文档库 最新最全的文档下载
当前位置:文档库 › 基于CTBN的移动对象不确定轨迹预测算法_乔少杰

基于CTBN的移动对象不确定轨迹预测算法_乔少杰

基于CTBN的移动对象不确定轨迹预测算法_乔少杰
基于CTBN的移动对象不确定轨迹预测算法_乔少杰

移动通信原理与系统-教学大纲

《移动通信》课程教学大纲 一、课程名称:(移动通信原理与系统) ( 32学时) 二、先修课程:通信原理、通信网基础 三、适用专业:通信工程专业 四、课程教学目的 本课程是通信工程本科专业课。移动通信是当今通信领域发展最快、应用最广和最前沿的通信技术。移动通信的最终目标是实现任何人可以在任何地点、任何时间与其他任何人进行任何方式的通信。移动通信技术包括了组网技术、多址技术、语音编码技术、抗干扰抗衰落技术、调制解调技术、交换技术以及各种接口协议和网管等等多方面的技术。因此从某种意义上可以说,移动通信系统汇集了当今通信领域内各种先进的技术。通过本课程的学习使学生了解和掌握移动通信的基本理论,了解和掌握移动通信的发展、蜂窝移动通信系统的基本概念、移动通信的信道、移动通信系统的调制和抗干扰技术、语音编码技术、移动通信中的多址接入、移动通信网以及GSM系统、CDMA系统和3G技术以及未来无线通信的发展等。 五、课程教学基本要求 1.理解和掌握无线信道和传播、传播损耗模型; 2.掌握移动通信中的信源编码的基本概念和调制解调技术; 3.理解和掌握移动通信中的各种抗衰落抗干扰技术; 4.掌握移动通信系统的组网技术; 5.掌握GSM移动通信系统、理解GPRS系统的基本原理以及EDGE的基本原理; 6.掌握基于CDMA20001X系统、WCDMA系统和TD-SCDMA系统的基本原理和应用; 7.了解未来移动通信的发展。 六、教学内容及学时分配(不含实验) 第一章概述 1学时 第二章移动通信电波传播环境与传播预测模型 4学时内容: ●无线传播的特点以及对无线通信的影响; ●无线信道的特性,研究方法 ●无线信道的分析基础(分布,特性参数等) ●简单介绍建模技术和仿真技术基础 ●介绍常见的几种传播预测模型 ●说明应用范围和应用方法

倒车轨迹理论实现方法

倒车轨迹理论实现方法 Pleasure Group Office【T985AB-B866SYT-B182C-BS682T-STT18】

倒车轨迹理论实现方法 帅文王文梁 关键字:倒车轨迹视角转换 前言:倒车轨迹是近两年部分国产汽车导航设备上新出现的一个功能,其借助方向盘转角信息将汽车可能的后退路线叠加到后视摄像头的输出上并标注出距离,以直观形象化的形式协助驾驶人员调整选择倒车路线,减少驾驶人员特别是新手的误判断,对使用者是一个不错的实用功能。倒车轨迹在智能倒车领域内属于辅助倒车系统中的一种,虽然其还无法达到智能化倒车,但是其实用性和辅助性上对汽车智能化单元技术方面是一个有效的补充。本文将基于使用为目的,从经验角度并结合基本数学推导分析倒车轨迹的原理、实现过程并给出实际使用过程中需要的操作点。由于本文非侧重于数学理论,对部分数学细节在不影响实际结论情况下不做深入探讨。 一倒车轨迹的基本原理 从日常经验可知,以自行车为例,如果前轮有一定转角,在维持转角不变状态和无轴向移动前提下自行车走过的路径将会以某个圆点为中心旋转,同样的状态也会出现在汽车上。其走过路径如图1。 图中假设车轮不会出现轴向移动,故如果保持车轮转角不变的情况下,每个车轮只能沿着垂直其车轴的方向行进,这里取前后轮的轴心作为轨迹跟踪点(实际过程中两个前轮轴心不会出现平行),则轨迹应该是以前后轮轴向线的焦点为圆心的圆。图中φ为为前轮同水平方向的夹角,记前后轮轴距为L,后轮轴长为W,后轮距离车尾的距离为D,从几何关系可知,后轮轴心的运动轨迹可以描述为以半径Lcot(φ)的圆周运动。两个后轮的轨迹分别为Lcot(φ)-W/2和Lcot(φ)+W/2的圆。这里的推导过程采用经验法结合几何推算,完全从数学角度的推算过程请参考资料1。图中的x方向和y方向不同于一般习惯主要是考虑后面的视角变换。从等式可以看到,当φ接近0度时候行进轨迹近似直线,接近90度时半径呈缩小趋势,符合我们日常经验值。 二视角转换 从倒车公式推导出的路线图为行进路线的俯视图,实际显示给操作者的路线应该是从车内观察点观察到的轨迹,驾驶人员看到的运动轨迹实际为以车尾摄像头为中心点坐标的图像描述(图一中车尾位置的原点)。将摄像头位置定为坐标零点,则轨迹上的任意点位置公式为:(x+Lcot(φ))2+(y+D)2=(Lcot(φ))2(1) 上面推导的轨迹仍然是基于俯视条件下的轨迹,看到的应该为处于一定视角观察的轨迹,故需要进行一定角度的转换才能切换到实际观察到的图像。假设摄像头的可视角范围为2α,摄像头距离地面h,摄像头中心线同水平面的夹角为β,输出屏幕的高度为H,这里假设摄像头相对于屏幕为一个点,会造成实际计算结果的一定偏差,关于偏差的细节数学计算不属本文讨论的重点。我们实际观察到的Yr为地面y在显示屏H上的投影,y方向的转换过程如图二:

吉大19春学期《移动通信原理与应用》在线作业一

(单选题)1: W-CDMA系统采用的多址方式为()。 A: FDMA B: CDMA C: TDMA D: FDMA/ CDMA 正确答案: (单选题)2: GSM1800收发频率间隔为()。 A: 95MHz B: 45MHz C: 35MHz D: 25MHz 正确答案: (单选题)3: 跳频能有效地改善以下()现象。 A: 远近效应 B: 阴影效应 C: 多经效应 D: 码间干扰 正确答案: (单选题)4: 在移动通信系统中,中国的移动国家代码为( )。A: 86 B: 086 C: 460 D: 0086 正确答案: (单选题)5: GPRS系统可以提供高达()的理论数据传输速率。A: 14.4Kb/s B: 115.2Kb/s C: 171.2Kb/s D: 384Kb/s 正确答案: (单选题)6: N-CDMA系统采用的多址方式为( )。 A: FDMA B: CDMA C: TDMA D: FDMA/CDMA 正确答案: (单选题)7: 数字移动通信网的优点是()。 A: 频率利用率低

B: 不能与ISDN兼容 C: 抗干扰能力强 D: 话音质量差 正确答案: (单选题)8: GSM900收发频率间隔为()。 A: 25MHz B: 35MHz C: 45MHz D: 75MHz 正确答案: (单选题)9: 下面说法正确的是()。 A: GSM手机比CDMA手机最低发射功率小 B: 光纤通信使用的光波工作波段是毫米波 C: WCDMA是在GSM网络基础上发展演进的 D: 在通信系统中,电缆比光缆的传输质量好 正确答案: (单选题)10: 开环功率控制的精度()闭环功率控制的精度。 A: 大于 B: 小于 C: 接近 D: 不好说 正确答案: (多选题)11: 相比目前的定向天线而言,智能天线具有以下()优点。A: 降低用户间干扰 B: 增强覆盖 C: 实现结构简单 D: 提高系统容量 正确答案: (多选题)12: GSM支持的基本业务又分为()。 A: 补充业务 B: 电信业务 C: 承载业务 D: 附属业务 正确答案: (多选题)13: 常用的多址技术包括()。 A: 频分多址(FDMA) B: 时分多址(TDMA) C: 码分多址(CDMA)

移动平均法案例

移动平均法。该方法是根据时间数列的各期数值作出非直线长期趋势线的一种比 较简单的方法,连续地求其平均值,再计算相邻两期平均值的变动趋势,然后计算平均发展趋势,进行预测。例 某公司1997年1~12月销售额的统计资料如表7-1所示,用移动平均法预测1998年1月的销售额。 第一步,计算相邻五个月的销售额平均数(按多少期计算平均数,要根据具体情况而定,期数少,则反映波动比较灵敏,但预测误差大;期数多,则反映波动平滑,预测较为精确)。如1~5月销售额的平均值为: 8.355 41 343734331=++++= X 依次类推:求出,,...,,,8432X X X X 并填入表中。 第二步,计算相邻两个平均值的差,该差称为平均值的变动趋势,如1X 与2X 之差为: 38—35.8=2.2依此类推,计算变动趋势值,填入表中。 第三步,计算相邻四期变化趋势之平均值,称为四期平均发展趋势,如前四期变动趋势的平均值为:(2.2+3.2+1.8+2.6)÷4=2.45依此类推,将数字填人表中。 第四步,预测1998年1月的销售额,最后5个月的平均月销售额为49万元,加上最后一期平均发展趋势1.5万元,所以1998年1月的预测值为: 49+3ⅹ1.5=53.5(万元) (其中3ⅹ1.5,是因为预测期距平均月销售额为3个月,所以需要乘以3)。 季节性波动分析。当产品的市场需求呈明显的季节性波动时,用平均法进行销售 预测就不能正确地反映销售量的波动。要用计算季节指数的办法来预测季节性波动。 例 某地区涤棉府绸三年内各个季节的市场销售量如表6.2所示。 从表6.2中很明显地可以看出,涤棉府绸的销售量淡季与旺季相差近一倍左右。如果简单地用移动平均来预测某一个季节的市场需要,就不符合实际情况,这就可以用季节指数进行预测。其计算方法如下:

《移动通信原理与系统》考点

移动通信原理与系统 第1章概论 1.(了解)4G网络应该是一个无缝连接的网络,也就是说各种无线和有线网络都能以IP协议为基础连接到IP核心网。当然为了与传统的网络互连则需要用网关建立网络的互联,所以将来的4G网络将是一个复杂的多协议的网络。 2.所谓移动通信,是指通信双方或至少有一方处于运动中进行信息交换的通信方式。 移动通信系统包括无绳电话、无线寻呼、陆地蜂窝移动通信、卫星移动通信等。无线通信是移动通信的基础。 3.移动通信主要的干扰有:互调干扰、邻道干扰、同频干扰。(以下为了解) 1)互调干扰。指两个或多个信号作用在通信设备的非线性器件上,产生与有用信号频率相近的组合频率,从而对通信系统构成干扰。 2)邻道干扰。指相邻或邻近的信道(或频道)之间的干扰,是由于一个强信号串扰弱信号而造成的干扰。 3)同频干扰。指相同载频电台之间的干扰。 4.按照通话的状态和频率的使用方法,可以将移动通信的工作方式分成:单工通信、双工通信、半双工通信。 第2章移动通信电波传播与传播预测模型 1.移动通信的信道是基站天线、移动用户天线和两副天线之间的传播路径。 对移动无线电波传播特性的研究就是对移动信道特性的研究。 移动信道的基本特性是衰落特性。 2.阴影衰落:由于传播环境中的地形起伏、建筑物及其他障碍物对电磁波的遮蔽所引起的衰落。 多径衰落:无线电波呢在传播路径上受到周围环境中地形地物的作用而产生的反射、绕射和散射,使其到达接收机时是从多条路径传来的多个信号的叠加,这种多径传播多引起的信号在接收端幅度、相位和到达时间的随机变化将导致严重的衰落。 无线信道分为大尺度传播模型和小尺度传播模型。大尺度模型主要是用于描述发射机与接收机之间的长距离(几百或几千米)上信号强度的变化。小尺度衰落模型用于描述短距离(几个波长)或短时间(秒级)内信号强度的快速变化。 3.在自由空间中,设发射点处地发射功率为P t,以球面波辐射;设接收的功率为P r,则 P r=(A r/4πd2)P t G t 式中,A r=λ2G r/4π,λ为工作波长,G t、G r分别表示发射天线和接收天线增益,d为发射天线和接收天线间的距离。 4.极化是指电磁波在传播的过程中,其电场矢量的方向和幅度随时间变化的状态。 电磁波的极化可分为线极化、圆极化和椭圆极化。 线极化存在两种特殊的情况:电场方向平行于地面的水平极化和垂直于地面的垂直极化。在移动通信中常用垂直极化天线。 5.极化失配:接收天线的极化方式只有同被接收的电磁波的极化形式一致时,才能有效地接收到信号,否则将使接收信号质量变坏,甚至完全收不到信号。 6.阴影衰落又称慢衰落,其特点是衰落与无线电传播地形和地理的分布、高度有关。 7.多径衰落属于小尺度衰落,其基本特性表现在信号的幅度衰落和时延扩展。 8.多普勒频移:f d=(v/λ)cosα,式中v为移动速度;λ为波长;α为入射波与移动台方向之间的夹角;v/λ=f m为最大多普勒频移。

3移动平均法

第二节移动平均法 移动平均法是根据时间序列资料,逐项推移,依次计算包含二定项数的序时平均数,以反映长期趋势的方法。当时间序列的数值由于受周期变动和不规则变动的影响,起伏较大,不易显示出发展趋势时,可用移动平均法,消除这些因素的影响,分析,预测序列的长期趋势。 移动平均法有简单移动平均法,加权移动平均法,趋势移动平均法,分别介绍如下: 一简单移动平均法 设时间序列为Y1,Y2,……YT……;简单移动平均法公式为: 式中:Mt为t期移动平均数;N为移动平均数的项数. 这公式表明:当T向前移动一个时期,就增加一个新近数据,去掉一个远期数据,得到一个新的平均数. ∴t-1+ M t=M t-1 这是它的递堆公式。当N较大时,利用递堆公式可以大大减少计算量。 由于移动平均可以平滑数据,消除周期变动和不规则变动的影响使长期趋势显示出来,因而可以用于预测: 预测公式为:y t+1=M t 即以第t期移动平均数作为第t+1期的预测值。 例1:某市汽车配件销售公司,某年1月至12月的化油器销量如表4-1所示。试用简单移动平均法,预测下年1月的销售量。 解:分别取N=3和N=5按列预公式 y t = y t+1= 计算3个月和5个月移动平均预测值,其结果如表: y t-y t-N y t-y t-N ^ ^ y t+y t-1+y t-2 3 y t+y t-1+y t-2+y t-3+y t-4 ^ 5

1002003004005006001 2 3 4 5 6 7 8 9101112 实际销售量3个月移动平均预测值 5个月移动平均预测值 由图可以看出,实际销售量的随机波动比较大,经过移动平均法计算以后,随即波动显著减小,即消除随机干扰。而且求取平均值所用的月数越多,即N 越大,修匀的程度也越大,波动也越小。但是,在这种情况下,对实际销售量真实的变化趋势反应也越迟钝。 反之,如果N 取的越小,对销售量真实变化趋势反应越灵敏,但修匀性越差,从而把随机干扰作为趋势反映出来。 因此,N 的选择甚为重要,N 应取多大,应根据具体情况作出抉择,当N 等于周期变动的周期时,则可消除周期变动影响。 在实用上,一个有效的方法是:取几个N 值进行试算,比较它们的平均预测误差,从中选择最优的。 如:在本例中,要确定化油器销售量预测,究竟是取3合适还是取5合适,可通过计算这两个预测公式的均方误差MSE ,选择MSE 较小的那个N 。

加权平均 和 移动平均法

加权平均 统计学名词. “统计初步”这部分内容中,平均数是一个非常重要而又有广泛用途的概念,在日常生活中,我们经常会听到这样一些名词:平均气温、平均降雨量、平均产量、人均年收入等;而平均分数、平均年龄、平均身高等名词更为同学们所熟悉.一般来说,平均数反映了一组数据的一般水平,利用平均数,可以从横向和纵向两个方面对事物进行分析比较,从而得出结论.例如,要想比较同一年级的两个班同学学习成绩,如果用每个班的总成绩进行比较,会由于班级人数不同,而使比较失去真正意义.但是如果用平均分数去比较,就可以把各班的平均水平呈现出来.从纵向的角度来看,可以对同一个事物在不同的时间内的情况利用平均数反映出来,例如,通过两个不同时间人均年收入来比较人们生活水平、经济发展等状况. 但是,当一组数据中的某些数重复出现几次时,那么它们的平均数的表示形式发生了一定的变化.例如,某人射击十次,其中二次射中10环,三次射中8环,四次射中7环,一次射中9环,那么他平均射中的环数为: (10 *2+8*3+7*4+9*1)/10 = 8.1 这里,7,8,9,10这四个数是射击者射中的几个不同环数,但它们出现的频数不同,分别为4,3,l,2,数据的频数越大,表明它对整组数据的平均数影响越大,实际上,频数起着权衡数据的作用,称之为权数或权重,上面的平均数称为加权平均数,不难看出,各个数据的权重之和恰为10. 在加权平均数中,除了一组数据中某一个数的频数称为权重外,权重还有更广泛的含义. 在评估某个同学一学期的学生成绩时,一般不只看他期末的一次成绩,而是将平时测验、期中考试等成绩综合起来考虑,比如说,一同学两次单元测验的成绩分别为88,90,期中的考试成绩为92,而期末的考试成绩为85,如果简单地计算这四个成绩的平均数,即将平时测验与期中、期末考试成绩同等看待,就忽视了期末考试的重要性.鉴于这种考虑,我们往往将这四个成绩分配以不同的权重。 由于10%+10%+30%+50%=1,即各个权重之和为1,所以求加权平均数的式子中分母为1.下面的例子是未知权重的情况: 股票A,1000股,价格10; 股票B,2000股,价格15; 算数平均 = (10 + 15) / 2 = 12.5; 加权平均 = (10 x 1000 + 15 x 2000) / (1000 + 2000) = 13.33 其实,在每一个数的权数相同的情况下,加权平均值就等于算数平均值。 此外在一些体育比赛项目中,也要用到权重的思想.比如在跳水比赛中,每个运动员除完成规定动作外,还要完成一定数量的自选动作,而自选动作的难度是不同的,两位选手由于所选动作的难度系数不

井眼轨道参数的插值计算

井眼轨道参数的插值计算 由于实钻井眼轨道的测点与钻柱单元体的划分可能并不一致,因此钻柱单元体边界点对应的井眼轨道参数必须靠插值计算获得。插值结果的准确与否,对钻柱单元体的受力计算有着直接的影响。因此,提高插值计算的精度具有重要意义。 由于测点是离散的,无法知道各测段内井眼轨道的实际形态,所以测段内某点几何参数的计算方法都是建立在一定假设的基础上的。这些计算方法多数是将测段内的井眼轨道假设为直线、折线和曲线等,早期,由于计算机能力的限制,以平均角法和平衡正切法为代表直线或折线假设,因其计算简单快速,曾经被广泛应用,但随着钻井技术的发展,弯曲的井眼轨迹增多,如果仍采用直线或折线假设,则计算精度相对较低。由于计算技术的高速发展,直线或折线假设,目前几乎淘汰,取而代之的是以圆柱螺线和空间圆弧曲线等为代表的曲线假设,大行其道。 在进行插值计算时,各插值点的坐标增量可以采用不同的计算方法,但坐标值的累加形式是相同的,即(X 为东向位移,Y 为北向位移, Z 为垂直向位移,S 为水平位移) ?????????? ??+=?+=?+=?+=?+=?+=φ φφa a αS S S Z Z Z Y Y Y X X X 1212121212 12 所以,在以下的计算方法中将只给出坐标增量的计算式。 典型轨迹模型插值 1、正切法: 正切法又称下切点法,或下点切线法。此法假定两相邻测点之间的孔段为一条直线,长度等于测距,该直线的井斜角和井斜方位角等于下测点的井斜角和井斜方位角,整个钻孔轨迹是直线与直线相连接的空间折线。

正切法井身轨迹计算图 如图1所示,1、2 是孔身轨迹上相邻的两个测点,1′、2′是 1、2 两个测点的水平投影。该测段的井斜角和井斜方位角等于下测点 2 的井斜角和井斜方位角。 对于切线法,上下两个相邻测点间各参数的计算公式如下: 2 2222 2cos sin sin sin sin cos φαφαααL Y L X L S L Z ?=??=??=??=? 式中: Z ?——测段上下测点间垂直深度的分量(增量)(以下同); L ?——测段上下测点间沿钻孔轴线的距离(以下同); Y ??X ——分别为测段上下测点间水平位移在 X 轴(西东方向)的分量(增量);水平位移在 Y 轴(南北方向)的分量(增量)(以下同); 22 φα——分别为测段下测点的井斜角和井斜方位角。

移动通信原理与系统(北京邮电出版社)课后习题答案

第一章概述 1.1简述移动通信的特点: 答:①移动通信利用无线电波进行信息传输;②移动通信在强干扰环境下工作;③通信容量有限;④通信系统复杂;⑤对移动台的要求高。 1.2移动台主要受哪些干扰影响?哪些干扰是蜂窝系统所特有的? 答:①互调干扰;②邻道干扰;③同频干扰(蜂窝系统所特有的);④多址干扰。 1.3简述蜂窝式移动通信的发展历史,说明各代移动通信系统的特点。 答:第一代(1G)以模拟式蜂窝网为主要特征,是20世纪70年代末80年代初就开始商用的。其中最有代表性的是北美的AMPS(Advanced Mobile Phone System)、欧洲的TACS(Total Access Communication System)两大系统,另外还有北欧的NMT 及日本的HCMTS系统等。 从技术特色上看,1G以解决两个动态性中最基本的用户这一重动态性为核心并适当考虑到第二重信道动态性。主要是措施是采用频分多址FDMA 方式实现对用户的动态寻址功能,并以蜂窝式网络结构和频率规划实现载频再用方式,达到扩大覆盖服务范围和满足用户数量增长的需求。在信道动态特性匹配上,适当采用了性能优良的模拟调频方式,并利用基站二重空间分集方式抵抗空间选择性衰落。 第二代(2G)以数字化为主要特征,构成数字式蜂窝移动通信系统,它于20世纪90年代初正式走向商用。其中最具有代表性的有欧洲的时分多址(TDMA)GSM(GSM原意为Group Special Mobile,1989年以后改为Global System for Mobile Communication)、北美的码分多址(CDMA)的IS-95 两大系统,另外还有日本的PDC 系统等。 从技术特色上看,它是以数字化为基础,较全面地考虑了信道与用户的二重动态特性及相应的匹配措施。主要的实现措施有:采用TDMA(GSM)、CDMA(IS-95)方式实现对用户的动态寻址功能,并以数字式蜂窝网络结构和频率(相位)规划实现载频(相位)再用方式,从而扩大覆盖服务范围和满足用户数量增长的需求。在对信道动态特性的匹配上采取了下面一系列措施: (1)采用抗干扰性能优良的数字式调制:GMSK(GSM)、QPSK(IS-95),性能优良的抗干扰纠错编码:卷积码(GSM、IS-95)、级联码(GSM); (2)采用功率控制技术抵抗慢衰落和远近效应,这对于CDMA方式的IS-95尤为重要; (3)采用自适应均衡(GSM)和Rake 接收(IS-95)抗频率选择性衰落与多径干扰; (4)采用信道交织编码,如采用帧间交织方式(GSM)和块交织方式(IS-95)抗时间选择性衰落。 第三代(3G)以多媒体业务为主要特征,它于本世纪初刚刚投入商业化运营。其中最具有代表性的有北美的CDMA2000、欧洲和日本的WCDMA及我国提出的TD-SCDMA三大系统,另外还有欧洲的DECT及北美的UMC-136。 从技术上看,3G 是在2G 系统适配信道与用户二重动态特性的基础上又引入了业务的动态性,即在3G 系统中,用户业务既可以是单一的语音、数据、图像,也可以是多媒体业务,且用户选择业务是随机的,这个是第三重动态性的引入使系统大大复杂化。所以第三代是在第二代数字化基础上的、以业务多媒体化为主要目标,全面考虑并完善对信道、用户二重动态特性匹配特性,并适当考虑到业务的动态性能,尽力采用相应措施予以实现的技术。其主要实现措施有: (1)继续采用第二代(2G)中所采用的所有行之有效的措施; (2)对CDMA 扩频方式应一分为二,一方面扩频提高了抗干扰性,提高了通信容量;另一方面由于扩频码互相关性能的不理想,使多址干扰、远近效应影响增大,并且对功率控制提出了更高要求等; (3)为了克服CDMA 中的多址干扰,在3G 系统中,上行链路建议采用多用户检测与智能天线技术;下行链路采用发端分集、空时编码技术; (4)为了实现与业务动态特性的匹配,3G 中采用了可实现对不同速率业务(不同扩频比)间仍具有正交性能的OVSF(可变扩频比正交码)多址码; (5)针对数据业务要求误码率低且实施性要求不高的特点,3G 中对数据业务采用了Turbo 码。

井眼轨迹的三维显示

中文摘要 井眼轨迹的三维显示 摘要 本文介绍了国内外井眼轨迹三维显示技术的研究现状,归纳了常规二维定向井轨道设计原则和几种轨道类型的计算方法,以及井眼轨迹测斜计算的相关规定、计算模型假设和轨迹计算方法。从井位、井下测量和计算三个方面对井眼轨迹误差进行了讨论并简要说明了不同的井眼轨迹控制。在此基础之上,利用VB和MATLAB软件编制了井眼轨迹的三维显示软件,并简要介绍了该软件的设计流程、主要功能和难点处理,指出了软件的不足之处,展示了井眼轨迹三维绘图的所有运行界面,并附上软件说明书。最后,对井眼轨迹三维显示开发的研究方向进行了展望。 关键字井眼轨迹三维显示 MATLAB Visual Basic 轨迹计算轨道设计误差分析

重庆科技学院本科生毕业设计英文摘要 Abstract In this paper, at home and abroad well trajectory 3-D display technology of the status quo,Summarized the conventional two-dimensional directional well the track design principles and track several types of calculation method,And the well trajectory inclinometer terms of the relevant provisions, the model assumptions and trajectory calculation. From the wells, underground measurement and calculation of the three aspects of the well trajectory error was discussed and a brief description of the different well trajectory control. On this basis, using VB and MATLAB software produced a hole trajectory of the three-dimensional display software, and gave a briefing on the software design process, and difficulties in dealing with the main function, pointed out the inadequacy of the software, demonstrated the well trajectory 3-D graphics interface all the running, along with software manuals. Finally, the well trajectory 3-D display development direction of the prospect. Keyword:Well trajectory;3-D display;MATLAB ;Visual Basic;trajectory calculation ;trajectory design ;Error Analysis

《移动通信原理与应用》实验报告

重庆交通大学信息科学与工程学院综合性设计性实验报告 专业:通信工程专业12级 学号:631206040218 姓名:柴闯闯 实验所属课程:移动通信原理与应用 实验室(中心):信息技术软件实验室 指导教师:谭晋 2014年11月

一、题目 扩频通信系统仿真实验 二、仿真要求 ①传输的数据随机产生,要求采用频带传输(DPSK调制); ②扩频码要求采用周期为63(或127)的m序列; ③仿真从基站发送数据到三个不同的用户,各不同用户分别进行数据接收; ④设计三种不同的功率延迟分布,从基站到达三个不同的用户分别经过多径衰落(路径数分别为2,3,4); ⑤三个用户接收端分别解出各自的数据并与发送前的数据进行差错比较。 三、仿真方案详细设计 (1)通信系统的总体框图如下: 由上图可以看出,整个设计由发送端、信道和接收机三个部分组成。 ①发射机原理

发送端首先产生三组用户数据和三组不同的m序列,并用三组m序列分别对用户信息进行扩频。再将扩频信号与载波进行DPSK调制,得到高频的已调调信号并将其送入无线的多径信道。 ②无线信道 信道模拟成无线的多径多用户信道,在这个信道中有三个用户进行数据传输,每个用户的数据分别通过三径传输到达接收端。三径会有不同的延时,衰减。最终,还要将三径用户数据增加高斯白噪声。 ③接收机原理 接收端会接收到有燥的三径信息的叠加。首先,要对接收到的三径信息进行解扩,分离出三组用户信息;其次,在将解扩后的信息进行带通滤波去除带外噪声;最后,分别对三组用户信息进行解调得到原始数据,在对接收到的数据进行误码率统计,得出系统的性能指标。 (2)功能模块的详细设计 ①扩频码(m序列)的产生 扩频码为伪随机码,可以m序列、Golden序列。本设计采用自相关特性好,互相关特性较差的m序列,为了节省运算量,我选取了周期为63扩频序列,经过计算易知要产生周期为63的m序列需要长度为6的反馈系数,经过查找资料得出三组反馈系数(八进制)45、67、75,其对应的二进制为1000011、1100111、1101101。并将二进制与移位寄存器级数对应,以1000011为例,设初始化各寄存器单元内容为1,其具体的寄存器结构图如下所示:

定向井轨迹设计计算方法探析

1.井眼轨迹的基本概念 1.1定向井的定义 定向井是按预先设计的井斜角、方位角及井眼轴线形状进行钻进的井。(井斜控制是使井眼按规定的井斜、狗腿严重度、水平位移等限制条件的钻井过程)。 1.2井眼轨迹的基本参数 所谓井眼轨迹,实指井眼轴线。 测斜:一口实钻井的井眼轴线乃是一条空间曲线。为了进行轨迹控制,就要了解这条空间曲线的形状,就要进行轨迹测量,这就是“测斜”。 测点与测段:目前常用的测斜方法并不是连续测斜,而是每隔一定长度的井段测一个点。这些井段被称为“测段”,这些点被称为“测点”。 基本参数:测斜仪器在每个点上测得的参数有三个,即井深、井斜角和井斜方位角。这三个参数就是轨迹的基本参数。 井深:指井口(通常以转盘面为基准)至测点的井眼长度,也有人称之为斜深,国外称为测量井深(Measure Depth)。井深是以钻柱或电缆的长度来量测。井深既是测点的基本参数之一,又是表明测点位置的标志。 井深常以字母L表示,单位为米(m)。井深的增量称为井段,以ΔL表示。二测点之间的井段长度称为段长。一个测段的两个测点中,井深小的称为上测点,井深大的称为下测点。井深的增量总是下测点井深减去上测点井深。 井斜角:井眼轴线上每一点都有自己的井眼前进方向。过井眼轴线上的某点作井眼轴线的切线,该切线向井眼前进方向延伸的部分称为井眼方向线。井眼方向线与重力线之间的夹角就是井斜角。 井斜角常以希腊字母α表示,单位为度(°)。一个测段内井斜角的增量总是下测点井斜角减去上测点井斜角,以Δα表示。 井斜方位角:井眼轴线上每一点,都有其井眼方位线;称为井眼方位线,或井斜方位线。井眼轴线上某点处的井眼方向线投影到水平面上,即为该点的井眼方位线(井斜方位线)以正北方位线为始边,顺时针方向旋转到井眼方位线(井斜方位线)上所转过的角度,即井眼方位角。井斜方位角常以字母θ表示,单位为度(°)。井斜方位角的增量是下测点的井斜方位角减去上测点的井斜方位角,以Δθ表示。井斜方位角的值可以在0~360°范围内变化。 磁偏角:目前广泛使用的磁性测斜仪是以地球磁北方位为基准的。磁北方位与正北分

移动平均法简单应用

. 移动平均法 移动平均法是一种简单平滑预测技术,它的基本思想是:根据时间序列资料、逐项推移,依次计算包含一定项数的序时平均值,以反映长期趋势的方法。因此,当时间序列的数值由于受周期变动和随机波动的影响,起伏较大,不易显示出事件的发展趋势时,使用移动平均法可以消除这些因素的影响,显示出事件的发展方向与趋势(即趋势线),然后依趋势线分析预测序列的长期趋势。 1. 移动平均法的基本理论①简单移动平均法 设有一时间序列,则按数据点的顺序逐点推移求出N个数的平均数,即可得到一次移动平均数: 为第t周期的一次移动平均数;为第式中t周期的观测值;N为移动平均的项数, 即求每一移动平均数使用的观察值的个数。 这个公式表明当t向前移动一个时期,就增加一个新近数据,去掉一个远期数据,得到一个新的平均数。由于它不断地“吐故纳新”,逐期向前移动,所以称为移动平均法。 由于移动平均可以平滑数据,消除周期变动和不规则变动的影响,使得长期趋势显示出来,因而可以用于预测。其预测公式为: 即以第t周期的一次移动平均数作为第t+1周期的预测值。 ②趋势移动平均法当时间序列没有明显的趋势变动时,使用一次移动平均就能够准确地反映实际情况,直接用第t周期的一次移动平均数就可预测第t+1周期之值。但当时间序列出现线性变动趋势时,用一次移动平均数来预测就会出现滞后偏差。因此,需要进行修正,修正的方法是在一次移动平均的基础上再做二次移动平均,利用移动平均滞后偏差的规律找出曲线的发展方向和发展趋势,然后才建立直线趋势的预测模型。故称为趋势移动平均法。 设一次移动平均数为,则二次移动平均数的计算公式为:

从某时期开始具有直线趋势,且认为未来时期亦按此直再设时间序列 线趋势变化,则可设此直线趋势预测模型为: 式中t为当前时期数;T为由当前0时期数t到预测期的时期数,即t以后模型外推的时 间;为第t+T期的预测值;为截距;为斜率。,又称为平滑系数。 文档资料Word . 的计算公式为:根据移动平均值可得截距和斜率 的选择十分关键,它取决于预测目标和实际在实际应用移动平均法时,移动平均项数N 数据的变化规律。 2. 应用举例年该商场的年销售额。1998年的年销售额如下表所示,试预测1999已知某商场1978~ 销售额销售额年份年份 76 1989 32 1978 73 1979 41 1990 48 1980 79 1991 1992 53 1981 84

移动通信原理与应用(大作业)

一.(30分)分析PSTN用户呼叫GSM系统的MS时,经过GMSC到MSC/VLR的选路过程。回答(1)呼叫过程中涉及哪几个主要号码?(2)GMSC到MSC/VLR的选路过程 答:(1) (1)客户A 要建立一个呼叫,他只要拨被叫B 客户号码 (2)MSC(B客户为移动客户时) (3)(PSTN)的交换机(B客户为固定客户时) (4)B客户漫游号码(MSRN)。 (5)B客户MSISDN号码 (6)客户识别码(IMSI) (7)客户的位置区识别码(LAI) 答:(2)主叫,若一MS处于激活且空闲状态,客户A 要建立一个呼叫,他只要拨被叫B 客户号码,再按“发送”键,MS便开始启动程序。 首先,MS通过随机接入控制信道(RACH)向网络发第一条消息,既接入请求消息,MSC 会分配它一专用信道,查看A客户的类别并标注此客户忙。若网络容许此MS接入网络,则MSC 发证实接入请求消息。接着,MS发呼叫建立消息及B客户号码,MSC根据此号码将主叫与被叫所在MSC连通,并将被叫号码送至被叫所在MSC(B客户为移动客户时)或送入固定网(PSTN)的交换机(B客户为固定客户时)中进行分析。 一旦通往B客户的链路准备好,网络便向MS发呼叫建立证实,并给它分配专用业务信道TCH。至此,呼叫建立过程基本完成,MS等待B客户的证实信号。若MS作被叫,以PSTN的固定客户A呼叫GSM的移动客户B的呼叫建立过程,B客户号码为139HlH2H3ABCD。 A客户拨打B客户,拨MSISDN(0139HlH2H3ABCD)号码。本地交换机根据A客户所拨B客户号码中国内目的地代码(139)可以与GSM网的GMSC(GSM网入口交换机)间建立链路,并将B客户MSISDN号码传送给GMSC。GMSC分析此号码,根据HlH2H3ABCD,应用查询功能向B客户的HLR 发MSISDN号码,询问B客户漫游号码(MSRN)。 HLR将B客户MSISDN号码转换为客户识别码(IMSI),查询B客户目前所在的业务区MSC(如他已漫游到广州),向该区VLR发被叫的IMSI,请求VLR分配给被叫客户一个漫游号码MSRN,VLR 把分配给被叫客户的MSRN号码回送给HLR,由HLR发送给GMSC。GMSC有了MSRN,就可以把入局呼叫接到B客户所在的MSC(郑州-广州)。GMSC与MSC的连接可以是直达链路,也可由汇接

井眼轨迹计算新方法

井眼轨迹计算新方法 王礼学陈卫东贾昭清吴华 (四川石油管理局川东钻探公司) 摘要:在钻井和地质工作中常用的井眼轨迹计算方法有5种,算法复杂程度和精度各不相同。其原理一类为将相邻两井斜测点视为一直线,算法较简单;另一类则是将相邻两井斜测点视为一平面曲线,算法稍复杂。一般地,基于平面曲线的算法其精度优于基于直线的算法。本文将介绍一种井眼轨迹计算的新方法─积分法,其原理是一种基于空间曲线的方法,其精度将高于常用的井眼轨迹计算方法,但算法稍复杂。 主题词:井深井斜角方位角井眼轨迹计算公式 钻井工程和地质工作中井眼轨迹计算是十分频繁的工作。随着地质勘探目标的更加精细,特别是定向井对地下靶心的准确定位,对井眼轨迹的确定提出了更高的要求。井眼轨迹的确定包含两部分,一是井眼轨迹的测斜工作,二是测斜数据的处理工作。井眼轨迹计算便属后者。本文介绍的是测斜数据处理新方法。 井眼轨迹是展布在三维空间中的一条曲线,这条曲线是通过测斜数据确定的。它据包括:井深(Measure Depth)L、井斜角(Hole Angle)α、井斜方位(Hole Direction)φ,称之为井斜要素或定向要素。通过井眼轨迹计算,得出以井口位置为坐标原点的各测量点的正北、正东和垂直位移以及水平位移、位移方位等。 目前国内外井眼轨迹计算方法常用的有正切法(Tangential Method)、平均角法(Angle-Averaging)、平衡正切法(Balanced Tangential Method)、圆柱螺线法(Cylind-Spiral Method)和最小曲率法(Minimum- Curvature Method)等等。前三种方法将相邻两测点的井眼轨迹视为一直线(或折线),后两种方法将邻两测点的井眼曲线视为一平面曲线。事实上,相邻两测点间的井眼轨迹为一空间曲线,而且不同井所对应的空间曲线不相同。我们不可能也没必要去求取每口井的实际井眼曲线,前面提到的5种常用方法都是实际井眼轨迹(空间曲线)的近似。根据实际计算和理论分析,基于平面曲线方法的圆柱螺线法和最小曲率法比基于直线方法的正切法、平均角法和平衡正切法要精确些,故在钻井工作中常用圆柱螺线法和最小曲率法来计算井眼轨迹。 本文将介绍一种井眼轨迹计算的新方法─积分法(Integral Method),它是

移动平均法

移动平均法 移动平均法是一种简单平滑预测技术,它的基本思想是:根据时间序列资料、逐项推移,依次计算包含一定项数的序时平均值,以反映长期趋势的方法。因此,当时间序列的数值由于受周期变动和随机波动的影响,起伏较大,不易显示出事件的发展趋势时,使用移动平均法可以消除这些因素的影响,显示出事件的发展方向与趋势(即趋势线),然后依趋势线分析预测序列的长期趋势。 1. 移动平均法的基本理论 ①简单移动平均法 设有一时间序列,则按数据点的顺序逐点推移求出N个数的平均数,即可得到一次移动平均数: 式中为第t周期的一次移动平均数;为第t周期的观测值;N为移动平均的项数,即求每一移动平均数使用的观察值的个数。 这个公式表明当t向前移动一个时期,就增加一个新近数据,去掉一个远期数据,得到一个新的平均数。由于它不断地“吐故纳新”,逐期向前移动,所以称为移动平均法。 由于移动平均可以平滑数据,消除周期变动和不规则变动的影响,使得长期趋势显示出来,因而可以用于预测。其预测公式为: 即以第t周期的一次移动平均数作为第t+1周期的预测值。 ②趋势移动平均法当时间序列没有明显的趋势变动时,使用一次移动平均就能够准确地反映实际情况,直接用第t周期的一次移动平均数就可预测第t+1周期之值。但当时间序列出现线性变动趋势时,用一次移动平均数来预测就会出现滞后偏差。因此,需要进行修正,修正的方法是在一次移动平均的基础上再做二次移动平均,利用移动平均滞后偏差的规律找出曲线的发展方向和发展趋势,然后才建立直线趋势的预测模型。故称为趋势移动平均法。 设一次移动平均数为,则二次移动平均数的计算公式为: 再设时间序列从某时期开始具有直线趋势,且认为未来时期亦按此直线趋势变化,则可设此直线趋势预测模型为: 式中t为当前时期数;T为由当前时期数t到预测期的时期数,即t以后模型外推的时间;

移动通信原理与系统习题答案

1.1简述移动通信的特点: 答:①移动通信利用无线电波进行信息传输; ②移动通信在强干扰环境下工作; ③通信容量有限; ④通信系统复杂; ⑤对移动台的要求高。 1.2移动台主要受哪些干扰影响?哪些干扰是蜂窝系统所特有的? 答:①互调干扰; ②邻道干扰; ③同频干扰;(蜂窝系统所特有的) ④多址干扰。 1.3简述蜂窝式移动通信的发展历史,说明各代移动通信系统的特点。 答:第一代(1G)以模拟式蜂窝网为主要特征,是20世纪70年代末80年代初就开始商用的。其中最有代表性的是北美的AMPS(Advanced Mobile Phone System)、欧洲的TACS(Total Access Communication System)两大系统,另外还有北欧的NMT 及日本的HCMTS系统等。 从技术特色上看,1G以解决两个动态性中最基本的用户这一重动态性为核心并适当考虑到第二重信道动态性。主要是措施是采用频分多址FDMA 方式实现对用户的动态寻址功能,并以蜂窝式网络结构和频率规划实现载频再用方式,达到扩大覆盖服务范围和满足用户数量增长的需求。在信道动态特性匹配上,适当采用了性能优良的模拟调频方式,并利用基站二重空间分集方式抵抗空间选择性衰落。 第二代(2G)以数字化为主要特征,构成数字式蜂窝移动通信系统,它于20世纪90年代初正式走向商用。其中最具有代表性的有欧洲的时分多址(TDMA)GSM(GSM原意为Group Special Mobile,1989年以后改为Global System for Mobile Communication)、北美的码分多址(CDMA)的IS-95 两大系统,另外还有日本的PDC 系统等。 从技术特色上看,它是以数字化为基础,较全面地考虑了信道与用户的二重动态特性及相应的匹配措施。主要的实现措施有:采用TDMA(GSM)、CDMA(IS-95)方式实现对用户的动态寻址功能,并以数字式蜂窝网络结构和频率(相位)规划实现载频(相位)再用方式,从而扩大覆盖服务范围和满足用户数量增长的需求。在对信道动态特性的匹配上采取了下面一系列措施: (1)采用抗干扰性能优良的数字式调制:GMSK(GSM)、QPSK(IS-95),性能优良的抗干扰纠错编码:卷积码(GSM、IS-95)、级联码(GSM); (2)采用功率控制技术抵抗慢衰落和远近效应,这对于CDMA方式的IS-95尤为重要; (3)采用自适应均衡(GSM)和Rake 接收(IS-95)抗频率选择性衰落与多径干扰; (4)采用信道交织编码,如采用帧间交织方式(GSM)和块交织方式(IS-95)抗时间选择性衰落。 第三代(3G)以多媒体业务为主要特征,它于本世纪初刚刚投入商业化运营。其中最具有代表性的有北美的CDMA2000、欧洲和日本的WCDMA及我国提出的TD-SCDMA三大系统,另外还有欧洲的DECT及北美的UMC-136。 从技术上看,3G 是在2G 系统适配信道与用户二重动态特性的基础上又引入了业务的动态性,即在3G 系统中,用户业务既可以是单一的语音、数据、图像,也可以是多媒体业务,且用户选择业务是随机的,这个是第三重动态性的引入使系统大大复杂化。所以第三代是在第二代数字化基础上的、以业务多媒体化为主要目标,全面考虑并完善对信道、用户二重动态特性匹配特性,并适当考虑到业务的动态性能,尽力采用相应措施予以实现的技术。其主要实现措施有: (1)继续采用第二代(2G)中所采用的所有行之有效的措施; (2)对CDMA 扩频方式应一分为二,一方面扩频提高了抗干扰性,提高了通信容量;另一方面由于扩频码互相关性能的不理想,使多址干扰、远近效应影响增大,并且对功率控制提出了更高要求等; (3)为了克服CDMA 中的多址干扰,在3G 系统中,上行链路建议采用多用户检测与智能天线技术;下行链路采用发端分集、空时编码技术; (4)为了实现与业务动态特性的匹配,3G 中采用了可实现对不同速率业务(不同扩频比)间仍具有正交性能的OVSF(可变扩频比正交码)多址码;

相关文档