文档库 最新最全的文档下载
当前位置:文档库 › 最新数字轨道电路

最新数字轨道电路

轨道电路

轨道电路课外读物 第一节轨道电路的发展史 一、轨道电路发展史 铁路最初的雏形是没有轨道电路的,但随着列车对数的增加和运行速度的提高,火车事故率开始飞速增加,不能明确反映列车空闲与占用轨道是导致火车事故频发的主要因素,为了检查列车占用钢轨线路状态,美国人鲁宾逊1870年发明了开路式轨道电路,1872年研制成功了闭路式轨道电路,于1873年首先在宾西法尼亚铁路试用,从此诞生了铁路自动信号。 我国铁路在建国前采用的轨道电路传输信息少,分布也极不平衡,建国后从50年代中期开始,轨道电路技术在我国有了长足的发展,不仅传输的信息量增加而且它的使用已遍及全国铁路各线,构成了我国铁路信号技术发展的基础。 1924年,我国首先在大连——金州间,沈阳——苏家屯间建成自动闭塞,采用了交流50Hz二元三位式相敏轨道电路,这是我国最早采用的轨道电路。 我国的轨道电路发展分为直流轨道电路、交流连续式轨道电路和交流计数电码、移频、高频轨道电路(包括计轴设

备)、无绝缘轨道电路等几种。 (一)直流轨道电路 直流轨道电路又分为:普通直流轨道电路和直流脉冲轨道电路 1、普通直流轨道电路 京奉(现沈阳)铁路在联锁闭塞设备中自动控制出站信号机恢复定位,最早用的水银轨道接触器。1925年首先在秦皇岛及南大寺两站装设了直流闭路式轨道电路,取代了水银轨道接触器,这是我国最早使用的一种直流轨道电路,轨道电路器材用的是英国麦堪和荷兰德两家公司的产品。1942年,在济南站中修建了进路操纵手柄式继电电气集中联锁,轨道电路是直流闭路式的,器材为日本产品。1952年,衡阳站建成进路操纵继电式电气集中联锁。轨道电路也是直流闭路式的,器材是上海华通、新安电机厂新成电器厂的仿美制品。 在50年代初,从苏联引进了HP-2型直流轨道电路,曾用在蒸汽牵引区段的小站联锁设备中。由于它抗干扰性能差,继电器不能集中管理,所以使用较少,已逐步被交直流轨道电路所取代。直流轨道电路没有绝缘破损防护功能,抗

基于轨道电路的ATC系统

基于轨道电路的ATC系统 基于轨道电路的ATC系统,包括基于模拟轨道电路和数字编码轨道电路的ATC 系统,在城市轨道交通中得到大量使用,尤其是后者,本章介绍用于我国城市轨道交通的各种基于轨道电路的ATC系统。 第一节西屋ATC 西屋信号有限公司(WestinghOUSe Signals Ltd,简称WSL)的ATC,充分利用WSL多模式列车自动防护系统TBSl00的灵活性。系统具有很强的可维护性,一旦发生故障,修复时间可以尽量缩短。这种高水平的可维护性是通过广泛采用下列技术来实现的: 用自诊断法和发光二极管指示或故障提示,进行有效的故障报告,可快速找出故障所在;使用模块化“在线可更换单元”,可更换失灵的模块,快速排除故障;尽量减少在不可及地点(例如隧道内)的设备;各系统一般分散布置,某些方面采用冗余,以提高系统可用性。 WSL的ATC已在世界各地的地铁系统上运营,在我国则用于北京地铁系统和天津 地铁l号线。 一、系统组成 WSL的ATC由TBSl00ATP和AT0系统、FS一2500无绝缘轨道电路、基于WE—STRACE处理器的联锁,以及WESTCAD监控系统组成。所提供的设备主要为模块式, 便于扩大功能或延伸系统。 该系统大量采用处理器技术。例如,轨道电路以处理器为基础,联锁采用处理器,ATP和AT0车载系统及轨旁系统基于处理器为基础,ATS系统也采用处理器。正线列 车行车间隔采用自行开发的“多列车模拟器”。 基本的信号功能采用WESTRACE处理器为基础的联锁装置来实现。它包括特别 设计的模块,可以与无绝缘轨道电路直接衔接。WESTRACE联锁装置将接通本地或远 程终端,并有端口供连接维修用的便携式计算机。 ATP子系统采用最新的TBSl00系统。这种系统极为灵活,并采用了最新的技术 成果。ATP系统利用联锁通过轨道电路传来的信息,决定列车的运行速度。 ATO子系统采用与TBSIOOATP系统相同的基本车载模块。它载有有关轨道布置 和坡度的所有资料,能优化列车控制指令。它配备双向站台列车通信系统,确保能与ATS系统直接衔接,从而优化列车的运行。AT0还能从ATP系统中提取数据,以判断 前方信号情况。 ATS子系统使用WSL最新的WESTCAD控制与显示系统。每个WESTRACE联 锁接通一台WESTCAD控制终端,以便对该区域进行就地控制。它还通过电信链路, 接至控制中心。控制中心的WESTCAD终端可以遥控正线上的所有路线、信号机和 道岔。, 系统正常时,ATC系统自动控制正线运行的列车,必要时调度员可人工介入控制。控制中心故障时车站信号系统由车站值班员人工控制。在控制中心ATS正常时,可对 全部正线列车进行监控,并对车辆段内列车进行追踪、监视。 二、ATP子系统 ATP系统可先按照目标距离模式来设计,这是可以满足城市轨道交通初期运营要 求的最经济的低风险模式。在“目标距离”系统中,每列列车被告知它可以安全行驶的目标距离,据此列车决定到达该点的安全速度。即使发生某些故障,列车仍能以一定的限制速度行驶。

AF-904型数字轨道电路介绍

AF-904型数字轨道电路介绍 AF-904型数字(音频)轨道电路是美国US&S公司ATC系统的基础设备之一。AF-904是联锁罗辑处理单元和车载设备之间的通信接口,实现了正线区段轨道占用检测以及地对车的ATP 数字信号传输双重功能,智能化程度高。 一、AF-904系统的硬件结构 AF-904系统的主要设备包括控制机箱、轨道耦合单元和轨道连接器(S棒),按地点可分为轨旁设备和信号室内设备两部分。 1.轨旁设备 轨旁设备由轨道耦合单元、500MCM连接器(S形电缆)和环线3部分组成,在轨道之间或沿轨旁安装。采用的是互耦方式。 2.信号室内设备 控制机箱以微处理器为基础,测量轨道信号的幅度以检测列车的存在,发送和接收ATP信息的移频信号,以及进行内部或本地系统的连续诊断等。控制机箱装在TM柜内,每个TM柜最多可安装3个机笼,每个机笼可配置4段非冗余轨道电路。由于每段轨道电路的应用程序存在一个独立的位于机笼母板上的EPROM 中,在定期更换控制板时无需重新设置。这样,任何一段轨道电路的单盘都相同,使得轨道电路的故障诊断和维护更便捷。每段轨道电路由两套设备构成“热备用”,备用设备处于“热备用”状态,不需经过启动程序即可转至在线状态。 二、AF-904系统的工作原理

AF-904系统不间断地向轨道发送数字编码信息,并监视其接收器感应到的信号,作为对列车占用的检测。 AF-904系统与联锁系统之间通过RS485接口进行通信。AF-904系统接收来自联锁系统的串行信息(目标速度、目标距离等),再加上本轨道区段信息(轨道电路ID号、线路速度等),形成复合信息;然后将复合信息用NRZI格式编码形成报文帧,结合机笼后面的方向继电器以FSK调制方式把报文送至相应的耦合电路,经单匝环线与“S”棒耦合;然后由车载ATP接收、解码并校验信息的正确性,验证完毕执行ATP功能,完成数字车载信号的传输功能。 NRZI格式为不归零倒置格式,是适用于串行数据传输的一项常用编码技术。其逻辑“1”用信号的无变化来表示,逻辑"0”是用信号的变化来表示。它打破常“0”和常"1”的运行,使+1 ..和6601,的比值非常接近1,为信号提取提供了丰富的时钟信息,防止接收时得不到时钟校正而误码。 1. AF-904对列车的检测 利用AF一04信息的标题位(前8位)作为列车检测的信号,其固定为011111100发送端借助轨旁耦合单元耦合到钢轨,接收端由轨道接收器检测该信号。通过方向继电器可改变发送端和接收端的位置。 当轨道电路空闲时,被检测到的信号幅度在门限值以上,该门限值由AF-904接收器电路设置。

轨道电路讲解

轨道电路 一.交流480轨道电路。 (一)工作原理: 交流电源经由BG1变压器降压后送到轨道电路,经过轨道的传输,在受电端经过BZ4变压器,使钢轨线路的特性阻抗与继电器阻抗相匹配,然后经过继电器内部的桥式整流器,使继电器励磁吸起。当列车进入轨道区段时,由于车轮的分路作用,轨道继电器励磁落下。 (二)各器材的作用: ⒈熔断器的作用 防止室外轨道电路因故在某个区段将电源短路时,造成室内电源屏中的熔断器烧断。 ⒉轨道变压器的作用 (1)将室内发送出的高电压变成轨面所需的低电压 (2)利用轨道变压器的Ⅱ次侧可输出多种电压的特点,做到对轨道电路的调整。 (3)起隔离供电作用,减少绝缘节破损对轨道电路的影响。 ⒊限流电阻的作用 (1)防止车辆在送端轨面上分路时,分路电流过大烧毁轨道变压器。 (2)可对轨道电路的调整起到一定作用。 (3)可改善轨道电路的分路特性。 ⒋中继变压器BZ4的作用 (1)将从轨面上传过来低电压信号变成高电压,送回室内动作轨道继电器。 (2)减少信号在电流传输过程中的衰耗。 (3)改善整个回路的阻抗匹配器的条件。 ⒌轨道继电器JZXC-480的作用。 室内送回的交流信号(73、83端子),经过整流再送到轨道继电器线圈(1、4端子)上动作继电器衔铁,所以在继电器插座扳上,可测得交流、直流两种电压。 二.25HZ相敏轨道电路 (一)工作原理 从电网送入50HZ电源,经专设的25HZ分频送出轨道电路的专用电源。轨道线圈的电压由轨道变压器降压后再经扼流变压器降压送至轨面,传输到受电端,经扼流变压器升压后送至轨道变压器再次降压,有电缆传输至轨道继电器的轨道线圈上,而轨道继电器的局部线圈电压由局部分频器直接供给。当轨道电压和局部电压达到规定值,且局部电压相位超过轨道电压90度时,轨道继电器励磁吸起。 (二)各器材的作用 ⒈ 25HZ分频器 25HZ分频器是一种利用参数激励震荡原理构成的铁磁震荡器,由其向轨道电路提供25HZ轨道线圈电压和局部线圈电压。 ⒉二元二位继电器 25HZ相敏轨道电路采用的二元二位继电器(型号为JR-JC-66/345型插入式)是一种交流感应式继电器,是根据电磁铁所建立成的交变磁场与金属转子中感应电流之间相互作用的原理而动作。型号JRC1-70/240 ⒊扼流变压器 扼流变压器在轨道电路中的作用是用以构通牵引电流。变比1:3

轨道电路

、轨道电路

————————————————————————————————作者:————————————————————————————————日期:

第三篇 基本常识 第一章 轨道电路 第一节 轨道电路的基本概念 一、轨道电路定义 轨道电路是以铁路线路的两根钢轨作为导体,两端加以电气绝缘或电气分割,并接 上送电设备和受电设备构成的电路。它的主要功能就是反映轨道区段是否被列车占用。轨道电路是构成现代化铁路信号设备的基础,它能否正常工作,直接关系到行车安全和行车效率。最简单的轨道电路构成形式如图3.1.1.1所示。 图3.1.1.1 轨道电路的结构 二、构成说明 轨道电路的送电设备安装在送电端(又称电源端或始端),它由轨道电源E 和限流器RX 组成。根据轨道电路的类型不同,轨道电源可以用铅蓄电池浮充供电(或其它直流电源),也可以用轨道变压器或变频器、信号发生器供电。限流器一般为电阻器,也可以采用电抗器,它的作用是保护电源设备不因过负荷而损坏,并保证在列车占用轨道电路时,轨道继电器能可靠地落下,对某些交流轨道电路而言,它还兼有相位调整的功效。轨道电源采用由电子器件组成的信号发生器时,一般都不设限流器。 轨道电路的接收设备安装在受电端(又称继电器端或终端),目前接收器主要采用的是继电器(称轨道继电器GJ ),由它来接收轨道信号电流。电子轨道电路的接收设备一般都采用电子器件,其作用和轨道继电器相同。 轨端接续线是为了减小钢轨的纵向电阻,而在轨条的连接处增设的。 钢轨绝缘的作用是分割两相邻轨道电路,从电的方面加以绝缘,但是,相邻钢轨线路之间通过大地仍保持着联系,从而给电流形成了附加通路,使轨道电路的传输复杂化。 两组绝缘节之间的钢轨线路(即从送电端到受电端之间),称为轨道电路的控制区段,也就是轨道电路的长度。 安装方式:送电和接收设备一般放在轨道旁的继电器箱、变压器箱(分散)或信号楼内(集中),直接由引接线(钢丝绳)或通过电缆再由引接线接向钢轨。 三、原理分析 当轨道电路控制区段内的钢轨完整,且无列车占用(即线路空闲)时,通过轨道继电器的电流比较大,轨道继电器励磁吸起,前接点闭合,利用轨道继电器前接点的闭合条件,接 送电端 限流器(RX) E 轨道电源引接线 轨道继电器(GJ) 受电端 钢轨绝缘 钢轨线路 轨端接续线

第六章 基于轨道电路ATC系统

第十一章基于轨道电路基于轨道电路ATC ATC系统系统 ? 第一节:西门子第一节:西门子ATC ATC 第二节:US&S US&S ATC ?第二节:第二节:US&S ATC US&S ATC

第节第一节西门子西门子ATC ATC 一系统构成 一、系统构成 参考图11-2参考图 西门子的西门子的ATC ATC系统按系统功能可划分为系统按系统功能可划分为44个层次 1、操作层(中央层) 2、轨旁层(车站层) 3、轨道层 车载层 4、车载层

二系统特点 二、系统特点安全与效率特性的兼顾 1.安全与效率特性的兼顾 ATP ATP安全系统按故障安全系统按故障——安全原则设计,采用冗余障用 技术技术((车裁车裁ATP ATP为计算机为计算机22取2系统,轨旁系统,轨旁ATP ATP为为3取2计算机系统计算机系统)),ATS ATS系统采用双套冗余系统,系统采用双套冗余系统,系统可靠性和安全性高 系统可靠性和安全性高。

采用多级控制方式,有控制中心控制采用多级控制方式,有控制中心控制((人工及自动人工及自动))、RTU RTU后备自动控制、车站控制后备自动控制、车站控制((人工及自动人工及自动))方 式。式。 模块化设计,故障识别及自动控制模式的自动转模块故障动制模动转换,系统可用性高,且便于维修。 以单个信号机及单个列车为基本单元的自动功能设定及取消 设定及取消。

自动功能设定的多种操作方法,如控制中心或车站对单个信号机,整个联锁区或控制中心对所有站对单个信号机整个联锁区或控制中心对所有 信号机自动功能的设定和取消,控制中心对单个 列车或全部列车自动功能的设定及取消。 灵活、多样、简便的人工介人控制手段。

轨道电路基础知识

轨道电路定义: 把一段钢轨用导线连接起来,两端用轨道绝缘节分割开来,这个区段就是轨道区段,以这段钢轨为导体,形成的电路就叫做轨道电路。一个进路有若干个轨道电路组成。 是利用钢轨线路和钢轨绝缘构成的电路。也叫轨道区段。一个进路有若干个轨道区段组成。 轨道电路的作用: 1、监督列车的占用,反映线路的空闲状况,为开放信号、建立进路或构成闭塞提供依据。 2、传递行车信息。如移频自动闭塞利用轨道电路传递不同的频率信息来反映列车的位置,决定通过信号机的显示或决定列车运行的目标速度,从而控制列车运行。 因此,轨道电路的性能直接影响行车安全和运输效率,是铁路信号的重要基础设备。 轨道电路的基本原理: 这是一个最简单的轨道电路原理图,它是由机械室的电源通过电缆传送到送电端接线盒,在通过限流器、导引线接到钢轨上,通过钢轨传送到受电端的导引线、接线盒,然后通过电缆传送到机械室的继电器,有继电器的动作来判断区段内有无车辆占用。 送电端是由电源、限流器(可调电阻)用来调整供钢轨的可靠电压的,通过导引线接到钢轨上。 限流器他有两个作用:1、保护电源不因电流过载而损坏。2、保证在钢轨上的电流大小轨道继电器能够吸气。 受电端主要设备就是继电器。 这是一个最简单的轨道电路原理图,它的基本组成,是由钢轨、轨道接续线、和送电端(轨道电源、限流器)、受电端(轨道继电器、) 当钢轨完整且没有列车占用的时,我们看这个电源通过电源正极、限流器送到钢轨上然后经过钢轨传输到受电端,又通过钢轨接续线送到继电器,给继电器送电。使继电器历磁,继电器吸起,继电器接点上节点闭合,电流回到负极,构成电流回路。表示线路空闲。 当轨道电路被车占用时,相当于两根钢轨之间连结了一个短路线,也就是车轮把两根钢轨短路。这时送电端的电流,通过限流器、接续线、钢轨、车轮又返回到送电端。也就是说,受电端的继电器,此时没有电流,或有很少一部分电流,不能把继电器吸起,因此,受电端继电器在重力的作用下处于落下。表示这个区段有车占用。 轨道电路的分类: 1、、按动作电源分:直流轨道电路和交流轨道电路。通常采用交流轨道电路(低频300HZ 以下、音频300---3000HZ、高频10-40KHZ)。 2、按工作方式分:开路式和闭路式。常用的是闭路式。 3、按传送的电流特性分:连续式、脉冲式、计数电码式、频率电码式、数字电码式五 种。 4、按分割方式分:有绝缘轨道电路和无绝缘轨道电路。 5、按所处位置分:站内轨道电路和区间轨道电路。

ZPW-2000A型轨道电路的原理和技术

湖南铁路科技职业技术学院 毕业论文 课题:ZPW-2000A型轨道电路的原理和技术专业:城市轨道交通控制 班级:城市轨道交通控制312-3班 学生姓名:李魁 指导单位:广铁(集团)公司 指导教师:霍芳

二零一五年四月十九日 摘要 ZPW-2000A型无绝缘轨道电路,是在法国UM71无绝缘轨道电路技术引进及国产化基础上,结合国情进行提高系统安全性、系统传输性能及系统可靠性的技术再开发。它克服了UM71在传输安全性和传输长度上存在的问题。在轨道电路传输安全上,解决了轨道电路全路断轨检查、调谐区死区长度、调谐单元断线检查、拍频干扰防护等技术难题。延长了轨道电路的传输长度。采用单片微机和数字信号处理技术,提高了抗干扰能力。 ZPW-2000A型无绝缘轨道电路系统,与UM71无绝缘轨道电路一样采用电气绝缘节来实现相邻轨道电路区段的隔离。电气绝缘节长度改进为29m,电气绝缘节由空芯线圈、29m长钢轨和调谐单元构成。 调谐区对于本区段频率呈现极阻抗,利于本区段信号的传输及接收,对于相邻区段频率信号呈现零阻抗,可靠地短路相邻区段信号,防止了越区传输,实现了相邻区段信号的电气绝缘。同时为了解决全程断轨检查,在调谐区内增加了小轨道电路。 ZPW-2000A型无绝缘轨道电路分为主轨道电路和调谐区小轨道电路两部分,小轨道电路视为列车运行前方主轨道电路的所属“延续段”。 主轨道电路的发送器由编码条件控制产生表示不同含义的低频调制的移频信号,该信号经电缆通道(实际电缆和模拟电缆)传给匹配变压器及调谐单元,因为钢轨是无绝缘的,该信号既向主轨道传送,也向调谐区小轨道传送,主轨道信号经钢轨送到轨道电路受电端,然后经调谐单元、匹配单元、电缆通道,将信

无绝缘轨道电路

Z PW-2000R型无绝缘移频自动闭塞 系统说明 第一章移频自动闭塞基本知识 第一节自动闭塞概述 一、自动闭塞的基本概念 铁路信号的概念:铁路信号是在列车运行时及调车工作中对列车乘务人员及其它有关行车人员发出的命令,有关行车人中必须按信号指示办事,以保证行车安全并准确的组织列车运行及调车工作。为发出这些命令,铁路信号又分为固定信号、移动信号、手信号、信号表示器、信号标志及听觉信号等。它在铁路运输中对保证行车、提高运输效率和改善行车工作人员劳动条件等,均发挥着十分重要的作用。 目前,我们铁路采用的行车闭塞方法主要有半自动闭塞和自动闭塞两种。 闭塞的概念:为使列车安全运行,在一个区间,同一时间内,只允许一个列车运行,保证列车按这种空间间隔运行的技术方法称为闭塞。 区间的划分:为了保证列车运行的安全的提高运输效率,铁路线路以车间、线路所及自动闭塞的通过色灯信号机为分界点划分为若干区间。 区间分为三种: 1、站间区间――车站与车站间构成的区间。 2、所间区间――两线中所间或线中所与车站间构成的区间。 3、闭塞分区――自动闭塞区间的两个同方向相邻的通过色灯信号机间或进站(站界标)信号机 与通过信号机间。 自动闭塞的概念:是实现列车运行自动化的基础设备,它对保证列车行车安全、提高区间通过能力起着重要的作用。所谓自动闭塞,就是办理闭塞的过程全部实现自动化而不需要人工操纵。这种闭塞制式,是通过色灯信号机把区间分成若干个小区段,称为闭塞分区。在每个闭塞分区内装设轨道电路,用于检查闭塞分区是否有车占用,这样色灯信号机可随着列车运行而改变显示,以指示追踪列车的运行。根据列车运行及有关闭塞分区状态,自动变换通过信号机显示的闭塞方法称为自动闭塞。 自动闭塞的优点:

轨道电路的基本原理

(轨道电路的基本原理) 以铁路的两根钢轨作为导体两端加以机械绝缘或电气绝缘接上送电和受电设备构成的电路。(轨道电路的作用) 1.监督列车的占用 2.传递行车信息 (轨道电路主要用于区间和站内) (工频交流轨道电路的构成) 送电端、受电端、钢轨绝缘、钢轨引接线、钢轨接续线、钢轨 (工频交流轨道电路工作原理) 1.当轨道电路完整且无车占用时,交流电源由送电端经钢轨传输至受电端,轨道继电器吸起,表示本轨道电路空闲。 2.当车占用轨道电路时,轨道电路被车辆轮对分路,使轨道继电器端电压低于其工作值,轨道继电器落下,表示本轨道呗占用。 (电气化牵引区段的轨道电路的要求) 1.必须采用非工频制式的轨道电路 2.必须采用双轨条式轨道电路 3.交叉渡线上两根直股都通过牵引电流时应赠加绝缘节 4.钢轨接续线截面加大 5.道岔跳线和钢轨引接线截面加大,引接线等阻。 (电气化轨道电路均采用25HZ相敏轨道电路) (扼流变压器:为保证牵引电流顺利流过绝缘节) (25HZ轨道电路原理) 25HZ电源屏分别供出25HZ轨道电源和局部电源。轨道电源由室内供出,通过电缆供向室外,经送电端25HZ轨道电源变压器(BG25)、送电端限流电阻(RX)、送电端25HZ扼流变压器(BE25)、受电端25HZ扼流变压器(BE25)、受电端25HZ轨道中继变压器(BG25)、电缆线路、送回室内、经过防雷补偿器(Z)、25HZ防护盒(HF)给二元二位轨道继电器(GJ)的轨道线圈供电。局部线圈的25HZ电流由室内供出。当轨道线圈和局部线圈电源满足规定的相位和频率要求时,GJ吸起,轨道电路处于调整状态,表示轨道电路空闲。列车占用时,轨道电源被分路,GJ落下。若频率、相位不符合要求时,GJ也落下。这样,25HZ相敏轨道电路就具有相位鉴别能力,即相敏特性,抗干扰性能较高。 (25HZ部件:防护盒、防雷补偿器、25HZ轨道变压器) (97型25HZ相敏轨道电路的改进) 1.提高绝缘破损防护能力 2.取消不设扼流变压器的送、受电端的单扼流轨道电路 3.改变扼流变压器的连接方式 4.优化电源屏的匹配 5.改进交流二元继电器 6.增加扼流变压器的类型 7.改善移频电码化发送条件 8.极限长度延长 9.提高了系统的抗干扰能力 (97型25HZ相敏轨道电路的电气特性) 调整状态时,轨道继电器轨道线圈上的有效电压应不小于18V,即高于轨道继电器工作值(15V)的20%,以保证继电器可靠吸起。用0.06Ω标准分路电阻线在轨道电路送、受电端轨面任一处分路时,轨道继电器端电压(分路残压)应不大于7.4V,而轨道继电器的释放值是8.6V,留有一定余量,以保证前接点可靠断开。 (25HZ相敏轨道电路的的种类) 按送、受电端分:送、受电端均设扼流变压器和送、受电端均不设扼流变压器 根据受电端设置情况:一送一受、一送两受和一送三受轨道电路。 (对驼峰电路的技术要求) 应变速度快、分路灵敏度高、对高阻轮对及瞬间失去分路效应的车辆应予以防护等。 (驼峰电路的特点) 1.轨道长度较短,一半小于50M 2.为适应轻车分路电阻大的情况,分路灵敏度要高(规定为0.05),轨道继电器应可靠落下,释放时间要短。从车辆分路开始至前接点离开时止,其时

轨道电路故障处理

轨道电路故障处理标准化管理处编码[BBX968T-XBB8968-NNJ668-MM9N]

轨道电路故障处理 轨道电路用来检查进路是否空闲,反映区段或进路的锁闭和解锁状态,监督列车和调车车列的运行情况。 当轨道电路故障时会出现两种情况: 1、有车占用无红光带。 2、无车占用亮红光带。 原因分析: 1、有车占用无红光带:当有车占用时控制台无红光带显示故障是非常危险的,当发生这类故障后应首先通知车站值班员停用设备,然后进行处理。这类故障发生的原因一般在室外设备,可先检查控制台光带表示灯是否有故障,以及轨道继电器是否落下或接点卡阻或粘连等。这类故障发生在室外设备的主要原因: 1、在道岔区段轨道电路,设有轨端绝缘但没有设在受电端的双动道岔渡线或测线上,因轨端接续线或岔后跳线断开、脱落,而造成死区段。 2、轨面电压调整过高或送电端可调电阻调整的阻值过小,造成轨道电路不能正常分路。 3、一送多受轨道区段,因各受电端距离较远,轨面电压调整不平衡,有个别受电端轨面电压过高而造成分路不良。 4、因钢轨轨面生锈,车辆自重较轻或轮对电阻过大等,使车辆轮对分路不良。 5、室外发生混线,有其他电源混入,或牵引电流干扰等使轨道继电器误动。 2、无车占用亮红光带:发生这种故障时,应先在控制台观察故障现象,做出初步判断。如果几个轨道电路区段同时出现红光带,应重点在分线盒检查轨道电源熔断器熔

丝和送电电缆芯线;若相邻两个轨道区段同时出现红光带,一般是相邻两轨道电路轨道绝缘双破损;只有一个轨道区段亮红光带,应首先在分线盘处测试送电电缆端子有无电压,若有电压。确认为室外故障时,再去室外处理。判断轨道电路是开路故障还是短路故障是分析故障的关键。轨道电路开路故障:轨道电路开路后继电器落下,控制台点亮红光带。开路故障应查钢轨接续线、道岔跳线、箱盒与轨面的引导线(是否断线)。轨道电路短路故障:短路故障应查绝缘,绝缘破损;其他异物短路,如铁丝等金属褡裢或跳线、引导线混线造成。 一、轨道电路常见故障的判断与处理方法 1、轨道电路故障类型 ①开路故障:从轨道室内送电开始到受电回到室内轨道继电器,任何一点断开都不能使轨道电路正常工作,我们称其为轨道电路的开路故障。也是轨道电路故障中比较简单的故障,比较容易判断。 ②短路故障:轨道电路回路中两线间有任意一点混线短路,或是达到一定程度的分路电流就可影响轨道电路的正常工作,我们称其为轨道电路的短路故障。短路故障的判断处理比较复杂,各种因素比较多,须采取一些特殊的处理方法。 2、轨道电路故障的判断首先要判断清楚故障性质,即是开路故障还是短路故障。基本思路是:开路故障:从故障点到受电端电压下降,电流减小。故障点到送电端电压升高,电流减小。短路故障:从故障点到受电端电压下降,电流减小。故障点到送电端电压下降,电流增大。 25周相敏轨道电路故障判断开路和短路的基本方法:必须先从送电端着手,测量送电端限流电阻上的压降,即可判断轨道电路故障的性质,其基本原理就是

高铁与既有ZPW-2000A轨道电路系统的区别要点

高铁与既有ZPW-2000A轨道电路系统的区别 针对高速铁路轨道结构和列车运行速度高等特点,则要求所提供的高铁ZPW-2000A/K无绝缘轨道电路系统应具有高可靠性和高安全性。它是在既有线ZPW-2000A无绝缘轨道电路基础上,对其优化而提出的高速铁路ZPW-2000A轨道电路系统。与既有的ZPW-2000A 无绝缘轨道电路系统相比,在以下几个方面对进行了升级和改进:(1)高铁ZPW-2000A/K轨道电路系统取消了既有线ZPW一2000A无 绝缘轨道电路系统大量的继电编码逻辑电路,采用无接点的计算机编码方式。 (2)发送器由既有线的“N+1”冗余方式改为“1+1”的冗余方式,最大限度地降低了因设备故障而影响行车的故障。 (3)将既有ZPW-2000A无绝缘轨道电路的调谐单元和匹配单元整合 为一个调谐匹配单元,减少了系统的设备数量,提高了系统的可靠性。 (4)根据高速铁路的道床电阻高的特点,将既有线补偿电容按频率选择容值优化为一种容值,减少了补偿电容的种类。 (5)补偿电容采用了全密封工艺,一方面补偿电容的容值稳定性,另一方面延长了其使用寿命,从而,提高了轨道电路系统工作的稳定性。 (6)增加了空心线圈的导线线径,从而,提高了设备的安全容量,使轨道电路系统工作更加稳定可靠。 (7)高铁ZPW-2000A/K轨道电路系统带有监测和故障诊断功能,使得

轨道电路系统能够及时准确地对轨道电路工作的临界和故障状态,较为准确地给出预警或报警,为系统的“状态修”提供了技术保证。(8)对于站内ZPW-2000A轨道电路,在大秦线的基础上,使道岔分支长度由小于等于30m延长到的120m,提高了机车信号车载设备在站内使用的安全性,提高了轨道区段划分的灵活性。 (9)对高铁ZPW-2000A轨道电路系统相关的配套器材,增加了相应的技术指标要求,大大提高了高铁ZPW一2000A轨道电路系统工作稳定性。 如:对扼流变压器增加不平衡牵引电流和大电流条件下的电气指标要求。 (10)区间小轨道:不纳入联锁,一旦小轨断轨和占用,地面信号显示不变,要求工务部门加强小轨的巡视,电务部门加强报警信息的调阅。

LKD―yh列控系统与ZPWK型轨道电路通信原理分析

LKD―yh列控系统与ZPWK型轨道电路通信原理分析

————————————————————————————————作者:————————————————————————————————日期:

LKD2―yh列控系统与ZPW2000K型轨道电路通信原 理分析 【摘要】列控系统与ZPW2000K轨道电路普遍运用于高速铁路,列控系统通过轨道电路CAN板与ZPW2000K接口单元通信对轨道电路进行实时编码,ZPW2000K接口单元同时向列控系统发送区段占用状态信息及向微机监测系统提供实时电气特性数据信息。其中ZPW2000K通信单元具有实时的设备数据采集功能,方便现场维护人员进行ZPW2000K轨道电路数据分析及故障处理。 【关键词】LKD2-yh ZPW2000k 轨道电路功能原理 LKD2-yh列控系统与ZPW-2000K型轨道电路运用于衡柳线与柳南客专高速铁路上,ZPW-2000K型轨道电路是在既有ZPW2000A无绝缘轨道电路的基础上进行了适应性改进。相比对于ZPW2000A轨道电路,2000K型通过增加接口单元,由列控系统直接控制编码,替代了原来的继电器编码方式,信息处理更加快速准确,适用于高速铁路或客运专线。柳南客专ZPW2000K接口单元还采用了分线采集器,对网络模

拟盘设备侧和电缆侧电压进行实时采集,更利于现场电气特性分析和故障处理。 一、LKD2-yh基本构成 (一)电源板。电源板负责为列控中心主机提供直流5V的工作电源 (二)CPU板。CPU板负责列控中心系统的逻辑运算和处理工作,列控中心每一系的主机部分配置2块CPU板(1主1从),这两块CPU板逻辑运算的过程相互独立,并通过相互比较运算结果来检查自己的工作状态,是2取2安全计算平台的核心组成部分。编码条件的运算由CPU完成。 (三)CAN总线通信板. 负责列控中心主机与智能I/O单元的通信。 (四)轨道电路通信板。与ZPW2000K轨道电路系统进行通信,将编码控制信息传递于ZPW-2000K 型轨道电路接口柜,驱动移频发送器进行编码工作。 (五)CTC通信板。用作与CTC/维护终端通信。 (六)以太网板。站间通信板、LEU通信板均属于以太网板,责列控中心对外的以太网通信。用作与联锁及临站列控中心通信。 (七)加扰板。对实时生成的报文进行加扰运算。 (八)比较板。自动比较列控中心主机中两块CPU

CBTC与轨道电路的比较

CBTC与轨道电路的比较 CBTC与轨道电路的比较 一、CBTC概述 基于通信的列车控制(Communications-based Train Control, CBTC)系统是独立与轨道电路,采用高精度的列车定位和连续、高速、双向的数据通信,通过车载和地面安全设备实现对列车的控制。是一种采用先进的通信和计算机技术,连续控制、监测列车运行的移动闭塞方式。 其典型的机构见下图: 图1 典型的基于通信的列车控制(CBTC)系统结构框图 CBTC技术发展源于欧洲连续式列车控制系统,经多年的发展一有了长足的进步。CBTC以列车与地面的传输信息方式来划分,分无线、环线、漏缆及波导管等几种,带环线的CBTC技术最成熟的是阿尔卡特,无线CBTC技术最成熟的是庞巴迪。它摆脱了用轨道电路判别对闭塞分区占用与否,突破了固定(或准移动)闭塞的局限性,较传统的基于轨道电路的列车控制系统比较,CBTC系统的优势主要表现在以下几个大的方面: 第一,更简洁。从硬件结构看,系统以控制中心设备为核心,车载和车站设备为执行机构,车、地列车控制设备一体化。从功能上看,联锁、闭塞、超速防护等功能通过软件统一设计实现,不再分隔。因此,整个系统摆脱了积木堆叠式结构,而是一个统一的整体。系统结构更简洁。 第二,更灵活。系统不需要新增任何设备,自然支持双向运行,而且不因为列车的反方向运行,降低系统的性能和安全。所以,CBTC系统在运营时,可以根据需要,使用不同的调度策略。更灵活还表现在CBTC系统可以处理多条线路交叉,咽喉区段列车运行极其复杂的情况。另外CBTC系统内可以同时运行不同编组长度、不同的性能的列车。 第三,更高效。系统可以实现移动闭塞,控制列车按移动闭塞模式运行,进一步缩短列车运行间隔。另外,CBTC系统可以进一步优化列车驾驶的节能算法,提高节能效果。 在CBTC系统中,列车在线路的位置是优劣车本身确定的,然后通过车地通信系统,将该信息实时地报告给地面CBTC设备,这与传统列车位置通过轨道电路检测的方法不一样。实现车载设备与轨旁设备间的实时双向通信,且信息量大,更大的技术优越性具体体现如下: 可减少轨旁设备,便于安装维修,有利于紧急状态下利用线路作为人员疏散的通道,有利于降低系统全生命周期内的运营成本。 系统不依靠轨道电路检测列车位置、向车载设备传递信息,有利于旧线系统的升级改造的实施,即有利于在不影响既有线正常运营的前提下,能够对系统进行升级改造,将对运营的影响降低最低。 便于缩短列车编组、加大列车运行密度,提高服务质量,并可以缩短站台长度和终端站尾轨长度,降低土建工程投资。 实现线路列车双向运行而不增加地面设备,有利于线路故障或特殊需要时的反向运行控制。 可以适应各种类型、各种车速的列车,由于移动闭塞系统基本克服了准移动闭塞和固定闭塞系统地对车信息跳变的缺点,提高了列车运行的平稳性,增加了乘客的舒适度。 可以实现节能控制、优化列车运行统计处理、缩短运行时分等多目标控制。 移动闭塞系统,尤其是采用高速数据传输方式的系统,将带来信息利用的增值和功能的扩展,有利于现代化水平的提高。 确立“信号通过通信”的新理念,使列车与地面(轨旁)紧密结合、整体处理,改变以往车-地相互隔离、以车为主的状态。 另外,基于通信的ATC系统(CBTC)具有很高的可靠性,关键的设备均采取冗余的方式,同时还有备用的设备和降级运行的设备,辅助列车位置检测设备等,提高了系统降级使用的能力及安全性。 二、轨道电路概述 轨道电路是当两根钢轨完整,且无车占用,即轨道电路空闲时,电流通过两根钢轨和轨道继电器,使轨道继电器吸起,前接点闭合,信号开放。当列车占用轨道电路时,电流通过机车车辆轮对,轨道电路被分路。由于轮对电阻比轨道继电器电阻小得多,使电源输出电流显著加大,限流电阻上的压降随之增加,两根钢轨间的电压降低,流经轨道继电器的电流减少到它的落下值,使轨道继电器落下,后接点闭合,信号关闭。同时,当轨道电路发生断轨、断线时,同样会使轨道继电器落下,原理图见图2。轨道电路长度一般在400米以下,控制距离为2.5-5公里不等,在长区间需要设置较多轨道电路,且轨道电路易受牵引回流、防迷流网布置的影响,有时受天气和钢轨光洁程度影响。 轨道电路的工作状态根据轨道电路的基本要求,在设计、计算和研究时,应分析以下三个状态:

3V化25Hz相敏轨道电路系统介绍及施工指南

目录 一、原理图册简要说明 (1) 二、器材选择 (8) 三、施工指南 (9) 四、各种制式3V化25Hz相敏轨道电路施工及调试 (11) 五、系统可能出现的故障 (15)

一、原理图册简要说明 图1-图4为电气化3V化25Hz相敏轨道电路一送一受构成简图,图5为非电气化3V化25Hz相敏轨道电路一送一受构成简图,其它 3V化25Hz相敏轨道电路构成图可参见电路原理图册。 对应图册的说明如下: 图1:从电路结构上电气化3V化25Hz相敏轨道电路同97型25Hz 相敏轨道电路的结构基本一致,以电气化非电码化一送一受为例,送端器材有送端变压器BG25,送端6.6Ω固定限流电阻,送端BE2-F 扼流变压器等器材;受端器材有受端端BE2-F扼流变压器,受端2.2Ω固定限流电阻,受端BGK电抗变压器,QT-25调相器等器材;室内各种器材同97型保持一致。3V化25Hz相敏轨道电路通过将扼流变压器谐振提高轨道回路的25Hz阻抗,并利用第三线圈并接的调谐器抗50Hz牵引不平衡电流干扰;受端电抗变压器变比较以前有所减小并有5种变比以满足不同轨面电压的要求,且受端电抗变压器能够稳定受端扼流轨道侧的25Hz阻抗,使系统整体性能保持在一定的范围;受端增加QT-25调相器可以将相位调整至合适的相位。以上器材按照构成简图搭接起来便组成了电气化非电码化3V化25Hz相敏轨道电路,确定想要的轨面电压,通过参照3V化25Hz相敏轨道电路调整表调整送端变压器Ⅱ次侧电压,确定系统极性正确,便完成了系统的调整;室内继电器的工作值、释放值维持其本身的特性不变。通过调整受端电抗变压器的变比和送端变压器Ⅱ次侧电压,可以实现轨面电压1.5~7.5V的变化,以满足不同生锈程度造成的分路不良问题。

轨道电路的原理及应用

25Hz相敏轨道电路的原理及应用 前言 截止到2005年底,中国铁路总营业里程已达到7.5万公里,复线达到2.5万公里,电气化达到2万公里,并且还将修建更多铁路。目前在电气化铁路上有90%的车站采用25Hz相敏轨道电路,因此该制式成为电气化铁路站内轨道电路的首选。 1997年经铁道部鉴定,决定用“97型25Hz相敏轨道电路”替代原“25Hz 相敏轨道电路”在全路推广使用。97行25Hz相敏轨道电路具有工作稳定可靠,维修简单和故障率低的优点,具有很高的抗干扰能力,并延长了轨道电路的极限长度(可达1500m),深受现场欢迎。 第一章轨道电路概述 一、轨道电路作用及构成 轨道电路是铁路信号自动控制的基础设备。利用轨道电路可以自动检测列车、车辆的位置,控制信号机的显示;通过轨道电路可以将地面信号传递给机车,从而可以控制列车运行。 轨道电路是以铁路线路的两根钢轨作为导体,两端加以电气绝缘或电气分割,并接上送电和受电设备构成的电路。 二、轨道电路的原理 当两根钢轨完整,且无车占用,即轨道电路空闲时,电流通过两根钢轨和轨道继电器,使轨道继电器吸起,前接点闭合,信号开放。当列车占用轨道电路时,电流通过机车车辆轮对,轨道电路被分路。由于轮对电阻比轨道继电器电阻小得多,使电源输出电流显著加大,限流电阻上的压降随之增加,两根钢轨间的电压降低,流经轨道继电器的电流减少到它的落下值,使轨道继电器落下,后接点闭合,信号关闭。同时,当轨道电路发生断轨、断线时,同样会使轨道继电器落下。 三、轨道电路分类 1、按轨道电路的工作方式分为开路式和闭路式轨道电路。闭路式轨道电路能够检查轨道电路的完整性,所以目前信号设备中多采用闭路式轨道电路。 2、按牵引电流通过方式分为单轨调和双轨条轨道电路。双轨条轨道电路工作比单轨条轨道电路稳定可靠,极限长度基本上可以满足闭塞分区长度的要求,但成本高。电气化区段多采用双轨条轨道电路。 3、按相邻钢轨线路的分割方法分绝缘节式和无绝缘节式轨道电路。 4、按信号电流性质分直流、和交流;连续式和脉冲式供电等几种。我国目前应用的有:50Hz轨道电路、25Hz相敏轨道电路、微电子交流计

CBTC与轨道电路比较

CBTC与轨道电路的比较 一、CBTC概述 基于通信的列车控制(Communications-based Train Control, CBTC)系统是独立与轨道电路,采用高精度的列车定位和连续、高速、双向的数据通信,通过车载和地面安全设备实现对列车的控制。是一种采用先进的通信和计算机技术,连续控制、监测列车运行的移动闭塞方式。 其典型的机构见下图: 图1 典型的基于通信的列车控制(CBTC)系统结构框图CBTC技术发展源于欧洲连续式列车控制系统,经多年的发展一有了长足的进步。CBTC以列车与地面的传输信息方式来划分,分无线、环线、漏缆及波导管等几种,带环线的CBTC技术最成熟的是阿尔卡特,无线CBTC技术最成熟的是庞巴迪。它摆脱了用轨道电路判别对闭塞分区占用与否,突破了固定(或准移动)闭塞的局限性,较

传统的基于轨道电路的列车控制系统比较,CBTC系统的优势主要表现在以下几个大的方面: 第一,更简洁。从硬件结构看,系统以控制中心设备为核心,车载和车站设备为执行机构,车、地列车控制设备一体化。从功能上看,联锁、闭塞、超速防护等功能通过软件统一设计实现,不再分隔。因此,整个系统摆脱了积木堆叠式结构,而是一个统一的整体。系统结构更简洁。 第二,更灵活。系统不需要新增任何设备,自然支持双向运行,而且不因为列车的反方向运行,降低系统的性能和安全。所以,CBTC 系统在运营时,可以根据需要,使用不同的调度策略。更灵活还表现在CBTC系统可以处理多条线路交叉,咽喉区段列车运行极其复杂的情况。另外CBTC系统内可以同时运行不同编组长度、不同的性能的列车。 第三,更高效。系统可以实现移动闭塞,控制列车按移动闭塞模式运行,进一步缩短列车运行间隔。另外,CBTC系统可以进一步优化列车驾驶的节能算法,提高节能效果。 在CBTC系统中,列车在线路的位置是优劣车本身确定的,然后通过车地通信系统,将该信息实时地报告给地面CBTC设备,这与传统列车位置通过轨道电路检测的方法不一样。实现车载设备与轨旁设备间的实时双向通信,且信息量大,更大的技术优越性具体体现如下: 可减少轨旁设备,便于安装维修,有利于紧急状态下利用线路作为人员疏散的通道,有利于降低系统全生命周期内的运营成 本。 系统不依靠轨道电路检测列车位置、向车载设备传递信息,有利于旧线系统的升级改造的实施,即有利于在不影响既有线正 常运营的前提下,能够对系统进行升级改造,将对运营的影响 降低最低。

高铁与既有ZPW-2000A轨道电路系统的区别

高铁与既有ZPW-2000A轨道电路系统的区别针对高速铁路轨道结构和列车运行速度高等特点,则要求所提供的高铁ZPW-2000A/K无绝缘轨道电路系统应具有高可靠性和高安全性。它是在既有线ZPW-2000A无绝缘轨道电路基础上,对其优化而提出的高速铁路ZPW-2000A轨道电路系统。与既有的ZPW-2000A无绝缘轨道电路系统相比,在以下几个方面对进行了升级和改进: (1)高铁ZPW-2000A/K轨道电路系统取消了既有线ZPW一2000A无绝缘 轨道电路系统大量的继电编码逻辑电路,采用无接点的计算机编码方式。 (2)发送器由既有线的“N+1”冗余方式改为“1+1”的冗余方式,最大限度地降低了因设备故障而影响行车的故障。 (3)将既有ZPW-2000A无绝缘轨道电路的调谐单元和匹配单元整合为 一个调谐匹配单元,减少了系统的设备数量,提高了系统的可靠性。 (4)根据高速铁路的道床电阻高的特点,将既有线补偿电容按频率选择容值优化为一种容值,减少了补偿电容的种类。 (5)补偿电容采用了全密封工艺,一方面补偿电容的容值稳定性,另一方面延长了其使用寿命,从而,提高了轨道电路系统工作的稳定性。 (6)增加了空心线圈的导线线径,从而,提高了设备的安全容量,使轨道电路系统工作更加稳定可靠。 (7)高铁ZPW-2000A/K轨道电路系统带有监测和故障诊断功能,使得轨道电路系统能够及时准确地对轨道电路工作的临界和故障状态,较为准确地给出预警或报警,为系统的“状态修”提供了技术保证。

(8)对于站ZPW-2000A轨道电路,在大线的基础上,使道岔分支长度由小于等于30m延长到的120m,提高了机车信号车载设备在站使用的安全性,提高了轨道区段划分的灵活性。 (9)对高铁ZPW-2000A轨道电路系统相关的配套器材,增加了相应的技术指标要求,大大提高了高铁ZPW一2000A轨道电路系统工作稳定性。如:对扼流变压器增加不平衡牵引电流和大电流条件下的电气指标要求。 (10)区间小轨道:不纳入联锁,一旦小轨断轨和占用,地面信号显示不变,要求工务部门加强小轨的巡视,电务部门加强报警信息的调阅。

相关文档