文档库 最新最全的文档下载
当前位置:文档库 › 排列组合中的分组与分配问题

排列组合中的分组与分配问题

排列组合中的分组与分配问题
排列组合中的分组与分配问题

排列组合中的分组分配问题

一、 提出分组与分配问题,澄清模糊概念

n 个不同元素按照某些条件分配给k 个不同得对象,称为分配问题,分定向分配和不定向分配两种问题;将n 个不同元素按照某些条件分成k 组,称为分组问题.分组问题有不平均分组、平均分组、和部分平均分组三种情况。分组问题和分配问题是有区别的,前者组与组之间只要元素个数相同是不区分的;而后者即使2组元素个数相同,但因对象不同,仍然是可区分的.对于后者必须先分组后排列。

二、基本的分组问题

例1 六本不同的书,分为三组,求在下列条件下各有多少种不同的分配方法?

(1)每组两本.

(2)一组一本,一组二本,一组三本. (3)一组四本,另外两组各一本.

分析:(1)分组与顺序无关,是组合问题。分组数是624222

C C C =90(种) ,这90种分组实

际上重复了6次。我们不妨把六本不同的书写上1、2、3、4、5、6六个号码,考察以下两种分法:(1,2)(3,4)(5,6)与(3,4)(1,2)(5,6),由于书是均匀分组的,三组的本数一样,又与顺序无关,所以这两种分法是同一种分法。以上的分组方法实际上加入了组的顺序,因此还应取消分组的顺序,即除以组数的全排列数3

3A

所以分法是222

64233

C C C A =15(种)。(2)先分

组,方法是615233

C C C ,那么还要不要除以33A ?我们发现,由于每组的书的本数是不一样的,因此不会出现相同的分法,即共有615233C C C =60(种) 分法。

(3)分组方法是642111

C C C =30(种) ,那么其中有没有重复的分法呢?我们发现,其中两组

的书的本数都是一本,因此这两组有了顺序,而与四本书的那一组,由于书的本数不一样,

不可能重复。所以实际分法是411

6212

2

C C C A =15(种)。 结论1: 一般地,n 个不同的元素分成p 组,各组内元素数目分别为m 1,m 2,…,

m p ,其中k 组内元素数目相等,那么分组方法数是

3

211

12

p

p

m

m m m n

n m n m m m k

k

C C

C

C A ---?。

三、基本的分配的问题 (一)定向分配问题

例 2 六本不同的书,分给甲、乙、丙三人,求在下列条件下各有多少种不同的分配方

法?

(1) 甲两本、乙两本、丙两本. (2) 甲一本、乙两本、丙三本. (3) 甲四本、乙一本、丙一本.

分析:由于分配给三人,每人分几本是一定的,属分配问题中的定向分配问题,由分布

计数原理不难解出:分别有222642C C C =90(种),615233

C C C =60(种), 411621C C C =30(种)。

(二)不定向分配问题

例3六本不同的书,分给甲、乙、丙三人,求在下列条件下各有多少种不同的分配方法? (1) 每人两本.

(2) 一人一本、一人两本、一人三本. (3) 一人四本、一人一本、一人一本.

分析:此组题属于分配中的不定向分配问题,是该类题中比较困难的问题。由于分配给三人,同一本书给不同的人是不同的分法,所以是排列问题。实际上可看作“分为三组,再将这三组分给甲、乙、丙三人”,因此只要将分组方法数再乘以3

3A

即222

6423

3

C C C A 33A =90(种),

615233C C C 3

3A

=360(种)

411

6212

2

C C C A 33A =90(种)。

结论2. 一般地,如果把不同的元素分配给几个不同对象,并且每个不同对象可接受的元素个数没有限制,那么实际上是先分组后排列的问题,即分组方案数乘以不同对象数的全排列数。

通过以上分析不难得出解不定向分配题的一般原则:先分组后排列。

排列组合问题的20种解法

排列组合问题的20种解法 排列组合问题联系实际生动有趣,但题型多样,思路灵活,因此解决排列组合问题,首先要认真审题,弄清楚是排列问题、组合问题还是排列与组合综合问题;其次要抓住问题的本质特征,采用合理恰当的方法来处理。 复习巩固分类计数原理(加法原理) 完成一件事,有n 类办法,在第1类办法中有1m 种不同的方法,在第2类办法中有2m 种不同的方法,…,在第n 类办法中有n m 种不同的方法,那么完成这件事共有: 种不同的方法. 2.分步计数原理(乘法原理) 完成一件事,需要分成n 个步骤,做第1步有1m 种不同的方法,做第2步有2m 种不同的方法,…,做第n 步有n m 种不同的方法,那么完成这件事共有: 种不同的方法. 3.分类计数原理分步计数原理区别 分类计数原理方法相互独立,任何一种方法都可以独立地完成这件事。 分步计数原理各步相互依存,每步中的方法完成事件的一个阶段,不能完成整个事件. 解决排列组合综合性问题的一般过程如下: 1.认真审题弄清要做什么事 2.怎样做才能完成所要做的事,即采取分步还是分类,或是分步与分类同时进行,确定分多少步及多少类。 3.确定每一步或每一类是排列问题(有序)还是组合(无序)问题,元素总数是多少及取出多少个元素. 4.解决排列组合综合性问题,往往类与步交叉,因此必须掌握一些常用的解题策略 一.特殊元素和特殊位置优先策略 例1.由0,1,2,3,4,5可以组成多少个没有重复数字五位奇数. 解:由于末位和首位有特殊要求,应该优先安排, 先排末位共有1 3C 然后排首位共有14C 最后排其它位置共有34A 44 3

由分步计数原理得113 434288C C A = 练习题:7种不同的花种在排成一列的花盆里,若两种葵花不种在中间,也不种在两端的花盆 里,问有多少不同的种法 二.相邻元素捆绑策略 例2. 7人站成一排 ,其中甲乙相邻且丙丁相邻, 共有多少种不同的排法. 解:可先将甲乙两元素捆绑成整体并看成一个复合元素,同时丙丁也看成一个复合元素,再 与其它元素进行排列,同时对相邻元素内部进行自排。由分步计数原理可得共有 522 522480A A A =种不同的排法 练习题: 某人射击8枪,命中4枪,4枪命中恰好有3枪连在一起的情形的不同种数为 20 三.不相邻问题插空策略 例3.一个晚会的节目有4个舞蹈,2个相声,3个独唱,舞蹈节目不能连续出场,则节目的出场 顺序有多少种 解:分两步进行第一步排2个相声和3个独唱共有5 5A 种,第二步将4舞蹈插入第一步排好的6个元素中间包含首尾两个空位共有种4 6A 不同的方法,由分步计数原理,节目的不同顺序共有5 4 56A A 种 练习题:某班新年联欢会原定的5个节目已排成节目单,开演前又增加了两个新节目.如果将这两个新节目插入原节目单中,且两个新节目不相邻,那么不同插法的种数为 30 四.定序问题倍缩空位插入策略 例人排队,其中甲乙丙3人顺序一定共有多少不同的排法 解:(倍缩法)对于某几个元素顺序一定的排列问题,可先把这几个元素与其他元素一起进行 排列,然后用总排列数除以这几个元素之间的全排列数,则共有不同排法种数

排列组合问题教师版

二十种排列组合问题的解法 排列组合问题联系实际生动有趣,但题型多样,思路灵活,因此解决排列组合问题,首先要认真审题,弄清楚是排列问题、组合问题还是排列与组合综合问题;其次要抓住问题的本质特征,采用合理恰当的方法来处理. 教学目标 1.进一步理解和应用分步计数原理和分类计数原理. 2.掌握解决排列组合问题的常用策略;能运用解题策略解决简单的综合应用题.提高学生解决问题分析问题的能力 3.学会应用数学思想和方法解决排列组合问题. 复习巩固 1.分类计数原理(加法原理) 完成一件事,有n 类办法,在第1类办法中有1m 种不同的方法,在第2类办法中有2m 种不同的方法,…,在第n 类办法中有n m 种不同的方法,那么完成这件事共有:12n N m m m =+++种不同的方法. 2.分步计数原理(乘法原理) 完成一件事,需要分成n 个步骤,做第1步有1m 种不同的方法,做第2步有2m 种不同的方法,…,做第n 步有n m 种不同的方法,那么完成这件事共有:12n N m m m =???种不同的方法. 3.分类计数原理分步计数原理区别 分类计数原理方法相互独立,任何一种方法都可以独立地完成这件事. 分步计数原理各步相互依存,每步中的方法完成事件的一个阶段,不能完成整个事件. 解决排列组合综合性问题的一般过程如下: 1.认真审题弄清要做什么事 2.怎样做才能完成所要做的事,即采取分步还是分类,或 是分步与分类同时进行,确定分多少步及多少类. 3.确定每一步或每一类是排列问题(有序)还是组合(无序)问题,元素总数是多少及取出多少个元素. 4.解决排列组合综合性问题,往往类与步交叉,因此必须掌握一些常用的解题策略 一.特殊元素和特殊位置优先策略 例1.由0,1,2,3,4,5可以组成多少个没有重复数字五位奇数. 解:由于末位和首位有特殊要求,应该优先安排,以免不合要求的元素占了这两个位置. 先排末位,从1,3,5三个数中任选一个共有13C 排法; 然后排首位,从2,4和剩余的两个奇数中任选一个共有1 4C 种排法; 最后排中间三个数,从剩余四个数中任选3个的排列数共有34A 种排法; ∴由分步计数原理得113 4 34288C C A = 443

排列组合问题的解题策略

排列组合问题的解题策略 排列组合问题的解题策略 一、相临问题——捆绑法 例1.7名学生站成一排,甲、乙必须站在一起有多少不同排法? 解:两个元素排在一起的问题可用“捆绑”法解决,先将甲乙二人看作一个元素与其他五人进行排列,并考虑甲乙二人的顺序,所以共有种。 评注:一般地: 个人站成一排,其中某个人相邻,可用“捆绑”法解决,共有种排法。 二、不相临问题——选空插入法 例2.7名学生站成一排,甲乙互不相邻有多少不同排法? 解:甲、乙二人不相邻的排法一般应用“插空”法,所以甲、乙二人不相邻的排法总数应为:种 . 评注:若个人站成一排,其中个人不相邻,可用“插空”法解决,共有种排法。 三、复杂问题——总体排除法 在直接法考虑比较难,或分类不清或多种时,可考虑用“排除法”,解决几何问题必须注意几何图形本身对其构成元素的限制。 例3.(1996年全国高考题)正六边形的中心和顶点共7个点,以其中3个点为顶点的三角形共有多少个. 解:从7个点中取3个点的取法有种,但其中正六边形的对角线所含的中心和顶点三点共线不能组成三角形,有3条,所以满足条件的三角形共有-3=32个.

四、特殊元素——优先考虑法 对于含有限定条件的排列组合应用题,可以考虑优先安排特殊位置,然后再考虑其他位置的安排。 例4.(1995年上海高考题) 1名老师和4名获奖学生排成一排照像留念,若老师不排在两端,则共有不同的排法种. 解:先考虑特殊元素(老师)的排法,因老师不排在两端,故可在中间三个位置上任选一个位置,有种,而其余学生的排法有种,所以共有=72种不同的排法. 例5.(2000年全国高考题)乒乓球队的10名队员中有3名主力队员,派5名队员参加比赛,3名主力队员要安排在第一、三、五位置,其余7名队员选2名安排在第二、四位置,那么不同的出场安排共有种. 解:由于第一、三、五位置特殊,只能安排主力队员,有种排法,而其余7名队员选出2名安排在第二、四位置,有种排法,所以不同的出场安排共有=252种. 五、多元问题——分类讨论法 对于元素多,选取情况多,可按要求进行分类讨论,最后总计。 例6.(2003年北京春招)某班新年联欢会原定的5个节目已排成节目单,开演前又增加了两个新节目.如果将这两个节目插入原节目单中,那么不同插法的种数为(A ) A.42 B.3 0 C.20 D.12 解:增加的两个新节目,可分为相临与不相临两种情况:1.不相临:共有A62种;2.相临:共有A22A61种。故不同插法的种数为:A62 +A22A61=42 ,故选A。 例7.(2003年全国高考试题)如图,一个地区分为5个行政区域,现给地图着色,要求相

高中数学排列组合难题十一种方法教师版

高考数学排列组合难题解决方法 1.分类计数原理(加法原理) 完成一件事,有n 类办法,在第1类办法中有1m 种不同的方法,在第2类办法中有2m 种不同的方法,…,在第n 类办法中有 m 种不同的方法,那么完成这件事共有: 种不同的方法. 2.分步计数原理(乘法原理) 完成一件事,需要分成n 个步骤,做第1步有1m 种不同的方法,做第2步有2m 种不同的方法,…,做第n 步有n m 种不同的方法,那么完成这件事共有: 种不同的方法. 3.分类计数原理分步计数原理区别 分类计数原理方法相互独立,任何一种方法都可以独立地完成这件事。 分步计数原理各步相互依存,每步中的方法完成事件的一个阶段,不能完成整个事件. 解决排列组合综合性问题的一般过程如下: 1.认真审题弄清要做什么事 2.怎样做才能完成所要做的事,即采取分步还是分类,或是分步与分类同时进行,确定分多少步及多少类。 3.确定每一步或每一类是排列问题(有序)还是组合(无序)问题,元素总数是多少及取出多少个元素. 4.解决排列组合综合性问题,往往类与步交叉,因此必须掌握一些常用的解题策略 一.特殊元素和特殊位置优先策略 例1.由0,1,2,3,4,5可以组成多少个没有重复数字五位奇数. 解:由于末位和首位有特殊要求,应该优先安排, 先排末位共有1 3C 然后排首位共有14C 最后排其它位置共有34A 由分步计数原理得113 4 34288C C A = 练习题:7种不同的花种在排成一列的花盆里,若两种葵花不种在中间,也不种在两端的花 盆里,问有多少不同的种法? 二.相邻元素捆绑策略 例2. 7人站成一排 ,其中甲乙相邻且丙丁相邻, 共有多少种不同的排法. 解:可先将甲乙两元素捆绑成整体并看成一个复合元素,同时丙丁也看成一个复合元素, 再与其它元素进行排列,同时对相邻元素内部进行自排。由分步计数原理可得共有522522480A A A =种不同的排法

排列组合问题之分组分配问题(两个五个方面)(1)

排列组合问题之分组分配问题 (一)(五个方面) 一、非均匀分组(分步组合法) “非均匀分组”是指将所有元素分成元素个数彼此不相等的组。 例1、7人参加义务劳动,按下列方法分组有多少种不同的分法 ①分成3组,分别为1人、2人、4人; ②选出5个人分成2组,一组2人,另一组3人。 解:①先选出1人,有17C 种,再由剩下的6人选出2人,有2 6C 种,最后由剩下的4人为一 组,有44C 种。由分步计数原理得分组方法共有1 2 4 764105C C C =(种)。 % ②可选分同步。先从7人中选出2人,有27C 种,再由剩下的5人中选出3人,有3 5C 种,分组方法共有23 75210C C =(种)。也可先选后分。先选出5人,再分为两组,由分步计数原理得分组方法共有523 753210C C C =(种)。 二、均匀分组(去除重复法) “均匀分组”是指将所有元素分成所有组元素个数相等或部分组元素个数相等的组。 ㈠全部均匀分组(去除重复法) 例2、7人参加义务劳动,选出6个人,分成2组,每组都是3人,有多少种不同的分法 解:可选分同步。先选3人为一组,有37C 种;再选3人为另一组,有3 4C 种。又有2组都 是3人,每22 A 种分法只能算一种,所以不同的分法共有33 74 2 2 70C C A =(种)。 也可先选后分。不同的分法共有33663 7 2 2 70C C C A ?=(种)。 ㈡部分均匀分组(去除重复法) 、 例3、10个不同零件分成4堆,每堆分别有2、2、2、4个,有多少种不同的分法 解:分成2、2、2、4个元素的4堆,分别有210C 、28C 、26C 、4 4C 种,又有3堆都是2个 元素,每3 3A 种分法只能算一种,所以不同的分组方法共有 222 4 108643 3 3150C C C C A ?=(种)。 【小结:不论是全部均匀分组,还是部分均匀分组,如果有m 个组的元素是 均匀的,都有m m A 种顺序不同的分法只能算一种分法。】 三、编号分组 ㈠非均匀编号分组(分步先组合后排列法) 例4、7人参加义务劳动,选出2人一组、3人一组,轮流挖土、运土,有多少种分组方法 解:分组方法共有232 752420C C A =(种)。

解决排列组合难题二十一种方法

高考数学轻松搞定排列组合难题二十一种方法 排列组合问题联系实际生动有趣,但题型多样,思路灵活,因此解决排列组合问题,首先要认真审题,弄清楚是排列问题、组合问题还是排列与组合综合问题;其次要抓住问题的本质特征,采用合理恰当的方法来处理。 教学目标 1.进一步理解和应用分步计数原理和分类计数原理。 2.掌握解决排列组合问题的常用策略;能运用解题策略解决简单的综合应用题。提高学生解决问题分析问题的能力 3.学会应用数学思想和方法解决排列组合问题. 复习巩固 1.分类计数原理(加法原理) 完成一件事,有n 类办法,在第1类办法中有1m 种不同的方法,在第2类办法中有2m 种不同的方法,…,在第n 类办法中有n m 种不同的方法,那么完成这件事共有:12n N m m m =+++种不同的方法. 2.分步计数原理(乘法原理) 完成一件事,需要分成n 个步骤,做第1步有1m 种不同的方法,做第2步有2m 种不同的方法,…,做第n 步有n m 种不同的方法,那么完成这件事共有:12n N m m m =???种不同的方法. 3.分类计数原理分步计数原理区别 分类计数原理方法相互独立,任何一种方法都可以独立地完成这件事。 分步计数原理各步相互依存,每步中的方法完成事件的一个阶段,不能完成整个事件. 解决排列组合综合性问题的一般过程如下: 1.认真审题弄清要做什么事 2.怎样做才能完成所要做的事,即采取分步还是分类,或是分步与分类同时进行,确定分多少步及多少类。 3.确定每一步或每一类是排列问题(有序)还是组合(无序)问题,元素总数是多少及取出多少个元素. 4.解决排列组合综合性问题,往往类与步交叉,因此必须掌握一些常用的解题策略 一.特殊元素和特殊位置优先策略 例1.由0,1,2,3,4,5可以组成多少个没有重复数字五位奇数. 解:由于末位和首位有特殊要求,应该优先安排,以免不合要求的元素占了这两个位置. 先排末位共有13C ,然后排首位共有14C 最后排其它位置共有34A ,由分步计数原理得113434288C C A = C 1 4 A 3 4 C 1 3 位置分析法和元素分析法是解决排列组合问题最常用也是最基本的方法,若以元素分析为主,需 先安排特殊元素,再处理其它元素.若以位置分析为主,需先满足特殊位置的要求,再处理其它位置。若有多个约束条件,往往是考虑一个约束条件的同时还要兼顾其它条件

隔板法解决排列组合问题

隔板法解决排列组合问题 Prepared on 22 November 2020

“隔板法”解决排列组合问题(高二、高三)排列组合计数问题,背景各异,方法灵活,能力要求高,对于相同元素有 序分组问题,采用“隔板法”可起到简化解题的功效。对于不同元素只涉及名额分配问题也可以借助隔板法来求解,下面通过典型例子加以解决。 例1、(1)12个相同的小球放入编号为1,2,3,4的盒子中,问每个盒子中至少有一个小球的不同放法有多少种 (2)12个相同的小球放入编号为1,2,3,4的盒子中,问不同放法有多少种 (3)12个相同的小球放入编号为1,2,3,4的盒子中要求每个盒子中,要求每个盒子中的小球个数不小于其编号数,问不同的方法有多少种 解:(1)将12个小球排成一排,中间有11个间隔,在这11个间隔中选出3个,放上“隔板”,若把“1”看成隔板,则如图00隔板将一排球分成四块,从左到右可以看成四个盒子放入的球数,即上图中1,2,3,4四个盒子相应放入2个,4个,4个,2个小球,这样每一种隔板的插法,就对应了球的一种放法,即每一种从11个间隔中选出3个间隔的组合对应于一种放法,所以 不同的放法有3 11 C=165种。 (2)法1:(分类)①装入一个盒子有1 44 C=种;②装入两个盒子,即12 个相同的小球装入两个不同的盒子,每盒至少装一个有21 41166 C C=种;③装入三个盒子,即12个相同的小球装入三个不同的盒子,每盒至少装一个有32 411 C C=220种;④装入四个盒子,即12个相同的小球装入四个不同的盒子,每 盒至少装一个有3 11165 C=种;由加法原理得共有4+66+220+165=455种。

[超全]排列组合二十种经典解法!

[超全]排列组合二十种经典解法!

超全的排列组合解法 排列组合问题联系实际生动有趣,但题型多样,思路灵活,因此解决排列组合问题,首先要认真审题,弄清楚是排列问题、组合问题还是排列与组合综合问题;其次要抓住问题的本质特征,采用合理恰当的方法来处理。 教学目标 1.进一步理解和应用分步计数原理和分类计数原理。 2.掌握解决排列组合问题的常用策略;能运用解题策略解决简单的综合应用题。提高学生解决问题分析问题的能力 3.学会应用数学思想和方法解决排列组合问题. 复习巩固 1.分类计数原理(加法原理) 完成一件事,有n类办法,在第1类办法中有m种不同的方法,在第2类办法中有2m种不同1 的方法,…,在第n类办法中有 m种不同的方 n 法,那么完成这件事共有: 第 2 页共 22 页

种不同的方法. 2.分步计数原理(乘法原理) 完成一件事,需要分成n个步骤,做第1步有m种不同的方法,做第2步有2m种不同的方1 法,…,做第n步有 m种不同的方法,那么完 n 成这件事共有: 种不同的方法. 3.分类计数原理分步计数原理区别 分类计数原理方法相互独立,任何一种方法都可以独立地完成这件事。 分步计数原理各步相互依存,每步中的方法完成事件的一个阶段,不能完成整个事件. 解决排列组合综合性问题的一般过程如下: 1.认真审题弄清要做什么事 2.怎样做才能完成所要做的事,即采取分步还是分类,或是分步与分类同时进行,确定分多少步及多少类。 3.确定每一步或每一类是排列问题(有序)还是组合(无序)问题,元素总数是多少及取出多少个元素. 4.解决排列组合综合性问题,往往类与步交叉, 第 3 页共 22 页

“隔板法”解决排列组合问题

隔板法”解决排列组合问题(高二、高三)排列组合计数问题,背景各异,方法灵活,能力要求高,对于相同元素有序分组问题,采用“隔板法”可起到简化解题的功效。对于不同元素只涉及名额分配问题也可以借助隔板法来求解, 下面通过典型例子加以解决。 例1、(1)12个相同的小球放入编号为1,2,3,4 的盒子中,问每个盒子中至少有一个小球的不同放法有多少种 (2)12 个相同的小球放入编号为1,2,3,4的盒子中,问不同放法有多少种 (3)12 个相同的小球放入编号为1,2,3,4 的盒子中要求每个盒子中,要求每个盒子中的小球个数不小于其编号数,问不同的方法有多少种 解:(1)将12个小球排成一排,中间有11个间隔,在这11 个间隔中选出3个,放上“隔板”,若把“ 1”看成隔板,则如图00 隔板将一排球分成四块,从左到右可以看成四个盒子放入的球数,即上图中1,2,3,4 四个盒子相应放入2个,4个,4个,2 个小球,这样每一种隔板的插法,就对应了球的一种放法,即每一种从11 个间隔中选出 3 个间隔的组合对应于一种放法,所以不同的放法有C131 =165 种。 1 (2)法1 (分类)①装入一个盒子有C4 4种;②装入两个盒子,即12个相同的小 21 球装入两个不同的盒子,每盒至少装一个有C42C111 66种; ③装入三个盒子,即12个相同 的小球装入三个不同的盒子,每盒至少装一个有C:Gi=220种;④装入四个盒子,即12个 相同的小球装入四个不同的盒子,每盒至少装一个有C131 165种;由加法原理得共有 4+66+220+165=455 种。 法2:先给每个小盒装入一个球,题目中给定的12 个小球任意装,即16 个小球装入 4 个不同的盒子,每盒至少装一个的装法有C135 455 种。 (3)法1:先给每个盒子装上与其编号数相同的小球,还剩2 个小球,则这两个小球可以装在 1 个盒子或两个盒子,共有C41C4210 种。 法2:先给每个盒子装上比编号小 1 的小球,还剩 6 个小球,则转化为将 6 个相同的小球装入4 个不同的盒子,每盒至少装一个,由隔板法有C5310 由上面的例题可以看出法2要比法1简单,即此类问题都可以转化为至少分一个的问题。

排列组合中分组(分堆)与分配问题

太奇MBA 数学助教 李瑞玲 一.分组(分堆)与分配问题 将n 个不同元素按照某些条件分配给k 个不同的对象,称为分配问题,又分为定向分配和不定向分配两种问题。 将n 个不同元素按照某些条件分成k 组,称为分组问题。分组问题有不平均分组,平均分组,部分平均分组三情况。 分组问题和分配问题是有区别的,前者组与组之间只要元素个数相同是不区分的,而后者即使两组的元素个数相同,但因所要分配的对象不同,仍然是可区分的。对于后者必须先分组后排列。一.基本的分组问题 例1.六本不同的书,分为三组,求在下列条件下各有多少种不同的分配方法? (1)每组两本(均分三组)(平均分组问题)(2)一组一本,一组两本,一组三本(不平均分组问题)(3)一组四本,另外两组各一本 (部分平均分组问题) 分析:(1)分组和顺序无关,是组合问题。分组数为90222426=C C C ,而这90种分组方法实际上重复了6次。现把六本不同的书标上 6,5,4,3,2,1六个号码,先看一下这种情况: (1,2)(3,4)(5,6)(1,2)(5,6)(3,4)(3,4)(1,2)(5,6)(3,4)(5,6)(1,2)(5,6)(1,2)(3,4) (5,6)(3,4)(1,2) 由于书是均匀分组的,三组的本数都一样,又与顺序无关,所以这种

情况下这六种分法是同一种分法,于是可知重复了6次。以上的分组实际上加入了组的顺序,同理其他情况也是如此,因此还应取消分组 的顺序,即除以3 3 P ,于是最后知分法为156 90 332 22426==P C C C . (2)先分组,分组方法是603 32516=C C C ,那么还要不要除以33P ???(很 关键的问题) 由于每组的书的本数是不一样的,因此不会出现相同的分法,即 共有60332516=C C C 。 (3)先分组,分组方法是30111246=C C C ,这其中有没有重复的分法???(需 要好好考虑) 现还把六本不同的书标上6,5,4,3,2,1六个号码,先看以下情况1)先取四本分一组,剩下的两本,一本一组,情况如下(1,2,3,4)5 6 (1,2,3,4)6 5 2)先取一本分一组,再取四本分一组,剩余的一本为一组,情况如下 5 (1,2,3,4)6 6(1,2,3,4)5 3)先取一本分一组,再取一本为一组,剩下的四本为一组,情况如下 5 6(1,2,3,4) 6 5(1,2,3,4) 由此可知每一种分法重复了2次,原因是其中两组的的书的本数都是一本,这两组有了顺序,需要把分组的顺序取消掉,而四本的那一组,由于书的本数不一样,不可重复,故最后的结果为

排列组合问题的解答技巧和记忆方法

排列组合问题的解题策略 关键词:排列组合,解题策略 ①分堆问题; ②解决排列、组合问题的一些常用方法:错位法、剪截法(隔板法)、捆绑法、剔除法、插孔法、消序法(留空法). 一、相临问题——捆绑法 例1.7名学生站成一排,甲、乙必须站在一起有多少不同排法? 解:两个元素排在一起的问题可用“捆绑”法解决,先将甲乙二人看作一个元素与其他五人进行排列,并考虑甲乙二人的顺序,所以共有种。 评注:一般地: 个人站成一排,其中某个人相邻,可用“捆绑”法解决,共有种排法。 二、不相临问题——选空插入法 例2.7名学生站成一排,甲乙互不相邻有多少不同排法? 解:甲、乙二人不相邻的排法一般应用“插空”法,所以甲、乙二人不相邻的排法总数应为:种 . 评注:若个人站成一排,其中个人不相邻,可用“插空”法解决,共有种排法。 三、复杂问题——总体排除法 在直接法考虑比较难,或分类不清或多种时,可考虑用“排除法”,解决几何问题必须注意几何图形本身对其构成元素的限制。 例3.(1996年全国高考题)正六边形的中心和顶点共7个点,以其中3个点为顶点的三角形共有多少个. 解:从7个点中取3个点的取法有种,但其中正六边形的对角线所含的中心和顶点三点共线不能组成三角形,有3条,所以满足条件的三角形共有-3=32个. 四、特殊元素——优先考虑法 对于含有限定条件的排列组合应用题,可以考虑优先安排特殊位置,然后再考虑其他位置的安排。

例4.(1995年上海高考题) 1名老师和4名获奖学生排成一排照像留念,若老师不排在两端,则共有不同的排法种. 解:先考虑特殊元素(老师)的排法,因老师不排在两端,故可在中间三个位置上任选一个位置,有种,而其余学生的排法有种,所以共有=72种不同的排法. 例5.(2000年全国高考题)乒乓球队的10名队员中有3名主力队员,派5名队员参加比赛,3名主力队员要安排在第一、三、五位置,其余7名队员选2名安排在第二、四位置,那么不同的出场安排共有种. 解:由于第一、三、五位置特殊,只能安排主力队员,有种排法,而其余7名队员选出2名安排在第二、四位置,有种排法,所以不同的出场安排共有=252种. 五、多元问题——分类讨论法 对于元素多,选取情况多,可按要求进行分类讨论,最后总计。 例6.(2003年北京春招)某班新年联欢会原定的5个节目已排成节目单,开演前又增加了两个新节目.如果将这两个节目插入原节目单中,那么不同插法的种数为(A ) A.42 B.30 C.20 D.12 解:增加的两个新节目,可分为相临与不相临两种情况:1.不相临:共有A62种;2.相临:共有A22A61种。故不同插法的种数为:A62 +A22A61=42 ,故选A。 例7.(2003年全国高考试题)如图,一个地区分为5个行政区域,现给地图着色,要求相邻地区不得使用同一颜色,现有4种颜色可供选择,则不同的着色方法共有多少种?(以数字作答) 解:区域1与其他四个区域相邻,而其他每个区域都与三个区域相邻,因此,可以涂三种或四种颜色.用三种颜色着色有=24种方法, 用四种颜色着色有=48种方法,从而共有24+48=72种方法,应填72. 六、混合问题——先选后排法 对于排列组合的混合应用题,可采取先选取元素,后进行排列的策略. 例8.(2002年北京高考)12名同学分别到三个不同的路口进行车流量的调查,若每个路口4人,则不同的分配方案共有() A.种B.种

6、排列组合问题之分组分配问题(两个五个方面)

排列组合问题之分组分配问题 (一)(五个方面) 一、非均匀分组(分步组合法) “非均匀分组”是指将所有元素分成元素个数彼此不相等的组。 例1、7人参加义务劳动,按下列方法分组有多少种不同的分法? ①分成3组,分别为1人、2人、4人; ②选出5个人分成2组,一组2人,另一组3人。 解:①先选出1人,有17C 种,再由剩下的6人选出2人,有2 6C 种,最后由剩下的4人为一 组,有44C 种。由分步计数原理得分组方法共有124764105C C C =(种)。 ②可选分同步。先从7人中选出2人,有27C 种,再由剩下的5人中选出3人,有35C 种,分组方法共有23 75210C C =(种)。也可先选后分。先选出5人,再分为两组,由分步 计数原理得分组方法共有523 753210C C C =(种)。 二、均匀分组(去除重复法) “均匀分组”是指将所有元素分成所有组元素个数相等或部分组元素个数相等的组。 ㈠全部均匀分组(去除重复法) 例2、7人参加义务劳动,选出6个人,分成2组,每组都是3人,有多少种不同的分法? 解:可选分同步。先选3人为一组,有37C 种;再选3人为另一组,有3 4C 种。又有2组都 是3人,每22 A 种分法只能算一种,所以不同的分法共有33 74 2 2 70C C A =(种)。 也可先选后分。不同的分法共有336 63 7 2 2 70C C C A ?=(种)。 ㈡部分均匀分组(去除重复法) 例3、10个不同零件分成4堆,每堆分别有2、2、2、4个,有多少种不同的分法? 解:分成2、2、2、4个元素的4堆,分别有210C 、28C 、26C 、4 4C 种,又有3堆都是2个 元素,每3 3A 种分法只能算一种,所以不同的分组方法共有 2224 108643 3 3150C C C C A ?=(种)。 【小结:不论是全部均匀分组,还是部分均匀分组,如果有m 个组的元素是 均匀的,都有m m A 种顺序不同的分法只能算一种分法。】 三、编号分组 ㈠非均匀编号分组(分步先组合后排列法) 例4、7人参加义务劳动,选出2人一组、3人一组,轮流挖土、运土,有多少种分组方法? 解:分组方法共有232 752420C C A =(种)。

隔板法”解决排列组合问题.docx

“隔板法”解决排列组合问题(高二、高三) 排列组合计数问题,背景各异,方法灵活,能力要求高,对于相同元素有序分组问题,采用“隔板法” 可起到简化解题的功效。对于不同元素只涉及名额分配问题也可以借助隔板法来求解,下面通过典型例子加以解决。 例1、( 1) 12 个相同的小球放入编号为 1, 2, 3, 4 的盒子中,问每个盒子中至少有一个小球的不同放法有 多少种? ( 2) 12 个相同的小球放入编号为1, 2, 3, 4 的盒子中,问不同放法有多少种? ( 3) 12 个相同的小球放入编号为 1, 2, 3, 4 的盒子中要求每个盒子中,要求每个盒子中的小球个数不小于 其编号数,问不同的方法有多少种? 解:( 1)将 12 个小球排成一排,中间有11 个间隔,在这11 个间隔中选出 3 个,放上“隔板”,若把“ 1”,这样每一种隔板的插法,就对应了球的一种放法,即每一种从11 个间隔中选出 3 个间隔的组合对应于一种放法,所以不同的放法有C113=165 种。 ( 2)法 1:(分类)①装入一个盒子有C41 4 种;②装入两个盒子,即12 个相同的小球装入两个不同的盒子,每盒至少装一个有C42C11166 种;③装入三个盒子,即12 个相同的小球装入三个不同的盒子,每盒至 少装一个有 C43C112=220 种 ;④装入四个盒子,即12 个相同的小球装入四个不同的盒子,每盒至少装一个有 C113165 种;由加法原理得共有4+66+220+165=455 种。 法 2:先给每个小盒装入一个球,题目中给定的12 个小球任意装,即16 个小球装入 4 个不同的盒子,每盒至少装一个的装法有C153455 种。 ( 3)法 1:先给每个盒子装上与其编号数相同的小球,还剩 2 个小球,则这两个小球可以装在 1 个盒子或两个盒子,共有 C41C4210 种。 法 2:先给每个盒子装上比编号小 1 的小球,还剩 6 个小球,则转化为将 6 个相同的小球装入 4 个不同的盒子,每盒至少装一个,由隔板法有C5310 由上面的例题可以看出法 2 要比法 1 简单,即此类问题都可以转化为至少分一个的问题。 例 2、( 1)方程x1x2x3x410 的正整数解有多少组? (2)方程 x1 x2x3x410 的非负整数解有多少组? ( 3)方程2x1x2x3L x 103的非负整数整数解有多少组?

排列组合问题的常见十二种解法

排列组合问题的常见十二种解法 福州高级中学 陈锦平 联系实际生动有趣的排列组合问题,思路灵活,题型多样,因此解决排列组合问题,必须认真审题,弄清楚问题,抓住问题的本质.解决排列组合综合性问题的一般步骤如下四步: 1.弄清题目要做什么事; 2.怎样做才能完成所要做的事(采取分步还是分类,或是分步与分类同时进行,确定分多少步及多少类); 3.确定每一步或每一类(排列问题(有序)还是组合(无序)问题); 4.解决排列组合综合性问题,一般先分类再分步. 一.特殊元素和特殊位置优先策略 例1.由0,1,2,3,4,5可以组成多少个没有重复数字五位奇数? 解:由于末位和首位有特殊要求,应该优先安排,以免不合要求的元素占了这两个位置. 先排末位,从1,3,5三个数中任选一个共有1 3C 排法; 然后排首位,从2,4和剩余的两个奇数中任选一个共有1 4C 种排法; 最后排中间三个数,从剩余四个数中任选3个的排列数共有34A 种排法; ∴由分步计数原理得113 434288C C A = 二.相邻元素捆绑策略 例2. 7人站成一排 ,其中甲乙相邻且丙丁相邻, 共有多少种不同的排法? 解:可先将甲乙两元素捆绑成整体并看成一个复合元素, 同时丙丁也看成一个复合元素,再与其它元素进行排列,同时对相邻元素内部进行自排.由分步计数原理可得共有522522480A A A =种不同的排法. 乙 甲丁 丙 三.不相邻问题插空策略 例3.一晚会的节目有4个舞蹈,2个相声,3个独唱,舞蹈节目不能连续出场,则节 目的出场顺序有多少种? 解:分两步进行第一步排2个相声和3个独唱共有55A 种, 第二步将4舞蹈插入第一步排好的6个元素中间包含首尾两个空位共有种4 6A 不同的方法,由分步计 数原理,节目的不同顺序共有54 56A A 四.定序问题倍缩空位插入策略 例4.7人排队,其中甲乙丙3人顺序一定共有多少不同的排法? 解:(倍缩法)对于某几个元素顺序一定的排列问题,可先把这几个元素与其他元 素一起进行排列,然后用总排列数除以这几个元素之间的全排列数, C 1 4 A 3 4 C 1 3

排列组合中的分组、分配问题

排列组合中的分组、分配问题 学习目标: 1、体会分组、分配问题的联系与区别 2、体会算两次思想在平均分组问题中的应用 学习过程: 例1: (1)把4本不同的书平均分给2个人,有几种分法? (2)把4本不同的书平均分成2堆,有几种分法? 分析:(1)从人的角度: 第1人有24C 种,第2人有22C 种,根据分步乘法原理得分法数2224C C N ?= 从书的角度:先把书平均分成2堆,再把书进行排队,把书平均分成2堆有3种223A N ?= (2)把书平均分成2堆有3种,注意:不是24C ,而是 2224A C 例2: (1)把6本不同的书平均分给3个人,有几种分法? (2)把6本不同的书平均分成3堆,有几种分法? (3)把6本不同的书分给3个人,其中一人3本,一人2本,一人1本,有几种分法? (4)把6本不同的书分成3堆,其中一堆3本,一堆2本,一堆1本,有几种分法? 分析:

(1)的本质是平均分配问题 (2)的本质是平均分组 (3)的本质是不平均分配 (4)的本质是不平均分组 从人的角度去分析(1):第1人有26C 种,第2人有24C 种,第3人有2 2C 种,根据分步乘法 原理得分法数222426C C C N ??= 从书的角度:先把书平均分成3堆,再把书进行排队,把书平均分成3堆的方法数可用列举法,但数字大时要找好方法。现设把6本书平均分成3堆得方法数为x ,把3堆书排队的方 法数为33A 。根据算两次得到结果一致得:22242633C C C A x ??=? 33 222426A C C C x ??= “平均分组”对学生来说是难点。 练习1:现有9本不同的书,求下列情况下各有多少种不同的分法? (1)分成3组,一组4本,一组3本,一组2本(1260) (2)分给3个人,一人4本,一人3本,一人2本(7560) (3)平均分成3组(280)

6排列组合问题之分组分配问题两个五个方面

排列组合问题之分组分配问题 (一)(五个方面) 一、非均匀分组(分步组合法) “非均匀分组”是指将所有元素分成元素个数彼此不相等的组。 例1、7人参加义务劳动,按下列方法分组有多少种不同的分法? ①分成3组,分别为1人、2人、4人; ②选出5个人分成2组,一组2人,另一组3人。 解:①先选出1人,有17C 种,再由剩下的6人选出2人,有2 6C 种,最后由剩下的4人为一组, 有44C 种。由分步计数原理得分组方法共有124764105C C C =(种)。 ②可选分同步。先从7人中选出2人,有27C 种,再由剩下的5人中选出3人,有35C 种,分组方法共有23 75210C C =(种)。也可先选后分。先选出5人,再分为两组,由分步计 数原理得分组方法共有523 753210C C C =(种)。 二、均匀分组(去除重复法) “均匀分组”是指将所有元素分成所有组元素个数相等或部分组元素个数相等的组。 ㈠全部均匀分组(去除重复法) 例2、7人参加义务劳动,选出6个人,分成2组,每组都是3人,有多少种不同的分法? 解:可选分同步。先选3人为一组,有37C 种;再选3人为另一组,有3 4C 种。又有2组都 是3人,每22 A 种分法只能算一种,所以不同的分法共有33 74 2 2 70C C A =(种)。 也可先选后分。不同的分法共有336 63 7 2 2 70C C C A ?=(种)。 ㈡部分均匀分组(去除重复法) 例3、10个不同零件分成4堆,每堆分别有2、2、2、4个,有多少种不同的分法? 解:分成2、2、2、4个元素的4堆,分别有210C 、28C 、26C 、4 4C 种,又有3堆都是2个元 素,每3 3A 种分法只能算一种,所以不同的分组方法共有 2224 108643 3 3150C C C C A ?=(种)。 【小结:不论是全部均匀分组,还是部分均匀分组,如果有m 个组的元素是 均匀的,都有m m A 种顺序不同的分法只能算一种分法。】 三、编号分组 ㈠非均匀编号分组(分步先组合后排列法) 例4、7人参加义务劳动,选出2人一组、3人一组,轮流挖土、运土,有多少种分组方法? 解:分组方法共有232 752420C C A =(种)。

排列组合之分堆问题

关于分组(堆)问题的六个模型及求法 引例 将6本不同的书按下列分法,各有多少种不同的分法? ⑴分给学生甲3 本,学生乙2本,学生丙1本; ⑵分给甲、乙、丙3人,其中1人得3本、1人得2 本、1 人得1 本; ⑶分给甲、乙、丙3人,每人2本; ⑷分成3堆,一堆3 本,一堆2 本,一堆1 本; ⑸分成3堆,每堆2 本; ⑹分给分给甲、乙、丙3人,其中一人4本,另两人每人1本; ⑺分成3堆,其中一堆4本,另两堆每堆1本. 分析:①分书过程中要分清:是均匀的还是非均匀的;是有序的还是无序的. ②特别是均匀的分法中要注意算法中的重复问题. 解:⑴是指定人应得数量的非均匀问题:①学生甲从6本中取3 本有36C 种取法,②学生乙从余下的3本中取2本有23C 种取法,③学生丙从余下的1本中取1本有1 1C 种取法. 所以方法数为321631C C C =60; ⑵是没有指定人应得数量的非均匀问题:①从6本中取3 本作为一堆有36C 种取法,②从余下的3本中取2本作为一堆有23C 种取法,③从余下的1本中取1本作为一堆有11C 种取法,④ 将三堆依次分给甲乙丙三人有33P 种分法. 所以方法数为33112336P C C C =360; ⑶是指定人应得数量的均匀问题:①学生甲从6本中取2本有2 6C 种取法,②学生乙从余下的4本中取2本有24C 种取法,③学生丙从余下的2本中取2本有22C 种取法. 所以方法数为222642C C C =90; ⑷是分堆的非均匀问题:①从6本中取3 本作为一堆有36C 种取法,②从余下的3本中取2本作为一堆有23C 种取法,③从余下的1本中取1本作为一堆有1 1C 种取法. 所以方法数为321631C C C =60; ⑸是分堆的均匀问题:相当于①学生甲从6本中取2本有2 6C 种取法,②学生乙从余下的4本中取2本有24C 种取法,③学生丙从余下的2本中取2本有22C 种取法.方法数为222642C C C =90.

排列组合问题的几种基本方法(复习归纳)

排列组合问题 1. 分组(堆)问题 分组(堆)问题的六个模型:①无序不等分;②无序等分;③无序局部等分;(④有序不等分;⑤有序等分;⑥有序局部等分.) 处理问题的原则: ①若干个不同的元素“等分”为 m个堆,要将选取出每一个堆的组合数的乘积除以m! ②若干个不同的元素局部“等分”有 m个均等堆,要将选取出每一个堆的组合数的乘积除以m! ③非均分堆问题,只要按比例取出分完再用乘法原理作积. ④要明确堆的顺序时,必须先分堆后再把堆数当作元素个数作全排列. 1. 分组(堆)问题 例1.有四项不同的工程,要发包给三个工程队,要求每个工程队至少要得到一项工程. 共有多少种不同的发包方式? 解:要完成发包这件事,可以分为两个步骤: ⑴先将四项工程分为三“堆”,有 211421 2 2 6C C C A 种分法; ⑵再将分好的三“堆”依次给三个工程队, 有3!=6种给法. ∴共有6×6=36种不同的发包方式. 2.插空法: 解决一些不相邻问题时,可以先排“一般”元素然后插入“特殊”元素,使问题得以解决. ♀ ♀ ♀ ♀ ♀ ♀ ♀ ↑ ↑ ↑ ↑ ↑ ↑ 例2 . 7人排成一排.甲、乙两人不相邻,有多少种不同的排法? 解:分两步进行: 55A 有=120种排法 第1步,把除甲乙外的一般人排列: 第2步,将甲乙分别插入到不同的间隙或两端中(插孔): 26A 有=30种插入法

120303600∴?共有=种排法 () 种不同的排法有22 5566P P P -∴ 3.捆绑法 相邻元素的排列,可以采用“局部到整体”的排法,即将相邻的元素局部排列当成“一个”元素,然后再进行整体排列. 例3 . 6人排成一排.甲、乙两人必须相邻,有多少种不的排法? ♀ ♀ ♀ ♀ ♀ ♀ ♀ ♀ 解:(1)分两步进行: 甲 乙 第一步,把甲乙排列(捆绑): 22 A 有=2种捆法 第二步,甲乙两个人的梱看作一个元素与其它的排队: 55 A 有=120种排法 几个元素不能相邻时,先排一般元素,再让特殊元素插孔. 几个元素必须相邻时,先捆绑成一个元素,再与其它的进行排列.

解决排列组合问题常见策略

解决排列组合问题常见策略 一、合理选择主元素(确定谁选谁、选过的能否再选,用分步乘法计数原理) 1、公共汽车上有3个座位,现在上来5名乘客,每人坐1个座位,有几种不同的坐法? 2、公共汽车上有5个座位,现在上来3名乘客,每人坐1个座位,有几种不同的坐法? 3、把4封不同的信全部任意投入到3个信箱中,不同的投法有多少种? 4、某公车上有10名乘客,要求在沿途的5个车站全部下完,乘客下车的可能方式有多少种? 5、三个比赛项目,六人报名参加,下列条件下各有多少种不同方法? (1)每人参加一项; (2)每项一人且每人至多参加一项;(3)每项一人且每人参加项目数不限 6、在5天内安排3次不同的考试,若每天至多安排1次考试,则有多少种不同的安排方案? 二、特殊元素优先法(合理分类,准确分步) 1、6人站成一横排,其中甲不站左端也不站右端,有多少种不同站法? 2、五个人排成一排,其中甲不在排头,乙不在排尾,不同的排法有多少种? 3、0,1,2,3,4,5可组成多少个无重复数字且能被五整除的五位数? 4、上午要上语文、数学、体育和外语四门课,而体育教师因故不能上第一节和第四节,则不同的排课方案有多少种? 5、5人站成一排,A不能站两端,B不能站中间,有多少种不同的站法? 6、五列火车停在五条轨道上,若甲车不停在第一轨道上,丙车不停在第三轨道上,则不同的停车方法有多少种? 8、7、从6名短跑运动员种选4人参加4×100米接力赛,若甲不能跑第一棒,乙不能跑第四棒,问共有多少种参赛方法? 三、相邻问题——捆绑法 1、7人站成一排照相,要求甲,乙,丙三人相邻,分别有多少种站法? 2、三个男生,四个女生排成一排,男生、女生各站一起,有几种不同方法? 3、10个人站成一排,规定甲乙两人之间必须有4个人,不同的排法有_______种. 4、一排长椅上共有10个座位,现有4人就坐,恰有五个连续空位的坐法种数为______种. 四、不相邻问题——插空法 1、7人站成一排照相,要求甲,乙,丙三人不相邻,分别有多少种站法? 2、三个男生,四个女生排成一排,男生之间、女生之间不相邻,有几种不同排法? 3、6个停车位置,有3辆车需要停放,若要使三个空位连在一起,则停放的方法有_________种。 4、一排8个座位,3个去坐,要求每人的左右两边都有空位置的坐法有多少种? 5、某排共有10个座位,若4人就坐,每人左右两边都有空位,那么不同的坐法有多少种? 五、顺序固定问题 1、有4名男生,3名女生。3名女生高矮互不等,将7名学生排成一行,要求从左到右,女生从矮到高排列,有多少种排法? 六、指标问题采用“隔板法”(相同的元素分成若干部分,每部分至少一个) 1、有10个三好生名额,分配给高三年级6个班,每班至少一个名额,共有多少种不同的分配方案。 2、方程a+b+c+d=12有多少组正整数解? 七、分排问题用“直排法” 1、七人坐两排座位,第一排坐3人,第二排坐4人,则有多少种不同的坐法? 2、三个男生,四个女生排成两排,前排三人、后排四人,有几种不同排法?(答案同上) 3、8人分两排坐,每排4人,限定甲必须坐在前排,乙丙必须坐在同一排,共有多少种安排方法? 八、列举法(题中附加条件增多,直接解决困难时,用列举逐步寻求规律) 1、将数字1,2,3,4填入标号为1,2,3,4的四个方格内,每个方格填1个,则每个方格的标号与所填的数字均不相同的填法有多少种? 九、分组分配问题 (包括平均分组和非平均分组) 1、现有4套不同的练习题: 1)平均分给2名同学有多少种不同的分法? 2)平均分成2份,有多少种不同的分法? 2、6本不同的书按下列方法分配,有多少种分法? ⑴分给3人,甲得1本,乙得2本,丙得3本;(各组元素数目确定,分配对象确定) ⑵分给3人,1人1本,1人2本,1人3本;(各组元素数目确定,分配对象不固定) ⑶平均分给3人;(各组元素数目相等,分配给具体对象)

相关文档
相关文档 最新文档