文档库 最新最全的文档下载
当前位置:文档库 › 基于射线跟踪和voronoi图的室内定位算法袁正午1王丹丹2

基于射线跟踪和voronoi图的室内定位算法袁正午1王丹丹2

基于射线跟踪和voronoi图的室内定位算法袁正午1王丹丹2
基于射线跟踪和voronoi图的室内定位算法袁正午1王丹丹2

光线跟踪讲解及源代码

计算机图形学期末作业 作业题目:Ray Tracing算法的实现 姓名:李海广 学号:S130201036 任课教师:秦红星

摘要 Ray Tracing算法又叫光线跟踪算法,它能通过递归方法逐个计算每个像素点的光强,然后就可以绘制出高度真实感的图像,因此该方法在图形学领域得到了广泛的应用。Ray Tracing算法的思想还能应用到移动通信终端定位领域,该领域里的射线跟踪法与此算法思想类似。MFC是微软公司提供的一个类库,以C++类的形式封装了Windows的API,并且包含一个应用程序框架,以减少应用程序开发人员的工作量。其中包含的类包含大量Windows句柄封装类和很多Windows的内建控件和组件的封装类。MFC在处理Windows窗口应用程序方面具有很大的优势,因此,本文使用MFC在VC6.0里实现Ray Tracing算法,并给出了该算法的详细讲解。 【关键词】Ray tracing 光线跟踪递归像素光强 MFC C++

目录 1.Ray Tracing算法概述 (1) 1.1Ray Tracing算法简介 (1) 1.2Ray Tracing算法的实现原理 (1) 2.Ray Tracing算法的具体实现 (2) 2.1算法的实现环境 (2) 2.2实现算法的C++程序简介 (2) 2.3算法的具体实现过程 (3) 2.4 程序运行结果 (11) 3.总结 (11) 3.1 通过该算法学到的东西 (11) 3.2本程序未完成的任务 (12) 4.参考文献 (12)

1.Ray Tracing算法概述 1.1Ray Tracing算法简介 光线跟踪(Ray tracing),又称为光迹追踪或光线追迹,它是来自于几何光学的一项通用技术,它通过跟踪与光学表面发生交互作用的光线从而得到光线经过路径的模型。它用于光学系统设计,如照相机镜头、显微镜、望远镜以及双目镜等。这个术语也用于表示三维计算机图形学中的特殊渲染算法,跟踪从眼睛发出的光线而不是光源发出的光线,通过这样一项技术将具有一定数学模型的场景显现出来。这样得到的结果类似于光线投射与扫描线渲染方法的结果,但是这种方法有更好的光学效果,例如对于反射与折射有更准确的模拟效果,并且效率非常高,所以在追求高质量结果时我们经常使用这种方法。 在光线跟踪的过程中,我们要考虑许多因素。要跟踪的光线包括反射光线、散射光线和镜面反射光线,利用递归方法并且设定一定的阀值来跟踪;在计算光强度时,我们要考虑场景中物体的反射系数、漫反射系数和镜面反射系数,还有交点处的法向量,出射光线的方向向量;在求视线以及反射光线和场景中物体的交点时,要计算出离眼睛以及出射点最近的交点作为击中点,得到击中点之后,我们就可以计算出击中点的坐标。最终,通过三个公式计算出每一个像素点处三种光线的光强值,再将三个光强值相加,就得到了该像素点出的总光强值,最后将颜色缓冲器中的三种颜色值输出到屏幕上,就得到了我们需要的光线跟踪图像。 1.2Ray Tracing算法的实现原理 (1)对图像中的每一个像素,创建从视点射向该像素的光线; (2)初始化最近时间T为一个很大的值,离视点最近的物体指针设为空值; (3)对场景中的每一个物体,如果从视点出发的光线和物体相交,且交点处的时间t比最近时间T小,则将t的值赋给最近时间T,并设置该物体为最近物体,将物体指针指向该物体; (4)经过第三步的计算后,如果最近物体指针指向空值NULL,则用背景色填充该像素。如果该指针指向光源,则用光源的颜色填充该像素;

最短路径法射线追踪的MATLAB实现

最短路径法射线追踪的MATLAB 实现 李志辉 刘争平 (西南交通大学土木工程学院 成都 610031) 摘 要:本文探讨了在MA TLAB 环境中实现最短路径射线追踪的方法和步骤,并通过数值模拟演示了所编程序在射线追踪正演计算中的应用。 关键词:最短路径法 射线追踪 MATLAB 数值模拟 利用地震初至波确定近地表介质结构,在矿产资源的勘探开发及工程建设中有重要作用。地震射线追踪方法是研究地震波传播的有效工具,目前常用的方法主要有有限差分解程函方程法和最小路径法。最短路径方法起源于网络理论,首次由Nakanishi 和Yamaguchi 应用域地震射线追踪中。Moser 以及Klimes 和Kvasnicha 对最短路径方法进行了详细研究。通过科技人员的不断研究,最短路径方法目前已发展较为成熟,其基本算法的计算程序也较为固定。 被称作是第四代计算机语言的MA TLAB 语言,利用其丰富的函数资源把编程人员从繁琐的程序代码中解放出来。MA TLAB 用更直观的、符合人们思维习惯的代码,为用户提供了直观、简洁的程序开发环境。本文介绍运用Matlab 实现最短路径法的方法和步骤,便于科研院校教学中讲授、演示和理解最短路径方法及其应用。 1 最短路径法射线追踪方法原理 最短路径法的基础是Fermat 原理及图论中的最短路径理论。其基本思路是,对实际介质进行离散化,将这个介质剖分成一系列小单元,在单元边界上设置若干节点,并将彼此向量的节点相连构成一个网络。网络中,速度场分布在离散的节点上。相邻节点之间的旅行时为他们之间欧氏距离与其平均慢度之积。将波阵面看成式由有限个离散点次级源组成,对于某个次级源(即某个网格节点),选取与其所有相邻的点(邻域点)组成计算网格点;由一个源点出发,计算出从源点到计算网格点的透射走时、射线路径、和射线长度;然后把除震源之外的所有网格点相继当作次级源,选取该节点相应的计算网格点,计算出从次级源点到计算网格点的透射走时、射线路径、和射线长度;将每次计算出来的走时加上从震源到次级源的走时,作为震源点到该网格节点的走时,记录下相应的射线路径位置及射线长度。 图1 离散化模型(星点表示震源或次级震源,空心点为对应计算网格点) 根据Fermat 原理逐步计算最小走时及射线方向。设Ω为已知走时点q 的集合,p 为与其相邻的未知走时点,tq 分别和p 点的最小走时,tqp 为q 至p 最小走时。r 为p 的次级源位置,则 )}(min :{qp q P t t t q r q +==Ω ∈ 根据Huygens 原理,q 只需遍历Q 的边界(即波前点),当所有波前邻点的最小走时都求出时,这些点又成为新的波前点。应用网络理论中的最短路径算法,可以同时求出从震源点传至所有节点之间的连线近似地震射线路径。 2 最短路径法射线追踪基本算法步骤 把网格上的所有节点分成集合p 和q ,p 为已知最小旅行时的结点总数集合,q 为未知最小旅行时的节点的集合。若节点总数为n ,经过n 次迭代后可为求出所有节点的最小旅行时。过程如下: 1) 初始时 q 集合包含所有节点,除震源s 的旅行时已知为ts =0外,其余所有节点的旅行时均为ti =(i 属于Q 但不 等于s )。P 集合为空集。 2) 在Q 中找一个旅行时最小的节点i ,它的旅行时为ti ; 3) 确定与节点i 相连的所有节点的集合V ; 4) 求节点j (j 属于V 且j 不属于P )与节点i 连线的旅行时dtij ; 5) 求节点j ()的新旅行时tj (取原有旅行时tj 与tj +dtij 的最小值); 6) 将i 点从Q 集合转到P 集合; 7) 若P 集合中的节点个数小于总节点数N ,转2,否则结束旅行时追踪; 8) 从接收点开始倒推出各道从源点道接收点的射线路径,只要每个节点记下使它形成最小旅行时的前一个节点号,

Atoll 射线跟踪操作手册

Aster 射线跟踪模型 操作手册 版本:2.5.4

目录 1介绍 (3) 2安装 (4) 系统要求和硬件要求 (4) 程序安装 (4) 硬件狗驱动安装 (6) 3地图数据 (6) 地图对象数据模拟Above Surface Object Digital Model(ASODM) (6) 3.1.1确定性传播类型 (7) 3.1.2统计性传播类型 (7) 支持的地图数据的不同搭配 (8) 3.2.1仅有地物分类地图 (8) 3.2.2仅有地物高度地图,无地物分类地图 (8) 3.2.3地物高度和地物分类地图都有 (8) 3.2.43D Building Vector地图 (8) 4Aster模型中的设置 (8) General 标签 (8) Configuration标签 (9) Clutter标签 (10) Geo标签 (11) Ray Tracing标签 (12) 5Aster模型预测覆盖图示例 (13) 6Aster模型校正 (15) Aster模型 Analysis (15) Aster模型校正 (16)

1介绍 Aster模型是Atoll中一个可选的射线追踪传播模型,由Forsk公司发布和支持,作为Atoll的一个可选功能。 Aster模型是一个预校正模型,支持所有无线技术,GSM、UMTS、CDMA2000、LTE、Wi-Fi等,支持从150MHz到5GHz范围内的频段。Aster模型支持所有的小区类型,从微蜂窝小区、迷你蜂窝小区到宏蜂窝小区等等。支持不同类型的传播环境:密集城区、城区、郊区等,特别适合于带有高精度地图的密集城区环境。利用CW测量数据,Aster模型可以进行自动模型校正。 Aster模型主要考虑楼顶的垂直衍射和基于射线追踪算法的水平衍射和反射。 本文档主要介绍Aster模型的先进功能特性,及从安装、参数设置到在Atoll中进行使用的过程,主要目的让用户能了解Aster的基本特性,及学会如何在Atoll中使用Aster模型进行计算。 本文档在介绍参数设置及操作的过程中,会涉及到Demo工程中的地图和数据,用户可以在我们提供的Aster试用光盘中找到本文档涉及的所有工程与地图数据。更多关于Aster的描述,请参考Aster英文版用户使用手册。 本文档工程所用的是Aster 2.5.4.234版本。

光线投射,光线追踪与路径追踪的概念与区别

光线投射,光线追踪与路径追踪的概念与区别 光线投射Ray Casting [1968] 光线投射(Ray Casting),作为光线追踪算法中的第一步,其理念起源于1968年,由Arthur Appel在一篇名为《Some techniques for shading machine rendering of solids》的文章中提出。其具体思路是从每一个像素射出一条射线,然后找到最接近的物体挡住射线的路径,而视平面上每个像素的颜色取决于从可见光表面产生的亮度。 光线投射:每像素从眼睛投射射线到场景 光线追踪Ray Tracing [1979] 1979年,Turner Whitted在光线投射的基础上,加入光与物体表面的交互,让光线在物体表面沿着反射,折射以及散射方式上继续传播,直到与光源相交。这一方法后来也被称为经典光线跟踪方法、递归式光线追踪(Recursive Ray Tracing)方法,或Whitted-style 光线跟踪方法。 光线追踪方法主要思想是从视点向成像平面上的像素发射光线,找到与该光线相交的最近物体的交点,如果该点处的表面是散射面,则计算光源直接照射该点产生的颜色;如果该点处表面是镜面或折射面,则继续向反射或折射方向跟踪另一条光线,如此递归下去,直到光线逃逸出场景或达到设定的最大递归深度。 经典的光线追踪:每像素从眼睛投射射线到场景,并追踪次级光线((shadow, reflection, refraction),并结合递归 光线追踪(Ray tracing)是三维计算机图形学中的特殊渲染算法,跟踪从眼睛发出的光线而不是光源发出的光线,通过这样一项技术生成编排好的场景的数学模型显现出来。这样得到的结果类似于光线投射与扫描线渲染方法的结果,但是这种方法有更好的光学效果,例如对于反射与折射有更准确的模拟效果,并且效率非常高,所以当追求高质量的效果时经常使用这种方法。

基于 Voronoi 图的 简单多边形骨架提取

计算几何课程设计报告 基于Voronoi图的简单多边形骨架提取

引言 骨架(Skeleton)又称中轴(Medial Axis),通常使用烧草模型和最大球(圆)模型来描述。骨架有着与原物体相同的拓扑和形状信息,是一种性能优良的几何特征,能够有效的描述物体,因此,在物体识别、路径规划、医学工程等领域多有应用。在物体识别等应用领域里,骨架提取的输入可以看作是空间内的点构成的多边形,对于多边形的骨架提取也成为了这些应用的基本技术,具有重要的应用意义。在此次课程设计中,我们实现了基于Voronoi 图的任意多边形的骨架提取,并提供了多边形骨架提取的演示界面。 多边形骨架 一个多边形的骨架,如上图所示,可以看作是由无数点对之间的骨架点组成的。两点间的骨架(skeleton)(等同于对中轴(medial axis)的求取)是到两点距离相等的点的轨迹,它是两点连线的垂直平分线,每一点所邻接的半平面是到其距离最小的点集相应地可扩展为离散点集的中轴定义。它是下列性质点的轨迹:其上任一点到最近两离散点距离相等,相应地也产生各点到其距离最小的点集;两线间的中轴是到两线距离相等的点的轨迹,它在两线相交时为角平分线——两线平行时为到两线距离——的平行线,每一线所邻接并以中轴为界的区域是到其距离最小的点集。一线和一点间的中轴是到该点(线距离相等的点的轨迹,它是以该点为焦点、该线为准线的抛物线。该点或线所邻接并以中轴为界的区域是到其距离最小的点集。 多边形骨架的几何算法 多边形骨架(中轴)的几何算法,是由多边形的某一点开始,找出参与中轴线计算的相应的线段与线段、点与线段、点与点,实质都转化为求某个特定点(中轴转折点)的问题,

光线跟踪算法思想

光线跟踪算法思想 一、概述 本试验完成了基本光线跟踪、高级光线跟踪(反射、折射、透明、阴影)、光线跟踪加速算法等三个与光线跟踪有关的内容。 二、算法简述 1.面片求交 面片求交采用了先求交后判断的方法。现将光线的方程代入平面方程中求出交点。然后将该面片与交点都投影到同一个平面中如XOY平面。投影时需要判断投影结果是否会退化为一条直线,如果发生这种情况则要投影到另一平面内。 投影后,将交点坐标代入到面的边线方程中(要保证线的方向一致),并判断符号,如果符号始终相同,则表示点在面内。 2.球体求交 球体求交也采用了将光线方程代入球体方程的方式。如果方程无解表示没有交点。如果有两个大于0的解,则取较小的一个;如果一个大于0,一个小于0的解,则取大于零的解。 如果没有大于零的解则仍判定为不相交。 3.光线跟踪算法 设定视点和画布 for 画布上的每一行 { for 每一行上的每个像素 { 生成一条从视点到像素点的光线ray LT[i,j] = ray.RayTrace(物体数组,光源数组,1) } } //计算光线与物体的交点,并计算光强 V oid RayTrace(物体数组,光源数组,递归深度) { for 每个物体 { 计算光线与该物体的交点 if 光线起点到交点的距离小于已记录的最短距离且大于0 { 将最短距离设置为该距离

在这条光线对象中记录交点坐标,平面法向量,透明度,物体序号等 } } 对于距光线起点最近的那个点,执行 ComputeIntensity(物体数组,交点数组序号,光源数组,递归深度) } V oid ComputeIntensity(物体数组,交点数组序号,光源数组,递归深度) { 给物体加上环境光强 for (每个光源) { 生成一条从光源指向交点的光线 判断该光线是否与其他不透明的物体相交 if (不相交) 将该光线光强乘以满反射系数和镜面反射系数加到被跟踪光线的光强中 } if (递归深度< 设定深度) { if (需要反射) { 生成一条以交点为起点的反射光线reflectRay reflectRay.RayTrace(物体数组,光源数组,递归深度+1) 将reflectRay的光强与镜面反射系数相乘,加到原被跟踪光线光强中} if (需要折射) { 生成一条以交点为起点的折射光线refractRay refractRay.RayTrace(物体数组,光源数组,递归深度+1) 将refractRay的光强与透明系数相乘,加到原被跟踪光线光强中} } } 4.光线跟踪加速算法(层次包围球) 本作业选择了包围球而不是包围和来实现加速。这是基于光线与包围球求交比与包围盒求交速度快的考虑。虽然包围盒比包围球能更紧密地包围住物体,但与包围盒求交时需要处理所有可见面片并且对求出的交点还要判断是否在面片内,这样,当物体数量较少时反而起不到加速的作用。因此我觉得包围盒更适合于规模很大的光线跟踪计算。

城市环境下射线追踪加速算法

城市环境下射线追踪加速算法 在三维城市建设的过程中,为了使得城市环境更具有真实感,往往需要为城市环境模拟一太阳光源,实现因为光照而引起的三维场景下的各种表现特征。研究在三维场景下的光线(射线)传播路径具有重要的应用价值,在广播数字电视、城市移动多媒体、移动通讯等领域,信号的传播都是利用电磁波实行的,而光本身也是一种电磁波,它们传播的方式一致。所以研究射线追踪技术,便能够将其引入到上述领域中展开应用。首先通过射线追踪技术找到发出的信号到达信号接收端的路径,然后结合信号在发射、路径传播过程中的电波传播特征,从而得到信号最终到达信号接收端的信号强度,实现基于射线追踪技术的电波传播预测,为广播数字电视、城市移动多媒体、移动通讯等领域的覆盖规划提供决策支持。本文在三维城区环境下,研究射线追踪技术的理论方法,即,某一光源(信号发射源)发出一条光线(射线)后,通过直射、反射、绕射等最终到达地面的光线(射线)传播路径。 1射线追踪介绍 射线跟踪方法的理论基础是几何光学(GeometricalOptics,GO)理论,即,光在空间中以射线的方式实行传播,在遇到障碍物时,遵循光的反射定律会产生反射现象,射线追踪即模拟光在空间中的反射路径。对于空间障碍物边缘发射的绕射,则引入几何绕射理论和一致性绕射理论,模拟信号在遇到障碍物时发生的绕射情况。图1为信号经过直射、反射、衍射(绕射)后到达信号接收端的示意图。因为从一个信号发射端会发出无数条射线,而且当遇到障碍物时,每条射线又会在障碍物表面发生反射、绕射等显现,所以在三维空间中找到所有射线的计算量巨大,甚至是计算机不可承受的。本文在充分研究传统射线追踪算法的基础上,提出基于城市布局分区、降维、加速多镜法的射线追踪技术,提升射线追踪算法的计算效率。 2.1分区加速算法

光线跟踪算法

光线跟踪算法的研究与进展 刘进 摘要:光线跟踪算法是图形绘制技术中的经典算法,但是该算法光线与物体的求交量庞大,严重制约着应用。本文从经典的光线跟踪算法出发,研究了目前光线跟踪算法的国内外研究状况,具体从改进的光线跟踪算法和光线跟踪算法的加速技术,并进行了对比和分析。最后对近几年的光线跟踪方法发展进行了总结,对未来研究热点及应用前景进行了展望。 关键词:可视化;光线跟踪算法;并行绘制;GPU Research Status and Prospect for ray tracing algorithms Abstract: As an classic algorithms of volume rendering in computer graphics, ray tracing algorithms is hindered by the huge computation cost in ray and volume. This paper summarizes the research status in ray tracing technology from the two main solutions: different extended ray tracing algorithms and the acceleration techniques in ray tracing algorithms. Comparison and analysis the different performance. Both current research focus and the future research prospect are also discussed in recent years. Key words: visualization; ray tracing algorithms; parallel rendering; GPU 引言 随着科学技术和计算机高速发展,人类已经进入到一个科技支撑的时代,在我们的生活中到处充满了高科技产品和技术,给我们的生活带来了改变和方便,其中计算机图形学的应用已经渗透到了各个工程技术领域,其已经成为计算机科学的重要学科之一,具有相当的重要性和无可替代的作用。计算机图形学自诞生以来得到了飞速发展,其通过计算机的输入设备、显示设备及绘制设备等对图形的表示、绘制、存储、显示等相关理论知识、算法技术进行研究的一门学科。真实感图形绘制是计算机图形学的主要研究内容之一,在虚拟现实、文物保护、影视游戏、三维动画、医学研究、建筑设计和系统仿真等领域中得到广泛应用,它追求对场景的逼真渲染[1]。其中逼真的图形绘制技术是最为活跃的研究领域之一。 光线跟踪算法是真实感图形绘制技术的主要算法之一,其原理简单,能够有效生成具有比较真实视观效果的各种各样的场景。该算法可通过一些光照明模型模拟在光源或环境光照射下物体表面发生的多种光照效果,例如漫反射、高光、镜面映像、场景消隐及阴影等。在计算机中对现实场景或是虚拟场景进行显示,除了要构建场景图形外,还要将场景中的各种光照效果模拟出来,这样生成的场景才能更逼真,光线跟踪算法就是既在几何上相似,也能模拟出大部分的光照效果的生成真实感图形的方法。光线跟踪算法是逆着真实光线的投射方向进行反向跟踪的,从视点向场景发射光线,光线与场景中的物体相交,计算光分量,因为视点向场景的光线较多,因而该算法光线与物体的求交量较大,但是因为其对场景的模拟的逼真,及其可以模拟漫反射、镜面反射、反射折射以及阴影等光照效果[1-2]。 进入90年代,随着计算机技术的发展,光线跟踪技术广泛应用于三维特技电影、电视广告、电子游戏的制作中,其应用领域也正在向如物理、化学、生物等其他学科领域渗透,其应用的范围正不断扩大,很多基于光线跟踪算法的新理论也应运而生,物理学中的相对论、地理中地层的绘图等与光线跟踪算法相结合的研究已经实现,极大的推动其学科的发展。可

华为:射线追踪技术为网络规划导航

华为:射线追踪技术为网络规划导航 更新时间:2006-8-8 10:08:31 【关键字】华为 传播模型是影响无线网络规划准确性关键因素,射线追踪是用来在城市和室内场景中进行准确的传播预测的一种技术。本文简要介绍了射线追踪模型的原理和商用情况,给出了射线追踪模型的适用范围,并以香港网络规划项目为例给出了射线追踪模型与传统经验模型的对比。 射线追踪技术 在移动通信网络规划中,传播预测的结果影响网络规划过程中预测小区半径、容量、覆盖、干扰等指标,因而对规划结果的准确性有决定性的影响。在第三代移动通信中,由于CDMA系统的自干扰特性,准确地预测干扰显得尤为重要。因此,一直以来,精确的传播预测方法和传播模型是移动通信和网络规划研究的关键课题。 电波传播的研究方法分为两类,一类是对大量测试数据进行研究,得到电波传播的统计特性,这类传播模型称为统计模型或经验性传播模型。一类是对电波的传播特性进行理论分析,得到电波传播的特性,这类传播模型被称为理论模型或确定性模型。在实际情况中,也有不少模型综合使用两种研究方法,可以称之为半经验性模型。 更加准确的确定性研究方法是射线追踪技术。射线追踪技术是光学的射线技术在电磁计算领域中的应用,能够准确地考虑到电磁波的各种传播途径,包括直射、反射、绕射、透射等,能够考虑到影响电波传播的各种因素,从而针对不同的具体场景做准确的预测。射线追踪技术在上世纪九十年代以来被广泛地研究,受到众多移动通信运营商和设备制造商的重视,并且出现了较为成熟的商用模型软件。 商用模型介绍 射线追踪技术必须成为能够在规划软件中调用的软件模块才能够在网络规划项目中 使用。目前几种商用的射线追踪模型都是由单独的软件开发商开发的,可以集成在多种网络规划软件中。 Volcano是由法国Siradel公司开发的包含了射线追踪技术的传播模型。在该模型中,传播场景根据天线高度和电波的主要传播方式定义为三种,即发射天线高于周围建筑物的宏蜂窝(Macrocell)场景,发射天线低于周围建筑物的微蜂窝(Microcell)场景和发射天线介于两者之间的Mini蜂窝(Minicell)场景。其中的宏蜂窝场景模型是一种传统的垂直面模式传播模型,用刀刃绕射算法(Deygout方法)计算垂直剖面上的绕射损耗。后两种场景模型则是射线追踪模型,采用了垂直面模式和二维发射射线算法射线追踪技术的混合方法,但是采用不同的射线追踪算法。 WinProp是德国AWE公司开发的传播模型软件,其中包含了可以应用于城区、室内和坑道场景的射线追踪算法。WinProp的射线追踪算法有两种,即标准射线追踪

并行射线跟踪算法及其在城市电波预测的应用

文章编号 1005 0388(2004)05 0581 05 并行射线跟踪算法及其在城市 电波预测的应用 刘海涛 黎滨洪 谢 勇 戚冬生 (上海交通大学电子工程系,liuht@sj https://www.wendangku.net/doc/a113398876.html,,上海200030) 摘 要 射线跟踪算法的计算量较大,耗时较长。针对这一问题提出并研究了对等模式和主从模式两类并行射线跟踪算法,结合MPI 并行运算函数库,在局域网计算机簇中,实现了城市复杂微蜂窝环境的电波预测。结果表明,并行算法在精度相同的情况下,大大缩减了计算机运行时间。而且,主从模式在异类网络中具有更好的并行加速增益和负载均衡。 关键词 并行射线跟踪,电波预测,MPI,并行加速增益,负载均衡中图分类号 TN011 文献标识码 A Parallel ray tracing algorithm and its application for propagation prediction in urban microcellular environments LIU Hai tao LI Bin hong XIE Yong QI D ong sheng (Department of Electronic Engineering,Shan ghai Jiao T ong University , liuht @sj https://www.wendangku.net/doc/a113398876.html,,Shan ghai 200030,China) Abstract Ray tracing algorithm needs a great deal of c omputation time.To improve its effi ciency,two kinds of parallel ray tracing algorithm:Peer to Peer Model (PPM)and Master/ Slaves Model (MSM)are presented in this paper.Propagation prediction simulation in urban microcellular environments is made in LAN workstation cluster by using MPI parallel func tions library.The comparison among numeric results indicates that the parallel algorithm consider ably reduces the computation time without losing precision,and that the MSM can achieve bet ter parallel speedup gain and load balancing than PP M. Key words parallel ray tracing algorithm,propagation prediction,MPI,speedup,load bal ancing 1 引 言 基于几何光学和一致性绕射理论的射线跟踪算法是目前城市电波预测中最有效的方法之一[1]~ [4] 。该算法不同于传统的经验预测模型,它 是根据具体的地形几何特点,实现精确的路径损耗预测。但是这种数值算法耗时较长,特别是针对建筑物密集的城市中心区。国内外众多学者已经提出 了许多加速算法,如区域分块法、角度的Z 缓存区算法等[5] ,这些算法都有效的缩短了计算时间。 近年来,随着高性能分布式计算技术的发展,并行计算成为解决巨大而耗时问题的主要技术[6]。而且随着计算机硬件价格的降低,使用局域网计算机簇取代昂贵的并行计算机作为并行仿真环境,将成为廉价省时的电波预测解决方案。本文就是依据基于SBR(Shooting and B ouncing Ray Launching)的射线 收稿日期:2003 08 14 第19卷 第5期2004年10月 电 波 科 学 学 报 CH INESE JOURNAL OF RADIO SCIE NCE Vol.19,No.5 Oc tober,2004

光线追踪的应用及发展趋势

课程论文 课程论文题目:光线追踪的应用及未来发展 学院:人民武装学院 专业:计算机科学与技术 班级:物联人151 学号: 1500860346 学生姓名:谭朝艳 指导教师:宁阳 2016 年6 月3 日

目录 摘要 ............................................................... II 第一章绪论 . (1) 1.1 光线追踪的定义 (1) 1.2 光线追踪的原理 (1) 1.2.1 自然现象 (1) 1.2.2 光线追踪的原理 (1) 1.3 光线追踪的特点 (3) 1.3.1 光线追踪的优点 (3) 1.3.2 光线追踪的缺点 (3) 第二章光线追踪的应用 (4) 2.1 光线追踪在图形渲染中的应用 (4) 2.2 光线追踪在物理学中的应用 (4) 2.3 光线追踪在实际应用 (4) 2.4 实时跟踪 (4) 第三章光线追踪的未来发展趋势 (6) 3.1 光线追踪VS光栅化 (6) 3.2 显卡何时才能实时光线追踪 (7) 3.3 光线追踪的未来发展 (8)

光线追踪的应用及未来发展 摘要 光线跟踪是一种真实地显示物体的方法,该方法由Appe在1968年提出。光线跟踪方法沿着到达视点的光线的反方向跟踪,经过屏幕上每一个象素,找出与视线相交的物体表面点P0,并继续跟踪,找出影响P0点光强的所有光源,从而算出P0点上精确的光线强度,在材质编辑中经常用来表现镜面效果。光线跟踪或称光迹追踪是计算机图形学的核心算法之一。在算法中,光线从光源被抛射出来,当他们经过物体表面的时候,对他们应用种种符合物理光学定律的变换。最终,光线进入虚拟的摄像机底片中,图片被生成出来。 关键字:光线跟踪(Ray tracing),真实感

2007射线追踪与波动方程正演模拟方法对比研究

47 科技资讯  科技资讯 SCIENCE & TECHNOLOGY INFORMATION2007 NO.12 SCIENCE & TECHNOLOGY INFORMATION 工 业 技 术 地震正演模拟作为反演解释的反过程,是验证解释成果的有效手段,进行必要可靠的正演模拟可以有效的监控反演解释。地震学一般可以分为几何地震学和物理地震学,在几何地震学中进行的正演模拟方法就是我们通常所说的射线追踪法,射线追踪法是在合成记录时用地震子波和界面或地质体的反射系数进行反褶积运算,即。运算的最大特点是说明了地震波传播的运动学特征。而在物理地震学中应用波动方程法合成的地震记录是通过求解波动方程的数值解来模拟地震波场的。在波动方程合成的地震记录中不单保持了地震波传播运动学特征,还说明了地震波传播的动力学特征。本文将分别用射线追踪和波动方程的方法合成地震记录。 1 基于射线追踪的合成地震响应 射线追踪法的主要理论基础是,在高频近 射线追踪与波动方程正演模拟方法对比研究 王志美 畅永刚 (长江大学油气资源与勘探技术教育部重点实验室 湖北荆州 434023) 摘 要:地震学一般可以分为几何地震学和物理地震学,几何地震学中进行正演模拟方法就是射线追踪法,射追踪法是在合成记录时用地震子波和界面或地质体的反射系数进行反褶积运算,即。运算的最大特点就是说明了地震波传播的运动学特征。而在物理地震学中的波动方程法合成的地震记录是通过求解波动方程的数值解来模拟地震波场。在波动方程合成的地震记录中不单保持了地震波传播 运动学特征外,还说明了地震波传播的动力学特征。本文将分别用射线追踪和波动方程的方法合成地震记录。关键词:射线追踪 波动方程 正演模拟 中图分类号:P315文献标识码: A 文章编号:1672-3791(2007)04(c)-0047-00 图1 射线追踪正演模拟(1) 图 2 逐段迭长示意图 图 3 射线追踪正演模拟(2) 图4 波动方程正演模拟结果 似条件下,地震波的主能量沿射线轨迹传播。基于这种认识,运用惠更斯原理和费马原理来重建射线路径,并利用程函方程来计算射线的旅行时。在旅行时计算中应用有限差分等方法,以获得快速的解。射线法的主要优点是概念明确,显示直观,运算方便,适应性强;其缺陷是应用有一定限制条件,计算结果在一定程度上是近似的,对于复杂构造进行两点三维射线追踪往往比较麻烦。为了计算波沿射线的旅行时和波的传播路径,叙述如下。 如图1所示,首先给出连接S(激发点)和R(接收点)之间的初始射线路径射线的振幅变化,首先必须知道地震波在实际地层中传播的射线路径。 由于地震波在整条路径上满足同一个射线参数,因此射线路径上任意连续三点也将满足同一个参数,而三点间的射线表现形式为Snell定律。按照Snell 定律,可导出一个求 取中间点的一阶近似公式。当前后两点位于界面两边时,中间点为透射点,所求路径为透射路径;当前后两点位于界面的同一边时,中间点为反射点,所求路径为反射路径。为此,可以从任一端点出发,连续地选取三点,通过一阶近似公式进行逐段迭代取中间点,利用新求出的点代替原来的点,然后以一点的跨跃作为步长,顺序地逐段迭代下去,直到另一端点。这样,新计算出的中间点和两个端点就构成了一次迭代射线路径,如图2中所示。如果整条射线路径上校正量的范数之和满足一定的精度要求,则认为射线追踪过程结束,否则从追踪出的射线路径开始,继续重复上述过程,直到满足精度要求为止。最后一次追踪到的中间点和两个端点,构成整条射线路径。图3基于多层倾斜界面模型通过射线追踪正演模拟地震响应。从模拟结果可以直观的看出基于几何地震学的原理正演模拟结果只能反映地震波的几何传播路径。在实际的工程设计中通过正演模拟可以在地表确定地下观测范围,节约设备提高工程效率,但不能反映 物理地震学中的地震属性,例如振幅,频率和相位等。更不能反映地震波的动力学特征。 2 波动方程的合成地震响应 2.1 波动方程的建立 非均匀介质的声波方程:  (1) (2) 可由对连续介质方程(1)式的两端对时间求导,并利用欧拉方程推得:  (3) 其中:P是波数,V是质点振动的速度向量,ρ是密度,c是波速,ρ和c是随着空间参数χ和z变化的,这里ρ给定为常数,只有c 是地质模型的控制参数。χ和Z分别是在地面水平距离和深度。这样(3)式就可以变为:  (4) 其中:c=ν (χ,z);(4)式即是所求的弹性波动方程。 2.2 数值计算及稳定性 求解弹性波动方程的方法有多种,付立叶变换法是对弹性波动方程的波场进行付立叶变换,优点是运算速度快。克希霍夫积分法是基于均匀模型,利用格林函数公式计算曲面积分,求出空间波场值,但这种方法不能适应

一般图形Voronoi图的离散生成

一般图形Voronoi图的离散生成

————————————————————————————————作者:————————————————————————————————日期:

一般图形Voronoi图的离散生成-工程论文 一般图形Voronoi图的离散生成 刘欣LIU Xin (承德石油高等专科学校社科与数理部,承德067000)(Department of Social Science and Mathematics,Chengde Petroleum College,Chengde 067000,China) 摘要:由于一般图形形状和位置的任意性,一般图形Voronoi图往往比较复杂,难以将传统的构造法直接应用到一般图形Voronoi图的构造中。本文介绍了一般图形Voronoi图的离散构造法,并给出算法步骤及优势分析。Abstract:Because of the random graph shape and position,the general Voronoi graph is often more complex,it is difficult to construct the traditional method of direct application to the general structure of Voronoi graph. This paper introduces the construction method of general discrete Voronoi graph,and puts forword the algorithm steps and its advantages. 关键词:一般图形;Voronoi图;离散生成 Key words:general graphs;Voronoi diagram;discrete generation 中图分类号:TP391 文献标识码:A 文章编号:1006-4311(2015)19-0162-02 基金项目:河北省高等学校科学技术研究项,编号为QN20131159;承德市软科学研究计划项目(承德市公交线路的发展现状与优化分析):201422123。作者简介:刘欣(1977-),女,河北承德人,承德石油高等专科学校社科数

最短路径法射线追踪的MATLAB实现

16 工程地质计算机应用 2004年 第 4 期 总 36期 最短路径法射线追踪的MATLAB 实现 李志辉 刘争平(西南交通大学土木工程学院 成都 610031) 【摘要】MATLAB 是一种广泛应用的优秀的科学计算语言和工具。本文简要阐述了最短路径法的基 本原理,探讨了在MATLAB 环境中实现最短路径射线追踪的方法和步骤,并通过数值模拟演示了所 编程序在射线追踪正演计算中的应用。 【关键词】最短路径法 射线追踪 MATLAB 数值模拟 利用地震初至波确定近地表介质结构,在矿产资源的勘探开发及工程建设中有重要作 用。地震射线追踪方法是研究地震波传播的有效工具,目前常用的方法主要有有限差分解方 程法和最小路径法。最短路径方法起源于网络理论,首次由Nakanishi 和Yamaguchi 应用于 地震射线追踪中。Moser 以及Klimes 和Kvasnicha 对最短路径方法进行了详细研究。通过科 技人员的不断研究,最短路径方法目前已发展较为成熟,其基本算法的计算程序也较为固定。 被称作是第四代计算机语言的MATLAB 语言,利用其丰富的函数资源把编程人员从繁 琐的程序代码中解放出来。MATLAB 语言用更直观的、符合人们思维习惯的代码,为用户提 供了直观、简洁的程序开发环境。本文介绍运用Matlab 实现最短路径法的方法和步骤,便于 科研院校教学中讲授、演示和理解最短路径方法及其应用。 1 最短路径法射线追踪方法原理 最短路径法的基础是Fermat 原理及图论中的最短 路径理论。其基本思路是,对实际介质进行离散化,将 这个介质剖分成一系列小单元,在单元边界上设置若干 节点,并将彼此向量的节点相连构成一个网络。网络中, 速度场分布在离散的节点上。相邻节点之间的旅行时为 他们之间欧氏距离与其平均慢度之积。将波阵面看成是 由有限个离散点次级源组成,对于某个次级源(即某个 网格节点),选取与其所有相邻的点(邻域点)组成计 算网格点;由一个源点出发,计算出从源点到计算网格 点的透射走时、射线路径和射线长度;然后把除震源之 外的所有网格点相继当作次级源,选取该节点相应的计算网格点,计算出从次级源点到计算网格点的透射走时、射线路径和射线长度;将每次计算 出来走时加上从震源到次级源走时,作为震源点到该网格节点的走时,记录下相应射线路径 位置及射线长度(见图1)。 根据Fermat 原理逐步计算最小走时及射线方向。设Ω为已知走时点q 的集合,p 为与其 相邻的未知走时点,tq 分别和p 点的最小走时,tqp 为q 至p 最小走时。r 为p 的次级源位置, 图1 离散化模型(星点表示震源或次级震源,空心点为对应计算网格点)

泰森多边形(Voronoi图)生成算法

泰森多边形(Voronoi图)生成算法

一、文档目的 本文描述了在geomodel模块中,生成泰森多边形所使用的算法。 二、概述 GIS和地理分析中经常采用泰森多边形进行快速插值,和分析地理实体的影响区域,是解决邻接度问题的又一常用工具。 荷兰气候学家A·H·Thiessen提出了一种根据离散分布的气象站的降雨量来计算平均降雨量的方法,即将所有相邻气象站连成三角形,作这些三角形各边的垂直平分线,于是每个气象站周围的若干垂直平分线便围成一个多边形。用这个多边形内所包含的一个唯一气象站的降雨强度来表示这个多边形区域内的降雨强度,并称这个多边形为泰森多边形。如图1,其中虚线构成的多边形就是泰森多边形。泰森多边形每个顶点是每个三角形的外接圆圆心。泰森多边形也称为Voronoi图,或dirichlet图。 图1 泰森多边形 泰森多边形的特性是: ●每个泰森多边形内仅含有一个离散点数据 ●泰森多边形内的点到相应离散点的距离最近 ●位于泰森多边形边上的点到其两边的离散点的距离相等 泰森多边形可用于定性分析、统计分析、邻近分析等。例如,可以用离散点的性质来描述泰森多边形区域的性质;可用离散点的数据来计算泰森多边形区域的数据;判断一个离散点与其它哪些离散点相邻时,可根据泰森多边形直接得出,且若泰森多边形是n边形,则就与n个离散点相邻;当某一数据点落入某一泰森多边形中时,它与相应的离散点最邻近,无需计算距离。 在泰森多边形的构建中,首先要将离散点构成三角网。这种三角网称为Delaunay三角网。 三、Delaulay三角形的构建 Delaunay三角网的构建也称为不规则三角网的构建,就是由离散数据点构建三角网,如图2,即确定哪三个数据点构成一个三角形,也称为自动联接三角网。即对于平面上n个离散点,其平面坐标为(x i,y i),i=1,2,…,n,将其中相近的三点构成最佳三角形,使每个离散点都成为三角形的顶点。 图2 Delaunay三角网

多边形的Voronoi图及其研究应用

多边形的Voronoi图及其研究应用 Voronoi图是计算几何的重要几何结构之一,也是计算几何的重要研究内容之一。它按照对象集合中元素的最近属性将空间划分成许多单元区域。由于Voronoi图具有最近性、邻接性等众多性质和较完善的理论体系,如今已经在图形学、机械工程、虚拟现实、地理信息系统、机器人、图像处理、CAD等领域得到广泛应用,也是解决距离计算、碰撞检测、路径规划、Delaunay三角化、骨架计算、凸包计算以及可见性计算等计算几何其它问题的有效工具,因而受到人们的广泛关注。 目前,对Voronoi图的研究工作,从所在空间上来说,更多的集中在2维上;从生成对象上来说,更多的集中在离散点集上;在研究内容上来说,主要集中在其构造算法和相关应用研究上。对于多边形的Voronoi 图来说,则主要集中在多边形的内部Voronoi图的构造和相关应用上。 本论文对多边形的内部和外部Voronoi图的相关性质进行了较为深入的研究,并以此为基础研究解决在图形图像、虚拟现实等方面的研究工作中遇到的可见性计算、距离计算以及骨架计算等问题。 本论文的贡献主要有: 1、分析了M.Held给出的关于多边形内部Voronoi图顶点和边数的上界所存在的局限性:只适用于单边界多边形,对多边界多边形则不适用;给出了新的可适用于单边界和多边界多边形的内部Voronoi图顶点和边数上界估计;同时给出了多边形的外部Voronoi图顶点和边数上界估计;并对多边形的内部和外部Voronoi图的每一个Voronoi区域所包含的顶点和边数的平均值进行了估计。 2、提出了一种基于Voronoi图的计算多边形可见性的算法。我们用多边形的Voronoi图建立多边形的骨架,利用Voronoi图的邻近属性和最近特性等性质,沿着骨架在局部范围内确定可能产生遮挡的对象,从而确定多边形内任意一点的可见边。在预先建立一个多边形的骨架后,可在时间内确定多边形内任一观察点的可见边,其中为搜索过程中涉及到的Voronoi图中的骨架元素的数目。大部分情况和可见边数接近。本算法时间复杂度低,适用于任意多边形,且易于理解和编程实现。 3、给出了基于Voronoi图快速计算两个分离凸多边形距离的算法。算法利用两个分离凸多边形P和Q的外部Voronoi图的性质及其相互间的位置关系,采用二分法逐渐缩小搜索范围来快速查找最短距离对象对。算法首先根据多边形外部Voronoi图的性质确定最短距离对象对所在的初始搜索范围P(和Q(;然后取P(和Q(的中间顶点对象pm1和qm2,它们分别将P(,Q(平分成和,和四个子搜索范围,并根据pm1和qm2及其所在Voronoi 区域的位置关系,确定可删除的一个或两个子搜索范围;然后在剩余的子搜索范围继续用二分法查找最短距离

相关文档