表示。由上述可知:构件的自由度等于构件的独立运动参数。 平面内自由的构件,有3个自由度,而空间内自由的构件,有6个自由度。 2、运动副的约束 当两构件通过运动副联接,任一构件的运动将受到限制,从而使其自由度减少,这种限制就称为约束。每引入一个约束,构件就减少一个自由度。 (1)转动副 2——约束,1——自由度 (2)移动副 2——约束,1——自由度 (3)平面高副 1——约束,2——自由度 (三)运动链和机构 两个以上的构件以运动副联接而构成的系统称为运动链。未构成首末相连的封闭环的运动链称为开链,否则称为闭链。在运动链中选取一个构件固定(称为机架),当另一构件(或少数几个构件)按给定的规律独立运动时,其余构件也随之作一定的运动,这种运动链就成为机构。机构中输入运动的构件称为主动件,其余的可动构件称为从动件。由此可见,机构是由主动件、从动件和机架三部分组成的。

最新常用机械机构介绍

常用机械机构介绍

第4章常用机构 4.1 平面连杆机构 4.1.1 平面连杆机构的组成 我们将机构中所有构件都在一平面或相互平行的平面内运动的机构称为平面机构。 1、构件的自由度 如图4-1所示,一个在平面内自由运动的构件,有沿X轴移动,沿y轴移动或绕A点转动三种运动可能性。我们把构件作独立运动的可能性称为构件的“自由度”。所以,一个在平面自由运动的构件有三个自由度。可用如图4-1所示的三个独立的运动参数x、y、θ表示。 2、运动副和约束 平面机构中每个构件都不是自由构件,而是以一定的方式与其他构件组成动联接。这种使两构件直接接触并能产生一定运动的联接,称为运动副。两构件组成运动副后,就限制了两构件间的部分相对运动,运动副对于构件间相对运动的这种限制称为约束。机构就是由若干构件和若干运动副组合而成的,因此运动副也是组成机构的主要要素。 两构件组成的运动副,不外乎是通过点、线、面接触来实现的。根据组成运动副的两构件之间的接触形式,运动副可分为低副和高副。 (1)低副两构件以面接触形成的运动副称为低副。按它们之间的相对运动是转动还是移动,低副又可分为转动副和移动副。 ①转动副组成运动副的两构件之间只能绕某一轴线作相对转动的运动副。通常转动副的具体结构形式是用铰链连接,即由圆柱销和销孔所构成的转动副,如图4-2(a)所示。

②移动副组成运动副的两构件只能作相对直线移动的运动副,如图4-2(b)所示。 由上述可知,平面机构中的低副引入了两个约束,仅保留了构件的一个自由度。因转动副和移动副都是面接触,接触面压强低,称为低副。我们将由若干构件用低副连接组成的机构称为平面连杆机构,也称低副机构。由于低副是面接触,压强低,磨损量小,而且接触面是圆柱面和平面,制造简便,且易获得较高的制造精度。此外,这类机构容易实现转动、移动等基本的运动形式及转换,因而是在一般机械和仪器中应用广泛。平面连杆机构也有其缺点:低副中的间隙不易消除,引起运动误差,且不易精确地实现复杂的运动规律。 (2)高副两构件以点或线接触形成的运动副称为高副,如图4-3所示。这类运动副因为接触部位是点或线接触,接触部位压强高,故称为高副。 3、构件分类 机构中的构件可分为三类。 (1)机架它是机构中视作固定不动的构件,起支撑其他活动构件的作用。 (2)原动件它是机构中接受外部给定运动规律的活动构件。 (3)从动件它是机构中的随原动件运动的活动构件。 4.1.2平面机构的运动简图 为方便对机构进行分析,可以撇开机构匮与运动无关的因素(如构件的形状、组成构件的零件数目、运动副的具体结构等),用简单线条和符号表示构件和运动副,并按一定比例定出各运动副的位置,以简图表示出机构各构件间相对运动关系,这种简图为机构运动简图。它是表示机构运动特征的一种工程用图) 1、常用运动副的符号(如图4-4)

1实验一机构运动简图的绘制

1、观察缝纫机踏板机构的结构 (如图1-1),绘制其机构的运动简图, 并计算机构自由度。 2、观察缝纫机机头机构的结构, 绘出其机构示意图,计算其机构自由 度。 实验一 机构运动简图的绘制 一、 实验目的 1、学习按实际机械的机构画出机构运动简图。 2、验证和巩固机构自由度的计算。 二、 实验内容 三、 设备和工具 1、缝纫机一台 2、钢皮尺、钢卷尺、 3、内外卡钳、万能角尺 4、学生自备:铅笔、三角板、橡皮、草稿纸 四、 原理和方法 1、原理 由于机构的运动仅与机构中所有构件的数目和构件所组成的运动副的数目、类型、相对位置有关,因此,在绘制机构运动简图时,可以撇开构件的形状和运动副的具体构造,而用一些简略的符号(见教材)来代替构件和运动副,并按一定的比例尺表示运动副的相对位置,以此表明机构的运动特征。 2、方法 图1-1 缝纫机踏扳机构

(1)踏动缝纫机,使缝纫机工作,从原动件开始,循者运动传递的路线仔细观察机构的运动,分清各运动单元,从而确定组成机构的构件数目。 (2)根据相互连接的两构件间的接触情况及相对运动的特点,确定各个运动副的种类。 (3)选定最能清楚地表达各构件相互关系的面为视图平面,选定原动件的位置,在草稿纸上徒手按规定的符号及构件的连接次序,从原动件开始,逐步画出机构运动简图的草图。用数字1、2、3、…分别标注各可动构件,用字母A 、B 、C 、…分别标注各运动副。 (4)仔细测量与机构运动有关的尺寸,即转动副的中心距和移动副导路的方向等,选定原动件的位置,并按一定的比例尺画成正式的机构运动简图。 比例尺) )(mm AB m l AB l (图上长度实际长度=μ 五、 步骤和要求 1、阅读教材有关章节,熟悉测绘机构运动简图的方法。 2、 在草稿纸上绘制指定的几个机构的机构运动简图或机构示意图,对规定按比例作正式的机构运动简图的机构应测量有关尺寸。 3、 计算各个机构的自由度数,将结果与实际机构相对照,观察是否相符。 4、在实验中完成草稿后交指导教师审阅,如有错误,及时修改。 5、根据草稿完成实验报告,交指导教师批阅。

4种常见的间歇运动机构

在各类机械中,常需要某些构件实现周期性的运动和停歇。能够将主动件的连续运动转换成从动件有规律的运动和停歇的机构称为间歇运动机构。 而实现间歇运动的四种常用机构分别为:棘轮机构、槽轮机构、凸轮式间歇运动机构和不完全齿轮机构。 一、棘轮机构棘轮机构的类型很多,从工作原理上可 分为轮齿啮合式和摩擦式棘轮机构;从结构上可分为外啮合 式和内啮合式棘轮机构;从传动方向上分为单向(单动和双 动)式和双向式棘轮机构。棘轮机构是把摇杆的摆动转变为 棘轮的间歇回转运动。其优点轮齿式棘轮机构运动可靠,棘 轮转角容易实现有级调节,但在工作过程中棘爪在齿面上滑 行,齿尖易磨损并伴有噪音,同时为使棘爪能顺利落入棘轮 槽,摇杆摆角应略大于棘轮转角,这样就不可避免地存在空 程和冲击,在高速时尤其严重,所以常用在低速、轻载 下实现间歇运动。摩擦式棘轮机构传递运动平稳、无噪声, 棘轮转角可作无级调节。图1 单向轮齿啮合式棘轮 但由于运动准确性差,不 宜用于运动精度要求高的场合。在工程实践中,棘轮机构 常用于实现间歇送进(如牛头刨床)、止动(如起重和牵 引设备中)和超越(如钻床中以滚子楔块式棘轮机构作为 传动中的超越离合器,实现自动进给和快速进给功能)等 场合。 图2 摩擦式棘轮 二、槽轮机构槽轮机构又称马尔他机构或日内瓦机构,也是常用的间歇运动机构之一。普通平面槽轮机构有外接式槽轮机构(图3)和内接式槽轮机构(图4)两种类型。它主要是由带有均布的径向开口槽的槽轮2、带有圆柱销A的拔盘1以及机架组成。 图3 外接式槽轮机构图4 内接式槽轮机构 槽轮机构的工作过程是:主动拨盘1上的圆柱销A进入槽轮2上的径向槽以前,拔盘上的凸锁止弧α将槽轮上的凹锁止弧β锁住,则槽轮静止不动。当拔盘圆柱销A进入槽轮径向

机构运动简图绘制分析实验(指导书)

实验一平面机构运动简图绘制和分析 一、实验目的 1.熟悉并掌握机构运动简图绘制的原理和方法,学会根据实际机械和模型绘制机构运动简图的技能; 2.加深和巩固机构自由度的计算方法,并检验机构是否具有确定运动; 3.加深对平面机构结构分析的了解。 二、实验内容及要求 1.以指定的3~4种机构模型或机器为研究对象,进行机构运动简图的绘制; 2.分析所画各机构的构件数、运动副类型和数目,计算机构的自由度,并验证它们是否具有确定的运动; 3.进行机构的结构分析。 三、实验设备和工具 1.各种机器实物和模型; 2.学生自备铅笔、直尺、圆规、橡皮、草稿纸等; 四、实验原理 机器和机构都是由若干构件及运动副组合而成。而机构的运动是由原动件的运动规律、联接各构件的运动副类型和机构的运动尺寸(即各运动副间相对位置尺寸)来决定的。因此,在绘制机构运动简图时,可以撇开构件的形状和运动副的具体构造,而用一些简单的线条来代替构件。构件的表示法见图1。用规定的符号代表运动副,并按一定的比例尺表示运动副的相对位置,以此表明机构的运动特征。常用运动符号示例见表1-1。 五、实验步骤 1、确定组成机构的构件数:缓慢转动机器,沿着运动传递的线路仔细看清各构件间的相对运动(有些相互连接构件间的相对运动非常微小),从而确定组成机构的构件数目。

2、确定运动副的类型:根据相互连接的两构件间的接触情况及相对运动特点,确定各个运动副的类型。 3、选定视图平面:一般选择与多数构件运动平面平行的平面为视图平面。 4、绘制机构示意图的草图:凭目测在草稿纸上徒手按规定的运动副代表符号,从原动件开始,按各构件的连接次序,用简单的线条代表构件,逐步画出机构示意图的草图。用数字1、2、3……分别标准各构件,用字母 A 、 B 、 C ……分别标准各运动副。 5、计算机构的自由度数,并将计算结果与实际机构的自由度相对照,观察二者是否相符。机构自由度的计算公式:F=3n-2PL-PH (式中: n 为活动构件的数目;P L 为低副的数目; P H 为高副的数目。) 6、测量机构运动尺寸:对转动副测量回转中心间的相对尺寸;对移动副测量导路方向线和与其有关的其他运动副间的相对尺寸。 7、选取适当的比例尺:长度比例尺 ) ()(mm mm l 图纸上所画的长度构件实际长度=μ 8、绘制机构运动简图:按一定的比例尺。用制图仪器画成正式的机构运动简图。 图1 构件的表示法

1.机构运动简图绘制实验

实验一机构模型的机构运动简图测绘分析实验 一、实验目的 1.通过对若干机械模型的测绘,掌握机构运动简图的测绘方法;2.掌握机构自由度的计算方法,理解机构自由度的概念; 3.加深对机构组成及其结构分析的理解。 二、实验概述 由于机构的运动只与构件数目、运动副数目及其类型、相对位置有关,因此绘制机构运动简图时,可以不考虑构件的形状和运动副的具体构造,而用国家标准(GB 4460/T--1984)规定的运动副、机构构件符号代表实际的运动副与构件,再选择适当的长度比例尺表示各运动副的相对位置,可简明地表达一部复杂机器的机构运动特征与传动原理,还可用图解法求证机构上各点的力、运动轨迹、位移、速度和加速度。

表1-1 常用机构构件、运动副符号 两运动构件形成的运动副两构件之一为机架所形成的运动副移 动 副 转 动 副 构 件 活动构件固定构件 凸 轮 及 其 他 机 构 凸轮机构棘轮机构带传动 齿 轮 机 构 外齿轮内齿轮 圆锥齿轮蜗杆蜗轮

三、实验内容及步骤 1.分析机构的特征及数目 首先缓慢地转动模型手柄,使机构运动,仔细观察机构运动情况。从原动件开始,分清各个运动单元,确定组成机构的构件特征和构件数目。 2.判断各构件之间的运动副类别 从原动件开始,根据互相连接的两构件间的接触情况和相对运动的特点,依次判断各相连构件之间运动副种类,从而确定各运动副的种类及连接顺序。 3.绘制机构示意图 正确选择投影面和原动件的位置,按传递运动的路线,用数字1,2,3……分别标注各构件,用字母A ,B ,C ……分别标注各运动副,在草稿纸上绘制机构示意图。 4.绘制机构运动简图 测量与机构运动有关的尺寸,即转动副间的中心距和移动副某点导路的方位线等,选定原动件的位置,选择适当的比例尺μ,绘制出机构运动简图。 μ=构件的实际长度(m 或mm )/图上的长度(mm ) 5.计算自由度 计算自由度F :32L H F n P P =-- ,抄入所绘机构的编号、名称、绘图比例等,判断原动件数是否与自由度相等,分析机构运动的确定性,完成整个机构的绘图。 四、注意事项 1.不增减构件数目; 2.不改变运动副性质。

四大谱图综合解析6

11 某一未知化合物的质谱、红外光谱和核磁共振谱见图2-16. 2-1'l和2 18。也测定了它的紫外光谱数据:在200nm以上没有吸收。试确定该化合物的结构。 质谱数据 [解] 根据M+1=7.8, M+2=0.5,从Beynon表找出有关式子,然后排除含有奇数个氮原子的式子(因为未知物的分子量为偶数),剩余的列出: C5H14N2 72

和C 6H 14O 也较为接近。考虑到未知物的紫外光谱在200 nm 以上没有吸收,核磁共振谱在芳环特征吸收区域中也没有吸收峰等事实,说明未知物是脂肪族化合物。根据这一点,上述三个式子只有C 6H 14O 可以作为未知物的分子式。从分子式可知该化合物不饱和度为零。 在未知物的红外光谱中,没有羰基或羟基的特征吸收,但分子式中又含有氧原子,故未知物为醚的可能性很大。在1130cm -1~ 1110 cm -1之间有一个带有裂分的吸收带,可以认为是C —O —C 的伸缩振动吸收。 另一方面,核磁共振谱中除了在δ1. 15处的双峰和δ3.75处的对称七重峰(它们的积分比为6:1)以外没有其它峰,这非常明确地指出了未知物存在着2个对称的异丙基。对于这一点,红外光谱中的1380 cm -1和1370 cm -1处的双峰,提供了另一个证据。 根据上述分析得到的信息,未知物的结构式可立即确定为: CH H 3C H 3C O CH CH 3CH 3 按照这个结构式,未知物质谱中的主要碎片离子可以得到满意的解释: CH H 3C H 3C O CH 3 CH 3 +· C H H 3C CH 3 O C H CH 3 ++ 基峰 m/z 45 CH H 3C H 3C CH H 3C H 3C O H C CH 3 +++O CH CH 3 CH 3 ·m/z 43 m/z 87 +·CH 3 CH 3CH=OH 12 某一未知化合物,其分子式为C 10H 10O 。已测定它的紫外吸收光谱、红外光谱(KBr 压片)以及核磁共振谱,见图确定该化合物结构。

机构运动简图绘制实验

机构运动简图绘制实验 一、实验目的 1.通过对机构运动简图的绘制,了解各种运动副及构件的结构形式,学会分析机构运动关系,掌握绘制机构运动简图的方法。 2.掌握机构自由度的概念及计算方法。 二、实验要求 1.所有对于机构运动无关的尺寸和结构不予考虑,只需按影响机构运动的有关尺寸,定出各运动副的位置,用规定的构件画法及运动副的表示符号,绘制机构运动简图。 2.认真观察分析各种构件的类型,各种运动副的结构形式及其特点。 3.如果所绘机构含有若干机构时,应按顺序分别对各 个机构进行仔细分析,并注意每个机构间的运动传递情况。 4.机构运动简图绘制完成后,计算其机构自由度,并 根据保证平面机构具有确定运动的条件,检查所绘制的运动 简图是否正确。 三、实验内容 1.对缝纫机头各指定的主要机构,根据构件相对运动 关系进行观察和分析,用规定符号绘制机构运动简图。 (1)缝针机构(该机构轴测剖视图如图1示)。 (2)摆梭机构(机构轴测简图如图2示) (3)送布机构(机构轴测简图如图3示) (4)综合机构(课余时间完成) 四、实验原理及步骤1.实验原理 (1)合理选择投影面本实验所指定的机构都是平面机构。平面机构运动简图是在运动平面中表示运动链的构件及其运动副运动关系的简图。所以绘图时是将构件的运动平面作为简图的主平面(投影面)。做摆动或旋转运动构件的运动平面一定是转动副轴线的垂直面,这类构件的运动平面最易判别。所以在选择简图的主平面(投影面)时,首先通过机构中某一转动构件找出其运 动平面作为投影面,则其余构件的运动平面均为此平面的平行平面。 (2)绘图原理

图1表示缝纫机缝针机构的轴剖视图。机架、曲柄、连杆和针杆分别用数字1、2、3、4表示。原动件是曲柄2,其运动平面为垂直于轴线A A A '''——的平面,以此 平面作为运动简图的投影平面。构件2由皮带轮(飞轮)拖动,连杆3由活动铰 链B 和C 分别与件2和3相连,作平面连杆3使针杆4沿固定的直孔(移动副D )上下移动。由此可知,该机构是由4个低副及4个构件(其中一个为机架、三个活动构件)组成的平面曲柄滑块机构。图示时刻的机构简图如图4所示。 2.实验步骤 (1)使被测机构缓慢运动、仔细观察分析,确认机构中的固定构件与活动构件数目,确定主动件及其数目。 (2)自主动件开始,按运动传递的顺序,根据其联接构件间 的接触形式及相对运动性质,确定各运动副的种类。 (3)合理选择运动平面,按构件联接次序,画出机构运动草 图,并对各构件及运动副标注符号。 (4)任意设定主动件(原动件)瞬时(非水平、垂直)位置,绘出机构运动示意图,并计算机构自由度。判断机构运动是否确 定。 五、实验报告 1.下载实验报告封皮。 2.绘制缝针机构、摆梭机构、送布机构、综合机构的机构 运动简图 。 计算机构自由度、判断机构运动是否确定?回答思考题。 六、思考题 1.当平面机构的自由度0=F 和自由度大于原动件数目各说明什么问题?在本实验所指定的各机构中是否有这两种情况? 2.绘制平面机构运动简图时,为什么用转动或摆构件,而不用移动构件来判别运动平面(主平面)?

(完整版)四大波谱基本概念以及解析

四大谱图基本原理及图谱解析 一质谱 1. 基本原理: 用来测量质谱的仪器称为质谱仪,可以分成三个部分:离子化器、质量分析器与侦测器。其基本原理是使试样中的成分在离子化器中发生电离,生成不同荷质比的带正电荷离子,经加速电场的作用,形成离子束,进入质量分析器。在质量分析器中,再利用电场或磁场使不同质荷比的离子在空间上或时间上分离,或是透过过滤的方式,将它们分别聚焦到侦测器而得到质谱图,从而获得质量与浓度(或分压)相关的图谱。 在质谱计的离子源中有机化合物的分子被离子化。丢失一个电子形成带一个正电荷的奇电子离子(M+J叫分子离子。它还会发生一些化学键的断裂生成各种 r =£ 碎片离子。带正电荷离子的运动轨迹:经整理可写成: m _ rjH2 电"2比2式中:口/e为质荷比是离子质量与所带电荷数之比;近年来常用m/z 表示质荷比;z表示带一个至多个电荷。由于大多数离子只带一个电荷,故m/z就可以看作离子的质量数。 质谱的基本公式表明: (1)当磁场强度(H)和加速电压(V)一定时,离子的质荷比与其在磁场中运动半径的平方成正比(m/z x r2m),质荷比(m/z)越大的离子在磁场中运动的轨道半径(rm)也越大。这就是磁场的重要作用,即对不同质荷比离子的色散作用。 (2)当加速电压(V) 一定以及离子运动的轨道半径(即收集器的位置)一定时,离子的质荷比(m/z)与磁场强度的平方成正比(m/z x H2)改变H即所谓的磁场扫描,磁场由小到大改变,则由小质荷比到大质荷比的离子依次通过收集狭缝,分别被收集、检出和记录下来。 (3)若磁场强度(H)和离子的轨道半径(rm)一定时,离子的质荷比(m/z)与加速电压(V)成反比(m/z x 1/V),表明加速电压越高,仪器所能测量的质量范

机构运动简图的绘制

任务知识点 绘制发动机配气机构的 运动简图1.机构的组成 2.构件和运动副的表示3.机构运动简图的绘制 机构运动简图的绘制 【一】能力目标 能根据实物绘制机构运动简图 【二】知识目标 1.了解机构组成原理 2.理解自由度、运动副、约束的概念及三者的关系 【三】教学的重点与难点 重点:平面机构的运动简图的绘制。 难点:绘制简图时构件及运动副的表示。 【四】教学方法与手段 多媒体教学,采用动画演示、实例分析、启发引导的教学方式。【五】教学任务及内容                 一、机构的组成 (一)运动副 运动副:两构件直接接触并能保持一定形式的相对运动的联接称为运动副。如图a),轴承中的滚动体与内外圈的滚道、图b)啮合中的一对齿廓、图c)滑块与导槽,均保持直接接触,并产生一定的相对运动。因而它们都构成了运动副。构件上参与接触的点、线、面,称为运动副的

元素。     根据运动副对构件运动形式的约束及两构件接触方式的不同,运动副可如下分类: 1、高副 两构件通过点或线接触组成的运动副称为高副。如图所示,凸轮与从动杆及两齿轮分别在其接触处组成高副。

2、低副 两构件通过面接触组成的运动副称为低副。平面低副可分为转动副和移动副。 (1)转动副 若运动副只允许两构件作相对转动,则称该运动副为转动副,也称铰链。   如图所示各构件的联接就是转动副。如果转动副的两构件之一是固定不动的,则称该转动副为固定铰链。若转动副中两构件都是运动的,则称该转动副为活动铰链。 Image (2)移动副 若运动副只允许两构件沿接触面某一方向相对滑 移,则称该运动副为移动副。如图所示。

机构运动简图测绘与分析实验

实验一机构运动简图测绘与分析实验 一、实验目的 1.根据机构模型,掌握正确绘制平面机构运动简图的方法和技能。 2.验证和巩固机构自由度的计算,进一步理解机构自由度的概念。 3.应用机构自由度的计算方法,分析平面机构运动的确定性。 4.掌握平面机构的组成原理,能够对平面机构进行结构分析。 二、实验设备 1、机构模型(铆钉机构B1、简易冲床B 2、装订机机构B 3、鄂式破碎机B 4、步进输送机B 5、假肢膝关节机构B 6、机械手腕部机构B 7、抛光机B 8、牛头刨床B 9、制动机构B10等); 2.所用工具:钢板尺、游标卡尺、三角板、铅笔、圆规、橡皮、纸(除钢板尺和游标卡尺外,其余学生自备)。 三、实验内容 1. 选择5种机构模型进行测量,绘制机构运动简图; 2. 计算机构自由度,并注明其活动构件数、低副数、高副数,然后代入公式进行计算。 3.对所选择的机构进行结构分析,确定机构的级别。 四、实验原理、方法和手段 在对现有机械设备进行分析或设计新的机械设备时,都需要运用其机构运动简图。而机构各部分的运动是由其原动件的运动规律、该机构中各运动副的数目、类型,运动副相对位置和构件的数目来确定的,而与构件的外形、断面尺寸、组成构件的零件数目及运动副的具体构造等无关。所以,只要根据机构的运动尺寸,按一定的比例尺定出各运动副的位置,就可以用运动副的代表符号和简单的线条把机构的运动简图画出来。

常用符号见下表: 1、机构运动简图的概念 抛开构件的复杂外形和运动副的具体结构,利用简单的线条和规定的符号来代表每一个构件和运动副,并按一定的比例将机构的运动特征表达出来的简单图形称为机构运动简图。机构运动简图与原机构具有完全相同的运动特性,因而可以根据该图对机构进行运动分析和动力分析。 2、测绘方法 (1)分析运动情况。绘制机构运动简图时,首先要把该机器或模型的实际构造和运动情况搞清楚。为此,先应确定出原动件和从动件,再使被测机器或模型缓慢运动,然后按照运动的传递路线,把原动件和从动件之间的各构件的运动情况观察清楚,尤其应注意有微小

相关文档