文档库 最新最全的文档下载
当前位置:文档库 › 高三数学竞赛讲义教案及练习 §17二项式定理与多项式

高三数学竞赛讲义教案及练习 §17二项式定理与多项式

高三数学竞赛讲义教案及练习 §17二项式定理与多项式
高三数学竞赛讲义教案及练习 §17二项式定理与多项式

§17二项式定理与多项式

1.二项工定理

2.二项展开式的通项 它是展开式的第r+1项.

3.二项式系数 4.二项式系数的性质 (1)

(2) (3)若n 是偶数,有,

即中间一项的二项式系数最大.

若n 是奇数,有,即中项二项的二项式系数相等且最大. (4)

(5)

(6) (7)

(8)

以上组合恒等式(是指组合数满足的恒等式)是证明一些较复杂的组合恒等式的基 本工具.(7)和(8)的证明将在后面给出.

5.证明组合恒等式的方法常用的有

(1)公式法,利用上述基本组合恒等式进行证明.

(2)利用二项式定理,通过赋值法或构造法用二项式定理于解题中. (3)利用数学归纳法.

(4)构造组合问题模型,将证明方法划归为组合应用问题的解决方法.

∑=-∈=+n

k k

k n k n n

n b a C b a 0*)()(N )0(1n r b a

C T r r

n r

n r ≤≤=-+).0(n r C r

n ≤≤).0(n k C C k

n n

k

n ≤≤=-).10(1

11-≤≤+=---n k C C C k n k

n k n n

n n n

n n

n

n

C

C

C

C C >>><<<-1210 2n

n

C

n

n

n n n n

n n

n

n

C C C

C

C C >>>=<<<-+-1212110 21

2+n n

n

n

C

C 和.2210

n

n n n n n C C C C =++++ .21

5

3

1

4

2

-=+++=+++n n n n n n n C C C C C C .1

111----=

=k n k

n k n k n C k

n C nC kC 或).(n k m C C C C C C m m k n m

k n

m

k m n m

n m

k k

n ≤≤=?=?+----.1

121++++++=+++++n k n n

k n n

n n

n n

n C C C C C m

n C

例题讲解

1.求的展开式中的常数项.

2.求的展开式里x 5的系数.

3.已知数列满足 求证:对于任何自然数n ,

是x 的一次多项式或零次多项式.

4.已知a ,b 均为正整数,且

求证:对一切,A n 均为整数.

7)1

1(x

x ++62)321(x x -+)0(,,,0210≠a a a a ),,3,2,1(211 ==++-i a a a i i i n

n n n n n n n n n n n n n x

C a x x C a x x C a x x C a x C a x p +-++-+-+-=-----)1()1()1()1()(111222211100 ,sin )(),20(2sin ,222

2θπθθn b a A b a ab b a n

n

?+=<<+=

>其中*N ∈n

5.已知为整数,P 为素数,求证:

6.若,求证:

7.数列中,,求的末位数字是多少?

8.求N=1988-1的所有形如为自然数)的因子d 之和.

9.设,求数x 的个位数字.

10.已知试问:在数列中是否有无穷多个能被15整除的项?证明你的结论.

y x ,)(m od )(P y x y x P P P +≡+)10*,,()25(1

2<<∈+=++ααN m r m r .1)(=+ααm }{n a )2(3,311≥==-n a a a

n n 2001a b a d b

a ,(,32?=82

19)22015()22015(+++=x ),2,1(8,1,01110 =-===-+n a a a a a n n n }{n a

课后练习

1.已知实数均不为0,多项的三根为,求

的值. 2.设

,其中为常数,如果

求的值.

3.定义在实数集上的函数满足:

4.证明:当n=6m 时,

5.设展开式为,求证:

6.求最小的正整数n ,使得的展开式经同类项合并后至少有1996项.

7.设,试求: (1)的展开式中所有项的系数和. (2)的展开式中奇次项的系数和.

βα,ββαα++-=x x x x f 2

3)(321,,x x x )1

11)((3

21321x x x x x x ++++d

cx bx ax x x f ++++=234)(d

c b a ,,,,3)3(,2)2(,1)1(===f f f )]0()4([4

1f f +)(x f ).(,1)1()(x f x x xf x f 求+=-+.03332

5531=-?+?+?- n n n n C C C C n x x )1(2++n n x a x a x a a 222210++++ .31

630-=+++n a a a n y x xy )2173(-+-493)12()1()(+-+=x x x x f )(x f )(x f

8.证明:对任意的正整数n ,不等式成立.

例题答案:

1.解:由二项式定理得

其中第项为 ② 在的展开式中,设第k+1项为常数项,记为 则 ③ 由③得r -2k=0,即r=2k ,r 为偶数,再根据①、②知所求常数项为

评述:求某一项时用二项展开式的通项.

2. 解:因为

所以的展开式里x 5的系数为

评述:本题也可将化为用例1的作法可求得.

3. 分析:由是等差数列,则从而可将表示成的表达式,再化简即可.

n

n n n n n )12()2()12(-+≥+77)]1

(1[)11(x

x x x ++=++77

772271707)1()1()1()1(x

x C x x C x x C x x C C r r ++++++++++= )70(1≤≤+r r r

r

r x

x C T )1(71+

=+r

x

x )1(+

,1+k T )0(,)1

(2,1r k x C x

x

C T k r k r k k

r k

r k ≤≤==--+.39336672747172707=+++C C C C C C C 6

662)1()31()321(x x x x -+=-+].1][)3()3()3(31[6

665564463362261666633622616x C x C x C x C x C x C x C x C x C x C +-+-+-?++?+?+?+= 62)321(x x -+2

6363362624616563)(33)(1C C C C C C C ?+-+?+-.16813)(35

6516464-=?+-?+C C C 62)321(x x --6

2)]32(1[x x -+}{211n i i i a a a a 知=++-),,2,1(01 =+=+=-i id a d a a i i )(x p d a 和0

解:因为 所以数列为等差数列,设其公差为d 有 从而

由二项定理,知

又因为 从而

所以

当的一次多项式,当零次多项式.

4. 分析:由联想到复数棣莫佛定理,复数需要,然后分析A n 与复数的关系.

证明:因为 显然的虚部,由于

所以从而的虚

部.

因为a 、b 为整数,根据二项式定理,

的虚部当然也为整数,所以对一切,

A n 为整数.

评述:把A n 为与复数联系在一起是本题的关键.

5. 证明:

由于为整数,可从分子中约去r !,又因为P 为

素数,且,所以分子中的P 不会红去,因此有所以 ),3,2,1(211 ==++-i a a a i i i }{n a ),3,2,1(0 =+=i id a a i n

n n n n n n n n x

C nd a x x C d a x x C d a x C a x P )()1()2()1()()1()(022*******+++-++-++-=-- ],

)1(2)1(1[])1()1([222111100n n n n n n n n n n n n n n x nC x x C x x C d x C x x C x C a ++-+-?+++-+-=--- ,1])1[()1()1()1(222110=+-=++-+-+---n n

n n n n n n n n x x x C x x C x x C x C ,

)]!

1()1[()!1()!1()!(!!1

1--=-----?=-?

=k n k n nC k n k n n k n k n k kC n

n n n n n n x nC x x C x x C ++-+--- 22211)1(2)1(])

1()1[(12111----++-+-=n n n n x x x C x nx .])1[(1nx x x nx n =+-=-.)(0ndx a x P +=x x P d 为时)(,0≠为时)(,0x P d =θn sin θcos .sin 1cos ,,20,2sin 2

2222

22b

a b a b a b a ab +-=-=><<+=θθπθθ所以且n i n )sin (cos sin θθθ+为n

i )sin (cos θθ+.)()

(1)2()(1)2(2222222222222n

n

n n bi a b a abi b a b a i b a ab b a b a ++=+-+=+++-=.)()sin (cos )(222n

n bi a n i n b a +=++θθn n n bi a n b a A 222)(sin )(++=为θn

bi a 2)(+*N ∈n n

i )sin (cos θθ+P

P p P P P P P P P y xy C y x C y x C x y x +++++=+----1122211)( )1,,2,1(!

)1()1(-=+--=P r r r p p p C r

P p r <).1,,2,1(|-=P r C P r

P

评述:将展开就与有联系,只要证明其余的数能被P 整除是本题的关键.

6. 分析:由已知 猜想,因此需要求出

,即只需要证明为正整数即可.

证明:首先证明,对固定为r ,满足条件的是惟一的.否则,设

则矛盾.所以满足条件的m 和

是惟一的. 下面求.

因为

又因为 所以 故

评述:猜想进行运算是关键.

7. 分析:利用n 取1,2,3,…猜想的末位数字. 解:当n=1时,a 1=3, ,因此的末位数字

都是7,猜想, 现假设n=k 时, 当n=k+1时,

).(m od )(P y x y x P P P +≡+P y x )(+P

P y x +1)()25(12=++=++αααm m r 和1

2)25(+-=r αα1212)25()25(

++--+r r α,m 111

2)

25(α+=++m r ],),1,0(,*,,[2121212122ααααα≠≠∈∈+=m m m m m N )1,0()0,1(,,021212121?-∈-∈-≠-=-ααααZ m m m m 而αα及m 1221

2212211212012121222)

5(2)5()5()25()25(+-++++++++?+?+=--+r r r r r r r r r C C C ]22)

5(2)5()5([1221

2212211212012+-++++-+?+?--r r r r r r r C C C *

]2

5

25

25[2]22)

5(2)5([21

21

2121

23

1

31

21

1

2123223122112N ∈+++??+?=++?+?=+--+-+++-++r r r r r r r

r r r r r r C

C

C

C C )1,0()

25(),1,0(251

2∈-∈-+r 从而)22

52525(2121

2121231312112+--+-+++??++??+??=r r r r r r r r r C C C m 12)25(+-=r α.)

25()(1

2+-=+r m αα.1)45()25(1212=-=+++r r 12121

2)25()25(,)

25(+++-+-=r r r 与αn n a a 及3642733321+?====a a 27)81(3)81(3)3(333

6363643642732

?=?=?====+?a a 32,a a .*,34N ∈+=m m a n .*,34N ∈+=m m a k 34341)14(33

+++-===m m a k k

a 3

4034342412434124134034034)

1(4)1(4)1(4)1(4++++++++++-??+-??++-??+-?=m m m m m m m m m m C C C C

从而 于是 故的末位数字是7.

评述:猜想是关键.

8. 分析:寻求N 中含2和3的最高幂次数,为此将19变为20-1和18+1,然后用二项式定理展开.

解:因为N=1988-1=(20-1)88-1=(1-4×5)88-1

=-

其中M 是整数.

上式表明,N 的素因数中2的最高次幂是5. 又因为N=(1+2×9)88-1

=32×2×88+34·P=32×(2×88+9P )其中P 为整数.

上式表明,N 的素因数中3的最高次幂是2.

综上所述,可知,其中Q 是正整数,不含因数2和3.

因此,N 中所有形如的因数的和为(2+22+23+24+25)(3+32)=744.

9. 分析:直接求x 的个位数字很困难,需将与x 相关数联系,转化成研究其相关数.

解:令

,由二项式定理知,对任意正整数n.

为整数,且个位数字为零.

因此,x +y 是个位数字为零的整数.再对y 估值,

因为, 且,

所以 故x 的个位数字为9.

评述:转化的思想很重要,当研究的问题遇到困难时,将其转化为可研究的问题.

10. 分析:先求出,再将表示成与15有关的表达式,便知是否有无穷多项能被15整除.

证明:在数列中有无穷多个能被15整除的项,下面证明之.

数列的特征方程为它的两个根为,

所以 (n=0,1,2,…)

,3)1(414+-=-=T T *)(34N ∈+=m m a n .27)81(33

341?===++m m a n n

a 2001a 34+=m a n 888888

888787

878833388222881885454

545454??+??-+??-??+??C C C C C )552(225525

65-=?+?-=M M 888888

8822288188

929292??++??+??=C C C Q N ??=2532b

a 32?])22015()22015[(,)22015()22015(82

198219+++=+-+-=y x y 则])22015()22015[(8219-+-+)2201515(2)22015()22015(22

+??+=-++-n n n n n C 2.025

5220155220150=<+=-<19

88)22015()22015(-<-.4.02.02)22015(2019

19

=+-x x 154,15421-=+=x x n n n B A a )154()154(-++=

由 则

取,由二项式定理得

由上式知当15|k ,即30|n 时,15|a n ,因此数列中有无穷多个能被15整除的项.

评述:在二项式定理中,经常在一起结合使用.

,15

21,15

211,010-

==

==B A a a 得],)154()154[(15

21n n n a --+=

),2,1,0(2 ==k k n ])15(42)15(421542[15

211133311----??++??+??=

n n n n n n n n C C C a ),

(1542)1544(154154154415

4154

4

12212232321212122323212122

23

3

1

1为整数其中T T k C C C C C C C C C k k k k

k k k k k k k k k k k n n n

n n

n n

+?=??++?+?=??++??+?=??++??+?=----------- }{n a n

n b a b a )()(-+与

高中数学《二项式定理》公开课优秀教学设计二

二项式定理(第1课时) 一、内容和内容解析 内容:二项式定理的发现与证明. 内容解析:本节是高中数学人教A版选修2-3第一章第3节的内容.二项式定理是多项式乘法的特例,是初中所学多项式乘法的延伸,此内容安排在组合计数模型之后,随机变量及其分布之前,既是组合计数模型的一个应用,也是为学习二项分布作准备.由于二项式定理的发现,可以通过从特殊到一般进行归纳概括,在归纳概括过程中还可以用到组合计数模型,因此,这部分内容对于培养学生数学抽象与数学建模素养有着不可忽略的价值.教学中应当引起充分重视. 二、目标和目标解析 目标: (1)能通过多项式乘法,归纳概括出二项式定理内容,并会用组合计数模型证明二项式定理. (2)能从数列的角度认识二项式的展开式及其通项的规律,并能通过特例体会二项式定理的简单应用. (3)通过二项式定理的发现过程培养学生的数学抽象素养,以及用二项式定理这个模型培养学生数学建模素养. 目标解析: (1)二项式展开式是依多项式乘法获得的特殊形式,因此从多项式乘法出发去发现二项式定理符合学生的认知规律.但归纳概括的结论,如果不加以严格的证明不符合数学的基本要求.因此,在归纳概括的过程中,用好组合模型不仅可以更自然地得到结论,还能为证明二项式定理提供方法. (2)由于二项展开式是一个复杂的多项式.如果不把其看成一个数列的和,引进数列的通项帮助理解与应用,学生很难短期内对定理有深入的认识.因此,通过一些特例,建立二项式展开式与数列及数列和的联系,是达成教学目标的一个重要途径.(3)数学核心素养是数学教学的重要目标,但数学核心素养需要在每一堂课中寻找机会去落实.在二项式定理的教学中,从特殊的二项式展开式的特征归纳概括一般二项式展开式的规律是进行数学抽象教学的很好机会;同时利用组合计数模型证明二项式定理,以及利

(完整word)高中数学二项式定理练习题

选修2-3 1.3.1 二项式定理 一、选择题 1.二项式(a +b )2n 的展开式的项数是( ) A .2n B .2n +1 C .2n -1 D .2(n +1) 2.(x -y )n 的二项展开式中,第r 项的系数是( ) A .C r n B . C r +1n C .C r -1n D .(-1)r -1C r -1n 3.在(x -3)10的展开式中,x 6的系数是( ) A .-27C 610 B .27 C 410 C .-9C 610 D .9C 410 4.(2010·全国Ⅰ理,5)(1+2x )3(1-3x )5的展开式中x 的系数是( ) A .-4 B .-2 C .2 D .4 5.在? ?? ??2x 3+1x 2n (n ∈N *)的展开式中,若存在常数项,则n 的最小值是( ) A .3 B .5 C .8 D .10 6.在(1-x 3)(1+x )10的展开式中x 5的系数是( ) A .-297 B .-252 C .297 D .207 7.(2009·北京)在? ?? ??x 2-1x n 的展开式中,常数项为15,则n 的一个值可以是( ) A .3 B .4 C .5 D .6 8.(2010·陕西理,4)(x +a x )5(x ∈R )展开式中x 3的系数为10,则实数a 等于 ( ) A .-1 B.12 C .1 D .2

9.若(1+2x )6的展开式中的第2项大于它的相邻两项,则x 的取值范围是 ( ) A.112<x <15 B.16<x <15 C.112<x <23 D.16<x <25 10.在? ????32x -1220的展开式中,系数是有理数的项共有( ) A .4项 B .5项 C .6项 D .7项 二、填空题 11.(1+x +x 2)·(1-x )10的展开式中,x 5的系数为____________. 12.(1+x )2(1-x )5的展开式中x 3的系数为________. 13.若? ?? ??x 2+1ax 6的二项展开式中x 3的系数为52,则a =________(用数字作答). 14.(2010·辽宁理,13)(1+x +x 2)(x -1x )6的展开式中的常数项为________. 三、解答题 15.求二项式(a +2b )4的展开式. 16.m 、n ∈N *,f (x )=(1+x )m +(1+x )n 展开式中x 的系数为19,求x 2的系数的最小值及此时展开式中x 7的系数. 17.已知在(3x -123x )n 的展开式中,第6项为常数项.

高中数学竞赛讲义_复数

1 复数 一、基础知识 1.复数的定义:设i 为方程x 2=-1的根,i 称为虚数单位,由i 与实数进行加、减、乘、除 等运算。便产生形如a+bi (a,b ∈R )的数,称为复数。所有复数构成的集合称复数集。通常用C 来表示。 2.复数的几种形式。对任意复数z=a+bi (a,b ∈R ),a 称实部记作Re(z),b 称虚部记作Im(z). z=ai 称为代数形式,它由实部、虚部两部分构成;若将(a,b)作为坐标平面内点的坐标,那么z 与坐标平面唯一一个点相对应,从而可以建立复数集与坐标平面内所有的点构成的集合之间的一一映射。因此复数可以用点来表示,表示复数的平面称为复平面,x 轴称为实轴,y 轴去掉原点称为虚轴,点称为复数的几何形式;如果将(a,b)作为向量的坐标,复数z 又对应唯一一个向量。因此坐标平面内的向量也是复数的一种表示形式,称为向量形式;另外设z 对应复平面内的点Z ,见图15-1,连接OZ ,设∠xOZ=θ,|OZ|=r ,则a=rcos θ,b=rsin θ,所以z=r(cos θ+isin θ),这种形式叫做三角形式。若z=r(cos θ+isin θ),则θ称为z 的辐角。若0≤θ<2π,则θ称为z 的辐角主值,记作θ=Arg(z). r 称为z 的模,也记作|z|,由勾股定理知|z|=2 2b a +.如果用e i θ表示cos θ+isin θ,则z=re i θ,称为复数的指数形式。 3.共轭与模,若z=a+bi ,(a,b ∈R ),则=z a-bi 称为z 的共轭复数。模与共轭的性质有: (1)2121z z z z ±=±;(2)2121z z z z ?=?;(3)2||z z z =?;(4)2121z z z z =???? ??;(5)||||||2121z z z z ?=?;(6)|||||| 2121z z z z =;(7)||z 1|-|z 2||≤|z 1±z 2|≤|z 1|+|z 2|;(8)|z 1+z 2|2+|z 1-z 2|2=2|z 1|2+2|z 2|2;(9)若|z|=1,则z z 1=。 4.复数的运算法则:(1)按代数形式运算加、减、乘、除运算法则与实数范围内一致,运算结果可以通过乘以共轭复数将分母分为实数;(2)按向量形式,加、减法满足平行四边形和三角形法则;(3)按三角形式,若z 1=r 1(cos θ1+isin θ1), z 2=r 2(cos θ2+isin θ2),则z 1??z 2=r 1r 2[cos(θ1+θ2)+isin(θ1+θ2)];若2 1212,0r r z z z =≠[cos(θ1-θ2)+isin(θ1-θ2)],用指数形式记为z 1z 2=r 1r 2e i(θ1+θ2),.)(2 12121θθ-=i e r r z z 5.棣莫弗定理:[r(cos θ+isin θ)]n =r n (cosn θ+isinn θ). 6.开方:若=n w r(cos θ+isin θ),则)2s i n 2(c o s n k i n k r w n πθπθ+++=,k=0,1,2,…,n-1。 7.单位根:若w n =1,则称w 为1的一个n 次单位根,简称单位根,记Z 1=n i n ππ2sin 2cos +,则全部单位根可表示为1,1Z ,1121,,-n Z Z .单位根的基本性质有(这里记k k Z Z 1=,

二项式定理知识点总结

二项式定理 一、二项式定理: ()n n n k k n k n n n n n n b C b a C b a C a C b a +++++=+-- 110(*∈N n )等号右边的多项式叫做 ()n b a +的二项展开式,其中各项的系数k n C )3,2,1,0(n k ???=叫做二项式系数。 对二项式定理的理解: (1)二项展开式有1+n 项 (2)字母a 按降幂排列,从第一项开始,次数由n 逐项减1到0;字母b 按升幂排列,从第一项开始,次数由0逐项加1到n (3)二项式定理表示一个恒等式,对于任意的实数b a ,,等式都成立,通过对b a ,取不同的特殊值,可为某些问题的解决带来方便。在定理中假设x b a ==,1,则 ()n n n k n k n n n n n x C x C x C x C x +++++=+- 101(*∈N n ) (4)要注意二项式定理的双向功能:一方面可将二项式()n b a +展开,得到一个多项式; 另一方面,也可将展开式合并成二项式()n b a + 二、二项展开式的通项:k k n k n k b a C T -+=1 二项展开式的通项k k n k n k b a C T -+=1)3,2,1,0(n k ???=是二项展开式的第1+k 项,它体现了 二项展开式的项数、系数、次数的变化规律,是二项式定理的核心,它在求展开式的某些特定项(如含指定幂的项、常数项、中间项、有理项、系数最大的项等)及其系数等方面有广泛应用 对通项k k n k n k b a C T -+=1)3,2,1,0(n k ???=的理解: (1)字母b 的次数和组合数的上标相同 (2)a 与b 的次数之和为n (3)在通项公式中共含有1,,,,+k T k n b a 这5个元素,知道4个元素便可求第5个元素 例1.n n n n n n C C C C 13 21393-++++ 等于 ( ) A .n 4 B 。n 43? C 。134-n D.3 1 4-n 例2.(1)求7 (12)x +的展开式的第四项的系数; (2)求9 1()x x -的展开式中3 x 的系数及二项式系数

高三数学 二项式定理

二项式定理 1. 知识精讲: (1)二项式定理:()n n n r r n r n n n n n n b C b a C b a C a C b a +++++=+--ΛΛ110(* ∈N n ) 其通项是=+1r T r r n r n b a C - (r=0,1,2,……,n ),知4求1,如:555 156b a C T T n n -+== 亦可写成:=+1r T r n r n a b a C )( ()()()n n n n r r n r n r n n n n n b C b a C b a C a C b a 11110-++-++-=---ΛΛ(*∈N n ) 特别地:()n n n r n r n n n n n x C x C x C x C x +++++=+-ΛΛ101(* ∈N n ) 其中,r n C ——二项式系数。而系数是字母前的常数。 例1.n n n n n n C C C C 13 21393-++++Λ等于 ( ) A .n 4 B 。n 43? C 。134-n D.3 1 4-n 解:设n n n n n n n C C C C S 13 21393-++++=Λ,于是: n n n n n n n C C C C S 333333 3221++++=Λ=133333 32210 -+++++n n n n n n n C C C C C Λ 故选D 例2.(1)求7 (12)x +的展开式的第四项的系数; (2)求91 ()x x -的展开式中3 x 的系数及二项式系数解:(1)7 (12)x +的展开式的第四项是333317(2)280T C x x +==, ∴7 (12)x +的展开式的第四项的系数是280. (2)∵9 1()x x -的展开式的通项是9921991 ()(1)r r r r r r r T C x C x x --+=-=-, ∴923r -=,3r =, ∴3x 的系数339(1)84C -=-,3 x 的二项式系数3984C =. (2)二项展开式系数的性质:①对称性,在二项展开式中,与首末两端“等距离”的两项的 二项式系数相等,即ΛΛ,,,,22110k n n k n n n n n n n n n n C C C C C C C C ---==== ②增减性与最大值:在二项式展开式中,二项式系数先增后减,且在中间取得最大值。如果

高中数学竞赛_数列【讲义】

第五章 数列 一、基础知识 定义1 数列,按顺序给出的一列数,例如1,2,3,…,n ,…. 数列分有穷数列和无穷数列两种,数列{a n }的一般形式通常记作a 1, a 2, a 3,…,a n 或a 1, a 2, a 3,…,a n …。其中a 1叫做数列的首项,a n 是关于n 的具体表达式,称为数列的通项。 定理1 若S n 表示{a n }的前n 项和,则S 1=a 1, 当n >1时,a n =S n -S n -1. 定义2 等差数列,如果对任意的正整数n ,都有a n +1-a n =d (常数),则{a n }称为等差数列,d 叫做公差。若三个数a , b , c 成等差数列,即2b =a +c ,则称b 为a 和c 的等差中项,若公差为d, 则a =b -d, c =b +d. 定理2 等差数列的性质:1)通项公式a n =a 1+(n -1)d ;2)前n 项和公式: S n =d n n na a a n n 2 )1(2)(11-+=+;3)a n -a m =(n -m)d ,其中n , m 为正整数;4)若n +m=p +q ,则a n +a m =a p +a q ;5)对任意正整数p , q ,恒有a p -a q =(p -q )(a 2-a 1);6)若A ,B 至少有一个不为零,则{a n }是等差数列的充要条件是S n =An 2+Bn . 定义3 等比数列,若对任意的正整数n ,都有 q a a n n =+1,则{a n }称为等比数列,q 叫做公比。 定理3 等比数列的性质:1)a n =a 1q n -1 ;2)前n 项和S n ,当q ≠1时,S n =q q a n --1)1(1;当q =1时,S n =na 1;3)如果a , b , c 成等比数列,即b 2=ac (b ≠0),则b 叫做a , c 的等比中项;4)若m+n =p +q ,则a m a n =a p a q 。 定义4 极限,给定数列{a n }和实数A ,若对任意的ε>0,存在M ,对任意的n >M(n ∈N ),都有|a n -A |<ε,则称A 为n →+∞时数列{a n }的极限,记作.lim A a n n =∞ → 定义5 无穷递缩等比数列,若等比数列{a n }的公比q 满足|q |<1,则称之为无穷递增等比数列,其前n 项和S n 的极限(即其所有项的和)为q a -11(由极限的定义可得)。 定理3 第一数学归纳法:给定命题p (n ),若:(1)p (n 0)成立;(2)当p (n )时n =k 成立时能推出p (n )对n =k +1成立,则由(1),(2)可得命题p (n )对一切自然数n ≥n 0成立。 竞赛常用定理 定理4 第二数学归纳法:给定命题p (n ),若:(1)p (n 0)成立;(2)当p (n )对一切n ≤k 的自然数n 都成立时(k ≥n 0)可推出p (k +1)成立,则由(1),(2)可得命题p (n )对一切自然数n ≥n 0成立。 定理5 对于齐次二阶线性递归数列x n =ax n -1+bx n -2,设它的特征方程x 2=ax +b 的两个根为α,β:(1)若α≠β,则x n =c 1a n -1+c 2βn -1,其中c 1, c 2由初始条件x 1, x 2的值确定;(2)若α=β,则x n =(c 1n +c 2) αn -1,其中c 1, c 2的值由x 1, x 2的值确定。 二、方法与例题 1.不完全归纳法。 这种方法是从特殊情况出发去总结更一般的规律,当然结论未必都是正确的,但却是人类探索未知世界的普遍方式。通常解题方式为:特殊→猜想→数学归纳法证明。 例1 试给出以下几个数列的通项(不要求证明);1)0,3,8,15,24,35,…;2)1,5,19,65,…;3)-1,0,3,8,15,…。 【解】1)a n =n 2-1;2)a n =3n -2n ;3)a n =n 2-2n . 例2 已知数列{a n }满足a 1= 21,a 1+a 2+…+a n =n 2a n , n ≥1,求通项a n . 【解】 因为a 1= 2 1,又a 1+a 2=22·a 2,

高中数学 2二项式定理(带答案)

二项式定理 一.二项式定理 1.右边的多项式叫做()n a b +的二项展开式 2.各项的系数r n C 叫做二项式系数 3.式中的r n r r n C a b -叫做二项展开式的通项,它是二项展开式的第1r +项,即 1(0,1,2, ,).r n r r r n T C a b r n -+== 4.二项展开式特点:共1r +项;按字母a 的降幂排列,次数从n 到0递减;二项式系数r n C 中r 从0到 n 递增,与b 的次数相同;每项的次数都是.n 二.二项式系数的性质 性质1 ()n a b +的二项展开式中,与首末两端“等距离”的两项的二项式系数相等,即m n m n n C C -= 性质2 二项式系数表中,除两端以外其余位置的数都等于它肩上两个数之和,即11m m m n n n C C C -++= 性质3 ()n a b +的二项展开式中,所有二项式系数的和等于2n ,即012.n n n n n C C C ++ += (令1a b ==即得,或用集合的子集个数的两种计算方法结果相等来解释) 性质4 ()n a b +的二项展开式中,奇数项的二项式系数的和等于偶数项 的二项式系数的和,即 02 213 21 12.r r n n n n n n n C C C C C C +-++ ++ =++ ++ = (令1,1a b ==-即得) 性质5 ()n a b +的二项展开式中,当n 为偶数时,中间一项的二项式系数2n n C 取得最大值;当n 为奇数时,中间两项的二项式系数1 2,n n C -1 2n n C +相等,且同时取得最大值.(即中间项的二项式系数最大)

(推荐)高中数学二项式定理

二项式定理 【2011?新课标全国理,8】51()(2)a x x x x +-的展开式中各项系数的和为2,则该展开式中常数项为( ). A .-40 B .-20 C .20 D .40 【答案】D 【最新考纲解读】 二项式定理 (1)能用计数原理证明二项式定理. (2)会用二项式定理解决与二项展开式有关的简单问题. 【回归课本整合】 1.二项式定理的展开式 011()n n n r n r r n n n n n n a b C a C a b C a b C b --+=+++++,其中组合数r n C 叫做第r +1项的二 项式系数;展开式共有n +1项. 注意:(1)项的系数与二项式系数是不同的两个概念,但当二项式的两个项的系数都为1 时,系数就是二项式系数。如在()n ax b +的展开式中,第r+1项的二项式系数为r n C ,第

3.项的系数和二项式系数的性质 (1)对称性:与首末两端“等距离”的两个二项式系数相等( m n m n n C C- = ). 【方法技巧提炼】

(2)()()n m a b c d ++结构:①若n 、m 中一个比较小,可考虑把它展开得到多个;②观察()()a b c d ++是否可以合并;③分别得到()()n m a b c d ++、 的通项公式,综合考虑. 例2 61034(1)(1)x x 展开式中的常数项为( ) A .1 B .46 C .4245 D .4246

答案: D 例3 5 )2 1 2 (+ + x x 的展开式中整理后的常数项为 .

答案: 632 例5 若对于任意实数x,有 323 0123 (2)(2)(2) x a a x a x a x =+-+-+- ,则2 a的值为()

高中数学竞赛讲义(五)──数列

高中数学竞赛讲义(五) ──数列 一、基础知识 定义1 数列,按顺序给出的一列数,例如1,2,3,…,n,…. 数列分有穷数列和无穷数列两种,数列{a n}的一般形式通常记作a1, a2,a3,…,a n或a1, a2, a3,…,a n…。其中a1叫做数列的首项,a n是关于n的具体表达式,称为数列的通项。 定理1 若S n表示{a n}的前n项和,则S1=a1, 当n>1时,a n=S n-S n-1. 定义2 等差数列,如果对任意的正整数n,都有a n+1-a n=d(常数),则{a n}称为等差数列,d叫做公差。若三个数a, b, c成等差数列,即2b=a+c,则称b为a和c的等差中项,若公差为d, 则a=b-d, c=b+d. 定理2 等差数列的性质:1)通项公式 a n=a1+(n-1)d;2)前n项和公式: S n=;3)a n-a m=(n-m)d,其中n, m 为正整数;4)若n+m=p+q,则a n+a m=a p+a q;5)对任意正整数p, q,恒有a p-a q=(p-q)(a2-a1);6)若A,B 至少有一个不为零,则{a n}是等差数列的充要条件是S n=An2+Bn.

定义3 等比数列,若对任意的正整数n,都有 ,则{a n}称为等比数列,q叫做公比。 定理3 等比数列的性质:1)a n=a1q n-1;2)前n 项和S n,当q1时,S n=;当q=1时,S n=na1;3)如果a, b, c成等比数列,即b2=ac(b0),则b叫做a, c的等比中项;4)若m+n=p+q,则a m a n=a p a q。 定义4 极限,给定数列{a n}和实数A,若对任意的>0,存在M,对任意的n>M(n∈N),都有|a n-A|<,则称A为n→+∞时数列{a n}的极限,记作 定义5 无穷递缩等比数列,若等比数列{a n}的公比q满足|q|<1,则称之为无穷递增等比数列,其前n 项和S n的极限(即其所有项的和)为(由极限的定义可得)。 定理3 第一数学归纳法:给定命题p(n),若:(1)p(n0)成立;(2)当p(n)时n=k成立时能推出p(n)对n=k+1成立,则由(1),(2)可得命题p(n)对一切自然数n≥n0成立。 竞赛常用定理 定理4 第二数学归纳法:给定命题p(n),若:(1)p(n0)成立;(2)当p(n)对一切n ≤k的自然数n都成立时(k≥n0)可推出p(k+1)成立,则由(1),(2)可得命题p(n)对一切自然数n≥n0成立。 定理5 对于齐次二阶线性递归数列x n=ax n-1+bx n-2,设它的特征方程x2=ax+b的两个根为α,β:(1)若αβ,则x n=c1a n-1+c2βn-1,其中c1, c2由初始条件x1, x2的值确定;(2)若α=β,则x n=(c1n+c2) αn-1,其中c1, c2的值由x1, x2的值确定。 二、方法与例题 1.不完全归纳法。 这种方法是从特殊情况出发去总结更一般的规律,当然结论未必都是正确的,但却是 人类探索未知世界的普遍方式。通常解题方式为:特殊→猜想→数学归纳法证明。

高考数学 《二项式定理》

二项式定理 主标题:二项式定理 副标题:为学生详细的分析二项式定理的高考考点、命题方向以及规律总结。 关键词:二项式定理,二项式系数,项系数 难度:2 重要程度:4 考点剖析: 1.能用计数原理证明二项式定理. 2.会用二项式定理解决与二项展开式有关的简单问题. 命题方向: 1.二项式定理是高中数学中的一个重要知识点,也是高考命题的热点,多以选择、填空题的形式呈现,试题难度不大,多为容易题或中档题. 2.高考对二项式定理的考查主要有以下几个命题角度: (1)求二项展开式中的第n项; (2)求二项展开式中的特定项; (3)已知二项展开式的某项,求特定项的系数. 规律总结: 1个公式——二项展开式的通项公式 通项公式主要用于求二项式的特定项问题,在运用时,应明确以下几点: (1)C r n a n-r b r是第r+1项,而不是第r项; (2)通项公式中a,b的位置不能颠倒; (3)通项公式中含有a,b,n,r,T r+1五个元素,只要知道其中的四个,就可以求出第五个,即“知四求一”. 3个注意点——二项式系数的三个注意点 (1)求二项式所有系数的和,可采用“赋值法”; (2)关于组合式的证明,常采用“构造法”——构造函数或构造同一问题的两种算法; (3)展开式中第r+1项的二项式系数与第r+1项的系数一般是不相同的,在具体求各项的系数时,一般先处理符号,对根式和指数的运算要细心,以防出错.

知 识 梳 理 1.二项式定理 二项式定理 (a +b )n =C 0n a n +C 1n a n -1b +…+C r n a n -r b r +…+C n n b n (n ∈N *) 二项展开式 的通项公式 T r +1=C r n a n -r b r ,它表示第r +1项 二项式系数 二项展开式中各项的系数C 0 n ,C 1n ,…,C n n 2.二项式系数的性质 (1)0≤k ≤n 时,C k n 与C n -k n 的关系是C k n =C n -k n . (2)二项式系数先增后减中间项最大 当n 为偶数时,第n 2 +1项的二项式系数最大,最大值为2n n C ;当n 为奇数时,第n +1 2项和n +3 2项的二项式系数最大,最大值为21 -n n C 或21 +n n C . (3)各二项式系数和:C 0 n +C 1n +C 2n +…+C n n =2n , C 0n +C 2n +C 4n +…=C 1n +C 3n +C 5n +…=2 n -1.

高中数学完整讲义——二项式定理6.二项式定理的应用3近似计算或估计

高中数学讲义 1 思维的发掘 能力的飞跃 1.二项式定理 ⑴二项式定理 () ()011222...n n n n n n n n n n a b C a C a b C a b C b n --*+=++++∈N 这个公式表示的定理叫做二项式定理. ⑵二项式系数、二项式的通项 011222...n n n n n n n n n C a C a b C a b C b --++++叫做()n a b +的二项展开式,其中的系数()0,1,2,...,r n C r n =叫 做二项式系数,式中的r n r r n C a b -叫做二项展开式的通项,用1r T +表示,即通项为展开式的第1r +项:1r n r r r n T C a b -+=. ⑶二项式展开式的各项幂指数 二项式()n a b +的展开式项数为1n +项,各项的幂指数状况是 ①各项的次数都等于二项式的幂指数n . ②字母a 的按降幂排列,从第一项开始,次数由n 逐项减1直到零,字母b 按升幂排列,从第一项起,次数由零逐项增1直到n . ⑷几点注意 ①通项1r n r r r n T C a b -+=是()n a b +的展开式的第1r +项,这里0,1,2,...,r n =. ②二项式()n a b +的1r +项和()n b a +的展开式的第1r +项r n r r n C b a -是有区别的,应用二项式定理时, 其中的a 和b 是不能随便交换的. ③注意二项式系数(r n C )与展开式中对应项的系数不一定相等,二项式系数一定为正,而项的系 数有时可为负. ④通项公式是()n a b +这个标准形式下而言的,如()n a b -的二项展开式的通项公式是 ()11r r n r r r n T C a b -+=-(只须把b -看成b 代入二项式定理)这与1r n r r r n T C a b -+=是不同的,在这里对应项的二项式系数是相等的都是r n C ,但项的系数一个是()1r r n C -,一个是r n C ,可看出,二项式系数与项的系 知识内容 近似计算或者估计

高中数学竞赛讲义-抽屉原理

§23抽屉原理 在数学问题中有一类与“存在性”有关的问题,例如:“13个人中至少有两个人出生在相同月份”;“某校400名学生中,一定存在两名学生,他们在同一天过生日”;“2003个人任意分成200个小组,一定存在一组,其成员数不少于11”;“把[0,1]内的全部有理数放到100个集合中,一定存在一个集合,它里面有无限多个有理数”。这类存在性问题中,“存在”的含义是“至少有一个”。在解决这类问题时,只要求指明存在,一般并不需要指出哪一个,也不需要确定通过什么方式把这个存在的东西找出来。这类问题相对来说涉及到的运算较少,依据的理论也不复杂,我们把这些理论称之为“抽屉原理”。 “抽屉原理”最先是由19世纪的德国数学家迪里赫莱(Dirichlet)运用于解决数学问题的,所以又称“迪里赫莱原理”,也有称“鸽巢原理”的。这个原理可以简单地叙述为“把10个苹果,任意分放在9个抽屉里,则至少有一个抽屉里含有两个或两个以上的苹果”。这个道理是非常明显的,但应用它却可以解决许多有趣的问题,并且常常得到一些令人惊异的结果。抽屉原理是国际国内各级各类数学竞赛中的重要内容,本讲就来学习它的有关知识及其应用。 (一)抽屉原理的基本形式 定理1、如果把n+1个元素分成n个集合,那么不管怎么分,都存在一个集合,其中至少有两个元素。 证明:(用反证法)若不存在至少有两个元素的集合,则每个集合至多1个元素,从而n 个集合至多有n个元素,此与共有n+1个元素矛盾,故命题成立。 在定理1的叙述中,可以把“元素”改为“物件”,把“集合”改成“抽屉”,抽屉原理正是由此得名。 同样,可以把“元素”改成“鸽子”,把“分成n个集合”改成“飞进n个鸽笼中”。“鸽笼原理”由此得名。 例题讲解 1.已知在边长为1的等边三角形内(包括边界)有任意五个点(图1)。证明:至少有两个点之间的距离不大于 2.从1-100的自然数中,任意取出51个数,证明其中一定有两个数,它们中的一个是另一个的整数倍。

高中数学选修2-3二项式定理讲义含答案

二项式定理 公式(a+b)n=C0n a n+C1n a n-1b+C2n a n-2b2+…+C r n a n-r b r所表示的规律叫做二项式定理. 2、相关概念 (1)公式右边的多项式叫做(a+b)n的二项展开式. (2)各项的系数C r n(r=0,1,2,…,n)叫做展开式的二项式系数. (3)展开式中的C r n a n-r b r叫做二项展开式的通项,记作:T r+1,它表示展开式的第r+1项. (4)在二项式定理中,如果设a=1,b=x,则得到公式(1+x)n=C0n+C1n x+C2n x2+…+C r n x r+…+C n n x n 3、展开式具有以下特点 (1)项数:共有n+1项; (2)二项式系数:依次为C0n,C1n,C2n,…,C r n,…,C n n; (3)每一项的次数是一样的,即为n次,展开式依a的降幂、b的升幂排列展开; (4)通项是第r+1项. [例1](1)用二项式定理展开(2x-3 2x2)5. (2)化简:C0n(x+1)n-C1n(x+1)n-1+C2n(x+1)n-2-…+(-1)r C r n(x+1)n-r+…+(-1)n C n n. [思路点拨](1)二项式的指数为5,可直接按二项式定理展开;(2)可先把x+1看成一个整体,分析结构形式,逆用二项式定理求解. [答案] (1)(2x- 3 2x2)5=C05(2x)5+C15(2x)4·(- 3 2x2)+…+C55(- 3 2x2)5 =32x5-120x2+180 x- 135 x4+ 405 8x7- 243 32x10. (2)原式=C0n(x+1)n+C1n(x+1)n-1(-1)+C2n(x+1)n-2(-1)2+…+C r n(x+1)n-r(-1)r+…+C n n(-1)n=[(x +1)+(-1)]n=x n. 1.求(3x+1 x )4的展开式. 解:法一:(3x+1 x )4=C04(3x)4+C14(3x)3· 1 x +C24(3x)2·( 1 x )2+C34(3x)( 1 x )3+C44( 1 x )4 =81x2+108x+54+12 x+ 1 x2.

2018年高考二项式定理十大典型问题及例题

学科教师辅导讲义 1.二项式定理: 011 ()()n n n r n r r n n n n n n a b C a C a b C a b C b n N --*+=++ ++ +∈, 2.基本概念: ①二项式展开式:右边的多项式叫做()n a b +的二项展开式。 ②二项式系数:展开式中各项的系数r n C (0,1,2,,)r n =???. ③项数:共(1)r +项,是关于a 与b 的齐次多项式 ④通项:展开式中的第1r +项r n r r n C a b -叫做二项式展开式的通项。用1r n r r r n T C a b -+=表示。 3.注意关键点: ①项数:展开式中总共有(1)n +项。 ②顺序:注意正确选择a ,b ,其顺序不能更改。()n a b +与()n b a +是不同的。 ③指数:a 的指数从n 逐项减到0,是降幂排列。b 的指数从0逐项减到n ,是升幂排列。各项的次数和等于n . ④系数:注意正确区分二项式系数与项的系数,二项式系数依次是012,,,,,,.r n n n n n n C C C C C ??????项的系数是a 与b 的系数 (包括二项式系数)。 4.常用的结论: 令1,,a b x == 0122(1)()n r r n n n n n n n x C C x C x C x C x n N *+=++++++∈ 令1,,a b x ==- 0122(1)(1)()n r r n n n n n n n n x C C x C x C x C x n N *-=-+- ++ +-∈ 5.性质: ①二项式系数的对称性:与首末两端“对距离”的两个二项式系数相等,即0n n n C C =, (1) k k n n C C -= ②二项式系数和:令1a b ==,则二项式系数的和为0122r n n n n n n n C C C C C +++++ +=, 变形式1221r n n n n n n C C C C ++ ++ +=-。 ③奇数项的二项式系数和=偶数项的二项式系数和: 在二项式定理中,令1,1a b ==-,则0123 (1)(11)0n n n n n n n n C C C C C -+-++-=-=, 从而得到:02421321 11222 r r n n n n n n n n n C C C C C C C +-++???++???=++ ++???= ?= ④奇数项的系数和与偶数项的系数和:

二项式定理学生讲义(可编辑修改word版)

【2013 年高考会这样考】 二项式定理 1. 二项式定理是高考重点考查内容之一.分值一般为 5~9 分.考查比较稳定,试题难度起伏不 大;题目一般为选择、填空题. 2. 高考主要考查二项展开式和通项的应用,具体会涉及到求特定的项或系数,以及二项式系数 等问题,是高考的必考点之一。 【复习指导】 二项式定理的核心是其展开式的通项公式,复习时要熟练掌握这个公式,注意二项式定理在解决有关组合数问题中的应用. 基础梳理 1. 二项式定理 (a +b )n =C n 0a n +C 1n a n -1b +…+C n r a n -r b r +…+C n b n (n ∈N *)这个公式所表示的定理叫二项式定 理,右边的多项式叫(a +b )n 的 .其中的系数 C n r (r =0,1,…,n )叫 系 数.式中的 C r n a n -r b r 叫二项展开式的 ,用 T r +1 表示,即通项 T r +1=C n r a n -r b r . 2. 二项展开式形式上的特点 (1)项数为 . (2) 各项的次数都等于二项式的幂指数 n ,即 a 与 b 的指数的和为 (3) 字母 a 按 排列,从第一项开始,次数由 n 逐项减 1 直到零;字母 b 按 排列,从第一 项起,次数由零逐项增 1 直到 n . (4) 二项式的系数从 C n 0 3.二项式系数的性质 ,C n 1,一直到 C n -n 1,C n . (1) 对称性:与首末两端“等距离”的两个二项式系数 .即 C r n =C n -n r . n +1 (2) 增减性与最大值:二项式系数 C k n ,当 k < 时,二项式系数逐渐 .由对称性知它的后 2 半部分是逐渐减小的;当 n 是偶数时,中间一项 T n 1 二项式系数取得最大值;当 n 是奇数时, 2 中间两项T n 1 ,T n 1 1 的二项式系数相等且最大。 2 2 (3) 各二项式系数和:C 0n +C 1n +C 2n +…+C rn +…+C n = ; C n 0+C n 2+C n 4+…=C n 1+C n 3+C n 5+…= .

初中数学竞赛辅导讲义全

专业资料 初中数学竞赛辅导讲义(初三) 第一讲 分式的运算 [知识点击] 1、 分部分式:真分式化为另几个真分式的和,一般先将分母分解因式,后用待定系数法进行。 2、 综合除法:多项式除以多项式可类似于是有理数的除法运算,可列竖式来进行。 3、 分式运算:实质就是分式的通分与约分。 [例题选讲] 例1.化简 2312++x x + 6512++x x + 12 712++x x 解:原式= )2)(1(1++x x + )3)(2(1++x x + ) 4)(3(1++x x = 11+x - 21+x + 21+x - 31+x + 31+x - 4 1+x =) 4)(1(3++x x 例2. 已知 z z y x -+ = y z y x +- = x z y x ++- ,且xyz ≠0,求分式xyz x z z y y x ))()((+-+的值。

专业资料 解:易知:z y x + = y z x + = x z y + =k 则?? ???=+=+=+)3()2()1(kx z y ky z x kz y x (1)+(2)+(3)得:(k-2)(x+y+z)=0 k=2 或 x+y+z=0 若k=2则原式= k 3 = 8 若 x+y+z=0,则原式= k 3 =-1 例3.设 1 2+-mx x x =1,求 12242+-x m x x 的值。 解:显然X 0≠,由已知x mx x 12+- =1 ,则 x +x 1 = m + 1 ∴ 22241x x m x +- = x2 + 21x - m2= (x +x 1)2-2 –m2 =( m +1)2-2- m2= 2m -1 ∴原式=1 21-m 例4.已知多项式3x 3 +ax 2 +3x +1 能被x 2 +1整除,求a的值。 解:

高三数学-二项式定理

10.3二项式定理强化训练 【基础精练】 1.在二项式(x 2-1 x )5的展开式中,含x 4的项的系数是 ( ) A .-10 B .10 C .-5 D .5 2.(2009·北京高考)若(1+2)5=a +b 2(a ,b 为有理数),则a +b = ( ) A .45 B .55 C .70 D .80 3.在( 1x + 51 x 3 )n 的展开式中,所有奇数项的系数之和为1 024,则中间项系数 是 ( ) A .330 B .462 C .682 D .792 4.如果? ?? ?? 3x 2-2x 3n 的展开式中含有非零常数项,则正整数n 的最小值为 ( ) A .10 B .6 C .5 D .3 5.在? ? ??? 2x -y 25的展开式中,系数大于-1的项共有 ( ) A .3项 B .4项 C .5项 D .6项 6.二项式41(1)n x +-的展开式中,系数最大的项是 ( ) A .第2n +1项 B .第2n +2项 C .第2n 项 D .第2n +1项和第2n +2项 7.若(x 2+1 x 3)n 展开式的各项系数之和为32,则其展开式中的常数项是________. 8.( x +2 x 2)5的展开式中x 2的系数是________;其展开式中各项系数之和为________.(用 数字作答) 9.若? ? ? ??2x - 229 的展开式的第7项为214,则x =________. 10.已知(x - 124 x )n 的展开式中,前三项系数的绝对值依次成等差数列.

(1)证明:展开式中没有常数项; (2)求展开式中所有有理项. 11.设(2x-1)5=a0+a1x+a2x2+…+a5x5,求: (1)a0+a1+a2+a3+a4; (2)|a0|+|a1|+|a2|+|a3|+|a4|+|a5|; (3)a1+a3+a5; (4)(a0+a2+a4)2-(a1+a3+a5)2. 【拓展提高】 1.在(3x-2y)20的展开式中,求: (1)二项式系数最大的项; (2)系数绝对值最大的项; (3)系数最大的项.

二项式定理的十一种考题解法

二项式定理的十一种考题解法 1.二项式定理: 2.基本概念: ①二项式展开式:右边的多项式叫做()n a b +的二项展开式。 ②二项式系数:展开式中各项的系数r n C (0,1,2,,)r n =???. ③项数:共(1)r +项,是关于a 与b 的齐次多项式 ④通项:展开式中的第1r +项r n r r n C a b -叫做二项式展开式的通项。用 1r n r r r n T C a b -+=表示。 3.注意关键点: ①项数:展开式中总共有(1)n +项。 ②顺序:注意正确选择a ,b ,其顺序不能更改。()n a b +与()n b a +是不同的。 ③指数:a 的指数从n 逐项减到0,是降幂排列。b 的指数从0逐项减到n , 是升幂排列。各项的次数和等于n . ④系数:注意正确区分二项式系数与项的系数,二项式系数依次是 012,,,,,,.r n n n n n n C C C C C ??????项的系数是a 与b 的系数(包括二项式系数)。 4.常用的结论: 令1,,a b x == 0122(1)()n r r n n n n n n n x C C x C x C x C x n N *+=++++++∈L L

令1,,a b x ==- 0122(1)(1)()n r r n n n n n n n n x C C x C x C x C x n N *-=-+-+++-∈L L 5.性质: ①二项式系数的对称性:与首末两端“对距离”的两个二项式系数相等, 即0n n n C C =,···1k k n n C C -= ②二项式系数和:令1a b ==,则二项式系数的和为 0122r n n n n n n n C C C C C ++++++=L L , 变形式1221r n n n n n n C C C C +++++=-L L 。 ③奇数项的二项式系数和=偶数项的二项式系数和: 在二项式定理中,令1,1a b ==-,则0123(1)(11)0n n n n n n n n C C C C C -+-++-=-=L , 从而得到:02421321 11 222 r r n n n n n n n n n C C C C C C C +-++???++???=++++???=?=L ④奇数项的系数和与偶数项的系数和: ⑤二项式系数的最大项:如果二项式的幂指数n 是偶数时,则中间一项的二项式系数2n n C 取得最大值。 如果二项式的幂指数n 是奇数时,则中间两项的二项 式系数1 2n n C -,12n n C +同时取得最大值。 ⑥系数的最大项:求()n a bx +展开式中最大的项,一般采用待定系数法。设 展开式中各项系数分别 为121,,,n A A A +???,设第1r +项系数最大,应有112 r r r r A A A A +++≥??≥?,

相关文档
相关文档 最新文档