文档库 最新最全的文档下载
当前位置:文档库 › 高分子聚合物中几个温度点

高分子聚合物中几个温度点

高分子聚合物中几个温度点
高分子聚合物中几个温度点

高分子聚合物中几个温度点

2008-04-07 03:29

(1)玻璃化温度Tg:指无定型聚合物(包括结晶型聚合物中的非结晶部分)由玻璃态向高弹态或者由后者向前者的转变温度。是无定型聚合物大分子链段自由运动的最低温度,也是制品工作温度的上限。

(2)熔化温度Tm:对于结晶型聚合物,指大分子链结构的三维远程有序态转变为无序粘流态的温度,也称熔点。是结晶型聚合物成型加工温度的下限。

(3)流动温度Tf:指无定型聚合物由高弹态转变为粘流态的温度。是无定型塑料加工温度的下限。

(4)不流动温度:在一定的压力下不发生流动的最高温度。是将一定量的塑料加入毛细管流变仪口模上端的料筒中,加热至某一温度,恒温10min后,施加50MPA恒压,若该料不从口模中流出,卸压后将料温升高难度10度,保温10min 后再施加同样大小的恒压,如此继续直至熔体从口模中流出为止,将此温度减出10度即是该料的不流动温度。

(5)分解温度Td:指处于粘态的聚合物当温度进一步升高时,便会使分子链的降解加剧,升至使聚合物分子链明显降解时的温度为分解温度。

* 无定型聚合物:玻璃态----Tg---->高弹态----Tf---->粘流态

----Td---->分解物

* 结晶聚合物:结晶态----Tm---->粘流态----Td---->分解物

===================================================================== ===========

随着国民经济的发展,树脂基复合材料的应用越来越广,但是对于作为树脂基复合材料主体材料树脂的很多性能概念人们还是混淆不清,不能很好的利用各种树脂的特性为人们服务,特别是各种温度指标特性的了解。热固性树脂的温度指标很多,例如:热变形温度、马丁耐热、玻璃化转变温度、绝缘耐热等级、热扭转温度、脆化温度、失强温度等,我们在本文中就着重对树脂的热变形温度、马丁耐热、玻璃化转变温度、绝缘耐热等级以及耐腐蚀使用温度五个温度概念辨析,而对其它概念就不一一加以赘述,帮助人们在使用过程中理清头绪,正确选择树脂,有效应用于实际生产。

1. 玻璃化转变温度

热固性树脂固化物均是线性非晶相高聚物,线性非晶相高聚物由于温度改变(在一定应力下)可呈现三种力学状态,即玻璃态、高弹态和粘流态。

当温度较高时,大分子和链段都能进行热运动。这时高聚物成为粘流态,受外力作用时,分子间相互滑动而产生形变;除去外力后,不能回复原状,所以形变是不可逆的,这种形变称为粘性流动形变或塑性形变,出现这种形变的温度称为流动温度Tf,这种状态成为粘流态(又叫塑性态)。如果把处于粘流态的高聚物逐渐降低温度。粘度也就逐渐增大,最后呈弹性状态,加应力时产生缓慢的形变,解除外力后又能缓慢地回复原状,这种状态叫高弹态。当温度继续

下降,高聚物变得越来越硬,在外力作用时只产生很小的形变这种状态叫玻璃态。热固性树脂固化物是在玻璃态使用的,所以Tg愈高愈好,也是衡量树脂耐热性的一个指标。如:898高交联环氧乙烯基树脂的Tg=190℃,就具有高耐热性,在烟气脱硫工业中可以承受200℃的高温。

测量玻璃化温度常用的方法有:热机械分析法(TMA)、差热分析法(DTA)和示差扫描量热法(DSC)三种。它们的测试方法原理不同,因而测试结果相差较大,不能相比。

另外,经过退火(即加热后处理)的树脂制品,玻璃化温度会提高,这是由于制品的内应力经过退火升温已经消除了的缘故。

2. 热变形温度和马丁耐热

2.1热变形温度

热变形温度(全称负荷热变形温度,英文缩写:HDT)是指对浸在120℃/h的升温速率升温的导热的液体介质中的一定尺寸的矩形树脂试样施以

规定负荷(1.81N/mm2或0.45 N/mm2),试样中点的变形量达到与试样高度相对应的规定值时的温度。需要注意:不同的负荷值所确定的热变形温度值是不同的,而且没有可比性,所以测定热变形温度值一定要指出所用规定负荷数值(即所采用的标准)。热变形温度是衡量塑料(树脂)耐热性的主要指标之一,现在世界各地的大部分塑料(树脂)产品的标准中,都有热变形温度这一指标作为产品质量指标,但它不是最高使用温度,最高使用温度是应根据制品的受力情况及使用要求等综合因素来确定。

测量热变形温度的标准很多,国内现在常见的有:中国国标(GB)、美国材料试验学会标准(ASTM)、国际标准化组织标准(ISO)、欧共体标准等,由于各标准所规定的测试方法、单位系统等有所区别,所以测试结果也有所不同的。例如:国外某知名品牌酚醛环氧乙烯基酯树脂产品热变形温度ASTM测试典型值:

149-154 ℃, GB实测值:137℃;898树脂GB实测值:155℃。

2.2马丁耐热

马丁耐热试验方法是检验塑料(树脂)耐热性的方法之一。1924年由马丁提出,1928年正式用于德国的酚醛塑料检验。后来,其他一些硬质塑料也使用该检验方法。它在欧洲和原苏联使用比较广泛。1970年我国亦发布了该试验方法的国家标准,成为我国早期建立的塑料(树脂)试验方法国家标准中的一个,所以在我国使用历史很长。

马丁耐热温度是指试样在一定弯曲力矩作用下,在一定等速升温环境中发生弯曲变形,当达到规定变形量时的温度。

2.3热变形温度与马丁耐热的辨析

热变形温度与马丁耐热都是检验塑料(树脂)耐热性的方法之一,但由于试验方法的本质区别,没有任何可比性,没有转变公式。

由于马丁耐热温度的测量是施加悬臂梁式弯曲力矩,操作不太方便;且施加的弯曲力矩数值较大,使很多塑料在加载后的初始挠度就十分可观,因而适用范围受到限制,一般多用于硬质塑料。另外,它使用空气作为传热介质箱体温度分布不均,对试样的传热慢,因而升温速度不宜过快。凡此等等,使这一方法在许多国家没有被采用,在我国也被逐渐的淘汰了。

所以在检验塑料(树脂)耐热性时,不能用马丁耐热与热变形温度比较。同时还要注意它们都不是塑料(树脂)的最高使用温度,塑料(树脂)的最高使用温度应根据制品的受力情况及使用要求等因素来确定。另外,热固性树脂

经过退火处理,也就是我们日常所说的加热后处理,会使热变形温度和马丁耐热升高,一般退火处理可以使热变形温度提高10℃,这就说明在日常使用热固性树脂时加热后处理还是很必要的。

3. 耐腐蚀使用温度:

由于树脂玻璃钢与金属材料相比,重量轻、比强度高、耐腐蚀性好、耐瞬时超高温性能好以及比金属材料低廉的价格,因此在相关领域中得到应用。如8mm的普通碳钢在浓度为0.1% 的二氧化硫潮湿环境中,只需1-3个月即可腐蚀透,而6mm 890树脂防腐蚀层的玻璃钢制品则可保持10年的使用寿命。所以各种树脂基复合材料广泛的应用于各种防腐场合,特别是重防腐场合。这就涉及了一个重要的概念:耐腐蚀使用温度。

耐腐蚀使用温度一般是指树脂在特定环境(特定腐蚀介质,特定的腐蚀介质浓度)中,树脂产品所能承受的最高使用温度。这个温度区别于热变形温度、玻璃化转变温度和绝缘耐热等级,例如:898乙烯基树脂热变形温度155℃、玻璃化转变温度190℃、绝缘耐热等级C级(中国标准),湿法脱硫工艺中,混合气体在进口的温度在160-200℃左右,系统中的部件又要承受瞬间的温度交变,潜在的热破坏和产生的强腐蚀性副产品。表2.1是898树脂耐腐蚀使用温度表的节选。

从上面的表格不难看出,耐腐蚀使用温度总要有一个特定的介质使用条件,没有介质使用条件耐腐蚀使用温度不成立。而在不同的介质条件中,同种树脂的耐腐蚀使用温度通常不同。这也就要求选用防腐蚀树脂时,一定要注意腐蚀介质条件。但是,目前市场上存在着一些不科学的说法,甚至还直接写在树脂产品的说明书中,例如:“树脂使用温度为多少度;本树脂耐腐蚀使用温度为多少度;热变形温度是多少度耐腐蚀使用温度就是多少度。”这种种说法都没有科学依据的,是对树脂耐腐蚀使用温度的误解,是树脂使用的误区。我们要在树脂使用过程中,屏除这些误导,正确运用树脂的特性。

4. 绝缘耐热等级

4.1概述

作为绝缘材料的树脂高聚物除了要有良好的机械性能和介电性能外,还要求具有良好的耐热性。例如用于航空,火箭上的塑料安装线,一般要在350℃下工作,有的甚至要求耐受500℃的高温,但飞行进入同温层后气温骤然降到

-70℃左右,此时温度的冲击对材料是一场严峻的考验。所以良好的耐热性,不但要求耐高温,而且要求能耐受温度的冲击。所谓耐热性,就是材料短时或长期处于高温下以及处于急速的温度变化下,能保持其基本性能而正常使用的能力。

耐热性按照材料受高温作用的时间的长短又可分为短时耐热性(简称耐热性)和长期耐热性(又称热老化性能)。短时耐热性和热老化性能是两个截然不同的概念,不能混淆。短时耐热性是指材料在高温下是否出现软化、变形、分解等现象或材料在热态下性能指标的变化,通常以Tg、Tf、Tm、Td等表示。长期耐热性是

指树脂高聚物处于一定工作温度下能否获得预期寿命,通常以绝缘材料的耐热等级、温度指数来表示。

通常温度指数是根据标准老化试验规定的寿命值求出的。所以温度指

数与软化点等耐热性指标的含意是不同的。材料能否在某温度下使用,不仅短时间内不能有显著的性能改变(如不变软、不着燃、介电性能无明显下降等),而且在长时间内也不至于产生不应有的性能变化。因此,如欲确定材料的使用温度,必须同时测定短时耐热性和热老化性能。—般先测短时耐热性,在短时耐热性能满足使用条件的情况下,进一步做热老化试验,评定其温度指数,但在绝缘技术中着重的是长期耐热性。

4.2长期耐热性——绝缘耐热等级

绝缘材料的热老化性能长期以来是以耐热等级表示的,我国现行的耐热等级如下:

这里的最高允许工作温度不等于短时耐热指标,例如:902树脂热变形温度82℃,耐热等级为F级;890树脂热变形温度为135℃,耐热等级为H级。

由于耐高温材料的发展,国外又提出了另一种耐热等级:

由于这种耐热等级的名称不能反映绝缘材料最高允许工作温度,给生产和研究工作带来很多不便。因此,有人建议以最高允许工作温度代表耐热等级,即将上述各耐热等级,迳直称为90级、105级、……220级等,显然这一种耐热等级的名称更直观,也更科学。

这种分级系统的含意是指某一绝缘材料适用于相应耐热等级的电机、电器。但实际上,一台电机或电器中的不同绝缘部位并不都在最高设计温度下运行,所以应根据电机或电器各部位的实际温度选择相应的耐热等级的绝缘材料,组成绝缘系统,以充分发挥材料的特性,提高经济合理性。因此绝缘材料的传统耐热等级显然不适应这种组合绝缘系统的需要。现在采用温度指数和耐热概貌来表征绝缘材料的长期耐热能力,由于同一材料用不同的性能作为衡量热老化寿命的参数可以得到不同的温度指数和耐热概貌,这样,就可以把电机或电器的耐热等级与单一绝缘材料的耐热能力有效地区别开来。

5. 综述

温度是与生产息息相关的指标,通过以上对树脂的热变形温度、马丁耐热、玻璃化转变温度、绝缘

问题1:王教授,您好!我是05届武汉理工大的复材毕业生。我现在遇到一些技术上的问题!恳请您指教!大型模具11m×5m×4m能不能分段或分片?如果能的话在拐角处分可以吗?产品采用分模再合模制作的方法能保证比较高的强度吗?弹性模量与什么有关系?采用MR铺层制作产品好还是MM或RR好?玻璃钢力学性能设计指标一般是哪些?测试应该测哪些?弯曲性能测试值很分散是为什么?谢谢![2006-06-26 17:33:19]

答复:可以分片或分段制作,但不要在拐角处分,最好在拐角过后的平面部分进行分割。

分模再合模制作的方法可以保证高的强度。

弹性模量与纤维种类、含量,树脂种类都有关系,主要是纤维的种类。

采用MR铺层制作产品根据产品性能要求,根据不同可以改变的。

玻璃钢力学性能设计指标一般有拉伸、弯曲、压缩、剪切、冲击等。

弯曲性能够描述复合材料的综合性能,弯曲性能测试值分散是很正常的,这和制样制作方法等都有关系。

问题

2:

王教授:如何去评估热固性树脂耐腐蚀性能?[2006-06-26 17:42:15]

答复:一般耐腐蚀性能的评价方法主要通过不同的腐蚀介质实际进行浸泡,然后测试树脂的失重或者增重来评价它们。

问题3:王教授:请问玻璃化转变温度跟其工作温度,有什么联系?热变形温度是什么意思?跟玻璃化转变温度有什么联系?[2006-06-28

10:04:52]

答复:玻璃化转变温度是指树脂由玻璃态向高弹态的转变的温度,根据每种树脂种类、结构的不同,表现出不同的玻璃化转变温度,它是玻璃钢

工作的上限温度,根据测试方法不同,所测得的玻璃化转变温度也有所

不同。用DSC方法测得的玻璃化转变温度比DMA法测试得要高。

热变形温度是评价复合材料相对耐热能力的一种测试方法,它一般要比玻璃化转变温度要高很多,所以在实际使用过程中不能直接用热变

形温度作为玻璃钢的使用温度。

问题4:王教授,您好,我是一家生产出口玻璃钢制品的企业,采用手糊工艺,脱模后产品表面滚涂胶衣,但每年进入夏季高温高湿天气,尽管采用多种办法:如采取配加腊液的胶衣,或补加催进剂,加大通风等多种办法,但表面胶衣还是出现欠固化即表面发粘的现象,请教王教授如何处理这类现象?现场的温度为33C,潮湿度90%。[2006-06-28 11:16:09]

答复:是否使用的是气干性胶衣?因为湿度会影响钴盐的促进效果,解决办法最好用抽湿机来降低工作环境的湿度。

问题5:王教授,你好!我是02届武汉理工大的复材毕业生。我想请教你,能在环境180度长期工作的聚酯类树脂有没有?(能满足拉挤工艺的),如果有那一家的比较好用。什么样牌号的环氧树脂跟环氧玻纤纱复合固化后的产品为淡清色?(能满足缠绕工艺的)。[2006-07-03 13:50:51]

答复:(1)180℃长期使用的聚酯类树脂报道不多。

(2)环氧树脂用双氰胺固化的是淡清色。

问题6:王教授,您好!请问复合材料专业必须要掌握的课程有哪些?[2006-07-18 14:13:08]

答复:最基本有四方面的知识:

一、材料包括树脂、纤维等其它辅助材料

二、结构包括设计与计算

三、工艺与设备

四、测试技术及表征

问题7:王教授: 您好! 很高兴有这么一个平台可以和您交流.我有二个问题想请教你:1.有机玻璃钢的制作应注意什么事项? 出现反潮反囟如何解决? 2.GRC产品有返霜返囟现象如何解决? 祝:开心! 苏清兰

[2006-07-24 11:59:35]

答复:很抱歉,我没有做过这方面的任何研究,所以不知道如何解决。

问题8:王教授,你好? 我想请教下SMC玻璃钢制造工艺的有关知识,以及设备,产品有些什么要求.它同热固性塑料制造工艺的不同点.热固性塑料为酚醛玻璃钢纤维,那SMC是什么材料呢?还有一点就是RMT玻璃钢注射工艺用的余胶(也就是加有固化剂的)可以模压其它产品.能有什么方法可延续固化时间呢,或者说增加其流动性. 谢谢指点湖南湘潭

[2006-07-26 14:52:50]

答复:SMC是片状模塑料的简称,主要是指不饱和聚酯树脂制备的,它的成型工艺与酚醛玻璃纤维的成型工艺有相似的地方,都必须通过加热、

加压成型,只是SMC的成型压力低一些。

RMT玻璃钢注射工艺用的余胶可以粉碎后当填料用

延长固化时间可能通过调整促进剂的量,增加流动性只能选用低粘度的树脂。

问题

9:

为什么玻璃钢不能耐浓度98%的硫酸[2006-07-26 22:15:36]

答复:玻璃钢的耐腐蚀能力与介质的种类、浓度、温度有密切的关系,如果在室温条件下乙烯基酯树脂可以耐98%的硫酸腐蚀。

问题10:王教授,您好!请问编制玻璃钢产品的检验规则应该包括哪些方面的内容?或者说从哪些方面入手?谢谢![2006-07-27 18:29:22]

答复:玻璃钢产品的检测主要根据产品的使用要求来设置需要检测的项目,以及测试方法,尽量使用国标。

问题11:王教授,您好!请问设计某玻璃钢产品包括哪些方面,从哪些地方入手?谢谢![2006-07-29 11:14:52]

答复:设计玻璃钢产品主要包括结构、材料选用、制备工艺这几个方面入手。

问题12:王教授.您好!玻璃钢产品在喷漆之后表面起泡是什么原因?谢谢![2006-07-30 01:15:53]

答复:喷漆后是否加热过,可能是玻璃钢的表面有针孔,可以先做封底处理再喷漆。

问题13:王教授,您好!请问玻璃钢制品表面发粘是什么原因?怎样可以解决?谢谢![2006-07-30 01:38:08]

答复:空气的氧气阻聚引起、树脂中的单体挥发、空气太潮湿都会引起的制品表面发粘。

解决方法:可以使用含蜡的树脂,不要在太潮湿的环境中制作,不要在温度太高的环境中间制作玻璃钢。

问题14:王教授,您好!请问玻璃钢材料在铁路方面的发展趋势如何?主要用在哪些方面?对玻璃钢有哪些要求?谢谢![2006-07-30 09:20:32]

答复:玻璃钢在铁路应用方面发展前景很好,主要作复合材料内饰件、卫生间、铁路上的一些磨擦材料、电力机车的绝缘材料,都可以用玻璃钢

制作。

根据实际使用要求可以选择及设计不同种类的玻璃钢制品。

问题15:王教授,您好!请问过期胶衣能否掺在不饱和树脂中使用?若不能会产生什么影响?[2006-08-03 09:21:48]

答复:只要胶衣没有固化就可以还使用,如果和普通的不饱和树脂掺合使用,会提高树脂的粘度,对工艺操作不利。

问题16:王教授您好: 请问现在用于外墙保温的玻璃纤维网格布设备生产厂家在什么地方有购.[2006-08-03 12:20:27]

答复:南京玻璃纤维研究设计院应该有类似的产品生产

问题17:王教授,您好!请问不饱和树脂的使用温度在什么范围?零下40度是否可用?谢谢![2006-08-03 15:19:20]

答复:不饱和树脂的使用温度范围因树脂的品种而异,目前我们测试的最高的在120℃左右,最低的应该在零下60℃,只要选择好一点的品种就

可以,如乙烯基酯树脂。

问题18:王教授,您好!请问怎样判断聚酯玻璃钢的力学性能?是否只有做试验才能确定?谢谢![2006-08-03 15:21:24]

答复:最好的办法是测试,另外可以通过测试表面硬度、听敲击的声音,一般硬度高的声音脆的和金属相近的这种玻璃钢,一般弯曲模量比较

高。

问题19:王教授,您好! 请问一个三角形的产品高是:32cm*上面角宽3cm*下面宽7cm翻个摸具,不知能不能好不好脱摸?做一个一米长的厚5毫米的玻璃

钢板,采用什么树脂和纤维布。谢谢![2006-08-03 21:42:58]

答复:留出合适的脱模的锥度应该没问题。

1米长,厚5毫米的玻璃钢板有什么力学性能要求?如果没有什么高的性能要求,用布和毡都可以做。

问题20:王教授您好: 目前有没有不变形的树脂。那种类型的树脂最好。谢谢。[2006-08-04 18:16:17]

答复:温度变形还是应力变形?不变形树脂应该是没有的。

问题21:王教授你好,我想请教一下无机玻璃钢同有机玻璃钢的结合,采用什么材料和形式使其结构能力最好![2006-08-05 12:07:51]

答复:这方面没有进行过研究,抱歉!

问题22:王教授,您好!请问什么叫长纤维和短纤维?用在哪些方面?有什么作用?谢谢![2006-08-06 09:18:15]

答复:长纤维一般指的是连续纤维,短纤维把连续纤维进行切割成一定长度的纤维,一般纤维缠绕、拉挤工艺使用长纤维;SMC、BMC、喷射工艺采用短纤维。

长纤维的力学性能好,短纤维铺敷性好。

问题23:王教授,您好!请问树脂含量为多少时其产品阻燃性比较好,有没有什么标准范围?(玻纤\树脂\填料各为多少比较适宜)[2006-08-06 09:21:24]

答复:树脂含量越低阴燃性能提高,没有具体的标准范围,因为根据阻燃剂的品种而异。

问题24:王教授,您好!请问怎样才能更多地了解各种树脂的用途,也就是说怎样根据要求才能更好的选材?谢谢![2006-08-06 09:24:43]

答复:选用任何的树脂都是为了做出合格的产品,树脂的选用必须满足产品的使用要求和制备工艺要求。必须了解树脂的物理化学特性、工艺特性、固化后的物理机械性能。这些性能的了解

可以通过查资料或者做试验获得。

问题25:王教授,您好!请问在糊制产品时,怎样控制树脂的含量?(比如说50%,我怎样才能确保它在这个范围?)谢谢![2006-08-06 09:27:21]

答复:将剪裁出来的增强材料称重,根据这个重量来调配树脂的用量,一般不可能精确到某个值上面,只能控制在一定的范围。

问题26:王教授,你好!我想请教玻璃钢真空法的材料主要哪有买,并哪种最好的的。[2006-08-06 12:38:44]

答复:上海有家公司专门出售真空法成型的辅助材料及设备,可以在网上查一下。

问题27:王教授,您好!请问用三氧化二锑配制阻燃胶液时,应与什么物质配合使用,具体名称是什么? 谢谢![2006-08-08 09:14:08]

答复:用三氧化二锑配制阻燃胶液时,可以含卤素的化合物共同使用,如氯化石蜡、十溴联苯醚等共同使用。

问题28:王教授,请问什么叫浇注体?[2006-08-08 09:15:53]

答复:浇注体一般指的是没有加增强材料的纯树脂制备的物体或试件。

问题29:王教授,您好!请问什么是反映型和添加型树脂?它们有什么区别?哪种比较好一些?谢谢!

[2006-08-09 08:25:47]

答复:反应型和添加型树脂的区别:添加型是通过添加不参加固化反应的功能填料来获得某些性能;反应型是通过在分子结构中引入具有某些功能特性的原料制备的树脂。

一般反应型的树脂比较好。

问题30:王教授,您好!请问无碱无捻粗砂方格布和无碱短切毡的厚度与强度有什么关系?是否是厚度越大强度越高?谢谢![2006-08-10 11:07:15]

答复:无碱无捻粗纱方格布和无碱短切毡的厚度与强度之间没有太多的必然联系。

问题31:王教授,您好!请问聚酯玻璃钢(采用短切毡和方格布交替铺层)的含胶量应该控制为多少合适?毡和布分别是多少较合适!非常感谢![2006-08-10 11:08:41]

答复:根据制品的力学性能要求来确定的。

问题32:环氧树脂作为材料是否可被更先进的材料所代替?[2006-08-11 16:07:02]

答复:环氧树脂被更先进的材料所代替这是必然的。

问题33:请问在下半年我国的环氧树脂市场是否随着国际市场的动态而有大的动态及它的前景将是怎么的呢?[2006-08-11 16:09:30]

答复:环氧树脂的使用量这几年是直线上升的,估计今年的用量会超过去年,这几年是环氧树脂的应用的黄金期。

问题34:王教授您好:请问我国玻璃钢产业现在是处于哪个发展阶段?谢谢![2006-08-11 16:11:56]

答复:我国玻璃钢产业现在是处于初级阶段,产量虽然大,但品种相对较少,更关键的是自主创新的材料、工艺、制品都很少。

问题35:王教授,你好,请问在哪里可以买到树脂标准方面的书籍,英文板的。[2006-08-11 16:12:20]

答复:外文图书国内有,但是很少,主要还是因为专业性太强的书销量太少,很多书店都不经营这些品种。

问题36:王教授,你好,请问树脂的原材料是什么[2006-08-11 16:16:28]

答复:哪类树脂的?

问题37:王教授您好:你经常浏览国外的复合材料网站吗,哪些较有权威性[2006-08-11 16:18:48]

答复:很抱歉,浏览的不太多。

问题38:王教授请问:我国玻璃钢主导企业及协会等集体是由国家直属管理有利于玻璃钢企业的发展啊?还是有私营管理者有利于它的发展呢?[2006-08-11 16:19:40]

答复:应该是在国家法律监督、行业协会引导下多种经营管理模式并存,比国家直接进行管理更有利于玻璃钢的发展。

问题39:王教授您好,一般而言,树脂是从哪些化工原料中提取的?[2006-08-11 16:21:36]

答复:树脂不是从化工原料中提取的,而是通过不同的化工原料进行合成。如不饱和聚酯树脂是由不饱聚酯和交联单体共同组成,不饱和聚酯是通过不饱和二元酸、饱和二元酸、二元醇通过

缩聚反应制得;交联单体一般常用的是苯乙烯单体。

问题40:王教授,您好!请问国外玻璃钢行业对中国玻璃钢行业的发展,哪些方面较感兴趣,是行业动态,新产品,新工艺吗,还是重大活动?[2006-08-11 16:25:27]

答复:主要是对行业的发展动态更感兴趣。因为目前中国是玻璃钢产品的生产大国,但不是玻璃钢技术强国,只有当中国成为玻璃钢技术强国才会真正的对国外玻璃钢行业产生影响,所以我

认为作为战略发展来看,国外应该关注中国的行业发展动态。

问题41:王教授您好:请问作为以玻璃钢为材料的汽车零部件出口方面由于对欧美汽车生产业产生威胁!而中国此时作出的是让步!请问您:这样有利于我国玻璃钢产业的发展吗?您对此举动有

怎么的看法呢??[2006-08-11 16:29:48]

答复:中国的汽车产业从来没有对国外的汽车行业构成威胁,因为中国是一个汽车生产弱国,玻璃钢的汽车零配件在汽车制造业中也只是一小部分,在玻璃钢的应用方面也只占不到15%的份

额,所以玻璃钢的发展也不能只看重在汽车一个领域中的应用。

问题42:请问王教授:在未来的一段时间玻璃钢产业有什么大的波动吗?[2006-08-11 16:38:25]答复:这个目前还预见不到。

高分子结构和形态特点

1. 结构 高聚物是由许多巨大的分子构成的。这些大分子有许多重复的结构单元组成。某些高聚物的结构单元是完全一致的(均聚),但另一些则是由两种以上的结构单元混合组成(共聚),同时大分子之间又有各种联系。因此必须从微观、亚微观直到宏观不同的结构层次来描述高聚物分子结构、形态和聚集态等。 高聚物主要分为以下结构:一次结构(近程结构)、二次结构(远程结构)、三次结构(聚集态结构)和高次结构的层次。 一次结构式是指大分子的化学组成,均聚或共聚,大分子的相对分子量,链状分子的形状如直链、支化、交联。此外还包括大分子的立体构型如全同立构、间同立构、无规立构、顺式、反式的等的区别。 二次结构指的是单个大分子的形态(微观),如无规线团、折叠链、螺旋链等。 三次结构指的是具有不同二次结构的单个大分子聚集在一起形成的不同的聚集态结构。如:无规线团构成的线团胶团、缨束状结构、片晶和超螺旋结构。 高次结构指三次结构以及与其他物质构成尺寸更大的结构,如由折叠链形成的片晶构成球晶。 2.高聚物结构的测定方法 测定结构的方法有X射线衍射法(大角),电子衍射法、中心散射法、裂解色谱-质谱、紫外吸收光谱、红外吸收光谱、拉曼光谱、微波分析法、核磁共振法、顺磁共振法、荧光光谱、偶极矩法、旋光分光法、电子能谱等。 测定聚集态结构的方法有X射线小角散射、电子衍射法、电子显微镜、光学显微镜、原子力显微镜、固体小角激光光散射等。 测定结晶度的方法有X射线衍射法、电子衍射法、核磁共振吸收(宽线)、红外吸收光谱,密度法,热分析法。 3.高聚物分子运动(转变与松弛)的测定 了解高聚物多重转变与运动的各种方法,主要有四种类型:体积的变化、热力学性质及力学性质的变化和电磁效应。测定体积的变化包括膨胀计法、折射系数测定法等;测定热学性质的方法包括差热分析方法(DTA)和差式扫描量热法(DSC)等;测定力学性质的变化的方法包括热机械法、应力松弛法等;还有动态测量法如动态模量和内耗等;电磁效应包括测定介电松弛、核磁共振等。 4.高聚物性能的测定 高聚物的力学性能主要是测定材料的强度和模量以及变形。试验的方法有很多种,有拉伸、压缩、剪切、弯曲、冲击、蠕变、应力松弛等。静态力学性能试验机有静态万能材料试验机,专用应力松弛仪、蠕变仪、摆锤冲击机、落球冲击机等,动态力学试验机有动态万能材料试验机、动态粘弹谱仪、高低频疲劳试验机。 材料本体的粘流行为主要是测定粘度和切变速率的关系、剪应力与切变速率的关系等,采用的仪器有旋转粘度计、熔融指数测定仪、高压电击穿试验机等。 材料的电学性能主要有电阻、介电常数、介电损耗角正切、击穿电压,采用仪器有电阻计,电容电桥介电性能测定仪、高压电击穿试验机等。 材料的热性能,主要有导热系数、比热、热膨胀系数、耐热性、耐燃性、分解温度等。测定仪器有高低温导热系数测定仪、差示扫描量热仪、量热计、线膨胀和体膨胀测定仪、马丁耐热仪和维卡耐热仪、热失重仪、硅碳耐燃烧试验机等。

高分子聚合物摩擦材料

高分子聚合物摩擦材料 作者:林荻淳 目录 1.摩擦磨损形式及机理 2.摩擦副材料设计要求 3.高分子聚合物摩擦特征 4.影响高分子聚合物摩擦性能因素 5.改善高分子聚合物摩擦磨损性能的方法 6.高分子聚合物摩擦材料选料标准及工程考虑因素 7.小结 1.摩擦磨损形式及机理: (1)粘着磨损 (2)磨料磨损 (3)疲劳磨损 (4)腐蚀磨损 2.摩擦副材料设计要求: 不仅要求具有耐磨性,还要求减摩性。 (1)足够的承载能力。在一定的工作条件下抗压强度、抗塑性形变能力、抗疲劳性能,以及相应的高温性能高温抗拉强度、高温抗蠕变性、高温抗疲劳强度 (2)良好的表面性能。即要有一定的塑性形变能力和良好的适应性,包括顺应性、嵌入性和磨合性。顺应性是指轴承材料靠表面的弹塑性变形补偿对中误差和顺应其他几何误差的能力。嵌入性是指轴承材料能嵌藏污物、颗粒以减轻挂上或磨料磨损的能力。磨合性是指轴承材料经短期轻载运转后能减少表面粗糙度使摩擦副表面相吻合的性质。 (3)良好的物理、化学性能。搞得导热性和热容量,热膨胀系数小、对边界润滑膜的吸附性强,抗腐蚀性好,以利于摩擦热导出防止咬合,以利于边界润滑膜的形成和保护 理想的滑动摩擦副简单图示: 2.2高分子材料与金属材料对比: 2.2.1高分子材料特点: 1、密度小 2、强度低,比强度搞 3、低弹性模量,高弹性 4、优良的减摩、耐磨、自润滑属性 5、可加工性好 6、导热性差 2.2.2金属材料特点: 1、弹性模量大、抗拉强度高

2、导热性高 3、表面硬度高 4、高温综合性能好,高温下抗拉轻度、抗蠕变性好 2.2.3摩擦中形变机理差异: 金属材料与高聚物材料在形变行为方面最大的差异是前者表现出弹塑性形变,而后者粘性行为对形变影响极大。与金属材料相比,聚合物导热性差,摩擦过程中产生的热量容易在接触区域积累,导致摩擦界面温度上升、摩擦过程中接触区域的温度对聚合物材料的摩擦学性能影响巨大。 3.高分子聚合物摩擦特征 3.1高分子聚合物摩擦特征:: 3.2高分子聚合物摩擦机理: 4.影响高分子聚合物摩擦系数、磨损的主要因素 4.1高分子聚合物影响摩擦性能内部因素: 4.1.1分子的化学结构(对称性,对称性增加摩擦系数降低。静摩擦系数与摩擦面的预取向有很大关系。特别地,带有环状结构的耐热性聚合物的摩擦系数与摩擦方向没有对应关系。) 4.1.2凝聚态的结构,结晶度(结晶度对不同聚合物的摩擦系数、磨损影响不同,较高结晶度获得较高弹性模量,增强抗拉抗蠕变能力)、分子链取向(影响较小,同拉伸方向降低摩擦系数、垂直拉伸方向增加摩擦系数) 4.1.3共聚共混成分。 4.2影响高分子聚合物摩擦性能外部因素: 4.2.1温度 4.2.2载荷 5.改善高分子聚合物摩擦磨损性能的方法: 5.2高分子聚合物改性 5.2.1 共聚共混 5.2.2 侧链改性

高分子聚合物改性概述

高分子聚合物改性概述 1概述 高分子聚合物作为20世纪发展起来的新材料,因其综合性能优越、成形工艺相对简便以及应用领域极其广泛,因而获得了较为快速的发展。 然而.高分子材料又有诸多需要克服的缺点。以塑料为例,有许多塑科品种性脆而不耐冲击,有些耐热性差而不能在高温下使用。还有一些新开发的耐高温聚合物又因为加工流动性差而难以成形。再以橡胶为例,提高强度、改善耐老化性能、改善耐油性等都是人们关注的问题,诸如此类的同题都要求对聚合物进行改性。用以强化或展现聚合物某些或某一特定性能为目标的工艺方法.通称为聚合物改性(poly-mermodification)。可以说,聚合物科学与工程这门学科就是在不断对聚合钧进行改性中发展起来的。聚合物改性使聚合物材料的性能大幅度提高,或者被赋予新的功能,进一步拓克了高分子聚合物的应用领域.大大提高了聚合物的工业应用价值。 聚合物的改性方法多种多样,总体上可划分为共混改性、填充改性及纤维增强复合改性、化学改性、表面改性及其他方法改性。 聚合物改性的目标如下。

1)功能性使某一聚合物具有特定的功能性,而成为功能高分子材料,如磁性高分子、导电高分子、含能高分子、医用高分子、高分子分离膜等。 2)高性能使聚合物的力学性能.如拉伸强度、弹性模量、抗蠕变、硬度和韧性等,获得全面或大部分提高。 3)耐久性使聚合物的某些性能,如耐热性、耐寒性、耐油性、耐药溶剂性、耐应力开裂性、耐气候性等,得到持久的提高或改善。而成为特种高分子材料。 4)加工性许多高性能聚合物,因其熔融温度高,熔体流动性差,难以成形加工,采用改性技术,可成功地解决这一难题。 5)经济性在不影响使用性能的前题下,采用较低廉的有机材料或无机材料,与聚合物共混或填充改性,可降低材料成本,增强产品竞争能力;另外采用共混或填充改性手段,还可提高某些一般聚合物的工程特性.如采用聚烯烃与PA、ABS、PC等共混,或玻璃纤维填充PA、PP、PC等就是典型的范例。 2共混改性 聚合物的共混改性的产生与发展,与冶金工业的发展颇有相似之处。尽管已经合成的裹台物达到了数千种之多,但能够有工业应用价值的只有几百种,而能够大规模工业生产的以及广泛应用的只有

高分子材料结构特点及形成原因

高分子材料的结构特点及形成原因 刘海翔 103511072 摘要:简单综述了高分子材料的结构特点,包括高分子链结构、晶体结构和微区结构等,同时简要阐述这些结构特点是如何形成的。 关键字:高分子材料;结构特点 高分子材料也称为聚合物材料,它是以聚合物为基体组分的材料,除基本组分聚合物之外,为获得具有各种实用性能或改善其成型加工性能,一般还有各种添加剂。高分子材料之所以成为聚合物材料是由于高分子材料一般是由大量小分子化合物在一定条件下发生聚合反应,当聚合分子量达到一定值时,聚合物的性质显著改变,从而具备单独小分子化合物不可能具有的特殊性质。因此,高分子材料目前已被广泛应用于各个领域。 影响物质性能的因素有很多,其中最重要的是化学组成和结构特点。很显然,由不同的小分子聚合而成的聚合物具有不同的结构和性质。对高分子材料而言,决定其性质的主要是其结构特点,原因是高分子材料由无数小分子通过一定的形式结合在一起的过程中有多种结合方式,而不同的结合方式势必会影响到材料的性质。大多数高分子材料均具有以下结构特点:高分子材料的链结构,高分子链通常由103到105个结构单元构成;由于高分子链聚集形态的不同导致高分子材料不同的晶体结构;由于各种添加剂的加入,会使得高分子材料的局部结构发生改变,类似于普通晶体的掺杂特性。 高分子的链结构 高分子链结构是指单个高分子化合物分子的结构,链结构主要包括高分子链的组成与结构和高分子链的分子量与构象。高分子链的组成是由聚合单体决定的,通常对某一种高分子材料而言,单体的组成并不是研究的主要对象。即使高分子链具有相同的组成,材料的性能也可能不同,这可能与高分子链的形态有关。图1展示了常见的分子链形态。

高分子材料作业

高分子材料成型原理 平时作业(2) (针对第四章、第五章教学内容) 一、单项选择题 1.对于切力变稀的纺丝流体, (c )。 A. η0 <ηa<η∞ B.ηa<η0且ηa<η∞ C. η∞<ηa<η0 D.ηa>η0且ηa>η∞ 2.熔体纺丝过程的取向主要是( b )的作用。 A.喷丝孔道中的剪切流动取向 B.纺丝线上的拉伸流动取向 C.纺丝线上的拉伸形变取向 D. B+C 3. 溶剂的扩散系数 D S和凝固剂的扩散系数 D N随凝固浴中 溶剂含量的增加而( a )。 A. 增大 B. 减小 C有极小值 D. 有极大值 4.拉伸过程中晶区取向因数fc与非晶区取向因素fa的大 小通常为( c )。 A. fc>fa B. fa>fc C.开始时fc>fa,然后 fa>fc D.开始时 fa>fc, 然后fc>fa 二、简答题 1.简述聚合物流体切力变稀的原因。 2.简述在纺丝过程中减轻或避免漫流型细流的出现的措施。 三、讨论题

1.试述聚合物分子结构对聚合物流体剪切粘性的影响。 答:聚合物分子结构包括链结构、相对分子质量及相对分子质量分布。(1)链结构的影响 聚合物的链结构对流变性能有较大影响。聚合物分子链柔性越大, 缠结点越多,链的解缠和滑移越困难,聚合物流动时非牛顿性越强。聚合物分子链刚性增加,分子间作用力愈大,粘度对剪切速率的敏感性减小,但粘度对温度的敏感性增加,提高这类聚合物的加工温度可有效改善其流动性。聚合物分子中支链结构的存在对粘度也有很大的影响。 具有短支链的聚合物的粘度低于具有相同相对分子质量的直链聚合物的粘度;支链长度增加,粘度随之上升,支链长度增加到一定值,粘度急剧增高,且可能比直链聚合物大若干倍。在相对分子质量相同的条件下,支链越多,越短,流动时的空间位阻越小,粘度越低,越容易流动。较多的长支链可增加与临近分子的缠结几率,使流体流动阻力增加,粘度增大;长支链越多,粘度升高愈多,流动性愈差。长支链的存在也增大了聚合物粘度对剪切速率的敏感性。当零切粘度相同时,有长支链聚合物比无支链聚合物开始出现非牛顿流动的临界剪切速率要低,长支链对粘度的影响较复杂。链结构中含有大的侧基时,聚合物中自由体积增大,流体粘度对压力和温度敏感性增加。 (2)相对分子质量的影响 聚合物相对分子质量增大,不同链段偶然位移相互抵消的机会增多,因此分子链重心转移减慢,

高分子材料的结构特点和性能精选. - 副本

高分子材料是由相对分子质量比一般有机化合物高得多的高分子化合物为主要成分制成的物质。一般有机化合物的相对分子质量只有几十到几百,高分子化合物是通过小分子单体聚合而成的相对分子质量高达上万甚至上百万的聚合物。巨大的分子质量赋予这类有机高分子以崭新的物理、化学性质:可以压延成膜;可以纺制成纤维;可以挤铸或模压成各种形状的构件;可以产生强大的粘结能力;可以产生巨大的弹性形变;并具有质轻、绝缘、高强、耐热、耐腐蚀、自润滑等许多独特的性能。于是人们将它制成塑料、橡胶、纤维、复合材料、胶粘剂、涂料等一系列性能优异、丰富多彩的制品,使其成为当今工农业生产各部门、科学研究各领域、人类衣食住行各个环节不可缺少、无法替代的材料。 高分子材料的性能是其内部结构和分子运动的具体反映。掌握高分子材料的结构与性能的关系,为正确选择、合理使用高分子材料,改善现有高分子材料的性能,合成具有指定性能的高分子材料提供可靠 的依据。 高分子材料的高分子链通常是由103~105个结构单元组成,高分子链结构和许许多多高分子链聚在一起的聚集态结构形成了高分子材料的特殊结构。因而高分子材料除具有低分子化合物所具有的结构特征(如同分异构体、几何结构、旋转异构)外,还具有许多特殊的结构特点。高分子结构通常分为链结构和聚集态结构两个部分。链结构是指单个高分子化合物分子的结构和形态,所以链结构又可分为近程和远程结构。近程结构属于化学结构,也称一级结构,包括链中原子的种类和排列、取代基和端基的种类、结构单元的排列顺序、支链类型和长度等。远程结构是指分子的尺寸、形态,链的柔顺性以及分子在环境中的构象,也称二级结构。聚集态结构是指高聚物材料整体的内部结构,包括晶体结构、非晶态结构、取向态结构、液晶态结构等有关高聚物材料中分子的堆积情况,统称为三级结构。 1. 近程结构 (1) 高分子链的组成 高分子是链状结构,高分子链是由单体通过加聚或缩聚反应连接而成的链状分子。高分子链的组成是指构成大分子链的化学成分、结构单元的排列顺序、分子链的几何形状、高聚物分子质量及其分布。 高分子链的化学成份及端基的化学性质对聚合物的性质都有影响。通常主要是指有机高分子化合物,它是由碳-碳主链或由碳与氧、氮或硫等元素形成主链的高聚物,即均链高聚物或杂链高聚物。 高密度聚乙烯(HDPE)结构为-[CH2CH2]n-,是高分子中分子结构最为简单的一种,它的单体是乙烯,重复单元即结构单元为CH2CH2 ,称为链节,n为链节数,亦为聚合度。聚合物为链节相同,集合度不同的混合物,这种现象叫做聚合物分子量的多分散性。 聚合物中高分子链以何种方式相连接对聚合物的性能有比较明显的影响。对于结构完全对称的单体(如乙烯、四氟乙烯),只有一种连接方式,然而对于CH2=CHX或CH2=CHX2类单体,由于其结构不对称,形成高分子链时可能有三种不同键接方式:头-头连接,尾-尾连接,头-尾连接。如下所示: 头-头(尾-尾)连接为: 头-尾连接为: 这种由于结构单元之间连接方式的不同而产生的异构体称为顺序异构体。一般情况下,自由基或离子型聚合的产物中,以头-尾连接为主。用来作为纤维的高聚物,一般要求分子链中单体单元排列规整,使 聚合物结晶性能较好,强度高,便于抽丝和拉伸。 (2) 高分子链的形态 如果在缩聚过程中有三个或三个以上的官能度的单体存在,或是在加聚过程中有自由基的链转移反应发生,

高分子聚合物材料研究

高分子聚合物材料研究 一、热塑性粉末: 1.塑料涂层材料的特点是什么?常见的塑料涂层材料有哪些种类? 1)塑料与金属相比有许多的不足之处: 强度远不及大多数金属材料; 耐热性也低,一般不超过250摄氏度; 塑料还有不同程度的吸湿度,膨胀收缩变形大; 塑料的熔融温度范围不宽,一般是几十到一百多摄氏度超过一定的温度就会讲解,甚至焦化; 老化也是一大短处,特别是在强紫外线和较高温度下容易老化; 2)塑料的这些缺点可以适当的加入添加剂加以弥补和改善: 例如:加入某些金属粉末可以提高其承载能力、导热性、耐磨性、光反射及耐老化;加入某种氧化物可以提高其硬度、承载能力和耐磨性;加入金属硫化物可以提高其自润滑性和耐磨性等等; 3)热喷涂塑料材料大致可以分为热固性树脂材料和热固性树脂材料 两大类;常见的见下表 粉末 种类 热塑性塑 料 聚乙烯(PE )、聚丙烯、聚酰胺(尼龙)、聚酰亚胺 ABS 塑料、聚氯醚聚苯酯、聚甲醛、氟塑料、EVA 树脂 热固性塑 料 酚醛、环氧树脂、有机硅、聚氨酯、氨基塑料 通常与固化剂粉末混合进行喷涂 2.聚乙烯的性能及应用特点是什么? 1)在聚乙烯原料中加入流平剂、防老剂及其他填料等做成粉末,可以作为喷涂原料 2)聚乙烯优点:化学稳定性、电绝缘性、耐辐射性 缺点:力学性能低、使用温度低、硬度低。它的熔点是123~130摄氏度,使用温度-70~70摄氏度 聚乙烯在熔融状态黏度高,故喷涂效率低。结合性聚乙烯不会在喷涂中导致热劣化 3)结合性聚乙烯粉末物理性能见下表 3.聚酰胺的性能及应用特点是什么? 聚酰胺又称尼龙,尼龙有不同的品种,常用喷涂的是尼龙1010 ,尼龙还有尼龙66. 1)聚酰胺的熔点为200摄氏度左右,食品种的不同有差异。使用温度-50~80之间,短期工作温度可以达到120摄氏度。聚酰胺有较高的力学强度,它在常温下有良好的抗拉强度、冲击韧性、耐油性、耐浸渍性、较高的硬度和耐疲劳强度、有一定的耐蚀性,对稀酸、碱、盐都比较耐蚀,但不耐强碱和氧化性酸;对烃、酮、醚、脂、油类的抗腐蚀能力好,但不耐酚和甲酸. 2)目前。常用于喷涂的聚酰胺是尼龙1010,其特点是较软,易于加工。若将工件预热到200摄氏度左右,可以得到耐腐蚀、表面光滑的尼龙喷涂层,尼龙比聚乙烯容易实现喷涂。 3)缺点:因尼龙缺乏粘附性,喷涂前基材表面应该涂敷底漆; 吸湿性较大 4.氯化聚醚的性能及应用特点是什么? 1)氯化聚醚的熔融温度120摄氏度,熔点是180摄氏度,分解温度是300摄氏度。氯化聚醚的力学性能与其他塑料相当,但是抗冲击性能偏低 2)氯化聚醚与金属之间有很好的粘附性能,而且耐磨性也较高,是尼龙的3倍。此外,氯化聚醚有良好的耐化学腐蚀性能,能在120摄氏度下长期工作。它也是一种优良的绝热材料,其导热系数比低压聚乙烯小2倍多。 密度 延伸率 拉伸强度 熔点 软化点 脆化温度 静态摩擦系数 粒 度 0.93 750 16 120 90 -60 0.7 130 目

高分子聚合物的详细介绍

高分子聚合物又称高分子化合物,是天然高分子和合成高分子化合物的总称,是由一种(均聚物)或几种(共聚物)结构单元用共价键连接在一起的、分子量很高的、比较规则的连续序列所构成的化合物。 高分子聚合物或其预聚体均称为合成树脂,高分子聚合物是通过聚合反应而制得的,且大多数是由人工合成制得的,故人们又称其为高分子合成材料。 高分子聚合物可以抽丝做成合成纤维,做成高弹性的合成橡胶,也可以通过加工成型形成刚性材料—塑料,这就是所谓的三大合成材料,高分子聚合物还可以用来生产涂料、胶黏剂和密封材料。 (一)高分子聚合物的分类 高分子聚合物根据其来源,可分为天然聚合物、人工合成聚合物、半合成聚合物等几类;根据其使用性能,可分为纤维、橡胶、塑料、涂料和胶黏剂等几类;根据分子量大小的不同,可以把聚合物分为齐聚物、低聚物和高聚物;其重复单元的种类仅为一种的称为均聚物,可分为线型聚合物、接枝共聚物、嵌段共聚物(又称镶嵌共聚物)、网状聚合物等;从高分子化学角度着眼,一般以有机化合物分类为基础,根据其主链结构,可分为热塑性聚合物和热固性聚合物二类。 (二)高分子聚合物的特性 合成高分子聚合物的化学组成比较简单,许多小分子化合物如果它们带有两个以上的可反应基团(功能基),则这类小分子化合物即可发生聚合反应,生成高分子聚合物(这类小分子化合物称为单位)。例如聚氯乙烯则是由氯乙烯结构单元重复而成,若聚合物的分子量已经很高,再增加几个机构单元并不显著影响其物理机械性能者,称高聚物;泛指的聚合物多是单体通过聚合形成的高聚物;若聚合物的聚合度很低(几至几十),再增加几个结构单元对其性能有明显影响者,则称为低聚物或齐聚物。 聚合物通常是由分子量不等的许多大分子链组成,这是在单体进行聚合的过程中,由于许多因素的影响,而使生成的聚合物是许多结构和性质相类似而聚合度不完全相等的混合物所致。这些聚合物称为同系聚合物,因此高分子聚合物是不同分子量的同系聚合物,这种特点称为多分散性,多异高分子聚合物的分子量也只能用平均分子量来表示,这是聚合物的又一特征。 潍坊市凯鑫防水材料有限公司

高分子聚合物

高分子聚合物聚丙烯酰胺 1、有机高分子 高分子化合物即高分子量化合物(又称高聚物),一般常把分子量上万者称为高分子化合物。而高分子化合物的分子量相差较大,从几万、几十万、几百万到上千万不等。一般常见的高分子化合物其分子量虽高,但其组成元素的种类一般很少,以PAM为例。无论其分子高达几百万、上千万,其组成元素只有碳(C)、氢(H)、氧(O)、氮(N)四种。所以,高分子从其结构上大多是由几种相同的元素按同一比例构成,组成完全相同的简单结构单元以共价键重复结合而成的大分子。它的结构尤如一根链条,其简单结构单元好比链节,共价键好比销子,形成的链条就好比高分子化合物。所以高分子化合物的分子常称为高分子链,而其简单结构单元称之为链节(m)。链节数目(n)称之为高分子聚合度。链节数目的多少决定了其分子量的大小。显然,聚合度愈大,高分子的相对分子质量(M)也愈大。分子量的大小代表聚合度的高低或分子链的长短。因此: 高分子的相对分子质量=聚合度×链节数即M = n × m。 2、聚丙烯酰胺(PAM)的结构 聚丙烯酰胺在聚合过程中所得的产品分子量并不完全一样,它一般是分子大小不同的同系物的混合物,即每个分子都是由同种链节组成,但各个分子中所含链节数并不都相等。即每个分子的聚合度并不一定相同。故常说的分子量(或聚合度)系指其平均值。

若高分子链没有分支链者称为直链型高分子,若有分支则称为支链型高分子。若高分子链之间有支链连接而形成网状结构者称为体型高分子。 应该注意的是线型和体型之间并无明显的界限。例如含支链很多的线型其性质就接近于体型;而线型在某些低分子(如高价金属盐、甲醛……等)的作用下也可变为体型,这个变化过程称之为交联。 对于线型高分子而言,其平均分子量愈大(或平均聚合度愈大)则其分子链愈长。 在PAM的分子中决定其链节特性的是酰胺基(参见图四),它是亲水的极性基,但由于它不电离,故其亲水性有限。因此,PAM分子中它的数目的多少,即聚合度(链节数)是决定PAM性质,如溶解于水的能力,在水溶液中的状态等的关键因素,也将严重影响其絮凝能力。国内使用的PAM一般含有50 ~70万个链节(即聚合度为50 ~70万,分子量350 ~500万)。 3、部分水解聚丙烯酰胺(PHP)的结构 将PAM与碱共热,则其链节上的酰胺基将发生水解而生成羧钠基(参见图五),这种反应称为PAM的水解,生成产物叫水解聚丙烯酰胺。在水解过程中聚合度不变。 随着水解反应的条件(一般为碱量多少,水解温度,反应时间……)的不同,则PAM中发生水解的酰胺基数目(即其链节数)也不相同。一般情况下是使部分链节上的酰胺基发生水解,得到的产物称为部分

高分子材料改性

1填充改性:在聚合物基体中或在聚合物加工成型过程中加入一系列在组成结构不同固体添加物。 2混杂增强:是一种以上不同品种的增强纤维或其他增强材料匹配在一起用于聚合物得到复合材料。3纤维的临界长度lc:以基体包裹纤维的复合物在顺纤维轴上拉伸。当从整体传到纤维上的应力刚能使纤维断裂时纤维的应有长度。 4IPN:是两种或两种以上的共混聚合物,分子链相互贯穿并至少一种聚合物分子链以化学键的方式交联而形成的网络结构。 5高分子合金:在显微镜下观察可以聚合物共混物具有类似金属合金的相结构(即宏观不分离,微观非均相结构)称为高分子合金。 6相容性:指聚合物彼此互相容纳,形成宏观均匀材料的能力。 7纳米复合材料:指其中至少有一相物质是纳米级(1—100nm)范围内的多相复合材料。 8海-岛结构:是一种两相体系,且一项为连续相,一相为分散相,分散相分散在连续相中,就好像海岛分散在大海中一样。 9等粘点:A组分与B组分熔体黏度相等的这一点,称为“等黏点” 问答可能题 1.熔融态化学反应类型及各自的影响因素? 答:类型:交联反应、接枝反应、降解反应、官能团反应。 影响交联因素:1过氧化物的品种与用量2交联时 间与温度3环境气氛4抗氧剂5酸性物质6填充剂 7助交联剂 影响接枝因素:1接枝单体的含量2引发剂3反应 温度4反应时间5交联或降解的控制6共单体 2填料的性质? 答:(1)几何形态特征:球状(加工流动性):玻璃微珠片状(刚性):云母、滑石粉 (2)粒径小,填充效果好(分散均匀) 粒径表示方法:1.平均粒径() 2.目数(每平方英寸筛网上的筛孔数) 3.比表面积()(3)表面形态与性质:光滑(加工流动性)、粗糙(机械互锁、有大量微孔(有一定互锁作用) 3.填料的分散混合过程? 答:大致分四个过程。<1>使聚合物添加剂粉碎。将聚合物和填料加入到体系中,在外界作用下将大块聚合物和添加剂破碎成较小粒子。 <2>使添加剂渗入到聚合物中。聚合物在剪切热和传导热作用下,降到黏流状时,使速度加快,较小粒子克服聚合物内聚力,渗入到聚合物中。、 <3>分散。较小粒子进一步减小,直到粒子大小,固相粒子逐渐分散。 <4>分布均化。分散固相粒子逐渐混合,直至均匀分散到聚合物中。 5增强纤维种类及各有那些常用的表面处理方法?答:玻璃纤维、碳纤维和植物纤维等。 玻璃纤维的表面处理方法:硅烷偶联剂处理、表面接枝处理、酸碱刻蚀处理。 碳纤维表面处理法:气相氧化法、液相氧化法、阳极氧化法、等离子体氧化法。 植物纤维的表面处理方法:热处理法、碱处理法、改变表面张力法、偶联法、表面接枝法。 7纤维状加工过程易碎问题?措施:1.后期加入纤 维 2.提高熔融温度 3.降低剪切力 8简述制造纤维增强材料片材的常用方法? (1)熔融浸渍法。首先将连续纤维或短切纤维制成毡或针刺毡,经预热与挤出机挤出的热塑性树脂薄层,通过浸渍,冷却固化,最后切割。 (2)悬浮沉积法。将纤维和树脂均匀分布在水中,使纤维釜单丝分散,树脂单粒分散,通过流浆箱和成型网加入絮凝剂,凝聚与水分离形成湿片,通过干燥,黏合,压扎成片材。 (3)静电吸附热压法。将热塑性树脂制成薄膜带电,通过短纤维槽时,纤维吸附在薄膜上,然后压合。(4)液态化床法。将一定粒度粉末树脂放在流动床的孔床上,使其带一定量静电荷,并翻腾是树枝附在接地纤维上通过切断器被切成定长再通过热轧区和冷却区而制成片材。 9影响共混物结构形态的因素? 答:1相容性。相容性越好,聚合物越容易扩散而 达到均匀混合。2配比与黏度的综合影响。(P157. 图4-16)3.内聚能密度。内聚能密度大的聚合物,其分子间作用力大,不易分散,因此在共聚物体系 中更趋于分散相。4制备方法不同的制备方法会产 生不同的形态结构。 10提高共混物相容性的方法? 答:(1)对聚合物进行化学改性(2)加入增溶剂(3) 改善共混加工工艺(4)在共混组分间交联(5)共 溶剂法和IPN法。 12.聚合物的填充效果通过哪几方面评价?为什么 答:1聚合物填充改性的经济效果利用填料实现 聚合物的填充改性,其目的是降低成本改善材料的 某些性能。2填充聚合物的力学性能作为材料使 用强度是应用的基础。3填充聚合物的热性能。 12.无机纳米粒子增韧机理? 答1.刚性无机粒子产生应力集中效应,引发周围树 脂产生微开裂,吸引一定的变形功: 2.刚性粒子存在使基体树脂裂纹扩展受阻和钝化, 终止裂纹继续开裂: 3.填料的微细化,例子比表面积增大,产生微开裂, 吸引更多冲击能量阻止材料的断裂: 6界面结合对力学性能的影响? 界面强度高低,对聚合物各方面的影响显著,最突 出的是力学性能。(1)拉伸强度:在平行于取向方 向,拉伸强度提高。垂直于取向方向时,若纤维与 聚合物结合强度比较好时,则强度提高,否则不提 高。当纤维无取向时,则各同性时,各方向强度均 有所提高。(2)韧性与冲击强度:当纤维自身的强 度小于界面强度与摩擦力之和时,即受到作用时, 纤维发生断裂。此时对其冲击性能不利,当纤维自 身的强度大于两者之和时,则会发生脱出,对冲击 作用有吸收作用,提高其冲击强度。 11层状纳米材料的性能? 答:1.力学性能和耐热性 2.高阻隔特性 3.阻燃性 4.导电功能 5.抗菌功能 6.吸波特性 7.各向异性 14什么是混杂增强、是混杂效应?混杂方式有哪 些? 答:增强聚合物复合材料是由两种或两种以上不同 品种的增强纤维或其他增强材料匹配在一起用于 聚合物二得到的材料。混杂效应:混杂效应是由 于多种纤维货增强材料与树脂基体的相互作用产 应的结果,有正效应和负效应。常见的形式:(1) 纤维——纤维混杂 2)纤维——无机离子混杂增强(3)纤维原位混杂 增强如 4填料体积成体的计算?P76 22配比与黏度的综合影响。(P157.图4-16) 高概率填空题 1充母料的理想横型:1填料核2偶联层3分散层4 增混层填充母料的方法1挤出法2密炼法3造粒法 4 开炼法 1改性的分类:物理改性:共混、填充、增强 化学改性:接枝、交联、嵌段、降解 2交联分为:物理交联:结晶或缠结 化学交联:以化学键形成交联 3化学反应形式:溶液形式,熔融形式(多数) 4熔融态化学反应器:密炼机、螺杆挤出机、高校 连续混合机组 5熔融态化学反应类型:交联、接指、断链、能团 反应 7填料的作用:增量,增强,赋予功能 8填料的种类:1.阻燃性的;2.增大硬度,石英 3. 减小硬度,滑石粉 9填料处理的目的:1.增加与聚合物的相容性 2. 提高界面粘合不产生分离 10常用的表面处理剂:1.表面活性剂 2.偶联剂(钛 酸酯,铝酸酯)3.有机高分子处理剂 4.无机物处 理剂 5.其他 11填充改性交联:1.经济效果 2.力学性能 3.热性 能 4.电性能,光学性能,加工性能 12加入纤维的作用:增强 13增强纤维种类:1.玻璃纤维 2.碳纤维 3…. 14纤维表面处理原则:1.极性相近原则 2.界面酸 碱匹配原则 3.形成界面化学键原则 4.引入可塑 界面原则 17共混改性方法:物理方法:机械共混法,干粉共 混法,熔融共混法,溶液共混法,乳液共混法。 化学方法:共聚-共混法,反应共混法,IPN法 18共混物的形态,结构 1.均相结构 2.非结晶聚 合物构成的多相共混体系 3.两相互锁成交错结构 4.相互贯穿的两相连续结果 5.结晶非结晶聚合物 共混物的形态,结构 19增溶剂类型 1.非反应型增溶剂 2.反应型增溶 剂 3.低分子增溶剂 20热塑性弹性体是由塑料和橡胶构成的,其中塑料 是连续的,橡胶是分散的。 21改善共混物透明性的方法 1.使参与共混的分散 相与连续相折射率相同 2.使共混物分散粒径小于 可见光波长 22在硬质PVC中加氯化PE起增韧改性作用:在软 质PVC中加氯化PE起增塑改性作用 23纳米复合材料的制备方法 1.溶胶-凝胶法 2.原 位聚合法 3.插层法 4.共混法 24共混物的形态首先划分为均相体系和两相体系。 两相体系又分:海-岛与海-海结构

高分子聚合物的表征方法及常用设备

高分子聚合物的表征方法及常用设备 -CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN

高分子聚合物的表征方法及常用设备 1.X射线衍射 x射线的波长和晶体内部原子面之间的间距相近,晶体可以作为X射线的空间衍射光栅,即一束X射线照射到物体上时,受到物体中原子的散射,每个原子都产生散射波,这些波互相干涉,结果就产生衍射。衍射波叠加的结果使射线的强度在某些方向上加强,在其他方向上减弱。分析衍射结果,便可获得晶体结构。 主要部件包括4部分。 (1)高稳定度X射线源(2)样品及样品位置取向的调整机构系统样品须是单晶、粉末、多晶或微晶的固体块。(3)射线检测器(4)衍射图的处理分析系统 2.扫描电镜(SEM) 扫描电镜用电子束扫描聚合物表面或断面,在阴极射线管上(CRT)产生被测物表面的影像。对导电性样品,可用导电胶将其粘在铜或铝的样品座上,直接观察测量的表面;对绝缘性样品需要事先对其表面喷镀导电层(金、银或炭)。 当一束极细的高能入射电子轰击扫描样品表面时,被激发的区域将产生二次电子、俄歇电子、特征x射线和连续谱X射线、背散射电子、透射电子,以及在可见、紫外、红外光区域产生的电磁辐射。同时可产生电子-空穴对、晶格振动(声子)、电子振荡(等离子体)。 扫描电子显微镜由电子光学系统,信号收集及显示系统,真空系统及电源系统组成。 3.透射电镜(TEM) 透射电镜的总体工作原理是:由电子枪发射出来的电子束,在真空通道中沿着镜体光轴穿越聚光镜,通过聚光镜将之会聚成一束尖细、明亮而又均匀的光斑,照射在样品室内的样品上;透过样品后的电子束携带有样品内部的结构信息,样品内致密处透过的电子量少,稀疏处透过的电子量多;经过物镜的会聚调焦和初级放大后,电子束进入下级的中间透镜和第1、第2投影镜进行综合放大成像,最终被放大了的电子影像投射在观察室内的荧光屏板上;荧光屏将电子影像转化为可见光影像以供使用者观察。本节将分别对各系统中的主要结构和原理予以介绍。 透射电镜可以用来表征聚合物内部结构的形貌。将待测聚合物样品分别用悬浮液法,喷物法,超声波分散法等均匀分散到样品支撑膜表面制膜;或用超薄切片机将高分子聚合物的固态样样品切成50nm薄的试样。把制备好的试样置于透射电子显微镜的样品托架上,用TEM可观察样品的结构。利用TEM可以观测高分子聚合物的晶体结构,形状,结晶相的分布。高分辨率的透射电子显微镜可以观察到高分子聚合物晶的晶体缺陷。 TEM系统由以下几部分组成 电子枪:聚光镜:样品室:物镜:中间镜:透射镜:此外还有二级真空泵来对样品室抽真空、照相装置用以记录影像。

高分子材料资料讲解

高分子材料

高吸水性树脂 摘要介绍高吸水性树脂的种类,回顾了国内外高吸水性树脂的发展历程,论述了高吸水性树脂的结构及吸水机理,阐述了高吸水性树脂的制备方法及应用领域,展望了高吸水性树脂的发展方向。 关键字高吸水树脂发展分类制备应用 正文高吸水性树脂也称超强吸水性聚合物(SuperabsorbentPolymers ),简写为SAP。它是一种含有羧基、羟基等强亲水性基团并具有一定交联度的水溶胀型的高分子聚合物,不溶于水也不溶于有机溶剂,能够吸收自身重量的几百倍甚至上千倍的水,且吸水膨胀后生成的凝胶具有良好的保水性和耐候性,一旦吸水膨胀成水凝胶 ,即使加压也难以将水分离出来。同时 ,高吸水性树脂可循环使用。因此 ,越来越受到人们的关注。目前 ,超强吸水树脂已在工业、农业、林业、卫生用品等领域中得到广泛应用 ,并显示出更为广阔的发展前景。 高吸水性树脂发展迅速,品种繁多,可按以下几个方面进行分类。按原料来源主要分为:淀粉系,包括淀粉接枝、羧甲基化淀粉、磷酸酯化淀粉、淀粉黄原酸盐等;纤维素系,包括纤维素接枝、羧甲基化纤维素、羟丙基化纤维素、黄原酸化纤维素等;合成树脂系,包括聚丙烯酸盐类、聚乙烯醇类、聚氧化烷烃类、无机聚合物类等。按亲水基团的种类主要分为:阴离子系,包括羧酸类、磺酸类、磷酸类等;阳离子系,包括叔胺类、季胺类等;两性离子系,包括羧酸-季胺类磺酸-叔胺类等;非离子系,包括羟基类、酰胺基类等;多种亲水基团系,包括羟基-羧酸类、羟基-羧酸基-酰胺基类、磺酸基-羧酸基类等。

高吸水性树脂的制备方法,首先将树叶洗净、烘干、粉碎后用NaOH溶液浸泡后水洗至中性并烘干;将烘干后的树叶在通有N[2]的条件下,加入NaOH溶液对烘干后的树叶进行活化处理,再加入引发剂;用NaOH溶液中和丙烯酸后与丙烯酰胺溶液混合得到混合溶液;将活化的树叶与混合溶液混合后再加入K[2]S[2]O[8]、交联剂和开孔剂反应;出料放在真空干燥箱中烘干,粉碎即可。由于本发明将树叶粉碎活化并与丙烯酸、烯酰胺进行接枝共聚反应,在不影响树脂优良的吸水、保水等各项性能的情况下,不仅工艺简单,提高了接枝效率,而且降低加工的成本。 高吸水性树脂的制备方法,其特征在于:1)树叶的活化:首先将树叶洗净,放入烘箱中烘干后粉碎过120目筛,在室温下用质量浓度为17.5%的NaOH溶液浸泡15h后用水洗至中性并烘干;将烘干后的树叶在通有N↓[2]的条件下,加入树叶质量1%的质量浓度为10%的NaOH溶液在95℃下以150~180r/min的搅拌速度对烘干后的树叶进行活化处理1.5小时后降温至45℃,再加入树叶质量0.7%~1%的引发剂NaHSO[3]与(NH[4])[2]S[2]O[8],引发0.5h,NaHSO[3]与(NH[4])[2]S[2]O[8]的质量比为NaHSO[3]∶(NH[4])[2]S[2]O[8]=1∶2;2)单体溶液的配制:用质量浓度为30%~40%的NaOH溶液中和丙烯酸,使体系中丙烯酸的中和度为77%得到丙烯酸溶液,然后配制质量分数为60%~70%的丙烯酰胺溶液,将配制好的丙烯酸溶液与丙烯酰胺溶液按照单体丙烯酸与丙烯酰胺1~2∶1的质量比混合得到混合溶液;3)45℃以60~80r/min的转速在活化后的树叶中逐滴加入混合溶液,活化的树叶与单体丙烯酸和丙

高分子材料结构特点及形成原因

高分子材料结构特点及形成原因 段星宇123511028 高分子材料是由相对分子质量比一般有机化合物高得多的高分子化合物为主要成分制成的物质。一般有机化合物的相对分子质量只有及时到几百,高分子化合物是通过小分子单体聚合而成的相对分子质量高达上万甚至上百万的聚合物。 高分子材料也称为聚合物材料,它是以聚合物为基体组分的材料,除基本组分聚合物之外,为获得具有各种实用性能或改善其成型加工性能,一般还有各种添加剂。高分子材料之所以成为聚合物材料是由于高分子材料一般是由大量小分子化合物在一定条件下发生聚合反应,当聚合分子量达到一定值时,聚合物的性质显著改变,从而具备单独小分子化合物不可能具有的特殊性质。因此,高分子材料目前已被广泛应用于各个领域。 影响物质性能的因素有很多,其中最重要的是化学组成和结构特点。很显然,由不同的小分子聚合而成的聚合物具有不同的结构和性质。对高分子材料而言,决定其性质的主要是其结构特点,原因是高分子材料由无数小分子通过一定的形式结合在一起的过程中有多种结合方式,而不同的结合方式势必会影响到材料的性质。大多数高分子材料均具有以下结构特点:高分子材料的链结构,高分子链通常由103到105个结构单元构成;由于高分子链聚集形态的不同导致高分子材料不同的晶体结构;由于各种添加剂的加入,会使得高分子材料的局部结构发生改变,类似于普通晶体的掺杂特性。 高分子材料的结构研究包括两部分: 高分子链的结构:指单个高分子化合物分子的结构和形态,可分为近程结构和远程结构。 高分子聚集结构:高聚物材料整体的内部结构,即高聚物中分子的堆积情况,又称为三级结构。 高分子链的结构 近程结构:又称为一级结构。主要指结构单元的化学结构,立体化学构型,它包括分子链中原子的种类和排列、取代基和端基的种类、结构单元的排列顺序、支链类型和长度等“构造”情况,以及某些取代基在空间排列所构成的“构型”。 远程结构:又称为二级结构,是指孤立的高分子链,包括分子的大小和形态、链的柔顺性以及分子在各种环境中所采取的“构象”。 近程结构

高分子材料成型加工-个人整理资料!

第二章 要点 1. 塑料和橡胶的区别: T g 塑料>室温,室温下处于玻璃态,呈现塑性 T g 橡胶<<室温,室温下处于高弹态,呈现弹性 PE 、PP 的T g <室温,为何是塑料? 因为结晶度高,刚性,柔韧性不佳,主要作为塑料使用。橡胶要求材料必须常温下具备高弹性,而聚乙烯常温下由于结晶的原因不具备这一特点,所以聚乙烯常温下不能单独作为橡胶来使用。 2. 工程塑料的特点: 拉伸强度>50 MPa 冲击强度>6 KJ/m 2 长期耐热温度>100 ℃ 特种工程塑料: 热固性塑料:分子链中有可反应的活性基团! :PE PP PA POM PET (非100%结晶) 非晶态塑料:PS PVC PC PSF 7. 8. 11. 聚氯乙烯PVC 本体聚合法、悬浮法、乳液法 市售85%以上为悬浮法PVCor 乳液法PVC 乳液法PVC :糊树脂。

开发最早,用量最大;高强度高刚性;制作织物 19.顺丁橡胶BR=高顺式-1,4-聚丁二烯 弹性:BR>NR>SBR 21.氯丁橡胶CR=氯丁二烯的 均聚物 =反式1,4结构80%+顺式1,4 结构10%

三元乙丙橡胶EPDM 24. PE 的结晶性与性能 随结晶度提高,密度、熔点、拉伸强度、硬度增高,但伸长率、冲击韧性下降,透明性下降。

相容的共混聚合物:ΔG M=ΔH M-TΔS M≤0 玻璃化温度转变法:T gM=W1T g1+W2T g2部分相容:两个T g相互靠拢 完全不相容:两个T g,分别为两聚合物的T g 34. <0.005% <0.05% <0.02% <0.2% 35.高分子材料热-机械特性与成型加工的关系 36.成型时剪切速率范围与成型方法定义 1.生胶:无配合剂且尚未交联,线型大分子or带支链 的线型,可溶于有机溶剂 2.混炼胶:生胶与配合剂经加工混合均匀,且未被交 联 3.硫化胶:已交联 4.橡胶:(硫化胶)是一种在室温下具有高弹性的高分 子材料。在外力作用下橡胶可以伸长几倍甚至几十倍,外力撤除后几乎可以恢复到原状。 5.通用橡胶:指性能与天然橡胶相近,物理性能和加 工性能较好,可广泛用作轮胎和其他一般橡胶制品的橡胶。 6.特种橡胶:指具有特殊性能,可用于制备各种耐热、 耐寒、耐油、耐溶剂、耐化学腐蚀、耐辐射等特殊使用要求的橡胶。 7.热塑性弹性体:分子结构中一部分或全部由具有橡 胶弹性的链段所组成,大分子链之间存在化学或物理交联而成的网状结构,起补强作用,常温下显示橡胶的弹性,而高温下,受热的作用这种网状结构消失,呈现塑性,可按热塑性塑料的成型方法塑化成型,冷却下这种网状结构又复原。具有塑料和橡胶的加工性和使用性。 8.熔体流动指数MFI=熔体流动速率MFR(melt flow rate)=熔融指数MI:用一定温度、一定压力下,10min 内聚合物从出料孔挤出的重量(g)来表示,单位为g/10min。 9.均相成核:指分子链的初始集聚并达到一定的尺寸, 其他的分子链可以在这些初始集聚体上进行排列增长。 10.异相成核:指体系中杂质提供分子链进行有序排列 的场所。 11.二次结晶:指一次结晶后,在一些残留的非晶区和 结晶不完整的部分区域内,继续结晶并逐步完善的过程。 12.后结晶:指聚合物加工过程中一部分来不及结晶的 区域,在成型后继续结晶的过程。在这过程中,不形成心的结晶区域,而在球晶界面上使晶体进一步长大,是初结晶的继续。 13.后收缩:二次结晶和后结晶造成的制品性能和尺寸 发生变化的现象,包括晶粒变粗、产生内应力,制品翘曲、开裂,冲击韧性变差。 14.退火:(热处理)将试样在Tg~Tm温度范围内的某一

高分子聚合物摩擦材料

高分子聚合物摩擦材料 Document number:WTWYT-WYWY-BTGTT-YTTYU-2018GT

高分子聚合物摩擦材料 作者:林荻淳 目录 1.摩擦磨损形式及机理 2.摩擦副材料设计要求 3.高分子聚合物摩擦特征 4.影响高分子聚合物摩擦性能因素 5.改善高分子聚合物摩擦磨损性能的方法 6.高分子聚合物摩擦材料选料标准及工程考虑因素 7.小结 1.摩擦磨损形式及机理: (1)粘着磨损 (2)磨料磨损 (3)疲劳磨损 (4)腐蚀磨损 2.摩擦副材料设计要求: 不仅要求具有耐磨性,还要求减摩性。 (1)足够的承载能力。在一定的工作条件下抗压强度、抗塑性形变能力、抗疲劳性能,以及相应的高温性能高温抗拉强度、高温抗蠕变性、高温抗疲劳强度 (2)良好的表面性能。即要有一定的塑性形变能力和良好的适应性,包括顺应性、嵌入性和磨合性。顺应性是指轴承材料靠表面的弹塑性变形补偿对中误差和顺应其他几何误差的能力。嵌入性是指轴承材料能嵌藏污物、颗粒以减轻挂上或磨料磨损的能

力。磨合性是指轴承材料经短期轻载运转后能减少表面粗糙度使摩擦副表面相吻合的性质。 (3)良好的物理、化学性能。搞得导热性和热容量,热膨胀系数小、对边界润滑膜的吸附性强,抗腐蚀性好,以利于摩擦热导出防止咬合,以利于边界润滑膜的形成和保护 理想的滑动摩擦副简单图示: 高分子材料与金属材料对比: 高分子材料特点: 1、密度小 2、强度低,比强度搞 3、低弹性模量,高弹性 4、优良的减摩、耐磨、自润滑属性 5、可加工性好 6、导热性差 金属材料特点: 1、弹性模量大、抗拉强度高 2、导热性高 3、表面硬度高 4、高温综合性能好,高温下抗拉轻度、抗蠕变性好 摩擦中形变机理差异: 金属材料与高聚物材料在形变行为方面最大的差异是前者表现出弹塑性形变,而后者粘性行为对形变影响极大。与金属材料相比,聚合物导热性差,摩擦过程中产生的热量容易在接触区域积累,导致摩擦界面温度上升、摩擦过程中接触区域的温度对聚合物材料的摩擦学性能影响巨大。 3.高分子聚合物摩擦特征 高分子聚合物摩擦特征:: 高分子聚合物摩擦机理:

相关文档
相关文档 最新文档