文档库 最新最全的文档下载
当前位置:文档库 › 电磁波吸收材料的研究现状

电磁波吸收材料的研究现状

电磁波吸收材料的研究现状
电磁波吸收材料的研究现状

电磁波吸收材料

电子设备在电磁环境中的安全性研究最早源于军用设备的电磁信息防泄露研究,称为TEMPEST技术(电磁信息泄露防护技术),已经有40多年的历史了。电子设备中信息通过传导和辐射的形式向外部泄露,对于信息安全来说电磁辐射比传导更容易被侦获,也一直是TEMPEST技术研究的重点,美国在原理和技术研究上一直处于领先地位。

电子设备的电磁环境安全性在民用电子信息产品领域也同样在进行研究。与TEMPEST技术不同的是民用电子信息产品主要所考虑的不只是自身的信息泄露

问题,而是外部的电磁场是否会影响自身设备的正常工作和自身散发的电磁场是否会影响其它电子信息产品的正常工作,称为EMC(Electromagnetic Compatibi lity)技术。EMC的确切含义是:当某设备与其它设备处于共同的电磁环境下时,该设备不会由于同一环境下其它设备的电磁发射而遭受不允许的降级,同时它在正

常工作状态下的电磁辐射也不会使同一环境下的其它设备遭受不允许的降级[1]。为了使处于同一电磁环境下的不同电子电气设备达到“电磁兼容”,必须对不同类型的设备规定相应的EMC标准,由此产生了大量的国际、区域(如欧洲)、国家和行业标准。有些是推荐标准,有些是强制性标准。截止1999年8月,我国共发布了76个EMC国家标准[2]。

1 电磁波吸收材料的研究现状

1.1 电磁波吸收材料

电磁波吸收材料的研究涉及材料科学、电磁场理论、电磁波吸收材料和吸收体理论、计算数学等,随着材料设计理论和方法的逐渐受到重视,电磁波吸收材料的研究逐渐成为EMC和材料科学中的一个重要分支。从理论上

来讲EMC技术对电磁波吸收材料的基本要求有两点:

(1)无反射(既完全吸收);

(2)吸收频带尽可能的宽。

寻找无反射吸收材料的新设计方法一直是人们寻求的目的,但吸收材料也同屏蔽材料一样存在着对电磁波的反射问题。虽然到目前为止人们已经研究了不少的电磁波吸收材料,但是还无法做到无反射吸收。但在实际应用中,电子与电气设备要求的电磁波吸收材料大都是低反射率的的电磁波吸收材料。

目前国外正在研制和已经实用化的吸波材料和吸波体主要有以下几种:[3-13]

(1) 铁氧体系列吸波材料(镍锌铁氧体、锰锌铁氧体、钡铁氧体等):由于铁磁材料的共振吸收和磁导率的频散效应,铁氧体材料具有吸收强、频带宽的优点,被广泛地应用于各种隐身技术领域。日本NEC公司研究的铁氧体吸波材料厚度为3.8mm和0.9mm的两层构成,单位面积质量8kg/m2,衰减-20dB的带宽为8.

5~12.2GHz,衰减-10dB时带宽为6~13GHz。

(2) 微粉吸波材料:微粉材料(尤其纳米吸波材料)由于其奇特的物理化学性质而受到各方面的重视,对电磁波的反射小、吸收高,是一种值得重视的新材料,在超微粉材料的颗粒中表面原子占整个颗粒原子的较大比例,表面原子由于悬挂键、空键较多,其活性大大增加。当电磁波入射到这类粒子上时,分子、电子的运动加剧,电磁能转化为热能的效率高,电磁损耗大,其透射和吸收性能取决于粒度大小,利用这个特点可以实现层间匝配和展宽频带的目的。例如,由纳米碳化硅纤维为基材制成的电磁波吸收体在8~12GHz的频率范围内,达到-15d B吸收的带宽大于1GHz,经特殊处理过的碳纤维在雷达波段具有较好的应用价值。对于金属粉如羟基Fe粉、Ni粉、Co粉,其粒径一般在10~50nm之间,也受到了广泛的研究,但由于抗氧化等性能较差其应用性受到限制。

(3) 多晶铁磁性金属纤维:多晶铁磁性金属纤维具有独特的形状特征和复合损耗机理(磁损耗和介电损耗),具有重量轻(密度<2kg/m2)、频带宽(4~1 8GHz)和斜入射性能好的优点,以及可通过调节纤维的长度、直径及排列方式调节吸波体的电磁参数,是一种值得研究的吸波材料。

(4) 希克夫盐基视黄脂:像石墨一样呈黑色,吸波性能优于其它材料,而重量只有铁球吸波材料的1/10。这种材料的吸波频带宽,从长波到8mm波段都有效,通过离子位移方式它将电磁波能量全部转换成热能,但材料本身的温升并不明显。

(5) 电介质陶瓷吸波材料:PZT(锆钛酸铅)、BaTiO3 等电介质材料也具有良好的吸波效果,但吸收带宽小。

(6) 导电高分子材料:与其它吸波材料相比具有密度小(只有铁氧体的1/5)的特点,通过掺杂调节电导率来控制其吸波性能,国外报道在毫米波段具有-10 dB和12GHz的带宽。

(7) 手性吸波材料:它与普通材料相比最大的特点具有手性参数,在其中传播的电磁波只能是左旋或右旋的圆偏振波,其优势在于调节手性参数就可以调节阻抗匹配,并且比调节μ、ε容易得多;另外,它的频率敏感性低,易于实现宽频吸收。该材料实用的技术一旦有所突破,将对EMC技术产生重大影响。

1.2 电磁波吸收体

上述几类材料是目前所研究和开发的主要吸收体用材料,然而就目前的研究和生产水平而言,采用单一材料做成吸收体实现宽频带的吸收是不现实的,并且无法解决无反射问题。实际应用中一般较少采用单一的材料和直接使用,而是采用电磁波吸收体的形式。

电磁波吸收体是为了取得最佳电磁波吸收效果而结构化的电磁波吸收材料,它可以以商品的形式出现。国际上多采用复合化和结构设计方法来解决某一频段

的吸收问题,并在军用上最先取得应用,像B-2、YF-22、YF-23等隐形飞机都采用了结构化吸收体。

电磁波吸收体的研究是以吸收材料的研究为基础,目前已获得实用化的吸收体结构有:

(1)单层结构:表现为复合材料的单涂层和单层吸收体。

(2)多层结构:由透波层、阻抗匹配层、吸收层以及反射背衬等组成。设计中经常要用到入射波与反射波相互抵消技术,此时虽然会出现相应的吸收峰但其吸收带宽受到影响。

目前美、日、西欧国家在电磁波吸收体的研究上处于世界领先地位,它们已分别研究出了毫米厚度的民用电磁波吸收体。最先进的吸收体结构是美国用在军用隐身飞机上的电磁波吸收体结构,这种结构可以在较宽的频带内使雷达波的反射降低7~10dB。

我国的吸波材料和电磁波吸收体的实验室研究开始于80年代,90年代中后期进入较全面的研究阶段。相对于国外来讲,无论是材料研究和电磁波吸收体的研究方面整体上处于跟踪和探索阶段,但在某些方面上取得了很好的进展,并形成了一些自己的特色。其研究重点大多是某种吸波材料的研究,对于吸收体的设计方法研究相对较少。对于吸收体设计方法的研究主要集中于单层和多层结构的设计上。但是由于材料本身的吸收频带宽度、阻抗匹配、粘合剂加入造成吸波特性降低等影响。

总体上来讲吸波材料和电磁波吸收体的理论研究和应用研究仍在发展之中,还没有形成成熟的理论。电磁波吸收体用于不同的电器产品时,其EMC所需要的频带和带宽可以通过材料改进来实现,最大的问题是阻抗匹配问题。但值得欣慰的是我国不少电器生产厂家已对产品EMC问题日渐关注,并投入力量研究,但是作为商品化的电子产品用电磁波吸收材料的研究尚需加强。

2 电磁波吸收材料的研究中的趋势和问题

由于历史的原因,军用TEMPEST技术发展在先,民用EMC技术发展在后,军用电磁波吸收材料的研究也始终领先于民用电磁波吸收材料的研究,电磁波吸收体的研究也是如此。就整体上来说,由于技术发展的要求,对电磁波吸收材料的性能和电磁波吸收体的设计提出了更高的要求,单一的材料和结构已不能满足要求。

对于军用电磁波吸收材料来讲,由单一频段、窄频带材料向多频段和宽频带方向发展。超微细结构和复合结构成为重要的发展方向,新型电磁波吸收材料和电磁波吸收结构成为研究热点。

电磁波吸收体不但可以作为吸波材料用于电磁波屏蔽暗室,还可以用于各种

电子设备中用于电磁波的吸收和电磁场的设计。电磁波吸收体是电磁波屏蔽暗室必不可少的吸波材料,有角锥状浸有吸波粉料的复合海绵吸波体,其尺寸与吸波频率有关,形状设计是为了电磁波的阻抗匹配,可以满足30MHz—40GHz频带、1 0—20dB的电磁波吸收率;平板状、网格状和双层型铁氧体吸波材料,可以满足30MHz—2GHz频带、10dB的电磁波吸收率。电磁波屏蔽暗室用的电磁波吸收体是与暗室的尺寸相适应的,并且为了有效的利用空间也在不断地减小厚度。

电磁波屏蔽暗室用的电磁波吸收体由于其体积和重量的限制,在民用电子信息产品上无法使用。毫米厚度的电磁波吸收体在军事上已经取得实战上的应用,但在民用上因为种种原因发展比较慢,但是日本和西欧国家已经有厚度为毫米量级的电磁波吸收体展示,国内在这方面的产品还不多见。

另外在实际的电磁泄露防护技术中,还要考虑到具体电路的情况来采用不同的方式。由于电子与电气设备的电磁干扰以传导和辐射两种方式进行,响应EMC 技术的也有两类。(1)传导,与电源频率不同的谐波和杂波通过导线传入电网,并由此对其它设备产生影响并造成信息泄露。传导的电磁波一般频率较低,可以通过滤波器的设计来实现抑制。(2)辐射,设备内部的高频电磁振荡以波的形式向外辐射,直接对其它设备造成影响。为了降低设备的电磁辐射,一般采用以下几种方法来抑制:

(1)低辐射电路设计,(2)设备的屏蔽,包括机箱的屏蔽、接线孔和接缝的屏蔽,(3)隔离技术,包括设备工作环境的屏蔽(如美国五角大楼安装了电磁波屏蔽材料),(4)电源线和信号线的屏蔽,(5)电源线和信号线的滤波,(6)电磁波吸收材料方法。

由于受电路设计技术和成本的限制,许多产品在达不到EMC标准时,需要采用屏蔽和吸波方法。屏蔽和吸波的目的都是将电磁波局限在某一个区域内,所不同的是屏蔽主要利用导电材料对电磁波的反射作用来限制电磁波的传播。一般需要将整个辐射源全部屏蔽,否则的话会出现一个方向减弱,而其它方向增加的现象。

吸波则是利用材料对电磁波的吸收,使电磁波的电磁场能转变为其它形式的能(一般是转变为热能)。电磁波吸收材料不要求具有高导电性,在设备中应用起来相对容易,使用技术要求也就低一些。EMC材料的研究目前主要集中在屏蔽材料,对电磁波吸收材料和吸收体的研究相对较少。实际上电磁波吸收材料和吸收体在EMC技术上具有屏蔽材料等技术所不可代替的作用,目前正在成为EMC 学科发展的一个热点。

然而,实用化的电磁波吸收材料除了对材料的性能有具体的要求之外,也有使用环境对材料提出的具体要求,例如使用温度和使用尺寸,这些都是电磁波吸收材料实用化必须要解决的问题,也是今后一个阶段的研究目标。

3 结束语

电磁波吸收材料的研究开始于军用TEMPEST技术,并在军用隐形飞机、隐形军舰、隐形军车和隐形工事等方面得到了广泛的应用,成为电子战中信息对抗的一项重要技术,一直受到各国的高度重视。

由于民用产品EMC技术的进步和标准的不断制定和执行,民用EMC技术和产品也受到越来越多的重视。尤其是商业上等方面的保密性,对电磁波吸收材料有强烈的需求。电磁波吸收材料除了可以消除雷达虚象和重影外,可以用于电视重影的消除、大型商业楼的电磁信息防泄露和民用电子产品的EMC,也可以用于电磁环境的操作人员的身体健康保护。

在电磁波吸收材料研究上,一方面提高现有材料的性能、设计各种不同类型吸波体结构,另一方面也在加紧研制新型电磁波吸收材料。目前上面提到的各种电磁波吸收材料由于种种原因,例如厚度、比重、抗老化性能、吸收带宽等方面的问题,在民用EMC产品市场应用还不够,同时也具有重要的发展前景。

吸波材料简介

吸波材料简介 1、定义 所谓吸波材料,指能吸收投射到它表面的电磁波能量的一类材料。在工程应用上,除要求吸波材料在较宽频带内对电磁波具有高的吸收率外,还要求它具有质量轻、耐温、耐湿、抗腐蚀等性能。 2、吸波原理分类 吸波材料的损耗机制大致可以分为以下几类: 其一,电阻型损耗,此类吸收机制和材料的导电率有关的电阻性损耗,即导电率越大,载流子引起的宏观电流(包括电场变化引起的电流以及磁场变化引起的涡流)越大,从而有利于电磁能转化成为热能。 其二,电介质损耗,它是一类和电极有关的介质损耗吸收机制,即通过介质反复极化产生的“摩擦”作用将电磁能转化成热能耗散掉。电介质极化过程包括:电子云位移极化,极性介质电矩转向极化,电铁体电畴转向极化以及壁位移等。 其三,磁损耗,此类吸收机制是一类和铁磁性介质的动态磁化过程有关的磁损耗,此类损耗可以细化为:磁滞损耗,旋磁涡流、阻尼损耗以及磁后效效应等,其主要来源是和磁滞机制相似的磁畴转向、磁畴壁位移以及磁畴自然共振等。此外,最新的纳米材料微波损耗机制是如今吸波材料分析的一大热点。 3、材料种类 随着现代科学技术的发展,电磁波辐射对环境的影响日益增大。在机场,飞机航班因电磁波干扰无法起飞而误点;在医院,移动电话常会干扰各种电子诊疗仪器的正常工作。因此,治理电磁污染,寻找一种能抵挡并削弱电磁波辐射的材料——吸波材料,已成为材料科学的一大课题。 吸波材料按材料分类主要分为: 铁氧体吸波材料,是利用磁性材料的高频下损耗和磁导率的散射来吸收电磁波的能力。 金属超微粉吸波材料,金属材料因居里点高(770K)而耐高温,Ms可达铁氧体的3-4倍,金属自然共振频率比铁氧体高得多,有更好的吸收性能,但是块

GHz铁氧体电磁波吸收材料的研究

GHz铁氧体电磁波吸收材料的研究 范学伟1 姚敏琪1 舒 扬1 王 倩1 张晓宁2 (1 北矿磁材科技股份有限公司,北京 100067) (2 北京工业大学新型功能材料教育部重点实验室,北京 100022) 文 摘 鉴于民用吸波材料市场的日益增加,用传统粉末冶金的方法制备了铁氧体吸收剂粉体,并测定了其内禀磁性能和电磁参数。采用吸收剂粉体与氯化聚乙烯复合的方法轧制出不同厚度的胶板,测定了10 MH z~1.8GH z电磁波吸收性能及厚度的影响,复合胶板在400MH z~1.8GH z频段显示良好的吸收性能。降低吸收剂粉体的填充率有利于展宽频带,复合胶板在2GH z~10GH z频带的测试结果表明,反射系数小于-5dB的带宽达到3.6GH z,对应吸收率大于70%。样品的吸波性能已经具有一定的实用性。 关键词 电磁波吸收材料,铁氧体,电磁参数,吸收性能 Ferrite Electromagnetic Wave Absorbers in GH z Range Fan Xuewei1 Y ao Minqi1 Shu Y ang1 Wang Qian1 Zhang X iaoning2 (1 BG RI M M Magnetic Materials and T echnology C o.,Ltd.,Beijing 100067) (2 K ey Lab.of Advanced Functional Materials of the S tate Education C ommission,Beijing P olytechnic University,Beijing 100022) Abstract With the increase of products for civil use,electromagnetic wave abs orber powders have been prepared through conventional powder metallurgy method.The intrinsic magnetic properties and the electromagnetic parameters of them are als o determined.C om posite materials from the powders and CPE are obtained to test their abs orbing properties, which are fairly g ood in the400MH z to1.8GH z range.It is helpful for reducing abs orber content to widen frequency range.The abs orption rate of this com posite material exceeds70%in the3.6GH z frequency range width.An abs orption efficiency of sam ples has shown s ome certain practicability. K ey w ords Electromagnetic wave abs orber,Ferrite,Electromagnetic parameter,Abs orption efficiency 1 引言 始于二战期间[1]的军事隐身目的的电磁波吸波材料,在电子信息技术飞速发展的今天,重新吸引了人们的注意力。由于可以获得更高的传输速率,使用GH z范围频率的电磁波进行数据传输增长得很快。例如,移动通信和局域网(LAN)系统就使用1 GH z~5GH z的电磁波[2];M D-80民航机机身上有20个天线,用于通信、导航、雷达等系统,其分别的工作频谱范围从10kH z直至9.2GH z[3]。然而,由此引发的电磁干扰(E MI)问题也日趋严重,最直接解决问题的办法之一就是利用吸波材料,使有害电磁波转化为热能被消解。随着中国加入WT O后面临的世界范围的电磁兼容(E MC)标准的强制实施,以及人们对居住所处的电磁环境的高度关注,吸波材料在民用方面,如防止高层建筑物反射电磁波引起的电视重影[4]、E MC暗室以及解决高频设备引起的设备内部和设备之间的干扰等方面[5]具有广泛的应用前景。 收稿日期:2003-06-30;修回日期:2003-08-18 范学伟,1973年出生,博士,从事永磁材料及吸波材料的研究开发工作

(完整版)纳米抗菌材料国内外研究现状

1.国内外研究现状和发展趋势 (1)多尺度杂化纳米抗菌材料的国内外研究进展 Ag+、Zn2+和Cu2+等金属离子具有抗菌活性,且毒性小、安全性高而被广泛用作抗菌剂使用。但是,由于其存在易变色、抗菌谱窄、长效性差、耐热性和稳定性不好等缺点而成为其进一步发展的障碍。相比而言,纳米银、纳米金、纳米铜、纳米氧化锌等纳米材料则可以在一定程度上克服这些问题。例如纳米银,在抗菌长效性和变色性方面均比银离子(多孔纳米材料负载银离子)抗菌剂有显著改善,而且其毒性也更低(Adv. Mater. 2010);关于其抗菌机理,被认为是纳米银释放出银离子而产生抗菌效果(Chem. Mater 2010,ACS Nano 2010)。纳米金也有类似的效果(Adv. Mater. Res.2012),尽管活性比纳米银稍差,但其对耐药菌株表现出良好的抗菌活性(Biomaterials 2012)。铜系抗菌材料可阻止“超级细菌”(NDM-1)的传播(Lancet Infec.Dis. 2010)。活性氧化物是使用时间最长、使用面最广泛的一类长效抗菌剂,其中氧化锌是典型代表,特别是近年来随着纳米技术的发展,一系列低维结构氧化锌的出现,为氧化锌系抗菌材料提供了极大的发展空间,由于其良好的安全性,氧化锌甚至可用于牙科等口腔材料(Wiley Znter Sci.,2010)。本项目相关课题组多年的研究发现,ZnO的形貌差异、结构缺陷和极化率等都会影响其抗菌活性(Phys. Chem. Chem. Phys. 2008);锌离子还可以与多种成分杂化,产生协同抗菌活性而提高其抗菌性能(Chin. J. Chem. 2008, J. Rare Earths 2011)。 利用杂化纳米材料结构耦合所带来的协同作用提高纳米材料的抗菌活性是近年来的研究热点。例如:纳米铜与石墨烯杂化体系中存在显著的协同抗菌作用(ACS Nano2010)。用络氨酸辅助制备的Ag-ZnO杂化纳米材料,表现出良好的抗菌和光催化性能(Nanotechnology 2008);但是Ag的沉积量过大,催化活性反而有所降低(J. Hazard. Mater. 2011)。以壳聚糖为媒质,通过静电作用合成得到均匀的ZnO/Ag纳米杂化结构,结果显示,ZnO/Ag纳米杂化结构比单独的ZnO 和单独纳米Ag的抗菌活性都高,表现出明显的协同抗菌作用(RSC Adv. 2012)。Akhavan等用直接等离子体增强化学气相沉积技术,结合溶胶-凝胶技术把锐钛

智能材料的研究现状与未来发展趋势

龙源期刊网 https://www.wendangku.net/doc/a116700820.html, 智能材料的研究现状与未来发展趋势 作者:邓焕 来源:《科学与财富》2017年第36期 摘要:智能材料这一概念在上世纪80年代首次被提出,近年来,关于智能材料在航空航天领域的研究与应用被频繁提及。由于智能材料具备着结构整体性强、可塑性高、功能多样化等优点,因此在航空航天领域得到了广泛的研究与使用,首先根据功能性的不同对智能材料进行了系统的分类与概述,然后对当前智能材料在航空航天领域的主要应用进行了系统性的分析与总结,最后对智能材料在未来的航空航天的应用前景中进行了进一步地展望。 关键词:智能材料;复合材料;航空航天;功能多样化 1 引言 进入二十一世纪以来,全球各大航空航天强国在航天航空领域投入了大量的研发资金,而作为航空航天领域重要环节的航天材料,近年来也不断有着新的突破,而其中被提及最多的就是智能材料在航空航天领域的应用。在智能材料的范畴中,智能复合材料最具有代表性,智能复合材料主要具备着:外界环境感知功能;判断决策功能;自我反馈功能;执行功能等。此外,由于当前智能复合材料都向着轻量化、低成本化的方向发展,因此在航天领域复合材料的设计结构以及使用用途上都有着不同的侧重发展方向。而近年来国内外各国也均加快了各自在该领域的研发使用发展进度,主要的研究大方向还是集中在了智能检测、结构稳定性、低成本化等方向上,本文着重对相关部分进行系统性的概述与总结。 2 航空航天领域智能复合材料的功能介绍 在航空航天领域中,国内外普遍利用智能复合材料以实现在降低航空航天飞行器的自身重量的前提下保证系统结构的稳定性,其次根据复合智能材料具备智能检测自身系统内部工作状态和自愈合等功能实现航空航天材料在微电子与智能应用方向的交叉发展。 2.1 智能复合材料在航天结构检测方向的应用 智能复合材料在航空航天器中的应用,主要是通过将传感器以嵌入的方式与原始预浸料铺层以及湿片铺层等智能复合材料紧密键合,最终集成在控制芯片控制器上实现对整个系统的实时监控诊测、自我修复等供能,值得注意的是,在这一过程中,智能化不仅仅是符合材料的必要功能,复合材料在很大程度上可以有效承受比传统应用材料更大外界机械压力[1]。 除此之外,由于智能复合材料作为传感器的铺放衬底,因此智能复合材料还可以实现对整个材料内部结构的状况进行收集并且将出现的诸如温度异常、结构异常、表面裂痕等隐患及时反馈至中央处理器,这在一定程度上可以有效实现整个系统内部的检测与寿命预测,在这方面的技术上,美国的Acellent公司研发的缠绕型复合材料以压力感应的形式,按照矩形布线形式

吸波材料现状和应用——本人自己整理超经典

吸波材料的发展现状 一. 1.目前吸波材料分类较多,现大致分成下面4种: 1.1按材料成型工艺和承载能力可分为涂覆型吸波材料和结构型吸波材料。1.2 按吸波原理 吸波材料又可分为吸收型和干涉型两类。吸收型吸波材料本身对雷达波进行吸收损耗,基本类型有复磁导率与复介电常数基本相等的吸收体、阻抗渐变“宽频”吸收体和衰减表面电流的薄层吸收体;干涉型则是利用吸波层表面和底层两列反射波的振幅相等相位相反进行干涉相消。 1.3 按材料的损耗机理 吸波材料可分为电阻型、电介质型和磁介质型3大类。碳化硅、石墨等属于电阻型吸波材料,电磁能主要衰减在材料电阻上;钛酸钡之类属于电介质型吸波材料,其机理为介质极化驰豫损耗;磁介质型吸波材料的损耗机理主要归结为铁磁共振吸收,如铁氧体、羟基铁等。 1.4 按研究时期 可分为传统吸波材料和新型吸波材料。铁氧体、钛酸钡、金属微粉、石墨、碳化硅、导电纤维等属于传统吸波材料,它们通常都具有吸收频带窄、密度大等缺点。其中铁氧体吸波材料和金属微粉吸波材料研究较多,性能也较好。新型吸波材料包括纳米材料、手性材料、导电高聚物、多晶铁纤维及电路模拟吸波材料等,它们具有不同于传统吸波材料的吸波机理。其中纳米材料和多晶铁纤维是众多新型吸波材料中性能最好的2种。 2.无机吸波剂 2.1 铁系吸波剂 2.1.1 金属铁微粉 金属铁微粉吸波剂主要是通过磁滞损耗、涡流损耗等吸收衰减电磁波,主要包括金属铁粉、铁合金粉、羰基铁粉等。金属铁微粉吸收剂具有较高的微波磁导率,温度稳定性好等优点,但是其抗氧化、抗酸碱能力差,介电常数大,频谱特性差,低频吸收性能较差,而且密度大。 2.1.2 多晶铁纤维 多晶铁纤维具有很好的磁滞损耗、涡流损耗及较强的介电损耗,并且是良好的导体,在外界电场作用下,其内部自由电子发生振荡运动,产生振荡电流,将电磁波的能量转化成热能,从而削弱电磁波。 2.1.3 铁氧体 铁氧体吸波材料是研究较多也较成熟的吸波材料。它的优点是吸收效率高、涂层薄、频带宽;不足之处是相对密度大,使部件增重,以至影响部件的整体性能,高频效应也不太理想。 2.2碳系吸波剂 2.2.1石墨、乙炔炭黑

聚合物基自润滑材料的研究现状和进展

聚合物基自润滑材料的研究现状和进展 由于聚合物本身具有较低的摩擦系数,优良的机械性能及耐腐蚀性等优点,其基自润滑复合材料具有非常优异的摩擦磨损性能,正在被广泛的应用到减摩领域。本文综述了聚醚醚酮、聚四氟乙烯及聚酰亚胺等几种高聚物的摩擦磨损特点及其应用,聚合物基自润滑复合材料发展现状。指出目前聚合物基高性能自润滑材料的制备途径主要是通过聚合物与聚合物共混及添加纤维、晶须等来提高基体的机械强度,通过添加各类固体自润滑剂来提高摩擦性能,有效提高其综合性能。聚合物基自润滑材料可取代传统金属材料,成为全新的一类耐摩擦磨损材料。 论文关键词:高聚物,复合材料,自润滑材料,摩擦,磨损 1、聚醚醚酮(PEEK) 1.1 聚醚醚酮(PEEK)的特点 聚醚醚酮(PEEK)是一种高性能热塑性高聚物,具有良好机械性能、抗化学腐蚀性和抗辐射性,显着的热稳定性和耐磨性。它可以在无润滑、低速高载下或在液体、固体粉尘污染等 收稿日期: 修订日期: 作者简介:刘良震(1980-),男,助理讲师, E-mail:ldcllfz@https://www.wendangku.net/doc/a116700820.html, 恶劣环境下使用。因而关于聚醚醚酮及其复合材料的研究越来越受到人们重视。聚醚醚酮是一种半晶态热塑性聚合物,为了改善其机械性能,尤其是摩擦学性能,常在其中添加聚四氟乙烯(PTFE)、聚丙烯腈(PAN)和碳纤维(FC)等材料,也可添加颗粒增强型材料或进行特种表面处理等离子体处理等。当聚醚醚酮及其复合材料与金属材料相互对磨时,通常在金属表面形成聚合物转移膜,其结构、成分均与原有的聚合物及复合材料不同,其性能、厚度及连续程度均对摩擦副的摩擦学性能有重大影响[4]。 1.2 对聚醚醚酮(PEEK)摩擦性能的研究 章明秋等人[5,6]对聚醚醚酮(PEEK)在无润滑滑动条件下磨损产生的磨屑的形态进行研究,结果表明,聚醚醚酮(PEEK)的磨屑具有分形特征,其分形维数与载荷的关系对应于磨损率与载荷的关系,能够反映聚醚醚酮(PEEK)磨损机制的变化。在给定的试验条件下,随着载荷的增大,聚醚醚酮(PEEK)的磨损机制从粘着磨损为主伴随着疲劳-剥层磨损,进而转变为热塑性流动磨损。 张人佶等[7,8]利用扫描电镜、扫描微分量热仪、红外光谱仪、俄歇电子谱仪等分析手段系统的研究了聚醚醚酮(PEEK)及其复合材料的滑动转移膜,结果表明:纯聚醚醚酮(PEEK)在滑动摩擦过程中形成不连续的转移膜。聚四氟乙烯(PTFE)的光滑分子结构有助于使转移膜更光滑,固体润滑效果也更好。在PEEK/FC30中,不仅加入PTFE,而且加入具有层状

纳米材料的发展及研究现状

纳米材料的发展及研究现状 在充满生机的21世纪,信息、生物技术、能源、环境、先进制造技术和国防的高速发展必然对材料提出新的需求,元件的小型化、智能化、高集成、高密度存储和超快传输等对材料的尺寸要求越来越小;航空航天、新型军事装备及先进制造技术等对材料性能要求越来越高。新材料的创新,以及在此基础上诱发的新技术。新产品的创新是未来10年对社会发展、经济振兴、国力增强最有影响力的战略研究领域,纳米材料将是起重要作用的关键材料之一。 纳米材料和纳米结构是当今新材料研究领域中最富有活力、对未来经济和社会发展有着十分重要影响的研究对象,也是纳米科技中最为活跃、最接近应用的重要组成部分。近年来,纳米材料和纳米结构取得了引人注目的成就。例如,存储密度达到每平方厘米400g的磁性纳米棒阵列的量子磁盘,成本低廉、发光频段可调的高效纳米阵列激光器,价格低廉高能量转化的纳米结构太阳能电池和热电转化元件,用作轨道炮道轨的耐烧蚀高强高韧纳米复合材料等的问世,充分显示了它在国民经济新型支柱产业和高技术领域应用的巨大潜力。正像美国科学家估计的“这种人们肉眼看不见的极微小的物质很可能给予各个领域带来一场革命”。 纳米材料和纳米结构的应用将对如何调整国民经济支柱产业的布局、设计新产品、形成新的产业及改造传统产业注入高科技含量提供新的机遇。研究纳米材料和纳米结构的重要科学意义在于它开辟了人们认识自然的新层次,是知识创新的源泉。由于纳米结构单

元的尺度(1~100urn)与物质中的许多特征长度,如电子的德布洛意波长、超导相干长度、隧穿势垒厚度、铁磁性临界尺寸相当,从而导致纳米材料和纳米结构的物理、化学特性既不同于微观的原子、分子,也不同于宏观物体,从而把人们探索自然、创造知识的能力延伸到介于宏观和微观物体之间的中间领域。在纳米领域发现新现象,认识新规律,提出新概念,建立新理论,为构筑纳米材料科学体系新框架奠定基础,也将极大丰富纳米物理和纳米化学等新领域的研究内涵。世纪之交高韧性纳米陶瓷、超强纳米金属等仍然是纳米材料领域重要的研究课题;纳米结构设计,异质、异相和不同性质的纳米基元(零维纳米微粒、一维纳米管、纳米棒和纳米丝)的组合。纳米尺度基元的表面修饰改性等形成了当今纳米材料研究新热点,人们可以有更多的自由度按自己的意愿合成具有特殊性能的新材料。利用新物性、新原理、新方法设计纳米结构原理性器件以及纳米复合传统材料改性正孕育着新的突破。1研究形状和趋势纳米材料制备和应用研究中所产生的纳米技术很可能成为下一世纪前20年的主导技术,带动纳米产业的发展。世纪之交世界先进国家都从未来发展战略高度重新布局纳米材料研究,在千年交替的关键时刻,迎接新的挑战,抓紧纳米材料和柏米结构的立项,迅速组织科技人员围绕国家制定的目标进行研究是十分重要的。纳米材料诞生州多年来所取得的成就及对各个领域的影响和渗透一直引人注目。进入90年代,纳米材料研究的内涵不断扩大,领域逐渐拓宽。一个突出的特点是基础研究和应用研究的衔接十分紧密,实验室成果的转化速度之快出乎人们预料,基

可生物降解材料的现状和发展前景

可生物降解材料的研究现状和发展前景 摘要:本文阐述了可生物降解材料的定义、种类及降解机理,综述了可生物降解材料在国内外各个领域的研究现状和最新应用进展,并对其发展前景进行了展望。 关键字:生物降解材料、降解机理、应用进展 Abstract : The definition, variety and the degradation mechanism of biodegradable materials were elaborated. The research situation and their recent progress in applications were reviewed at home and abroad, and then the development prospect was looked forward. Key words :Biodegradable materials; Degradation mechanism; Application progress 1前言 近年来,随着经济的飞速发展,人们对物质和精神的追求越来越高,对产品的包装也相应的有了更高要求,人们在购买产品时,不仅看外包装的美观程度,还考虑其他各种各样的功能。正是由于人们对产品包装的追求不断提升,很多新型包装材料不断被应用到产品包装中。 合成高分子材料具有质轻、强度高、化学稳定性好以及价格低廉等优点,与钢铁、木材、水泥并列成为国民经济的四大支柱[1],被广泛应用到产品的包装中。然而,在合成高分子材料给人们生活带来便利、改善生活品质的同时,其使用后的大量废弃物也与日俱增,成为白色污染源,严重危害环境,造成地下水及土壤污染,危害人类生存与健康,给人类赖以生存的环境造成了不可忽视的负面影响[2]。另外,生产合成高分子材料的原料——石油也总有用尽的一天,因而,寻找新的环境友好型材料,发展非石油基聚合物迫在眉睫,而可生物降解材料正是解决这方面问题的有效途径。 2可生物降解材料定义及降解机理 生物降解材料,亦称为“绿色生态材料”,指的是在土壤微生物和酶的作用下能降解的材料。具体地讲,就是指在一定条件下,能在细菌、霉菌、藻类等自然界的微生物作用下,导致生物降解的高分子材料[3]。 理想的可生物降解材料是一种具有优良的使用性能、废弃后可被环境微生物完全分解、最终转化成CO2 和H2O而成为自然界中碳素循环的一个组成部分的高分子材料。 生物降解材料的分解主要是通过微生物的作用,因而,生物降解材料的降解机理即材料被细菌、霉菌等作用消化吸收的过程。首先,微生物向体外分泌水解酶与材料表面结合,通过水解切断表面的高分子链,生成小分子量的化合物,然后降解的生成物被微生物摄入体内,经过种种代谢路线,合成微生物体物或转化为微生物活动的能量,最终转化成CO2 和H2O[4]。按其降解的化学本质则分为水解和酶解两种。

纳米氧化物材料研究的现状及进展

纳米氧化物材料研究的现状及进展 发表时间:2018-11-27T16:11:48.977Z 来源:《建筑学研究前沿》2018年第21期作者:邵琪 [导读] 并作了一定的评价,介绍了一些较新的纳米氧化物制备方法。从纳米材料合成和制备的角度出发,较系统的阐述了纳米材料合成与制备的最新研究进展,并介绍了纳米材料在高科技领域中的应用展望。 邵琪 山东建筑大学土木工程学院山东济南 250101 摘要:综述了近10 年来纳米氧化物的发展情况及各种制备方法及特点,并作了一定的评价,介绍了一些较新的纳米氧化物制备方法。从纳米材料合成和制备的角度出发,较系统的阐述了纳米材料合成与制备的最新研究进展,并介绍了纳米材料在高科技领域中的应用展望。 关键字:纳米材料;氧化物 前言:纳米材料和纳米结构是当今新材料研究域中最富有活力、对未来经济和社会发展有着十分重要影响的研究对象,也是纳米科技中最为活跃、最接近应用的重要组成部分。 1 纳米材料的特性 纳米材料具有极佳的力学性能,如高强、高硬和良好的塑性。例如,金属材料的屈服强度和硬度随着晶粒尺寸的减小而提高,同时也不牺牲其塑性和韧性。 纳米材料的表面效应和量子尺寸效应对纳米材料的光学特性有很大的影响,如它的红外吸收谱频带展宽,吸收谱中的精细结构消失,中红外有很强的光吸收能力。 2 纳米氧化物材料的制备方法 纳米微粒(膜)的制备方法包括物理方法、化学方法、膜模拟法等.物理制备方法主要涉及蒸发熔融,凝固形变和粒径缩减等。物理变化过程,具体包括粉碎法、蒸发凝聚法、离子溅射法、冷冻干燥法、电火花放电法、爆炸烧结法等。化学制备纳米微粒(膜)的过程通常包含着基本的化学反应,在反应过程中物质之间的原子组织排列,这种组织排列决定物质的存在形态。化学方法主要有化学反应法、沉淀法、水热合成法、喷雾热解法、溶胶-凝胶法、γ射线辐射法、相转移法等。 2.1 物理制备法 2.1.1 真空冷凝法 用真空蒸发、加热、高频感应等方法使原料气化或形成等粒子体,然后骤冷。其特点纯度高、结晶组织好、粒度可控,但技术设备要求高。 2.1.2 物理粉碎法 通过机械粉碎、电火花爆炸等方法得到纳米粒子。其特点操作简单、成本低,但产品纯度低,颗粒分布不均匀。 2.1.3高能机械球磨法 高能机械球磨法是近年来发展起来的制备纳米材料的一种新的方法,1988 年,日本京都大学导了用该方法制备出了 Al -Fe纳米晶材料。高能机械球磨法是利用球磨机的转动或震动使硬球对原料进行强烈的撞击,研磨和搅拌,把金属或合金粉末粉碎成纳米微粒的方法。目前,采用该方法已成功的制备出了纳米晶纯金属(Fe , Nb , W , Hf , Zr , Co , Cr 等);不相溶体系的固溶体(Cu -Ta ,Cu -W ,Al -Fe 等);纳米金属间化合物(Fe -B , Ti -Al ,Ni -Si , W -C 等);纳米金属陶瓷粉等材料。 2.2 膜模拟法 吴庆生等人利用绿豆芽通过生物膜法合成纳CdS[1]。用这种方法制备纳米物质仅仅是个尝试,在现有的试验条件下对它的合成机理还没有做出合理的解释,且与大规模生产还有一定距离。 2.3 化学方法 2.3.1 共沉淀法 共沉淀法是液相化学反应合成金属氧化物纳米颗粒最早采用的方法。赵辉等人在研究 PbO - Nb2O5 -KOH -H2O 体系中[2],发现采用共沉淀法可直接从水溶液中合成 Pb3Nb2O8 纳米粉。这种合成方法虽成本较低,但仍存在一些缺点,如沉淀通常为胶状物,水洗、过滤较困难;沉淀剂作为杂质易混入;沉淀过程中各种成分可能发生偏析,水洗时部分沉淀物发生溶解。 2.3.2 分步-均一沉淀法 分步-均一沉淀是利用某一化学反应使溶液中的构晶离子由溶液中缓慢地、均匀地释放出来。因此,加入的沉淀剂并不直接与被沉淀组分发生反应,而是通过化学反应让沉淀剂在整个溶液中均匀地、缓慢地析出,让沉淀物均匀地生成。以尿素为沉淀剂制备粒径为40 nm 锐钛矿型二氧化钛超细粒子,并在其表面包覆晶体粒径为10.2 nm 的氧化锌。 2.3.3 溶胶-凝胶法 将金属醇盐或无机盐类经水解形式或者解凝形式形成溶胶物质,然后使溶质聚合胶凝化,经过凝胶干燥,还原焙烧等过程可以得到氧化物,金属单质等纳米材料,这样的方法称之为溶胶凝胶法。法具有所需反应温度低,化学均匀性好,产物纯度高,颗粒细小,粒度分步窄等特点,但是采用金属醇盐作为原料成本高,排放物对环境有污染。溶胶凝胶法制备纳米粉体的工作开始于20 世纪 60 年代:可以制备一系列纳米氧化物,复合氧化物,金属单质及金属薄膜等。 2.3.4 有机配合物前躯体法 有机配合物前躯体法是另一类重要的氧化物纳米晶的制备方法。其原理是采用容易通过热分解取出的多齿配合物,如柠檬酸为分散剂,通过配合物与金属离子的配合作用得到高度分散的复合物前躯体,最后再通过热分解的方法去除有机配合体得到纳米复合氧化物。 2.3.5 等离子增强化学气相沉淀(PECVD)法 该方法等离子增强化学气相沉淀系统中,用高倍稀释硅烷和高倍稀释的掺杂气体(主要是磷烷和硼烷)作为反应气体,在射频和直流双重功率源作用下制备出掺杂纳米硅薄膜(nc-Si:H),并利用高分辨电子显微镜(HREM)、Raman 散射、X射线衍射(XRD)、俄歇电

国内外公路研究现状与发展趋势

第1章绪论 1.1我国公路现状 交通运输业是国民经济中从事运送货物和旅客的社会生产部门,是国民经济和社会发展的动脉,是经济社会发展的基础行业、先行产业。交通运输主要包括铁路、公路、水运、航空、管道五种运输方式,其中,铁路、水运、航空、管道起着“线”的作用,公路则起着“面”的作用,各种运输方式之间通过公路路网联结起来,形成四通八达、遍布城乡的运输网络。改革开放以来,灵活、快捷的公路运输发展迅速,目前,在综合运输体系中,公路运输客运量、货运量所占比重分别达90%以上和近80%。高速公路是经济发展的必然产物,在交通运输业中有着举足轻重的地位。在设计和建设上,高速公路采取限制出入、分向分车道行驶、汽车专用、全封闭、全立交等较高的技术标准和完善的交通基础设施,为汽车快速、安全、经济、舒适运行创造了条件。与普通公路相比,高速公路具有行车速度快、通行能力大、运输成本低、行车安全、舒适等突出优势,其行车速度比普通公路高出50%以上,通行能力提高了2~6倍,并可降低30%以上的燃油消耗、减少1/3的汽车尾气排放、降低1/3的交通事故率。 新中国成立以来,经过60多年的建设,公路建设有了长足发展。2011年初正值“十一五”规划结束,“十二五”规划伊始。“十一五”时期是我国公路交通发展速度最快、发展质量最好、服务水平提升最为显著的时期。经过4年多的发展,公路交通运输紧张状况已实现总体缓解,基础设施规模迅速扩大,运输服务水平稳步提升,安全保障能力明显增强,为应对国际金融危机、保持经济平稳较快发展、加快经济发展方式转变、促进城乡区域协调发展、保障社会和谐稳定、进一步提高我国的综合国力和国际竞争力作出了重要贡献。 “十一五”前4年,全国累计完成公路建设投资2.93万亿元,年均增长近16%,约为“十一五”预计总投资的1.2倍,也超过了“九五”和“十五”的投资总和。公路建设投资的快速增长,极大地拉动和促进了国民经济的迅猛发展。从公路建设投资占同期全社会固定资产总投资的比重来看,“十一五”期间基本保持在4.5%左右。 在投资带动下,公路网规模不断扩大,截至2009年底,全国公路网总里程达到386万公里,其中高速公路6.51万公里,二级及以上公路42.52万公里,分别较"十五"末增加36.4万公里、2.5万公里和9.4万公里;全国公路网密度由“十五”末的每百平方公里34.8公里提升至40.2公里。预计到2010年底,全国公路网总里程将达到395万公里,高速公路超过7万公里,分别较“十五”末增加45.3万公里与3万公里。农村公路投资规模年均增长30%,总里程将达到345万公里,实现全国96%的乡镇通沥青(水泥)路。 “十一五”期间公路的快速发展,为扩大内需、拉动经济增长作出了突出贡献。特别是2008年以来,为应对国际金融危机,以高速公路为重点,建设步伐进一步加快,“十一五”末高速公路里程将达到"十五"末的1.78倍。“十一五”期间全社会高速公路建设累计投资达2万亿元,直接拉动GDP增长约3万亿元,拉动相关行业产出

医用生物可吸收止血材料的研究现状与临床应用

中国组织工程研究第16卷第21期 2012–05–20出版 Chinese Journal of Tissue Engineering Research May 20, 2012 Vol.16, No.21 ISSN 1673-8225 CN 21-1581/R CODEN: ZLKHAH 3941 1College of Orthopedics and Traumatology, Fujian University of Traditional Chinese Medicine, Fuzhou 350108, Fujian Province, China; 2Orthopedic Trauma Center, the 175 Hospital of Chinese PLA, Affiliated Southeast Hospital of Xiamen University, Zhangzhou 363000, Fujian Province, China Zhang Shao-feng★, Studying for master’s degree, College of Orthopedics and Traumatology, Fujian University of Traditional Chinese Medicine, Fuzhou 350108, Fujian Province, China zhangshaofeng017@ https://www.wendangku.net/doc/a116700820.html, Corresponding author: Hong Jia-yuan, Master’s supervisor, Associate chief physician, Orthopedic Trauma Center, the 175 Hospital of Chinese PLA, Affiliated Southeast Hospital of Xiamen University, Zhangzhou 363000, Fujian Province, China hongjy175@ https://www.wendangku.net/doc/a116700820.html, Received: 2011-11-12 Accepted: 2012-01-09 医用生物可吸收止血材料的研究现状与临床应用★ 张少锋1,洪加源2 Research status and clinical application of biomedical absorable hemostic materials Zhang Shao-feng1, Hong Jia-yuan2 Abstract BACKGROUND: Now, various hemostasis materials are developed with different components and mechanisms. Due to their different characteristics, the applications are different. OBJECTIVE: To review the commonly used clinical absorbable hemostatic materials at home and abroad, and to summarize the composition, hemostatic mechanism and clinical application for guiding clinicians to use them effectively. METHODS: A computer-based search of CNKI and PubMed databases (2002-02/2011-05) were performed for articles related to hemostatic materials using the key words of “biological material, hemostatic material, bioresorbable material, hemostatic effect, hemostatic mechanism” in Chinese and English, respectively. Literatures on application of biomedical absorbable hemostatic materials were adopted, and others about duplicated study and contents inconsistent with the research purpose were excluded. RESULTS AND CONCLUSION: Currently, fibrin glue, cellulose, xycellulose, α-cyanoacrylate tissue glue, chitosan and so on are adsorbable hemostasis materials in clinic. The hemostatic reason of chitosan is that the chitosan has some quantitative electric charge, which can directly occur cross linking reaction with the red blood cells on the wound surface to form blood clot, and the hemostasis process is independent of blood coagulation factor and platelet in vivo. Delightfully, α-cyanoacrylate tissue glues not only are used to cardiovascular surgery for small vascular anastomisis, to neurosurgery for repairing cerebral dura mater, to orthopedics for cohereing the fracture and repairing the soft tissues and so on, but also are the prefer material for intervention embolotherapy. While the fibrin glue can not only be local hemostasis, prevent conglutination and seepage, but also mainly be slow-release trager, bone material frame. However, different hemostasis materials have different hemostasis mechanisms and effects, so only to sufficiently comprehend the characteristic of different hemostasis materials can use them more reasonable and available. Zhang SF, Hong JY. Research status and clinical application of biomedical absorable hemostic materials. Zhongguo Zuzhi Gongcheng Yanjiu. 2012;16(21): 3941-3944. [https://www.wendangku.net/doc/a116700820.html, https://www.wendangku.net/doc/a116700820.html,] 摘要 背景:目前市场已开发出多种不同组成和不同机制的止血材料,因其不同特性而应用各异。 目的:概述国内外临床常用医用可吸收止血材料,对其组成、止血机制及临床应用进行总结,指导临床医生更加合理有效 地应用止血材料。 方法:应用计算机检索CNKI和PubMed数据库中2002-02/2011-05关于止血材料的文章,以“生物材料,止血材料,生 物可吸收材料,止血效果,止血机制”或“biomaterial,hemostatic material,bioresorbable material,hemostatic effect,hemostatic mechanism”为中、英文关键词。纳入与生物可吸收止血材料及其应用相关的文章;排除重复研究的内容和与 研究目的不相符的文献。 结果与结论:目前国内外主要应用的可吸收止血材料为纤维蛋白胶、氧化纤维素和氧化再生纤维素、α-氰基丙烯酸酯类组 织胶、壳聚糖等。壳聚糖的止血性在于壳聚糖带有一定量的电荷,它的分子直接与创面上的红细胞发生交联反应形成血凝 块,它的止血过程不依赖于机体凝血因子和血小板。α-氰基丙烯酸酯类黏合剂已应用于血管外科的中小管径血管吻合、神 经外科的中硬脑膜修补、各类软组织修补、骨科中骨折的黏合等,并且成为介入栓塞治疗中的首选材料。在骨科领域纤维 蛋白胶除了局部止血、防止粘连和渗漏外主要是作为缓释载体,骨材料支架而发挥作用。氧化纤维素和氧化再生纤维素已 成功应用于神经外科、耳鼻喉科、肝胆外科等。不同的止血材料其止血机制和止血效果均不同,只有充分了解各种止血材 料性能,才能合理、有效应用。 关键词:止血材料;生物材料;生物可吸收;止血效果;止血机制 doi:10.3969/j.issn.1673-8225.2012.21.033 张少锋,洪加源.医用生物可吸收止血材料的研究现状与临床应用[J].中国组织工程研究,2012,16(21):3941-3944. [https://www.wendangku.net/doc/a116700820.html, https://www.wendangku.net/doc/a116700820.html,] 0 引言 出血是创伤后主要并发症,出血过多必将引起休克,危及生命。因此及时有效止血对挽救患者生命具有重要意义。有效的止血不但是外科手术中需要解决的重要问题,也是战、创伤中提高伤员生存率的关键问题。出血后如何止血一直困扰着人类。在古代,古人用中草药或药膏等止血,而古埃及人使用蜂蜡、油脂等的混合物来止血[1]。随着科学技术的不断发展,骨蜡等非可吸收性止血材料已大量应用于临床,但这些非可吸收性止血材料引起的术区感染和其他并发症在所难免。近年来医用可吸收止血材料引起了各国医学界和产业界的高度重视,许多大型医药公司都致力于研发新型止血材料[2]。目前市场已开发出多种不同组成和不同机制的止血材料,因其不同特性而应用各异。 万方数据

电磁波吸收

电磁波吸收片材料 据对电磁波的吸收原理,电波吸收材料可分为吸收型、干涉型、谐振型以及等离子体型4种。 1.吸收型材料主要由电介质材料(如钛酸钡瓷、铁电陶瓷等)、磁 介质材料(如铁氧体、羰基铁等)、电阻材料(如炭黑、碳化硅等)或它们的复合材料加入适当的粘合剂制成。其中以铁氧体磁介质材料用得最多。利用这些材料在交变电磁场中的介质损耗、磁滞损耗和电阻损耗,把入射到内部的电磁波能量转换成热能而被吸收掉。吸收型材料的优点是吸收频带较宽,但厚度与入射波的最低频率有关,对低频电磁波的吸收一般是依靠增加材料厚度来实现,并常采用介电常数或导磁率随材料厚度均匀变化或梯度变化的多层结构。 2.干涉型材料由交叉叠置的电介质层(如塑料、橡胶等)和导电材 料层组成,利用电磁波的反相干涉作用,使入射波和从不同层反射回来的电磁波能量互相干涉而抵消。为了获得良好的对消效果,使目标的反射回波接近于零,要求干涉型材料的厚度应为雷达四分之一波长的奇数倍。干涉型材料的吸收频带较窄,而且对消效果与电磁波的入射角度关系很大,但在高频使用时,材料厚度可做得很薄。 3.谐振型材料由非导电介质材料制成的多个吸收单元组成,这些 单元具有一定的尺寸和电磁特性,能对相应波长的入射电磁波产生谐

振吸收,将各种尺寸的谐振单元适当组合可以获得宽频带吸收特性。 但这种材料制造难度较大,因此较少使用。 4.等离子体型材料由放射性同位素(如锶90、钋210、锔242 等)和粘合剂组成,涂覆于目标表面,使目标表面附近局部空间电离,形成吸收电磁波的等离子区,用它作飞行器的反雷达涂层具有薄而轻、不影响飞行器性能、吸收性能好、吸收频带宽等优点。 电磁波吸收片应用 ?LCD萤幕 医疗器材 笔记型电脑、游戏主机 通讯设备、无线辨识系统 数位相机、数位相机摄影机 行动电话、智慧型手机、PDA、PMP、GPS导航机电磁波吸收片特点 ? 1.薄带状具清轻量及柔软性,可弯曲不破裂 2.可加工成各种形状,以利黏着产品上 3.多层次高导磁高损失之金属,合成高吸波效率

相关文档