文档库 最新最全的文档下载
当前位置:文档库 › halcon学习经验

halcon学习经验

halcon学习经验
halcon学习经验

HalCon学习经验总结

1.图像的开运算和闭运算算子

开运算就是用消除图像上的小物体,小区域,将纤细相连的物体分开,将大物体的表面平滑与此同时不明显改变他的面积。扩大背景(就是暗的部分),缩小前景(就是亮的部分)。模板匹配等

闭运算就是填充物体内细小的空洞,连接邻近的物体,平滑物体的边界同时呢不明显改变他的面积。

缩小背景(就是暗的部分),扩大前景(就是亮的部分)

开运算:先对图像腐蚀然后膨胀

闭运算:先对图像膨胀然后腐蚀

必要的解释:

一:HALCON提供了开运算、闭运算的函数(算子),根据结构元素的不同(圆的方的椭圆的或是自己定义也可以)细化出很多算子。这些都是细枝末节。此处不再赘余。。

二:开闭运算的结构元素没有参考点(中心点)的概念。

三:开闭运算没有迭代的概念,就是图像被同样结构元素做开运算,处理一次和处理随意非零次的效果是一样的。

gray_opening_rect (ImageInvert, ImageOpening, 20, 20)

gray_closing_rect (ImageInvert, ImageClosing, 20, 20)

connection (ImageOpening,tophat)

connection (ImageClosing,bothat)

sub_image (bothat,tophat,ImageSub, 1, 0)

union1 (ImageSub, RegionUnion)

2.击中击不中(hit_or_miss),加厚(thickening),打薄(thinning)

thickening:原始图像+ 对图像使用击中击不中产品的图像

thinning:原始图像- 对图像使用击中击不中产品的图像

击中击不中原理

继膨胀、腐蚀、开运算和闭运算之后的有一个基本操作就是击中击不中变换(HMT),HMT变换可以同时探测图像的内部和外部。在研究图像中的目标物体与图像背景之间的关系上,HMT能够取得很好的效果。所以常被用于解决目标图像识别和模式识别等领域。

A>结构元素是形态学变换中的基本元素,是为了探测图像的某种结构信息而设计的特

定形状和尺寸的图像,也可以称为收集图像结构信息的探针。结构元素有许多的种类,如圆形、方形、线型等,还有二值的和灰度值的,模糊集中的等等多种结构元素。在击中击不中变换中将结构元素分解成两个,一个定义为前景结构元素,一个定义为背景结构元素,定义如下:

B=(E,F), 其中E的F交集为空集

B>HMT的标准变换的定义就是:

腐蚀操作的结果就是结构元素S平移x但任包含在输入图像A内部的所有结构元素的原点集合,对于HMT变换,当且仅当结构元素E平移到某一点可以填入A的内部,且F平移到该点时可以填入A的外部时,该点才能在HMT变换的结果中输出。由于需要精确的匹配,因此该算法对识别的要求很高,但是对于实际的图像,往往含有各种未知的噪声,即会出现误差,所以实际的意义不是很大

它的原理就是使用腐蚀;如果要在一幅图像A上找到B形状的目标,我们要做的是:

首先,建立一个比B大的模板W;使用此模板对图像A进行腐蚀,得到图像假设为Process1;

其次,用B减去W,从而得到V模板(W-B);使用V模板对图像A的补集进行腐蚀,得到图像假设为Process2;

然后,Process1与Process2取交集得到的结果就是B的位置。这里的位置可能不是B 的中心位置,要视W-B时对齐的位置而异;

其实很简单,两次腐蚀,然后交集,结果就出来了;

3.形态学分析与处理

4.

顶帽变换(高帽变换,Top_Hat):原图减去原图开运算后的图

底帽变换(低帽变换,Bot_Hat):原图闭运算后的图减去原图

高低帽变换(黑土老师叫:形态帽变换,洋名叫:morph_hat):顶帽变换的结果+底帽的变换的结果。

(高低帽变换在HALCON里面具体的操作流程是:

A:原图开运算然后使用Connection 最后得到区域甲

B:原图闭运算然后使用Connection 最后得到到区域乙

C:乙减去甲然后合并union 最后得到高底帽。)

功用:

顶帽变换:主要是用于增强图像的对比度,在较暗的地方把亮突出出来。

底帽变换:在较暗的背景中把亮的部分找出来。

高底帽变换:就是亮的刺头和暗的刺头全部提取出来。

Halcon学习之八:图像区域叠加与绘制

overpaint_gray ( ImageDestination, ImageSource : : : )将灰度值不相同区域用不同颜色绘制到ImageDestination中,ImageSource包含希望的灰度值图像

overpaint_region ( Image, Region : : Grayval, Type : )将Region以一个恒定的灰度值绘制到Image图像中

paint_gray ( ImageSource, ImageDestination : MixedImage : : )将ImageSource的图像绘制到ImageDestination中,形成MixedImage。

paint_region ( Region, Image : ImageResult : Grayval, Type : )将Region以一个恒定的灰度值绘制到Image图像中

paint_xld ( XLD, Image : ImageResult : Grayval : )

将XLD以一个恒定的灰度值绘制到Image图像中

set_grayval ( Image : : Row, Column, Grayval : )

设置Image图像中坐标为(Row,Column)的灰度值

例子:

1.read_image (Image, 'G:/Halcon/images/images/claudia.png')

2.gen_circle (Circle, 200, 200, 100.5)

3.reduce_domain (Image, Circle, ImageReduced)

4.gen_image_proto (Image, ImageCleared, 32)

5.overpaint_gray (ImageCleared, ImageReduced)

6.gen_image_const (Image1, 'byte', 512, 512)

7.overpaint_region (Image1, Circle, 255, 'fill')

8.* /* Copy a circular part of the image into the image : */

9.read_image (Image2, 'G:/Halcon/images/images/brycecanyon1.png')

10.paint_gray (ImageReduced, Image2, MixedImage)

11.* /* Paint a rectangle into the image */

12.read_image (Image3, 'G:/Halcon/images/images/pads.png')

13.gen_rectangle1 (Rectangle1, 30, 20, 100, 200)

14.paint_region (Rectangle1, Image3, ImageResult, 255, 'fill')

15.* /* Paint colored xld objects into a gray image */

16.* /* read and copy image to generate a three channel image */

17.copy_image (Image2, image0)

18.copy_image (Image2, image1)

https://www.wendangku.net/doc/a7868341.html,pose3 (image0, Image2, image1, MultiChannelImage)

20.* /* extract subpixel border */

21.threshold_sub_pix (MultiChannelImage, Border, 128)

22.* /* select the circle and the arrows */

23.circle := Border[14]

24.arrow := Border[16]

25.ObjectsConcat := [circle,arrow]

26.* /* paint a green circle and white arrows (to paint all

27.* * objects e.g. blue, pass [0,0,255] tuple for GrayVal) */

28.paint_xld (ObjectsConcat, MultiChannelImage, ImageResult1, [0,1,0,1,1,255])

halcon知识点

1. 无论读入什么图像,读入图像显示效果明显和原始图像不一致,哪怕是从相机读入的图像,也是明显颜色差异。什么原因引起? 初步诊断是,显示的时候调用的颜色查找表存在异常不是 default ,而是其它选项。此时可以通过查阅相关参数,调用set_system解决,也可以在编辑-》参数选择-》颜色查找表进行更改。 2. 裁剪图像;从图像上截取某段图像进行保存。如何实现该操作? 首先应该知道,region不具有单独构成图像的要素,他没有灰度值。有用过opencv的应该知道 ROI(感兴趣区域),设置好它后,对图像的大部分操作就转为图像的一个矩形区域内进行。类似的,halcon有domain 概念。首先设置好一个矩形区,然后使用 reduce_domain(是一个矩形区域)后,再使用crop_domain 就裁剪出图像。 3. 读入bmp,或tiff 图像显示该图不是bmp文件或不能读。原因是什么? 这个常有新手询问,画图,图像管理器都能打开,又或者是相机采集完直接存到硬盘。Halcon 读取图像在windows下面到最后是调用windows库函数实现读图功能。咱不清楚到底是怎么调用的。对于图像格式,在读图函数F1说明很细。基本 bmp 如果文件头不是bw还是bm(百度百科bmp格式查找,编写此处时无网络,后续可能忘记),就读不进来。其他规格欢迎补充。解决办法,如果是相机采集,就在内存直接转换(参见 halcon到VC.pdf 里面的halcon和bitmap互转);如果是采完的图片,大部分通过画图工具转换为 24位bmp格式,即可解决。 4.读入avi文件报错。

Halcon 通过 directshow或另一个格式解析视频,正常来说应该可以读入市面大部分视频,实际测试发现只能读入最标准的avi文件格式。如果需要临时处理,需要下格式工厂等工具转化为最标准的avi文件格式(论坛叶诺有发帖说明)。 5. Region 或 xld 筛选。 Halcon提供了丰富的region 和xld筛选方法。Region可以使用select_shape_xld,选择出符合要求的区域,如果不能满足还可以通过类似 region feature 这样关键字组合成的算子获取区域特征,然后通过 tuple 排序或相加减,再通过 tuple_find 确定是对应哪个区域的特征。同样的halcon也提供了 select_contours_xld 进行轮廓筛选。 6. Halcon分几类对象,每个类的功用是? Halcon总分俩大类,tuple和图标对象obj 。Tuple涵盖了对所有基础数据类型的封装,可以理解为她是halcon定义的数组类。Obj 是alcon定义图标类基类。衍生出了许多类型,其中 Region ,Xld,Image 其中最主要的类型。 7. F1说明,参数部分 -array 是什么意思? 该符号说明,该参数接受一组输入,对tuple就是一组tuple,对obj 就是通过concat_obj 或其它操作产生的一组obj元组。 8. 俩个相对方形物体的距离计算。 如果这俩个物体和背景对比清晰,最近的距离在俩条边下则可以再预处理之后进行如下操作:

HALCON形状匹配总结

HALCON形状匹配总结 Halcon有三种模板匹配方法:即Component-Based、Gray-Value-Based、Shaped_based,分别是基于组件(或成分、元素)的匹配,基于灰度值的匹配和基于形状的匹配,此外还有变形匹配和三维模型匹配也是分属于前面的大类 本文只对形状匹配做简要说明和补充: Shape_Based匹配方法: 上图介绍的是形状匹配做法的一般流程及模板制作的两种 方法。 先要补充点知识:形状匹配常见的有四种情况一般形状匹配模板shape_model、线性变形匹配模板 planar_deformable_model、局部可变形模板 local_deformable_model、和比例缩放模板Scale_model 第一种是不支持投影变形的模板匹配,但是速度是最高的,第二种和第四种是支持投影变形的匹配,第三种则是支持局部变形的匹配。 一般形状匹配模板是最常用的,模板的形状和大小一经制作完毕便不再改变,在查找模板的过程中,只会改变模板的方向和位置等来匹配目标图像中的图像。这个方法查找速度很快,但是当目标图像中与模板对应的图像存在比例放大缩小

或是投影变形如倾斜等,均会影响查找结果。涉及到的算子通常为create_shape_model 和find_shape_model 线性变形匹配模板planar_deformable_model是指模板在行列方向上可以进行适当的缩放。行列方向上可以分别独立的进行一个适当的缩放变形来匹配。主要参数有行列方向查找缩放比例、图像金字塔、行列方向匹配分数(指可接受的匹配分数,大于这个值就接受,小于它就舍弃)、设置超找的角度、已经超找结果后得到的位置和匹配分数 线性变形匹配又分为两种:带标定的可变形模板匹配和不带标定的可变形模板匹配。涉及到的算子有: 不带标定的模板:创建和查找模板算子 create_planar_uncalib_deformable_model和 find_planar_uncalib_deformable_model 带标定模板的匹配:先读入摄像机内参和外参 read_cam_par 和read_pose 创建和查找模板算子create_planar_calib_deformable_model和 find_planar_calib_deformable_model 局部变形模板是指在一张图上查找模板的时候,可以改变模板的尺寸,来查找图像上具有局部变形的模板。例如包装纸袋上图案查找。参数和线性变形额差不多 算子如下:create_local_deformable_model和 find_local_deformable_model

Halcon学习之七:改变图像的现实方式和大小

change_format ( Image : ImagePart : Width, Height : ) 改变Image图像大小,而且ImagePart图像为灰度值图像。 crop_domain ( Image : ImagePart : : ) 从Image图像中裁剪一个矩形区域。这个矩形的周长最小。 crop_domain_rel ( Image : ImagePart : Top, Left, Bottom, Right : ) 删除相关区域,Top为顶端裁剪的行数,Left,Bottom,Right类似。 crop_part ( Image : ImagePart : Row, Column, Width, Height : ) 删除一个矩形图像区域。Row为右上角的列标索引。Width, Height为新图像ImagePart的宽度和高度。crop_rectangle1 ( Image : ImagePart : Row1, Column1, Row2, Column2 : ) 删除一个矩形图像区域。 tile_channels ( Image : TiledImage : NumColumns, TileOrder : ) 将多通道图像平铺为一幅大的单通道图像。NumColumns为平铺的列数。TileOrder为平铺的方式。tile_images ( Images : TiledImage : NumColumns, TileOrder : ) 将多通道平铺。 程序: [c-sharp] view plaincopyprint?read_image (Image, 'G:/Halcon/机器视觉 /images/brycecanyon1.png') get_image_pointer1 (Image, Pointer, Type, Width, Height) change_format (Image, ImagePart, Width/2, Height/2) crop_domain (Image, ImagePart1) crop_domain_rel (ImagePart1, ImagePart2, -20, -20, -1, -1) crop_part (ImagePart2, ImagePart3, 100, 100, Width, Height) crop_rectangle1 (ImagePart3, ImagePart4, 100, 100, 200, 200) tile_channels (Image, TiledImage, 2, 'horizontal') tile_images (Image, TiledImage1, 1, 'vertical') tile_images_offset (Image, TiledImage2, 0, 0, 50, 50, -1, -1, Width, Height)

基于HALCON的模板匹配方法总结.

基于HALCON的模板匹配方法总结 基于HALCON的模板匹配方法总结 HDevelop开发环境中提供的匹配的方法主要有三种,即Component-Based、Gray-Value-Based、Shape-Based,分别是基于组件(或成分、元素)的匹配,基于灰度值的匹配和基于形状的匹配。这三种匹配的方法各具特点,分别适用于不同的图像特征,但都有创建模板和寻找模板的相同过程。这三种方法里面,我主要就第三种-基于形状的匹配,做了许多的实验,因此也做了基于形状匹配的物体识别,基于形状匹配的视频对象分割和基于形状匹配的视频对象跟踪这些研究,从中取得较好的效果。在VC下往往针对不同的图像格式,就会弄的很头疼,更不用说编写图像特征提取、模板建立和搜寻模板的代码呢,我想其中间过程会很复杂,效果也不一定会显著。下面我就具体地谈谈基于HALCON的形状匹配算法的研究和心得总结。 1. Shape-Based matching的基本流程 HALCON提供的基于形状匹配的算法主要是针对感兴趣的小区域来建立模板,对整个图像建立模板也可以,但这样除非是对象在整个图像中所占比例很大,比如像视频会议中人体上半身这样的图像,我在后面的视频对象跟踪实验中就是针对整个图像的,这往往也是要牺牲匹配速度的,这个后面再讲。基本流程是这样的,如下所示: ⑴ 首先确定出ROI的矩形区域,这里只需要确定矩形的左上点和右下点的坐标即可,gen_rectangle1()这个函数就会帮助你生成一个矩形,利用 area_center()找到这个矩形的中心;

⑵ 然后需要从图像中获取这个矩形区域的图像,reduce_domain()会得到这个ROI;这之后就可以对这个矩形建立模板,而在建立模板之前,可以先对这个区域进行一些处理,方便以后的建模,比如阈值分割,数学形态学的一些处理等等; ⑶ 接下来就可以利用create_shape_model()来创建模板了,这个函数有许多参数,其中金字塔的级数由Numlevels指定,值越大则找到物体的时间越少,AngleStart和AngleExtent决定可能的旋转范围,AngleStep指定角度范围搜索的步长;这里需要提醒的是,在任何情况下,模板应适合主内存,搜索时间会缩短。对特别大的模板,用Optimization来减少模板点的数量是很有用的;MinConstrast将模板从图像的噪声中分离出来,如果灰度值的波动范围是10,则MinConstrast应当设为10;Metric参数决定模板识别的条件,如果设为’use_polarity’,则图像中的物体和模板必须有相同的对比度;创建好模板后,这时还需要监视模板,用inspect_shape_model()来完成,它检查参数的适用性,还能帮助找到合适的参数;另外,还需要获得这个模板的轮廓,用于后面的匹配,get_shape_model_contours()则会很容易的帮我们找到模板的轮廓; ⑷ 创建好模板后,就可以打开另一幅图像,来进行模板匹配了。这个过程也就是在新图像中寻找与模板匹配的图像部分,这部分的工作就由函数 find_shape_model()来承担了,它也拥有许多的参数,这些参数都影响着寻找模板的速度和精度。这个的功能就是在一幅图中找出最佳匹配的模板,返回一个模板实例的长、宽和旋转角度。其中参数SubPixel决定是否精确到亚像素级,设为’interpolation’,则会精确到,这个模式不会占用太多时间,若需要更精确,则可设为’least_square’,’lease_square_high’,但这样会增加额外的时间,因此,这需要在时间和精度上作个折中,需要和实际联系起来。比较重要的两个参数是MinSocre和Greediness,前一个用来分析模板的旋转对称和它们之间的相似度,值越大,则越相似,后一个是搜索贪婪度,这个值在很大程度上影响着搜索速度,若为0,则为启发式搜索,很耗时,若为1,则为不安全搜索,但最快。在大多数情况下,在能够匹配的情况下,尽可能的增大其值。 ⑸ 找到之后,还需要对其进行转化,使之能够显示,这两个函数 vector_angle_to_rigid()和affine_trans_contour_xld()在这里就起这个作用。前一个是从一个点和角度计算一个刚体仿射变换,这个函数从匹配函数的

Halcon学习之八:图像区域叠加与绘制

Halcon學習之八:圖像區域疊加與繪制 overpaint_gray ( ImageDestination, ImageSource : : : ) 將灰度值不相同區域用不同顏色繪制到ImageDestination中,ImageSource包含希望的灰度值圖像 overpaint_region ( Image, Region : : Grayval, Type : ) 將Region以一個恆定的灰度值繪制到Image圖像中 paint_gray ( ImageSource, ImageDestination : MixedImage : : ) 將ImageSource的圖像繪制到ImageDestination中,形成MixedImage。 paint_region ( Region, Image : ImageResult : Grayval, Type : ) 將Region以一個恆定的灰度值繪制到Image圖像中 paint_xld ( XLD, Image : ImageResult : Grayval : ) 將XLD以一個恆定的灰度值繪制到Image圖像中 set_grayval ( Image : : Row, Column, Grayval : ) 設置Image圖像中坐標為(Row,Column)的灰度值 程序: [c-sharp]view plaincopy 1read_image (Image, 'G:/Halcon/images/images/claudia.png') 2gen_circle (Circle, 200, 200, 100.5) 3reduce_domain (Image, Circle, ImageReduced) 4gen_image_proto (Image, ImageCleared, 32) 5overpaint_gray (ImageCleared, ImageReduced) 6gen_image_const (Image1, 'byte', 512, 512) 7overpaint_region (Image1, Circle, 255, 'fill') 8* /* Copy a circular part of the image into the image : */ 9read_image (Image2, 'G:/Halcon/images/images/brycecanyon1.png') 10paint_gray (ImageReduced, Image2, MixedImage) 11* /* Paint a rectangle into the image */ 12read_image (Image3, 'G:/Halcon/images/images/pads.png') 13gen_rectangle1 (Rectangle1, 30, 20, 100, 200) 14paint_region (Rectangle1, Image3, ImageResult, 255, 'fill') 15* /* Paint colored xld objects into a gray image */ 16* /* read and copy image to generate a three channel image */ 17copy_image (Image2, image0) 18copy_image (Image2, image1)

基于HALCON的机器视觉系统的研究与实现

基于HALCON的机器视觉系统的研究与实现 近年来,机器视觉系统以其高效率、高可靠、低成本的特点在国外取得了广泛的应用。机器视觉系统适用于众多领域,例如工业自动化、医药业、制造业、农业等,弥补了人类视觉的很多不足。本文采用德国MVTec公司的专业机器视觉软件HALCON来开发机器视觉系统,提出了相关机器视觉实现方法,并且在机器视觉实验平台上完成了一个弹簧片检测任务。 目前关注较多的是机器视觉系统的硬件部分,而机器视觉软件部分关注较少,一个先进的机器视觉系统除了具有高性能的硬件外,还需要有高性能的软件,虽然说许多常见的开发软件例如Mircosoft的Visual Studio、NI的LabWindows\CVI等等都可以开发机器视觉系统,但是开发周期比较长,针对性较弱,程序的复杂程度较高。而采用HALCON作为机器视觉和图像处理核心软件,不仅大大缩短了开发周期,降低了开发难度,而且可以参考HALCON提供的众多机器视觉和图像处理例程来针对具体的任务做具体开发。 文章的第一章研究了机器视觉系统的组成、应用现状和发展,并且对机器视觉软件HALCON做了概述。第二章根据相关要求,选择合适的硬件单元,设计和搭建了VS-ZM1200机器视觉实验平台。第三章研究了机器视觉中常用的一些图像处理技术,重点讨论了在弹簧片检测任务中所采用的图像处理技术和算法,如图像的增强,分割,边缘检测等。第四章研究了机器视觉软件,重点研究了HALCON,并且对在Visual C++开发环境下如何使用HALCON编写的程序做了讨论。第五章介绍了在VS-ZM1200机器视觉实验平台上,使用HALCON和Visual C++开发的一套弹簧片检测系统,该系统完成关于弹簧片的尺寸参数测量和外观参数判别的任务。

机器视觉之Halcon算子--区域特征

H a l c o n算子--区域特征 当我们想要提取Region时,图像处理后,往往存在几个类似的Region,此时,需要根据Region的一 些特殊特征,来选择指定的Region。 求Region指定特征值:region_features(Regions : : Features : Value) 根据特征值选择区域:select_shape(Regions : SelectedRegions : Features, Operation, Min, Max : ) Region特征一览: 特征英译备注area Area of the object 对象的面积 row Row index of the center 中心点的行坐标 column Column index of the center 中心点的列坐标 width Width of the region 区域的宽度 height Height of the region 区域的高度 row1 Row index of upper left corner 左上角行坐标 column1 Column index of upper left corner 左上角列坐标 row2 Row index of lower right corner 右下角行坐标 column2 Column index of lower right corner 右下角列坐标 circularity Circularity 圆度0~1 compactness Compactness 紧密度0~1 contlength Total length of contour 轮廓线总长 convexity Convexity 凸性 rectangularity Rectangularity 矩形度0~1 ra Main radius of the equivalent ellipse 等效椭圆长轴半径长度 rb Secondary radius of the equivalent ellipse 等效椭圆短轴半径长度 phi Orientation of the equivalent ellipse 等效椭圆方向 anisometry Anisometry 椭圆参数,Ra/Rb长轴与短轴的比值 bulkiness Bulkiness 椭圆参数,蓬松度π*Ra*Rb/A struct_factor Structur Factor? 椭圆参数, Anisometry*Bulkiness-1

HALCON算子函数整理10 Matching-3D

HALCON算子函数——Chapter 10 : Matching-3D 1. affine_trans_object_model_3d 功能:把一个任意有限3D变换用于一个3D目标模型。 2. clear_all_object_model_3d 功能:释放所有3D目标模型的内存。 3. clear_all_shape_model_3d 功能:释放所有3D轮廓模型的内存。 4. clear_object_model_3d 功能:释放一个3D目标模型的内存。 5. clear_shape_model_3d_ 功能:释放一个3D轮廓模型的内存。 6. convert_point_3d_cart_to_spher 功能:把直角坐标系中的一个3D点转变为极坐标。 7. convert_point_3d_spher_to_cart 功能:把极坐标中的一个3D点转变为直角坐标。 8. create_cam_pose_look_at_point 功能:从摄像机中心和观察方向创建一个3D摄像机位置。 9. create_shape_model_3d 功能:为匹配准备一个3D目标模型。 10. find_shape_model_3d 功能:在一个图像中找出一个3D模型的最佳匹配。 11. get_object_model_3d_params

功能:返回一个3D目标模型的参数。 12. get_shape_model_3d_contours 功能:返回一个3D轮廓模型视图的轮廓表示。 13. get_shape_model_3d_params 功能:返回一个3D轮廓模型的参数。 14. project_object_model_3d 功能:把一个3D目标模型的边缘投影到图像坐标中。 15. project_shape_model_3d 功能:把一个3D轮廓模型的边缘投影到图像坐标中。 16. read_object_model_3d_dxf 功能:从一个DXF文件中读取一个3D目标模型。 17. read_shape_model_3d 功能:从一个文件中读取一个3D轮廓模型。 18. trans_pose_shape_model_3d 功能:把一个3D目标模型的坐标系中的位置转变为一个3D轮廓模型的参考坐标系中的位 置,反之亦然。 19. write_shape_model_3d 功能:向一个文件写入一个3D轮廓模型。

Halcon学习笔记

Halcon学习笔记 1、Halcon的自我描述 Program Logic Each program consists of a sequence of HALCON operators The program can be structured into procedures The sequence can be extended by using control operators like if, for, repeat, or while The results of the operators are passed via variables No implicit data passing is applied Input parameters of operators can be variables or expressions Output parameters are always variables HDevelop has no features to design a graphical user interface An HDevelop program is considered as a prototypic solution of the vision part of an application HDevelop is typically not used for the final application 由此可以看出,Halcon的定位是一个类库,有着完整、快速实现函数,同时提供了HDevelop 作为快速开发的图形化(IDE)界面;但是,Halcon程序并不是一个完整的最终应用软件,它没有用户界面,也不提供显示的数据(公用的数据格式)。 Halcon的初学者也应当从参考Halcon的程序入手,熟悉Halcon类库,也即HDevelop-Based Programming;在此基础上,进入ORClass-Oriented Programming。这也是Halcon推荐的开发方式: The vision part is solved with HDevelop,and the application is developed with C++ or Visual Basic。 2、HDevelop界面的学习 通过阅读Halcon的PPT,学到了下面一些有用的信息: 文件——浏览示例,可以看到很多有用的例子; 程序窗体中,可以浏览与编辑Procedues(过程),这个其实就是自定义函数咯~还可以自己修改这些过程,并添加说明文档; F4——将函数语句注释掉;F3——激活; 本地过程(Local Procedue)与外部过程(Externel Procedue) 3、基本语法结构 Halcon的语法结构 类似于Pascal 与Visual Basic,大部分的语句是Halcon提供的算子,此外也包含了少部分的控制语句; 不允许单独声明变量; 提供自动的内存管理(初始化、析构及OverWrite),但句柄则需要显示释放; C++(算子模式) 通过代码导出,以C++为例,默认导出为算子型的语法结构,而非面向对象的;在此模式下,全部函数声明为全局类型,数据类型只需要用Hobject、HTuple两类类型进行声明; C++(面向对象) 可以以面向对象的方式重写代码,也即利用类及类的成员函数; 在这种模式下,控制变量的类型仍未HTuple,而图形数据可以由多种类型,如HImage等;其他语言(略)

Halcon学习(24)总结(一)

Halcon学习(二十四)总结(一) 好久没有写篇文章了。写一篇总结吧。 1、Halcon的自我描述 Program Logic ? Each program consists of a sequence of HALCON operators ? The program can be structured into procedures ? The sequence can be extended by using control operators like if, for, repeat, or while ? The results of the operators are passed via variables ? No implicit data passing is applied ? Input parameters of operators can be variables or expressions ? Output parameters are always variables ? HDevelop has no features to design a graphical user interface ? An HDevelop program is considered as a prototypic solution of the vision part of an application ? HDevelop is typically not used for the final application 由此可以看出,Halcon的定位是一个类库,有着完整、快速实现函数,同时提供了HDevelop 作为快速开发的图形化(IDE)界面;但是,Halcon程序并不是一个完整的最终应用软件,它没有用户界面,也不提供显示的数据(公用的数据格式)。 Halcon的初学者也应当从参考Halcon的程序入手,熟悉Halcon类库,也即HDevelop-Based Programming;在此基础上,进入ORClass-Oriented Programming。这也是Halcon推荐的开发方式: The vision part is solved with HDevelop, and the application is developed with C++ or Visual Basic。 2、HDevelop界面的学习 通过阅读Halcon的PPT,学到了下面一些有用的信息: ? 文件——浏览示例,可以看到很多有用的例子; ? 程序窗体中,可以浏览与编辑Procedues(过程),这个其实就是自定义函数咯~还可以自己修改这些过程,并添加说明文档; ? F4——将函数语句注释掉;F3——激活; ? 本地过程(Local Procedue)与外部过程(Externel Procedue) 3、基本语法结构 Halcon的语法结构 类似于Pascal 与 Visual Basic,大部分的语句是Halcon提供的算子,此外也包含了少部分的控制语句; 不允许单独声明变量; 提供自动的内存管理(初始化、析构及OverWrite),但句柄则需要显示释放; C++(算子模式) 通过代码导出,以C++为例,默认导出为算子型的语法结构,而非面向对象的;在此模式下,全部函数声明为全局类型,数据类型只需要用Hobject、HTuple两类类型进行声明; C++(面向对象) 可以以面向对象的方式重写代码,也即利用类及类的成员函数;

Halcon学习之四:有关图像生成的函数

Halcon学习之四:有关图像生成的函数 1、copy_image ( Image : DupImage : : ) 复制image图像 2、region_to_bin ( Region : BinImage : ForegroundGray, BackgroundGray,Width, Height : ) 将区域Region转换为一幅二进制图像BinImage。 ForegroundGray, BackgroundGray分别为前景色灰度值和背景色灰度值。Width, Height为Region的宽度和高度。 3、region_to_label ( Region : ImageLabel : Type, Width, Height : ) 将区域Region转换为一幅Lable图像ImageLabel。 Type为imagelabel的类型。 Width, Height为Region的宽度和高度。 4、region_to_mean ( Regions, Image : ImageMean : : ) 绘制ImageMean图像,将其灰度值设置为Regions和Image的平均灰度值。相关例子: [c-sharp]view plaincopyprint? 1.* 读取图像 2.read_image (Image, 'G:/Halcon/机器视觉 /images/bin_switch/bin_switch_2.png') 3.* 复制图像 4.copy_image (Image, DupImage) 5.* 区域生长算法

6.regiongrowing (Image, Regions, 3, 3, 1, 100) 7.* 生成ImageMean 8.region_to_mean (Regions, Image, ImageMean) 9.* 将Region转换为二进制图像 10.r egion_to_bin (Regions, BinImage, 255, 0, 512, 512) 11.*将Region转换为Label图像 12.r egion_to_label (Regions, ImageLabel, 'int4', 512, 512)

HALCON算子函数Chapter 15: Segmentation

HALCON算子函數——Chapter 15 : Segmentation 15.1 Classi?cation 1. add_samples_image_class_gmm 功能:將從圖像中獲取的測試樣本添加到高斯混合模型的測試數據庫中。2.add samples_image_class_mlp 功能:將從圖像中獲取的測試樣本添加到多層視感控器的測試數據庫中。 3. add_samples_image_class_svm 功能:將從圖像中獲取的測試樣本添加到一個支持向量機的測試數據庫中。 4. class_2dim_sup 功能:采用二維空間像素分類分割圖像。 5. class 2dim unsup 功能:將兩幅圖像以聚類分割。 6.class ndim_box 功能:利用立方體將像素分類。 7. class_ndim_norm 功能:利用球體或立方體將像素分類。 8. classify_image_class_gmm 功能:根據高斯混合模式分類圖像。 9. classify_image_class_mlp 功能:根據多層視感控器分類圖像_。 10. classify_image_class_svm 功能:根據支持向量機分類圖像。 11. learn_ndim_box

功能:利用多通道圖像測試一個分級器。 12. learn_ndim_norm 功能:為class_ndim_norm構建類。 15.2 Edges 1. detect_edge_segments 功能:檢測直線邊緣分割。 2. hysteresis_threshold 功能:對一副圖像采取磁滯門限操作。 3. nonmax_suppression_amp 功能:抑制一幅圖像上的非最大值點。 4. nonmax_suppression_dir 功能:利用指定圖像抑制一幅圖像上的非最大值點。 15.3 Regiongrowing 1. expand_gray 功能:依據灰度值或顏色填充兩個區域的間隙或分割重疊區域。 2. expand_gray_ref 功能:依據灰度值或顏色填充兩個區域的間隙或分割重疊區域。 3. expand_line 功能:從給定線開始擴充區域。 4. regiongrowing 功能:利用區域增長分割圖像。

HALCON中filter函数

HALCON算子函数——Chapter 5 : Filter 5.1 Arithmetic 1. abs_image 功能:计算一个图像的绝对值(模数)。 2. add_image 功能:使两个图像相加。 3. div_image 功能:使两个图像相除。 4. invert_image 功能:使一个图像反像。 5. max_image 功能:按像素计算两个图像的最大值。 6. min_image 功能:按像素计算两个图像的最大小值。 7. mult_image 功能:使两个图像相乘。 8. scale_image 功能:为一个图像的灰度值分级。 9. sqrt_image 功能:计算一个图像的平方根。 10. sub_image 功能:使两个图像相减。 5.2 Bit 1. bit_and 功能:输入图像的所有像素的逐位与。 2. bit_lshift 功能:图像的所有像素的左移。3 . bit_mask 功能:使用位掩码的每个像素的逻辑与。 4. bit_not 功能:对像素的所有位求补。 5. bit_or 功能:输入图像的所有像素的逐位或。 6. bit_rshift 功能:图像的所有像素的右移。 7. bit_slice 功能:从像素中提取一位。 8. bit_xor 功能:输入图像的所有像素的逐位异或。5.3 Color

1. cfa_to_rgb 功能:把一个单通道颜色滤波阵列图像变成RGB图像。 2. gen_principal_comp_trans 功能:计算多通道图像的主要部分分析的转换矩阵。 3. linear_trans_color 功能:计算多通道图像的颜色值的一个仿射转换。 4. principal_comp 功能:计算多通道图像的主要部分。 5. rgb1_to_gray 功能:把一个RGB图像转变成一个灰度图像。 6. rgb3_to_gray 功能:把一个RGB图像转变成一个灰度图像。 7. trans_from_rgb 功能:把一个图像从RGB颜色空间转变成任意颜色空间。 8. trans_to_rgb 功能:把一个图像从任意颜色空间转变成RGB颜色空间。 5.4 Edges 1.close_edges 功能:使用边缘幅值图像消除边缘缺陷。 2. close_edges_length 功能:使用边缘幅值图像消除边缘缺陷。 3. derivate_gauss 功能:用高斯派生物对一个图像卷积。 4. diff_of_gauss 功能:近似高斯的拉普拉斯算子。 5. edges_color 功能:使用Canny、Deriche或者_Shen_滤波器提取颜色边缘。 6. edges_color_sub_pix 功能:使用Canny、Deriche或者_Shen_滤波器提取子像素精确颜色边缘。 7. edges_image 功能:使用Deriche、_Lanser、Shen或者_Canny滤

基于halcon的车牌的图像识别_整理

基于halcon的车牌的图像识别 其实车牌图像识别从技术上已经比较成熟,从理论上来说无外乎就是如下几个步骤:灰度化:实际就是对原始车牌图片进行预处理,把彩色图片转化为黑白图片,然后对不符合指定阙值范围的灰度值进行过滤。 车牌定位:这是技术难点之一,根据我的经验,定位车牌位置对于车牌的准确识别而言实际上就成功了60%。很多车牌识别的产品都对车牌的定位预留了很多配置参数,例如截取原始图片的位置参数、车牌的长宽比例、大小等等,这些都是为了提高车牌定位的准确率。 字符分割:车牌定位后是字符分割,本人使用的识别过程是:对定位的车牌位置进行降噪处理=>边界模糊=>从右向左找出前6个封闭的图形=>剩余的封闭图形综合为一个图形进行汉字的识别。 字符识别:就是根据字符模板进行模板匹配,因此需预先建立相应的字符模板。基于图像进行字符识别也可配置很多参数来大大提高字符的识别率。例如限定车牌头的字符,车牌各位字符的识别优先级等等。 以下通过大车黄牌号码为例,看看车牌识别的效果。 1、原始图片如下图所示: 2、限定车牌识别区域,本例中将裁剪掉上下左右各10%的区域: get_image_pointer1 (FullImage, Pointer, Type, Width, Height) gen_rectangle1 (Rectangle, Height*0.1, Width*0.1, Height*0.9, Width*0.9) reduce_domain (FullImage, Rectangle, Image) 看看裁剪结果:

3、把选中的区域灰度化,方便后续处理: decompose3 (Image, Red, Green, Blue) trans_from_rgb (Red, Green, Blue, Hue, Saturation, Intensity, 'hsv') 灰度化后的效果图: 4、灰度阙值过滤,本例中只选中灰度值在100至255之间的区域,可根据实际情况进行相应的设置,然后进行降噪处理:

跟我学机器视觉-HALCON学习例程中文详解-QQ摄像头读取条码

跟我学机器视觉-HALCON学习例程中文详解-QQ摄像头读取条码 第一步:插入QQ摄像头,安装好驱动(有的可能免驱动) 第二步:打开HDevelop,点击助手—打开新的Image Acquisition—选中图像获取接口(I),然后点击检测,找到摄像头。如下图: 第三步:点击连接,将颜色空间设置为gray,然后点击实时,此时图像窗口中将显示采集到的图像,将物体放置到摄像头前,位置调至条码清晰。如下图:

集,点击插入代码,此时程序编辑器中将自动生成代码,如下图:

这时单击下运行按钮,将会采集一副图像并显示到图形窗口中。接下来我们将开始条码读取的工作。 第五步:在Do Something后插入如下代码: create_bar_code_model ([ ], [ ], BarCodeHandle) *由于不知道条码是何类型,因此条码类型设置为auto。CodeTypes := ['auto'] find_bar_code (Image, SymbolRegions, BarCodeHandle, CodeTypes, DecodedDataStrings) get_bar_code_result (BarCodeHandle, 'all', 'decoded_types', DecodedDataTypes) 这时再重新运行程序,只要图像清晰,此时就可以读到条码了。条码区域会变成红色,而且在变量窗口中可以查到读取的条码类型和内容。如下图:

第六步:我们再添加代码,将读取结果直接显示在图像窗口中。 disp_message (WindowHandle, DecodedDataTypes[0]+': '+DecodedDataStrings[0], 'image', 100, 160, 'forest green', 'true') 此时会提示错误WindowHandle未被初始化。 *获取更多课程请Q智达工控学院:1613985351 因为图像采集助手会自动打开一个窗口,因此我们先将它关闭,然后自己创建一个窗口。在程序最开始加上这两句代码: dev_close_window () dev_open_window (0, 0, 512, 512, 'black', WindowHandle) 再重新运行程序,此时在读取到的条码在图像中写出来了。如下图:

halcon常用算法

1、read_image (Image, 'F:/image/001.bmp') 读入图像 2、threshold (Image, region, 100, 200) 阈值分割,获取区域 3、dev_close_window() 关闭当前图形窗口 4、dev_open_window (0, 0, 640, 480, 'black', WindowHandle) 打开一个新的图像窗口 5、decompose3 (Image, Red, Green, Blue) 三通道图像转换成三幅单通道图像 5.5、compose3(Red, Green, Blue, Image) 三幅单通道图像组合为三通道图像 6、connection (Region, ConnectedRegions) 将像素有相连的区域合并成一个元素element 7、count_obj(ConnectedRegions, Number) 计算元素element的个数 8、select_shape(Regions, SelectedRegions, Features, Operation, Min, Max) select_shape (ConnectedRegions,SelectedRegions,['area','anisometry'], 'and', [500,1.0], [50000,1 .7]) 连通域形状的选择 circularity:表示环状;充实度 roundness:圆度 9、dev_set_color('red') 设定输出的颜色 10、dev_set_draw ('margin') 或者 dev_set_draw ('fill') 确定区域填充模式 11、get_image_size (Image, Width, Height) 得到图像的宽度和高度 12、get_image_pointer1 (Image_slanted, Pointer, Type, Width, Height) 设定Pointer指向Image_slanted的起点位置。 13、dev_set_part (0, 0, Height-1, Width-1) 设定图像需要显示的范围 14、dev_display (Image_slanted) 显示图像 15、disp_continue_message(WindowHandle, 'blue', 'false') 等待用户操作是否继续stop () 16、projective_trans_image (Image_slanted, Image_rectified, HomMat2D, 'bilinear', 'false', 'false') 将投影变换应用于一幅图像中。 17、dev_set_line_width (5) 为区域轮廓线设定线宽 18、disp_message (WindowHandle, 'Decoded string: ', 'window', -1, -1, 'black', 'true') 程序写一个文本信息 19、union_collinear_contours_xld 合并在同一直线的XLD union_cocircular_contours_xld 合并在同圆的XLD union_adjacent_contours_xld 合并邻近的XLD 20、fit_line_contour_xld 拟合直线 21、trans_from_rgb(Rimage,Gimage,Bimage,Image1,Image2,Image3,'hsv') rgb颜色空间图像转换到hsv颜色空间图像 22、trans_to_rgb(Image1,Image2,Image3,ImageRed,ImageGreen,ImageBlue,'hsv') hsv颜色空间图像转换到rgb颜色空间图像 23、set_display_font (WindowID, 20, 'mono', 'true', 'false') 设置字体(bottle.hdev) 24、fill_up_shape (RawSegmentation, RemovedNoise, 'area', 1, 5) 根据给定的形状特征填补区域中的不足 25、opening_circle (RemovedNoise, ThickStructures, 2.5) 以半径为2.5像素先腐蚀再膨胀,开运算去除小区域。 26、fill_up (ThickStructures, Solid) 填补区域中的空洞 27、intersection (ConnectedPatterns, ThickStructures, NumberCandidates) 求两个区域的交集然后输出,求ConnectedPatterns区域和ThickStructures 区域的交集,输出 NumberCandidates 28、dev_set_shape ('rectangle1') 设置外接矩形 29、distance_lr (SelectedRegions, Row1, Col1, Row2, Col2, DistanceMin, DistanceMax) 计算直线和区域之间的距离,出现最小距离和最大距离 30、disp_line (WindowID, Row1, Col+100, Row2, Col) 绘制直线段( Col+100, Row1)为起点,(Col, Row2)为终点

相关文档
相关文档 最新文档