文档库 最新最全的文档下载
当前位置:文档库 › CABLE导通阻抗设定

CABLE导通阻抗设定

CABLE导通阻抗设定

PCB的阻抗设计

PCB的阻抗设计 1、阻抗的定义: 在某一频率下,电子器件传输信号线中,相对某一参考层,其高频信号或电磁波在传播过程中所受的阻力称之为特性阻抗,它是电阻抗,电感抗,电容抗……的一个矢量总和。 当信号在PCB导线中传输时,若导线的长度接近信号波长的1/7,此时的导线便成为信号传输线,一般信号传输线均需做阻抗控制。PCB制作时,依客户要求决定是否需管控阻抗,若客户要求某一线宽需做阻抗控制,生产时则需管控该线宽的阻抗。 当信号在PCB上传输时,PCB板的特性阻抗必须与头尾元件的电子阻抗相匹配,一但阻抗值超出公差,所传出的信号能量将出现反射、散射、衰减或延误等现象,从而导致信号不完整、信号失真。 2、计算阻抗的工具: 目前大部分人都用Polar软件:Polar Si8000、Si9000等。 常用的软件阻抗模型主要有三种: (1)特性阻抗,也叫单端阻抗;(2)差分阻抗,也叫差动阻抗;(3)共面阻抗,也叫共面波导阻抗,主要应用于双面板阻抗设计当中。

选择共面阻抗设计的原因是:双面板板厚决定了阻抗线距离,下面的参考面比较远,信号非常弱,必须选择距离较近的参考面,于是就产生了共面阻抗的设计。 3、安装软件Polar Si9000,然后打开Polar Si9000软件。熟悉一下常用的几个阻抗模型: (1)下图是外层特性阻抗模型(也叫单端阻抗模型):

(2)下图是外层差分阻抗模型: (3)内层差分阻抗模型常用以下三种:

下面是共面的常用模型: (4)下图是外层共面单端阻抗模型: (5)下图是外层共面差分阻抗模型:

4、怎样来计算阻抗? 各种PP及其组合的厚度,介电常数详见PP规格表,铜厚规则按下图的要求。

阻抗概念

阻抗[编辑] 维基百科,自由的百科全书 相量图能够展示复阻抗。 阻抗(electrical impedance)是电路中电阻、电感、电容对交流电的阻碍作用的统称。阻抗衡量流动于电路的交流电所遇到的阻碍。阻抗将电阻的概念加以延伸至交流电路领域,不仅描述电压与电流的相对振幅,也描述其相对相位。当通过电路的电流是直流电时,电阻与阻抗相等,电阻可以视为相位为零的阻抗。 阻抗通常以符号标记。阻抗是复数,可以以相量或来表示;其中,是阻 抗的大小,是阻抗的相位。这种表式法称为“相量表示法”。 具体而言,阻抗定义为电压与电流的频域比率[1]。阻抗的大小是电压振幅与电流振幅的绝对值 比率,阻抗的相位是电压与电流的相位差。采用国际单位制,阻抗的单位是欧姆(Ω),与电阻的单位相同。阻抗的倒数是导纳,即电流与电压的频域比率。导纳的单位是西门子(单位)(旧单位是姆欧)。 英文术语“impedance”是由物理学者奥利弗·赫维赛德于1886年发表论文《电工》给出[2][3]。于1893年,电机工程师亚瑟·肯乃利(Arthur Kennelly)最先以复数表示阻抗[4]。 复阻抗[编辑] 阻抗是复数,可以与术语“复阻抗”替换使用。阻抗通常以相量来表示,这种表示法称为“相量表示法”。相量有三种等价形式: 1. 直角形式:、 2. 极形式:、 3. 指数形式:;

其中,电阻是阻抗的实部,电抗是阻抗的虚部,是阻抗的大小,是虚数单位,是阻抗的相位。 从直角形式转换到指数形式可以使用方程 、 。 从指数形式转换到直角形式可以使用方程 、 。 极形式适用于实际工程标示,而直角形式比较适用于几个阻抗相加或相减的案例,指数形式则比较适用于几个阻抗相乘或相除的案例。在作电路分析时,例如在计算两个阻抗并联的总阻抗时,可能会需要作几次形式转换。这种形式转换必需要依照复数转换定则。 欧姆定律[编辑] 连接于电路的交流电源会给出电压于负载的两端,并且驱动电 流于电路。 主条目:欧姆定律 借着欧姆定律,可以了解阻抗的内涵[5]: 。 阻抗大小的作用恰巧就像电阻,设定电流,就可计算出阻抗两端 的电压降。相位因子则是电流滞后于电压的相位差(在时域,电流 信号会比电压信号慢秒;其中,是单位为秒的周期)。

阻抗控制设计归类

阻抗控制设计 1.常见的单端(线)阻抗计算模式 1)Surface Micro strip:外层阻焊前阻抗计算(外层到VCC/GND) 2)Coated Microstrip:外层阻焊后阻抗计算(外层到VCC/GND) 3)Embedded Microstrip:与外层相邻的第二个线路层阻抗计算(例如一个6层板,L1、L2均为线路层,L3为GND或VCC层,则L2层的阻抗用此方式计算.) 4)Offset stripling:两个VCC/GND夹一个线路层之阻抗计算 5)Offset stripline:两个VCC/GND夹两个线路层之阻抗计算; 例如一个6层板,L2,L5层为GND/VCC,L3,L4层为线路层需控制阻抗. 2.常见的差分(动)阻抗计算模式: 1)Edge-coupled Surface Microstrip:外层阻焊前差动阻抗计算(外层到VCC/GND) 2)Edge-coupled Coated Microstrip:外层阻焊后差动阻抗计算(外层到VCC/GND) 3)Edge-coupled Embedded Microstrip:与外层相邻的第二个线路层差动阻抗计算(外层,阻抗层,VCC/GND) 4)Edge-coupled Offset stripline:两个VCC/GND夹一个线路层之阻抗计算 5)Edge-coupled Offset stripline:两个VCC/GND夹两个线路层之阻抗计算:例如一个6层板,L2、L5层为GND/VCC,L3、L4层为线路层需控制阻抗 6)Edge-coupled Offset stripline:两个VCC/GND夹两个线路层之阻抗计算:例如一个6层板,L2、L5层为GND/VCC,L3、L4层为线路层需控制阻抗(含线间填充树脂) 3.常见的共面阻抗计算模式: 1)Surface coplanar waveguide:外层蚀刻后单线共面阻抗,参考层与阻抗线在同一层面,即阻抗线被周围GND/VCC包围,周围GND/VCC即为参考层面。而次外层(innerlayer2)为线路层,非GND/VCC(即非参考层)。 2)Coated coplanar strips::阻焊后单线共面阻抗,参考层与阻抗线在同一层面,即阻抗线被周围GND/VCC包围,周围GND/VCC即为参考层面。而次外层(innerlayer2)为线路层,非GND/VCC(即非参考层)。 3)Surface coplanar waveguide with ground:外层蚀刻后单线共面阻抗,参考层为同 一层面的GND/VCC和次外层GND/VCC层。(阻抗线被周围GND/VCC包围,周围GND/VCC即为参考层面)。 4)Coated coplanar waveguide with grond:阻焊后单线共面阻抗,参考层为同一层面 的GND/VCC和次外层GND/VCC层。(阻抗线被周围GND/VCC包围,周围GND/VCC即为参考层面)。 5)Embedded coplanar waveguide:内层单线共面阻抗,参考层为同一层面的GND/VCC(阻抗线被周围GND/VCC包围,周围GND/VCC即为参考层面)。而与其邻近层为线路层,非GND/VCC。6)Embedded coplanar waveguide with ground:内层单线共面阻抗,参考层为同一层面的GND/VCC及与其邻近GND/VCC层。(阻抗线被周围GND/VCC包围,周围GND/VCC即为参考层面)。 7)Offset coplanar waveguide:内层单线共面阻抗,参考层为同一层面的GND/VCC及与其

高输入阻抗放大电路的设计仿真与实现

课程设计任务书 学生姓名:专业班级:电信1101班 指导教师:工作单位:信息工程学院 题目: 高输入阻抗放大电路的设计仿真与实现 初始条件: 可选元件:运算放大器,三极管,电阻、电位器、电容、二极管若干,直流电源Vcc= +12V,V EE= -12V,或自选元器件。 可用仪器:示波器,万用表,直流稳压源,毫伏表等。 要求完成的主要任务: (1)设计任务 根据要求,完成对高输入阻抗放大电路的设计、装配与调试,鼓励自制稳压电源。(2)设计要求 ①电压增益>=100,输入信号频率<100HZ,共模抑制比≥60dB; ② 选择电路方案,完成对确定方案电路的设计; ③ 利用Proteus或Multisim仿真设计电路原理图,确定电路元件参数、掌握电 路工作原理并仿真实现系统功能; ④ 安装调试并按规范要求格式完成课程设计报告书; ⑤ 选做:利用仿真软件的PCB设计功能进行PCB设计。 时间安排: 1、前半周,完成仿真设计调试;并制作实物。 2、后半周,硬件调试,撰写、提交课程设计报告,进行验收和答辩。 指导教师签名:年月日 系主任(或责任教师)签名:年月日

目录 摘要 (3) 1.电路方案选择 (4) 2.高输入阻抗放大电路设计 (5) 2.1差分放大电路 (5) 2.1.1零点漂移 (5) 2.1.2差模信号与共模信号 (5) 2.1.3.共模抑制比 (6) 2.1.4差分放大电路的分析 (6) 2.2镜像恒流源 (7) 2.2.1镜像电流源电路特点 (8) 2.2.2镜像电流源电路分析 (8) 2.3同向比例放大电路 (8) 2.4电压串联负反馈 (9) 2.5电路原理设计图 (10) 3.直流稳压电源的设计 (10) 3.1理论分析 (10) 3.2原理图 (11) 3.3直流稳压电源仿真结果 (11) 4高输入阻抗放大电路仿真 (12) 5实物安装和调试 (17) 5.1布局焊接 (17) 5.2调试方法 (17) 5.3测试结果分析 (17) 5.4实物展示 (18) 6. PCB制作 (19) 7.个人总结 (23) 参考文献 (24)

SI9000各阻抗计算说明

阻抗培训 1.外层单端:Coated Microstrip 1B H1:介质厚度(PP片或者板材,不包括铜厚) Er1:PP片的介电常数(板材为:4.5 P片4.2) W1:阻抗线上线宽(客户要求的线宽) W2:阻抗线下线宽(W2=W1-0.5MIL) T1:成品铜厚 C1:基材的绿油厚度(我司按0.8MIL) C2:铜皮或走线上的绿油厚度(0.5MIL) Cer:绿油的介电常数(我司按3.3MIL) Zo:由上面的参数计算出来的理论阻值

2.外层差分:Edge-Coupled Coated Microstrip 1B H1:介质厚度(PP片或者板材,不包括铜厚) Er1:PP片的介电常数(板材为:4.5 P片4.2) W1:阻抗线上线宽(客户要求的线宽) W2:阻抗线下线宽(W2=W1-0.5MIL) S1:阻抗线间距(客户原稿) T1:成品铜厚 C1:基材的绿油厚度(我司按0.8MIL) C2:铜皮或走线上的绿油厚度(0.5MIL) C3:基材上面的绿油厚度(0.50MIL) Cer:绿油的介电常数(我司按3.3MIL)

3.内层单端:Offset Stripline 1B1A H1:介质厚度(PP片或者光板,不包括铜厚) Er1:H1厚度PP片的介电常数(P片4.2MIL) H2:介质厚度(PP片或者光板,不包括铜厚) Er2:H2厚度PP片的介电常数(P片4.2MIL) W1:阻抗线上线宽(客户要求的线宽) W2:阻抗线下线宽(W2=W1-0.5MIL) T1:成品铜厚 Zo:由上面的参数计算出来的理论阻值

4.内层差分:Edge-Couled Offset Stripline 1B1A H1:介质厚度(PP片或者光板,不包括铜厚) Er1:H1厚度PP片的介电常数(P片4.2MIL) H2:介质厚度(PP片或者光板,不包括铜厚) Er2:H2厚度PP片的介电常数(P片4.2MIL) W1:阻抗线上线宽(客户要求的线宽) W2:阻抗线下线宽(W2=W1-0.5MIL) S1:客户要求的线距 T1:成品铜厚 Zo:由上面的参数计算出来的理论阻值

PCB阻抗计算方法

阻抗计算说明 Rev0.0 heroedit@https://www.wendangku.net/doc/ac923773.html, z给初学者的 一直有很多人问我阻抗怎么计算的. 人家问多了,我想给大家整理个材料,于己于人都是个方便.如果大家还有什么问题或者文档有什么错误,欢迎讨论与指教! 在计算阻抗之前,我想很有必要理解这儿阻抗的意义 z传输线阻抗的由来以及意义 传输线阻抗是从电报方程推导出来(具体可以查询微波理论) 如下图,其为平行双导线的分布参数等效电路: 从此图可以推导出电报方程 取传输线上的电压电流的正弦形式 得 推出通解

定义出特性阻抗 无耗线下r=0, g=0得 注意,此特性阻抗和波阻抗的概念上的差异(具体查看平面波的波阻抗定义) ε μ=EH Z 特性阻抗与波阻抗之间关系可从 此关系式推出. Ok,理解特性阻抗理论上是怎么回事情,看看实际上的意义,当电压电流在传输线传播的时候,如果特性阻抗不一致所求出的电报方程的解不一致,就造成所谓的反射现象等等.在信号完整性领域里,比如反射,串扰,电源平面切割等问题都可以归类为阻抗不连续问题,因此匹配的重要性在此展现出来. z 叠层(stackup)的定义 我们来看如下一种stackup,主板常用的8层板(4层power/ground 以及4层走线层,sggssggs,分别定义为L1, L2…L8)因此要计算的阻抗为 L1,L4,L5,L8 下面熟悉下在叠层里面的一些基本概念,和厂家打交道经常会使用的 Oz 的概念 Oz 本来是重量的单位Oz(盎司 )=28.3 g(克) 在叠层里面是这么定义的,在一平方英尺的面积上铺一盎司的铜的厚度为1Oz, 对

放大器的输出入阻抗

放大器的输出入阻抗 一般我们常耳闻的说法是:扩大机的输入阻抗是愈高愈好,而输出阻抗是愈低愈好。为什么呢? 因为输入阻抗高了,从讯号源来的讯号功率强度就可以不必那么大。 这么说也许还有读者不甚了解,让我们再回想一下欧姆定律;假设讯源输出不甚了解,让我们再回想一下欧姆定律;假设讯源输出一个固定电压,传送往下一级,如果这一级的输入阻抗高,是不是由讯源所提供的讯号电流就可以降低? 如果输入阻抗非常非常的高,则几乎不会消耗讯号电流(当然还是会有)就可以驱动这一级电路工作,换句话说就是几乎只要有讯号电压,电路就可以正常工作;但是对于低输入阻抗的电路呢?就正好相反了,它必须要求讯号能源能提供较为大量的讯号电流,因为在同一个电压下,低输入阻抗会流进较大的讯号电流,如果讯源提供的电流强度不足以满足下一级电路的需求,它就不能完美地驱动下一级电路。而讯源的电压和电流的乘积就是讯源的功率了。 何谓低输出阻抗呢?它有什么好处呢? 通常低输出阻抗被提到地方大半是指前级扩大机的输出阻抗,后级通常是称作输出内阻的。前级的低输出阻抗有几个好处:

一.通常会强调低输出阻抗即表示了它有较大的电流输出能力,容易搭配一些低输入阻抗的器材(后级); 二.低输出阻抗可以驱动长的讯号线及电容量较大的负载,以音响用前级为例;前级的输出阻抗在与讯号线结合后,输出阻抗加上讯号线本身固有的电阻与电容会形成一个R C滤波的网路,当输出阻抗愈高时,则经过讯号线后的讯号,其高频端的滚降点就会越低,反之则愈高。 你应该不会希望高频滚降点移进耳朵听得到的音频范围吧? 所以遇上电容量大的讯号线,你还是选一部输出阻抗低一点的前级较为保险。这也是为什么每一种讯号线会有不同声音部份原因。 有了以上大略的说明,你应该可以明白;所谓扩大机输入阻抗愈高愈好,输出阻抗愈低愈好,其主要理由即在此一在与其它器材互相搭配时,其匹配性比较高。 那么照此说来,我们就把每一部扩大机不论是前级或是后级的输入阻抗都设计得很高,输出阻抗都设计得很低,不是就完美无缺了吗? 让我们再从输入阻抗看起,由于高输入阻抗所需的讯号电流较少,可知连接其上的讯号线中流动的电流必较小,因此对于讯号线品质的要求就可以不必那么高,因为少了一个电流的干扰因素在内,这也是高输入阻抗带来的另一个优点。但是高输入阻抗的优点

PCB阻抗设计与阻抗设计软件Polar的使用

PCB阻抗设计与阻抗设计软件Polar的使用 随着 PCB 信号切换速度不断增长,当今的 PCB 设计厂商需要理解和控制 PCB 迹线的阻抗。相应于现代数字电路较短的信号传输时间和较高的时钟速率,PCB 迹线不再是简单的连接,而是传输线。 在实际情况中,需要在数字边际速度高于1ns 或模拟频率超过300Mhz时控制迹线阻抗。PCB 迹线的关键参数之一是其特性阻抗(即波沿信号传输线路传送时电压与电流的比值)。印制电路板上导线的特性阻抗是电路板设计的一个重要指标,特别是在高频电路的PCB设计中,必须考虑导线的特性阻抗和器件或信号所要求的特性阻抗是否一致,是否匹配。这就涉及到两个概念:阻抗控制与阻抗匹配,本文重点讨论阻抗控制和叠层设计的问题。 阻抗控制 阻抗控制(eImpedance Controling),线路板中的导体中会有各种信号的传递,为提高其传输速率而必须提高其频率,线路本身若因蚀刻,叠层厚度,导线宽度等不同因素,将会造成阻抗值得变化,使其信号失真。故在高速线路板上的导体,其阻抗值应控制在某一范围之内,称为―阻抗控制‖。 PCB 迹线的阻抗将由其感应和电容性电感、电阻和电导系数确定。影响PCB走线的阻抗的因素主要有: 铜线的宽度、铜线的厚度、介质的介电常数、介质的厚度、焊盘的厚度、地线的路径、走线周边的走线等。PCB 阻抗的范围是 25 至120 欧姆。 在实际情况下,PCB 传输线路通常由一个导线迹线、一个或多个参考层和绝缘材质组成。迹线和板层构成了控制阻抗。PCB 将常常采用多层结构,并且控制阻抗也可以采用各种方式来构建。但是,无论使用什么方式,阻抗值都将由其物理结构和绝缘材料的电子特性决定: ●信号迹线的宽度和厚度   ●迹线两侧的内核或预填材质的高度   ●迹线和板层的配置 ●内核和预填材质的绝缘常数 PCB传输线主要有两种形式:微带线(Microstrip)与带状线(Stripline)。 微带线(Microstrip): 微带线是一根带状导线,指只有一边存在参考平面的传输线,顶部和侧边都曝置于空气中(也可上敷涂覆层),位于绝缘常数 Er 线路板的表面之上,以电源或接地层为参考。如下图所示: 注意:在实际的PCB制造中,板厂通常会在PCB板的表面涂覆一层绿油,因此在实际的阻抗计算中,通常对于表面微带线采用下图所示的模型进行计算:

电路板关于阻抗匹配

一.阻抗匹配的研究 在高速的设计中,阻抗的匹配与否关系到信号的质量优劣。阻抗匹配的技术可以说是丰富多样,但是在具体的系统中怎样才能比较合理的应用,需要衡量多个方面的因素。例如我们在系统中设计中,很多采用的都是源段的串连匹配。对于什么情况下需要匹配,采用什么方式的匹配,为什么采用这种方式。 例如:差分的匹配多数采用终端的匹配;时钟采用源段匹配; 1、串联终端匹配 串联终端匹配的理论出发点是在信号源端阻抗低于传输线特征阻抗的条件下,在信号的源端和传输线之间串接一个电阻R,使源端的输出阻抗与传输线的特征阻抗相匹配,抑制从负载端反射回来的信号发生再次反射. 串联终端匹配后的信号传输具有以下特点: A 由于串联匹配电阻的作用,驱动信号传播时以其幅度的50%向负载端传播; B 信号在负载端的反射系数接近+1,因此反射信号的幅度接近原始信号幅度的50%。 C 反射信号与源端传播的信号叠加,使负载端接受到的信号与原始信号的幅度近似相同; D 负载端反射信号向源端传播,到达源端后被匹配电阻吸收;? E 反射信号到达源端后,源端驱动电流降为0,直到下一次信号传输。 相对并联匹配来说,串联匹配不要求信号驱动器具有很大的电流驱动能力。 选择串联终端匹配电阻值的原则很简单,就是要求匹配电阻值与驱动器的输出阻抗之和与传输线的特征阻抗相等。理想的信号驱动器的输出阻抗为零,实际的驱动器总是有比较小的输出阻抗,而且在信号的电平发生变化时,输出阻抗可能不同。比如电源电压为+4.5V的CMOS驱动器,在低电平时典型的输出阻抗为37Ω,在高电平时典型的输出阻抗为45Ω[4];TTL驱动器和CMOS驱动一样,其输出阻抗会随信号的电平大小变化而变化。因此,对TTL或CMOS电路来说,不可能有十分正确的匹配电阻,只能折中考虑。 链状拓扑结构的信号网路不适合使用串联终端匹配,所有的负载必须接到传输线的末端。否则,接到传输线中间的负载接受到的波形就会象图3.2.5中C点的电压波形一样。可以看出,有一段时间负载端信号幅度为原始信号幅度的一半。显然这时候信号处在不定逻辑状态,信号的噪声容限很低。 串联匹配是最常用的终端匹配方法。它的优点是功耗小,不会给驱动器带来额外的直流负载,也不会在信号和地之间引入额外的阻抗;而且只需要一个电阻元件。 2、并联终端匹配 并联终端匹配的理论出发点是在信号源端阻抗很小的情况下,通过增加并联电阻使负载端输入阻抗与传输线的特征阻抗相匹配,达到消除负载端反射的目的。实现形式分为单电阻和双电阻两种形式。 并联终端匹配后的信号传输具有以下特点: A 驱动信号近似以满幅度沿传输线传播; B 所有的反射都被匹配电阻吸收; C 负载端接受到的信号幅度与源端发送的信号幅度近似相同。 在实际的电路系统中,芯片的输入阻抗很高,因此对单电阻形式来说,负载端的并联电阻值必须与传输线的特征阻抗相近或相等。假定传输线的特征阻抗为50Ω,则R值为50Ω。如果信号的高电平为5V,则信号的静态电流将达到100mA。由于典型的TTL或CMOS电路的驱动能力很小,这种单电阻的并联匹配方式很少出现在这些电路中。

跨阻放大器输入阻抗计算

TIA Input Z: Infinite… or Zero? What is it, really? Bruce Trump - October 8, 2012 What is the input impedance of a transimpedance amplifier (TIA)? Infinite? Zero? No, what is it really? Nothing is really zero or infinite, right? The answer might surprise you—worth understanding, even if you don’t use TIAs. After all, an inverting amplifier is just a TIA with an input resistor, right? The transimpedance amplifier converts an input current to a voltage and is often used to measure small currents, (figure 1). With an ideal op amp, infinite gain and bandwidth, the input impedance of a TIA is zero. Feedback of the op amp maintains V1 at virtual ground, creating a zero impedance. Like an ammeter, an ideal current measurement circuit should have zero impedance. We’re still working on the ideal op amp, so until then, what’s the input Z with finite gain-bandwidth product? Some reasoning and 8th-grade algebra reveal an interesting result. The open-loop gain vs. frequency for the OPA314 is shown in figure 2. As with most op amps today, the gain follows a constant -20dB/decade slope through a wide frequency range—over five decades for this general purpose device. Its gain-bandwidth is 3MHz, so the gain at any frequency along this range is fapproximately 3MHz/f. Manipulating the factors that we know (shown in yellow boxes) yields the result. Z is proportional to R F and frequency and inversely proportional to GBP. But, hey… Z proportional to frequency? That feels much like a basic circuit element—an inductor. The impedance of an inductor is 2fL, so we can calculate an equivalent input inductance of the TIA.

高速PCB设计中的阻抗控制

高速数字电路PCB设计中的阻抗控制(转载) 随着半导体工艺的飞速发展,IC器件集成度和工作时钟频率不断提高。以往在一块比较复杂的PCB上的高速网线只有几根或几十根,现在则是在一块PCB上只有几根或几十根网线不是高速信号线;以往认为数字电路设计只要把握逻辑正确,物理连线似乎只要连接上就能使电路正常工作;而现在越来越多的电子产品设计体现出高速、高性能、高密度和高复杂度的特点,尤其在通讯、计算机、航空航天以及图象处理等领域。系统的主频越来越高,更加严重的挑战来自半导体工艺技术的进步,日渐精细的工艺技术使得晶体管尺寸越来越小,因而器件的信号跳变沿也就越来越快,从而导致更加严重的高速数字电路系统设计领域的信号完整性问题:传输线效应(反射、时延、振铃、及信号的过冲与欠冲)、信号问串扰等。为此,电子系统设计师必须从传统的设计方法向现代的电子系统设计方法转变,这既是形势需要,也是发展的必然趋势。 1 高速数字电路概念 1.1 什么是高速数字电路 ??? PCB上的高速电路设计,主要是以器件和连接器件的印制线为主要分析对象的。以往在器件的时钟频率不是很高、时钟的上升或下降沿变化不是很陡的情形下,可以用集总参数的形式来表示印制线,而当器件的时钟频率变得很高时(比如:超过50MHz),时钟的上升或下降沿很小时(一般地在1ns~5ns之间),这时就不能将印制线用集总参数来表示,必须引入分布参数来表示印制线特性,这就是传输线的概念(图1)。关于传输线的分析是高速PCB 设计当中最基本也是最核心的部分,下面简要介绍传输线的定义和高速电路设计相关的一些概念。 ??? 国际上通常对PCB上的传输线没有确切的具体定义,现在被大家普遍接受的约定如下:即当信号从驱动端到接收端的印制线上的延时大于等于上升或下降沿的l/ 时(即Tpd≥0.5Trist(Tfdl))。这时就必须将此印制线当成传输线来分析,更为保守一点的定义是信号在走 线上传播延时或。

谈谈阻抗匹配的理解

谈谈阻抗匹配的理解 xfire 高频高速PCB设计围观198次一条评论编辑日期:2015-05-24 字体:大中小 阻抗匹配(impedance matching)信号源内阻与所接传输线的特性阻抗大小相等且相位相同,或传输线的特性阻抗与所接负载阻抗的大小相等且相位相同,分别称为传输线的输入端或输出端处于阻抗匹配状态,简称为阻抗匹配。否则,便称为阻抗失配。有时也直接叫做匹配或失配。 阻抗匹配是指信号源或者传输线跟负载之间的一种合适的搭配方式。阻抗匹配分为低频和高频两种情况讨论。我们先从直流电压源驱动一个负载入手。由于实际的电压源,总是有内阻的,我们可以把一个实际电压源,等效成一个理想的电压源跟一个电阻r串联的模型。假设负载电阻为R,电源电动势为U,内阻为r,那么我们可以计算出流过电阻R的电流为:I=U/(R+r),可以看出,负载电阻R 越小,则输出电流越大。负载R上的电压为:Uo=IR=U/[1+(r/R)],可以看出,负载电阻R越大,则输出电压Uo越高。再来计算一下电阻R消耗的功率为: P=I2×R=[U/(R+r)]2×R=U2×R/(R2+2×R×r+r2) =U2×R/[(R-r)2+4×R×r] =U2/{[(R-r)2/R]+4×r} 对于一个给定的信号源,其内阻r是固定的,而负载电阻R则是由我们来选择的。注意式中[(R-r)2/R],当R=r时,[(R-r)2/R]可取得最小值0,这时负载电阻R上可获得最大输出功率Pmax=U2/(4×r)。即,当负载电阻跟信号源内阻相等时,负载可获得最大输出功率,这就是我们常说的阻抗匹配之一。此结论同样适用于低频电路及高频电路。当交流电路中含有容性或感性阻抗时,结论有所改变,就是需要信号源与负载阻抗的的实部相等,虚部互为相反数,这叫做共扼匹配。在低频电路中,我们一般不考虑传输线的匹配问题,只考虑信号源跟负载之间的情况,因为低频信号的波长相对于传输线来说很长,传输线可以看成是“短线”,反射可以不考虑(可以这么理解:因为线短,即使反射回来,跟原信号还是一样的)。从以上分析我们可以得出结论:如果我们需要输出电流大,则选择小的负载R;如果我们需要输出电压大,则选择大的负载R;如果我们需要输出功率最大,则选择跟信号源内阻匹配的电阻R。有时阻抗不匹配还有另外一层意思,例如一些仪器输出端是在特定的负载条件下设计的,如果负载条件改变了,则可能达不到原来的性能,这时我们也会叫做阻抗失配。 在高频电路中,我们还必须考虑反射的问题。当信号的频率很高时,则信号的波长就很短,当波长短得跟传输线长度可以比拟时,反射信号叠加在原信号上将会改变原信号的形状。如果传输线的特征阻抗跟负载阻抗不相等(即不匹配)时,在负载端就会产生反射。为什么阻抗不匹配时会产生反射以及特征阻抗的求解方法,牵涉到二阶偏微分方程的求解,在这里我们不细说了,有兴趣的可参看电磁场与微波方面书籍中的传输线理论。传输线的特征阻抗(也叫做特性阻抗)是由传输线的结构以及材料决定的,而与传输线的长度,以及信号的幅度、频率等均无关。

放大器型号及选用原则

CA3130 高输入阻抗运算放大器Intersil[DATA] CA3140 高输入阻抗运算放大器 CD4573 四可编程运算放大器MC14573 ICL7650 斩波稳零放大器 LF347(NS[DATA]) 带宽四运算放大器KA347 LF351 BI-FET单运算放大器NS[DATA] LF353 BI-FET双运算放大器NS[DATA] LF356 BI-FET单运算放大器NS[DATA] LF357 BI-FET单运算放大器NS[DATA] LF398 采样保持放大器NS[DATA] LF411 BI-FET单运算放大器NS[DATA] LF412 BI-FET双运放大器NS[DATA] LM124 低功耗四运算放大器(军用档) NS[DATA]/TI[DATA] LM1458 双运算放大器NS[DATA] LM148 四运算放大器NS[DATA] LM224J 低功耗四运算放大器(工业档) NS[DATA]/TI[DATA] LM2902 四运算放大器NS[DATA]/TI[DATA] LM2904 双运放大器NS[DATA]/TI[DATA] LM301 运算放大器NS[DATA] LM308 运算放大器NS[DATA] LM308H 运算放大器(金属封装)NS[DATA] LM318 高速运算放大器NS[DATA] LM324(NS[DATA]) 四运算放大器HA17324,/LM324N(TI) LM348 四运算放大器NS[DATA] LM358 NS[DATA] 通用型双运算放大器HA17358/LM358P(TI) LM380 音频功率放大器NS[DATA] LM386-1 NS[DATA] 音频放大器NJM386D,UTC386 LM386-3 音频放大器NS[DATA] LM386-4 音频放大器NS[DATA] LM3886 音频大功率放大器NS[DATA] LM3900 四运算放大器 LM725 高精度运算放大器NS[DATA] LM733 带宽运算放大器 LM741 NS[DATA] 通用型运算放大器HA17741 MC34119 小功率音频放大器 NE5532 高速低噪声双运算放大器TI[DATA] NE5534 高速低噪声单运算放大器TI[DATA] NE592 视频放大器 OP07-CP 精密运算放大器TI[DATA] OP07-DP 精密运算放大器TI[DATA] TBA820M 小功率音频放大器ST[DATA] TL061 BI-FET单运算放大器TI[DATA] TL062 BI-FET双运算放大器TI[DATA] TL064 BI-FET四运算放大器TI[DATA]

4种石英玻璃的交流电学阻抗行为的比较

第44卷第4期2016年4月 硅酸盐学报Vol. 44,No. 4 April,2016 JOURNAL OF THE CHINESE CERAMIC SOCIETY https://www.wendangku.net/doc/ac923773.html, DOI:10.14062/j.issn.0454-5648.2016.04.23 4种石英玻璃的交流电学阻抗行为的比较 吴兴轩,朱满康,贾渊洁,侯育冬,郑木鹏 (北京工业大学材料学院,北京 100124) 摘要:分析了4种不同工艺制备的石英玻璃在紫外区和红外区的光谱特征,测量了不同温度下石英玻璃的交流电学阻抗响应。结果表明,4种石英玻璃的体电阻和弛豫时间与温度的关系均符合Arrhenius方程,表明其电导具有热激活特征。同时,不同温度时复平面阻抗曲线及其介电模量频谱曲线,均反映这些石英玻璃各自呈现单一导电机制,但其激活能差别明显:电熔石英玻璃样品SG1和SG2的电导激活能分别为1.002和1.384 eV,合成石英玻璃样品SG3和SG4的电导激活能分别为1.458和0.520 eV。激活能的数值不仅与石英玻璃的导电类型相关,也与石英玻璃中金属杂质含量、氧缺陷浓度及羟基含量密切相关。 关键词:石英玻璃;阻抗谱;导电机制;激活能 中图分类号:TQ174 文献标志码:A 文章编号:0454–5648(2016)04–0607–06 网络出版时间:2016–03–18 16:07:25 网络出版地址:https://www.wendangku.net/doc/ac923773.html,/kcms/detail/11.2310.TQ.20160318.1607.023.html Comparative Studies on Electrical Impedance Behavior of Four Silica Glasses WU Xingxuan, ZHU Mankang, JIA Yuanjie, HOU Yudong, ZHENG Mupeng (College of Materials Science and Engineering, Beijing University of Technology, Beijing 100124, China) Abstract: The contents of metal impurities, hydroxyl and oxygen defects of 4 types of silica glasses were analyzed based on their ultraviolet and infrared absorption spectra. Their temperature-dependent behaviors of electrical impedance were recorded. The results show that the bulk resistance and relaxation time of the silica glasses are consistent well with the Arrhenius equation, indicating that the conductivity is a thermally activated process. The frequency-dependent spectra of the complex impedance and the electric modulus at different temperatures indicate the single mechanism for the dynamic processes in these four types of silica glasses. However, their activation energies present a great difference: the activation energies of electrically-fused quartz glass samples SG1 and SG2 are 1.002 and 1.384 eV, respectively, while the activation energies of synthetic quartz glass samples SG3 and SG4 are 1.458 eV and 0.520 eV, respectively. It is assumed that the change in activation energy could be related to the conduction mechanism and the contents of metal impurity, hydroxyl and oxygen defects in the silica glasses. Keywords: silica glass; impedance spectroscopy; conduction mechanism; activation energy 石英玻璃的电导,与其微观结构有密切关系,其机制一直是一个受研究者关注的课题[1]。长期以来研究者对石英玻璃电学性能以及影响因素进行了研究,并尝试采用不同的导电机制模型对石英玻璃的导电行为进行解释,但尚未形成统一的观点。 Jain等[2]研究了天然石英晶体和合成石英晶体的电导问题,认为石英晶体的导电机制属于离子导电,属于由碱金属离子沿晶体内部与c轴平行的通道移动而引起的导电行为;而且,合成石英晶体中氢的排除会引起其导电性能的下降。Shin等[3]发现,IV类石英玻璃的假想温度的上升会引起比容的减小,导致导电能力下降和导电激活能上升,而假想温度的变化对I类石英玻璃的电学行为影响很小。但是,低碱金属含量的石英玻璃的导电机制,并不 收稿日期:2015–08–09。修订日期:2015–10–11。 基金项目:国家自然科学基金项目(51172006);国家重大技术专项项目(050110.3-2011HF–C–02)。 第一作者:吴兴轩(1987—),男,硕士研究生。 通信作者:朱满康(1963—),男,博士,教授。Received date: 2015–08–09. Revised date: 2015–10–11. First author: WU Xingxuan (1987–), male, Master candidate. E-mail: wuxingxuan@https://www.wendangku.net/doc/ac923773.html,. Correspondent author: ZHU Mankang (1963–), Male, Ph.D., Professor. E-mail:zhumk@ https://www.wendangku.net/doc/ac923773.html,.

什么是输入阻抗和输出阻抗

什么是输入阻抗和输出阻抗 输入阻抗是指一个电路输入端的等效阻抗。在输入端上加上一个电压源U,测量输入端的电流I,则输入阻抗Rin就是U/I。你可以把输入端想象成一个电阻的两端,这个电阻的阻值,就是输入阻抗。 输入阻抗跟一个普通的电抗元件没什么两样,它反映了对电流阻碍作用的大小。对于电压驱动的电路,输入阻抗越大,则对电压源的负载就越轻,因而就越容易驱动,也不会对信号源有影响;而对于电流驱动型的电路,输入阻抗越小,则对电流源的负载就越轻。因此,我们可以这样认为:如果是用电压源来驱动的,则输入阻抗越大越好;如果是用电流源来驱动的,则阻抗越小越好(注:只适合于低频电路,在高频电路中,还要考虑阻抗匹配问题。另外如果要获取最大输出功率时,也要考虑阻抗匹配问题 二、输出阻抗 无论信号源或放大器还有电源,都有输出阻抗的问题。输出阻抗就是一个信号源的内阻。本来,对于一个理想的电压源(包括电源),内阻应该为0,或理想电流源的阻抗应当为无穷大。输出阻抗在电路设计最特别需要注意。 但现实中的电压源,则不能做到这一点。我们常用一个理想电压源串联一个电阻r的方式来等效一个实际的电压源。这个跟理想电压源串联的电阻r,就是(信号源/放大器输出/电源)的内阻了。当这个电压源给负载供电时,就会有电流I从这个负载上流过,并在这个电阻上产生I×r的电压降。这将导致电源输出电压的下降,从而限

制了最大输出功率(关于为什么会限制最大输出功率,请看后面的“阻抗匹配”一问)。同样的,一个理想的电流源,输出阻抗应该是无穷大,但实际的电路是不可能的 三、阻抗匹配 阻抗匹配是指信号源或者传输线跟负载之间的一种合适的搭配方式。阻抗匹配分为低频和高频两种情况讨论。我们先从直流电压源驱动一个负载入手。由于实际的电压源,总是有内阻的(请参看输出阻抗一问),我们可以把一个实际电压源,等效成一个理想的电压源跟一个电阻r串联的模型。假设负载电阻为R,电源电动势为U,内阻为r,那么我们可以计算出流过电阻R的电流为:I=U/(R+r),可以看出,负载电阻R越小,则输出电流越大。负载R上的电压为:Uo=IR=U/[1+(r/R)],可以看出,负载电阻R越大,则输出电压Uo越高。再来计算一下电阻R消耗的功率为: P=I2×R=[U/(R+r)]2×R=U2×R/(R2+2×R×r+r2) =U2×R/[(R-r)2+4×R×r] =U2/{[(R-r)2/R]+4×r} 对于一个给定的信号源,其内阻r是固定的,而负载电阻R则是由我们来选择的。注意式中[(R-r)2/R],当R=r时,[(R-r)2/R]可取得最小值0,这时负载电阻R上可获得最大输出功率Pmax=U2/(4×r)。即,当负载电阻跟信号源内阻相等时,负载可获得最大输出功率,这就是我们常说的阻抗匹配之一。对于纯电阻电路,此结论同样适用于低频电路及高频电路。当交流电路中含有容性或感性阻抗时,结论有

阻抗

阻抗设计 附件三1. 阻抗定义及分类: 1.1阻抗(Zo): 对流经其中已知频率之交流电流,所产生的总阻力称为阻抗(Zo),对印刷电路板而言,是指在高频讯号之下,某一线路层( signal layer)对其最接近的相关层(reference plane)总合之阻抗. 1.2特性阻抗: 在传输讯号线中,高频讯号或电磁波传播时所遭遇的阻力称之为特性阻抗 1.3差动阻抗: 由两根差动信号线组成的控制阻抗的一种复杂结构,驱动端输入的信号为极性相反的两个信号波形,分别由两根差动线传送,在接收端这两个差动信号相减,这种方式主要用于高速数模电路中以获得更好的信号完整性及抗噪声干扰 1.4 Coplanar阻抗: 当阻抗线距导体的距离小于等于最近对应层的距离时即为Coplanar阻抗. 1.5介质常数(Dielectric Constant),又称透电率(Permittivity): 指介质材料的电容ε,与相同条件下以真空为介质之电容εo,两者之比值(ε/εo). 即. Εr=ε/εo. 1.6介质: 原指电容器两极板之间的绝缘材料而言,现已泛指任何两导体之间的绝缘物质,如各种树脂与配合的棉纸以及玻纤布. 1.7 影响阻抗之要素相对于阻抗变化之关系(其中一个参数变化, 假设其余条件不变) 1.7.1 阻抗线宽:阻抗线宽与阻抗成反比, 线宽越细, 阻抗越高, 线宽越粗,阻抗越低. 1.7.2 介质厚度:介质厚度与阻抗成正比, 介质越厚则阻抗越高, 介质越薄则阻抗越低. 1.7.3 介电常数:介电常数与阻抗成反比, 介电常数越高,阻抗越低,介电常数越低,阻抗越高. 1.7.4 防焊厚度:防焊厚度与阻抗成反比.在一定厚度范围内,防焊厚度越厚,阻抗越低,防焊厚 度越薄,阻抗越高. 1.7.5 铜箔厚度:铜箔厚度与阻抗成反比, 铜厚越厚,阻抗越低,铜厚越薄, 阻抗越高. 1.7.6 差动阻抗:间距与阻抗成正比.间距越大,阻抗越大. 其余影响因素则与特性阻抗相同. 1.7.7 Coplanar阻抗:阻抗线距导体的间距与阻抗成正比,间距越大,阻抗越大.其它影响因素 则与特性阻抗相同. 2. 作业内容: 2.1 客户数据确认 2.1.1. 确认客户有无阻抗要求,有无阻抗类型及迭构要求,是否为厂内打样的第一个版本,若 不是确认阻抗.迭构等是否与前版相同. 2.1.2. 如有阻抗及迭构要求且为厂内打样的第一个版本则需模拟确认阻抗能否达到规格中

相关文档
相关文档 最新文档