文档库 最新最全的文档下载
当前位置:文档库 › 高中数学空间几何体的内切球与外接球问题

高中数学空间几何体的内切球与外接球问题

高中数学空间几何体的内切球与外接球问题
高中数学空间几何体的内切球与外接球问题

空间几何体的内切球与外接球问题

1. [2016 ·全国卷Ⅱ ] 体积为 8 的正方体的顶点都在同一球面上,则该球的表面积为 (

[解析 ]A 因为正方体的体积为 8,所以正方体的体对角线长为 2 3,所以正方体的外接球

的半径为 3,所以球的表面积为 4π· ( 3)2= 12 π .

2.[2016 全·国卷Ⅲ ] 在封闭的直三棱柱 ABC - A 1B 1C 1内有一个体积为 V 的球.若 AB ⊥BC , AB =6, BC =8,AA 1=3,则 V 的最大值是 ( )

-r 1= 10,解得 r 1=2,不合题意;当球与直三棱柱的上、下底面相切时,设球的半径为 r 2,

3

3 3

4 3

9 则 2r 2=3,即 r 2= 32.∴球的最大半径为 32,故 V 的最大值为 43π × 23 =9

2π. 3. [2016 郑·州模拟 ] 在平行四边形 ABCD 中,∠ CBA = 120°, AD =4,对角线 BD =2 3, 将其沿对角线 BD 折起,使平面 ABD ⊥平面 BCD ,若四面体 ABCD 的顶点在同一球面上, 则该球的体积为 _____ 答案: 203 5π;解析:因为∠ CBA = 120°,所以∠ DAB =60°,在三角形 ABD 中,由余弦

3

定理得 (2 3)2=42+AB 2-2×4·AB ·cos 60°,解得 AB = 2,所以 AB ⊥BD.折起后平面 ABD ⊥ 平面 BCD ,即有 AB ⊥平面 BCD ,如图所示,可知 A ,B ,C ,D 可看作一个长方体中的四

4. [2016 山·西右玉一中模拟 ] 球 O 的球面上有四点 S ,A ,B ,C ,其中 O ,A ,B ,C 四点共 面,△ ABC 是边长为 2 的正三角形,平面 SAB ⊥平面 ABC ,则棱锥 S-ABC 的体积的最大 值为 ( )

A. 33

B. 3 C .2 3 D .4

选 A ;[解析] (1)由于平面 SAB ⊥平面 ABC ,所以点 S 在平面 ABC 上的射影 H 落在

AB 上,

A .12π

32 B. 3 π

C . 8π

D . 4π A .4π 9π B. 2π

C .6π 32π D. 3

[解析 ]B 当球与三侧面相切时,设球的半径为 r 1,∵ AB ⊥ BC ,AB = 6,BC =8,∴8-r 1+6 个顶点, 长方体的体对角线 AC 就是四面体 ABCD 外接球的直径, 易知 AC = 22+42

=2 5,

所以球的体积为

20 5

所以 SH = 233 2- 33 2=1,

根据球的对称性可知, 当 S 在“最高点”, 即 H 为 AB 的中点时, SH 最大,此时

棱锥 S-ABC

的体积最大.

因为△ ABC 是边长为 2 的正三角形,所以球的半径

r =OC =32

CH =2

3

× 23

×2= 23 3

在 Rt △SHO 中, OH =1

2OC = 3,

3,

5. [2016 赣·州模拟 ] 如图 7-38-19 所示,设 A ,B ,C ,D 为球 O 上四点, AB ,AC ,AD 两两 垂直,且 AB =AC = 3,若 AD = R(R 为球 O 的半径 ),则球 O 的表面积为 ( )

A .π

B .2π

C .4π

D .8π 选 D ;解析:因为 AB ,AC ,AD 两两垂直,所以以 AB , AC ,AD 为棱构建一个长方体,如

图所示,则长方体的各顶点均在球面上, AB =AC = 3,所以 AE = 6,AD =R ,DE = 2R ,

则有 R 2+6=(2R)2,解得 R = 2,所以球的表面积 S = 4πR 2=8π .

6. [2016 安·徽皖南八校三联 ] 如图所示,已知三棱锥 A-BCD 的四个顶点 A ,B ,C ,D 都在球 O 的表面上, AC ⊥平面 BCD ,BC ⊥CD ,且 AC = 3,BC =2,CD = 5,则球 O 的表面积

[解析 ]A 由 AC ⊥平面 BCD ,BC ⊥CD 知三棱锥 A-BCD 可以补成以 AC ,BC ,CD 为三

条棱 的长方体,设球 O 的半径为 R ,则有 (2R)2=AC 2+BC 2+CD 2

=3+4+5=12,所以 S 球=4π R 2= 12π .

7.[2016 福·建泉州质检 ] 已知 A ,B ,C 在球 O 的球面上, AB =1,BC =2,∠ ABC =60°, 且点 O 到平面 ABC 的距离为 2,则球 O 的表面积为 .

答案: 20π [解析 ] 在△ABC 中用余弦定理求得 AC = 3,据勾股定理得∠ BAC 为直 角,故 BC 的中点 O 1即为△ ABC 所在小圆的圆心, 则 OO 1⊥平面 ABC ,在直角三角形 OO 1B 中可求得球的半径 r = 5,则球 O 的表面积 S = 4πr 2= 20π. 8

8 [2016 河·南中原名校一联 ] 如图 K38 - 16 所示, ABCD-A 1B 1C 1D 1 是边长为

1

故所求体积的最大值为 13× 43

×22

×1= 3

.

3

.

为( )

A . 12 π

B . 7π

C .9π

D . 图 7-38-

所以 SH =

233 2- 33 2=1,

9 25 49 81 A. π B. π C. π D. π 16 16 16 16

81 = π .

16

9.[2013 ·课标全国Ⅰ ]如图,有一个水平放置的透明无盖的正方体容器,容器高 8 cm ,将一

个球放在容器口,再向容器内注水,当球面恰好接触水面时测得水深为 6 cm ,如果不计容 器的厚度,则球的体积为 ( )

866 π 3

B. 3 cm 3

的正方体,

S-ABCD 是高为 1 的正四棱锥,若点 S ,A 1, B 1,C 1,D 1在同一个球面上,则该球的表面积 为( )

D. 3 cm 3

-x , OG 21, 选D ;[解析] 如图所示作辅助线,易知球心 O 在SG 1上,设 OG 1=x ,则 OB 1=SO =2 2

B 1G 1= 2 ,则在 Rt △ OB 1G 1 中,由勾股定理得 OB 12=G 1B 21+ 2

,解得 x =7,所以球的半径 R = 2- 7= 9,所以球的表面

同时由正方体的性质知

即(2- x )2=x 2+

22 πR

2 500 π 3

A. 3 cm 3

1 37

2 π 3

C. 3 cm 3

4 4

解析:设球半径为 R ,由题可知 R ,R -2,正方体棱长一半可构成直角三角形,即△

OBA 为直角三角形,如图.

BC =2,BA =4,OB =R -2,OA =R , 由 R 2

=(R -2)2

+42

,得 R =5,

4 500

所以球的体积为 43π× 53= 5030π (cm 3),故选 A 项.

33 答案: A

10.已知正四棱锥的侧棱与底面的边长都为 3 2,则

这个四棱锥的外接球的表面积为 ( )

选 B ;解析:依题意得,该正四棱锥的底面对角线长为 3 2× 2=6,高为 因此底面中心到各顶点的距离均等于 3,所以该四棱锥的外

接球的

A .12π

B .36π

C .72π

D .108π

球心为底面正方形的中心, 11. [2014 ·石家庄

质检一 距离是球半径64π 8π

A. B. A. 3 B.

16π

C .4π

D. 9 2

- 1×6 2=3,

其外接球的半径为3,所以其外接球的表面积等于4π× 32= 36π. ]已知球 O,过其球面上 A、B、 C三点作截面,若 O 点到该截面的AB=BC=2,∠B=120°,则球 O 的表面积为 ( )

81π

B.16πC. 9π D.27π

解析:如图,球心 O 在截面 ABC 的射影为△ ABC 的外接圆的圆心O′ .由题意知 OO1

R

2,OA=R,其中 R为球 O 的半径.在△ ABC中,

AC= AB2+ BC2-2AB·BC·cos120° -12= 2 3.

设△ABC 的外接圆半径为 r,则 2r=sin A1C20=°233=

4,得 r=2,即 O′A=2.在 Rt△

2

OO1A中,OO21+O1A2=OA2,即R4+ 4= R2,解得 R2=136,故球 O的表面积 S=

4πR2=643π,

故选 A.

答案: A

12.[2014 郑·州模拟 ]在三棱锥 A-BCD 中, AB=CD=6,AC=BD=AD=BC=5,则该三棱锥的外接球的表面积为.

解析:依题意得,该三棱锥的三组对棱分别相等,因此可将该三棱锥补形成一个长方体,

a2+b2=62,设该长方体的长、宽、高分别为 a、b、c,且其外接球的半径为 R,则 b2+ c2= 52,得 a2

c

2+ a2= 52,+b2+c2=43,即(2R)2=a2+b2+c2=43,易知 R 即为该三棱锥的外接球的半径,所以该三棱锥的外接球的表面积为 4πR2= 43π.

答案: 43π

13. [2014·全国卷 ] 正四棱锥的顶点都在同一球面上.若该棱锥的高为则该球的表面积为 ( ) 4,底面边长为 2,

+22-2×2×

44 A.

内切球和外接球常见解法

内切与外接 1 球与柱体 1.1 球与正方体 例 1 棱长为1的正方体的8个顶点都在球的表面上,分别是棱,的中点,则直线被球截得的线段长为( ) A . B . C . D 1.2 球与长方体 长方体各顶点可在一个球面上,故长方体存在外切球.但是不一定存在内切球。设长方体的棱长为其体对角线为.当球为长方体的外接球时,截面图为长方体的对角面和 其外接圆 ,和正方体的外接球的道理是一样的,故球的半径 例 2 在长、宽、高分别为2,2,4的长方体内有一个半径为1的球,任意摆动此长方体,则球经过的空间部分的体积为( ) A.错误! B.4π C 。错误! D 。错误! 1111ABCD A B C D -O E F ,1AA 1DD EF O 2112+,,,a b c l 2l R ==

1.3 球与正棱柱 例3 正四棱柱的各顶点都在半径为的球面上,则正四棱柱的侧面积有最 值,为 . 2 球与锥体 规则的锥体,如正四面体、正棱锥、特殊的一些棱锥等能够和球进行充分的组合,以外接和内切两种形态进行结合, 通过球的半径和棱锥的棱和高产生联系,然后考查几何体的体积或者表面积等相关问题。 2。1 球与正四面体 1111ABCD A B C D R

解得: 例4 将半径都为1的四个钢球完全装入形状为正四面体的容器里,这个正四面体的高的最 小值为 ( ) A. D 。 2。2 球与三条侧棱互相垂直的三棱锥 例 5 在正三棱锥中,分别是棱的中点,且 ,若侧棱 ,则正三棱锥S -ABC 外接球的表面积是______ 2.3 球与正棱锥 球与正棱锥的组合,常见的有两类,一是球为三棱锥的外接球,此时三棱锥的各个顶点在球面上,根据截面图的特点,可以构造直角三角形进行求解.二是球为正棱锥的内切球,例如正三棱锥的内切球,球与正三棱锥四个面相切,球心到四个面的距离相等,都为球半径.这样求球的半径可转化为球球心到三棱锥面的距离,故可采用等体积法解决,即四个小三棱锥的体积和为正三棱锥的体积. 22223a R r R r CE +=-=,=,,.412 R a r ==S ABC -M N 、SC BC 、AM MN ⊥SA =R

八个有趣模型搞定外接球内切球问题(学生版))解析

八个有趣模型——搞定空间几何体的外接球与内切球 类型一、墙角模型(三条线两个垂直,不找球心的位置即可求出球半径) 方法:找三条两两垂直的线段,直接用公式2 2 2 2 )2(c b a R ++=,即2222c b a R ++=,求出R 例1 (1)已知各顶点都在同一球面上的正四棱柱的高为4,体积为16,则这个球的表面积是( ) A .π16 B .π20 C .π24 D .π32 (2)若三棱锥的三个侧面两垂直,且侧棱长均为3,则其外接球的表面积是 (3)在正三棱锥中,分别是棱的中点,且MN AM ⊥,若侧棱,则正三棱锥ABC S -外接球的表面积是 (4)在四面体中,ABC SA 平面⊥,,1,2,120====∠? AB AC SA BAC 则该四面体的外接 球的表面积为( ) π11.A π7.B π310. C π3 40.D (5)如果三棱锥的三个侧面两两垂直,它们的面积分别为6、4、3,那么它的外接球的表面积是 图2 图3 S ABC -M N 、SC BC 、SA =S ABC -

(6)已知某几何体的三视图如图所示,三视图是腰长为1的等腰直角三角形和边长为 1的正方形,则该几何体外接球的体积为 类型二、垂面模型(一条直线垂直于一个平面) 1.题设:如图5,⊥PA 平面ABC 解题步骤: 第一步:将ABC ?画在小圆面上,A 为小圆直径的一个端点,作小圆的直 径AD ,连接PD ,则PD 必过球心O ; 第二步:1O 为ABC ?的外心,所以⊥1OO 平面ABC ,算出小圆1O 的半 径r D O =1(三角形的外接圆直径算法:利用正弦定理,得 r C c B b A a 2sin sin sin ===),PA OO 2 1 1=; 第三步:利用勾股定理求三棱锥的外接球半径:①2 2 2 )2()2(r PA R +=?22)2(2r PA R +=; ②2 12 2 OO r R +=?2 12OO r R += 2.题设:如图6,7,8,P 的射影是ABC ?的外心?三棱锥ABC P -的三条侧棱相等? 三棱锥ABC P -的底面ABC ?在圆锥的底上,顶点P 点也是圆锥的顶点 图6 P A D O 1 O C B 图7-1 P A O 1 O C B 图7-2 P A O 1 O C B 图8 P A O 1 O C B 图5 A D P O 1O C B

常见立体图形外接球题型总结

目录 【题型1】球的性质的应用 (3) 【题型2】“双直角”型 (5) 【题型3】“墙角”型 (6) 【题型4】“四面全等”型 (8) 【题型5】“固化”型 (9) 【题型6】“大小圆垂直”型 (11) 【题型7】“直棱柱”型 (13) 【题型8】“正棱锥”型 (14) 【题型9】“两面”型 (15) 【题型10】“最值”问题 (17)

前言 “三视图问题”、“球的问题”、“立体几何证明题”是数学高考立体几何门派的“三大剑客”,曾秒杀无数考生,特别是“球的问题”始终是高考的热点问题,题型为选择或填空。题目难度跨度大,其中有简单题,中等题有时也会有难题。它直接或间接的以球为载体综合考查空间几何体的体积、表面积计算,解题过程中又蕴含几何体线面关系的识别与论证。所以很少有哪个知识点能像球那样微观上把“数”与“形”数学中两大基本元素完美契合,宏观上实现代数与几何平滑过渡.可是这类问题缺乏几何直观,具有高度抽象性,区分度高,得分率低,属于学生畏惧,老师头疼的难点问题。不过这类问题有很强的规律性,若在平时解题中探索反思,注意总结,能找到通法,是我们学生潜在的得分点;同时研究它为处理空间几何体的证明问题锻炼能力,为解决三视图问题开拓思路。 知识准备 (1)等边三角形相关:面积、外接圆半径,内切圆半径;(2)直角三角形、等腰三角形、矩形圆心位置;(3)球的性质: 【性质1】球的任意一个截面都是圆.其中过球心的截面叫做球的大圆,其余的截面都叫做球的小圆.已知球O 的半径为R .(1)若截面经过球心O . 如图1,设A 是截面与球面的任意一个交点,连接OA .由球的定义可知,OA R =,所以点A 的轨迹是以O 为圆心,R 为半径的圆,即该截面是圆.(2)若截面不经过球心O . 如图1,设球心O 在截面上的射影为1O ,B 是截面与球面的任意一个交点,连接1OO ,OB 和1O B ,则OB R =为定值,且1OO 也为定值,所以2211O B R OO =-为定值,因此,点B 的轨迹是以1O 为圆心,1O B 为半径的圆,即 该截面也是圆. 【性质2】球的小圆的圆心和球心的连线垂直于小圆所在的平面.反之,球心在球的小圆所在平面上的射影是小圆的圆心. 如图2所示,若圆1O 是球O 的小圆,则11OO O ⊥圆面. 证明:如图,设AB ,CD 分别是圆1O 的两条直径,连接OA ,OB ,OC ,OD ,1OO .依题意可得OA OB =,所以1OO AB ⊥.

2013届高考空间几何体的外接球与内切球问题专项突破复习

2013届高考球体问题专项突破复习 例 1 球面上有三点A 、B 、C 组成这个球的一个截面的内接三角形三个顶点,其中 18=AB ,24=BC 、30=AC ,球心到这个截面的距离为球半径的一半,求球的表面积. 分析:求球的表面积的关键是求球的半径,本题的条件涉及球的截面,ABC ?是截面的内接三角形,由此可利用三角形求截面圆的半径,球心到截面的距离为球半径的一半,从而可由关系式2 22d R r -=求出球半径R . 解:∵18=AB ,24=BC ,30=AC , ∴2 22AC BC AB =+,ABC ?是以AC 为斜边的直角三角形. ∴ABC ?的外接圆的半径为15,即截面圆的半径15=r , 又球心到截面的距离为R d 21= ,∴22215)2 1 (=-R R ,得310=R . ∴球的表面积为πππ1200)310(442 2 ===R S . 说明:涉及到球的截面的问题,总是使用关系式22d R r -= 解题,我们可以通过两 个量求第三个量,也可能是抓三个量之间的其它关系,求三个量. 例2.自半径为R 的球面上一点M ,引球的三条两两垂直的弦MC MB MA ,,,求 222MC MB MA ++的值. 分析:此题欲计算所求值,应首先把它们放在一个封闭的图形内进行计算,所以应引导 学生构造熟悉的几何体并与球有密切的关系,便于将球的条件与之相联. 解:以MC MB MA ,,为从一个顶点出发的三条棱,将三棱锥ABC M -补成一个长方体,则另外四个顶点必在球面上,故长方体是球的内接长方体,则长方体的对角线长是球的直径. ∴222MC MB MA ++=224)2(R R =. 说明:此题突出构造法的使用,以及渗透利用分割补形的方法解决立体几何中体积计算. 1、一个四棱柱的底面是正方形,侧棱与底面垂直,其长度为4,棱柱的体积为16,棱柱的各顶 点在一个球面上,则这个球的表面积是 ( ) A .16π B .20π C .24π D .32π 答案:C 解:由题意知,该棱柱是一个长方体,其长、宽、高分别为2,2,4.所以其外接球的半径 R .所以球的表面积是S =4πR 2 =24π. 2四个顶点在同一个球面上,则此球的表面积为( ) A.3π B.4π

高考数学中的内切球和外接球问题

高考数学中的内切球和 外接球问题 Document number:WTWYT-WYWY-BTGTT-YTTYU-2018GT

高考数学中的内切球和外接球问题 一、有关外接球的问题 如果一个多面体的各个顶点都在同一个球面上,那么称这个多面体是球的内接多面体,这个球称为多面体的外接球.有关多面体外接球的问题,是立体几何的一个重点,也是高考考查的一个热点.考查学生的空间想象能力以及化归能力.研究多面体的外接球问题,既要运用多面体的知识,又要运用球的知识,并且还要特别注意多面体的有关几何元素与球的半径之间的关系,而多面体外接球半径的求法在解题中往往会起到至关重要的作用. 一、直接法(公式法) 1、求正方体的外接球的有关问题 例1若棱长为3的正方体的顶点都在同一球面上,则该球的表面积为______________ . 例2一个正方体的各顶点均在同一球的球面上,若该正方体的表面积为24,则该球的体积为______________. 2、求长方体的外接球的有关问题 例3一个长方体的各顶点均在同一球面上,且一个顶点上的三条棱长分别为1,2,3,则此球的表面积为 . 例4已知各顶点都在一个球面上的正四棱柱高为4, 体积为16,则这个球的表面积为(). A. 16π B. 20π C. 24π D. 32π 3.求多面体的外接球的有关问题

例5一个六棱柱的底面是正六边形,其侧棱垂直于底面,已知该六棱柱的顶点都在同一个球面上,且该六棱柱的体积为8 9,底面周长为3,则这个球的体积为 . 解 设正六棱柱的底面边长为x ,高为h ,则有 ∴正六棱柱的底面圆的半径2 1=r ,球心到底面的距离2 3 =d .∴外接球的半径22d r R +=. 体积:3 3 4R V π= . 小结 本题是运用公式222d r R +=求球的半径的,该公式是求球的半径的常用公式. 二、构造法(补形法) 1、构造正方体 例5 若三棱锥的三条侧棱两两垂直,且侧棱长均为3,则其外接球的表面积是_______________. 例3 若三棱锥的三个侧面两两垂直,且侧棱长均为3,则其外接球的表面积是 . 故其外接球的表面积ππ942==r S . 小结:一般地,若一个三棱锥的三条侧棱两两垂直,且其长度分别为c b a ,,,则就可以将这个三棱锥补成一个长方体,于是长方体的体对角线的长就是该三棱锥的外接球的直径.设其外接球的半径为R ,则有 2222c b a R ++=. 出现“墙角”结构利用补形知识,联系长方体。

高中数学 立体几何 4.高考数学中的内切球和外接球问题

高考数学中的内切球和外接球问题 一、 有关外接球的问题 一、直接法(公式法) 1、求正方体的外接球的有关问题 例1若棱长为3的正方体的顶点都在同一球面上,则该球的表面积为______________ . 例2一个正方体的各顶点均在同一球的球面上,若该正方体的表面积为24,则该球的体积为______________. 2、求长方体的外接球的有关问题 例3一个长方体的各顶点均在同一球面上,且一个顶点上的三条棱长分别为1,2,3,则此球的表面积为 . 例4已知各顶点都在一个球面上的正四棱柱高为4,体积为16,则这个球的表面积为( ). A. 16π B. 20π C. 24π D. 32π 3.求多面体的外接球的有关问题 例5一个六棱柱的底面是正六边形,其侧棱垂直于底面,已知该六棱柱的顶点都在同一个球面上,且该六棱柱的体积为8 9 ,底面周长为3,则这个球的体积为 . 解 设正六棱柱的底面边长为x ,高为h ,则有 ??????==h x x 24368 936 ?? ???= =213 x h

∴正六棱柱的底面圆的半径21=r ,球心到底面的距离2 3 =d .∴外接球的半径22d r R +=. 体积:3 3 4R V π= . 小结 本题是运用公式222d r R +=求球的半径的,该公式是求球的半径的常用公式. 二、构造法(补形法) 1、构造正方体 例5 若三棱锥的三条侧棱两两垂直,且侧棱长均为3,则其外接球的表面积是_______________. 例3 若三棱锥的三个侧面两两垂直,且侧棱长均为3,则其外接球的表面积是 . 故其外接球的表面积ππ942==r S . 小结:一般地,若一个三棱锥的三条侧棱两两垂直,且其长度分别为c b a ,,,则就可以将这个三棱锥补成一个长方体,于是长方体的体对角线的长就是该三棱锥的外接球的直径.设其外接球的半径为R ,则有2222c b a R ++=. 出现“墙角”结构利用补形知识,联系长方体。 【原理】:长方体中从一个顶点出发的三条棱长分别为c b a ,,,则体对角线长为222c b a l ++=,几何体的外接球直径为R 2体对角线长l 即2 2 22c b a R ++=

难点突破:立体图形的外接球与内切球问题

2019届高三数学第一轮复习教学案18:难点突破:立体图形的外接球与切球问题 一、基础知识与概念: 1.球的截面:用一个平面去截球,截面是圆面;用一个平面去截球面,截面是圆. 大圆:截面过球心,半径等于球半径(截面圆中最大);小圆:截面不过球心. 2.球心和截面圆心的连线垂直于截面. 3.球心到截面的距离d 与球半径R 及截面圆半径r 的关系:222R d r =+. 4.几何体的外接球:几何体的顶点都在球面上;几何体的切球:球与几何体的各个面都相切. 二、多面体的外接球(球包体) 模型1:球包直柱(直锥):有垂直于底面的侧棱(有垂底侧边棱) 球包 直 柱 球径公式:2 2 2h R r ??=+ ??? , (r 为底面外接圆半径) 球包正方体 球包长方体 球包四棱柱 球包三棱柱 球 包直锥 三棱锥 四棱锥 r 速算 模型2:“顶点连心”锥:锥体的顶点及球心在底面的投影都是底面多边形外接圆的圆心(两心一顶连成线) 实例:正棱锥 球径计算方程:()2 2 2 h R r R -+=22 22 202h r h hR r R h +?-+=?=, (h 为棱锥的高,r 为底面外接圆半径) 特别地, (1)边长为a 正四面体的外接球半径:R =______________. (2)底面边长为a ,高为h 的正三棱锥的外接球半径:R =__________. (3)底面边长为a ,高为h 的正四棱锥的外接球半径:R =__________. 例:1.(2017年全国卷III 第8题)已知圆柱的高为,它的两个底面的圆周在直径为的同一个球的球面上,则该圆柱的体积为

高中数学空间几何体的内切球与外接球问题

空间几何体的内切球与外接球问题 1.[2016·全国卷Ⅱ] 体积为8的正方体的顶点都在同一球面上,则该球的表面积为( ) A .12π B.32 3 π C .8π D .4π [解析]A 因为正方体的体积为8,所以正方体的体对角线长为23,所以正方体的外接球的半径为3,所以球的表面积为4π·(3)2=12π. 2.[2016·全国卷Ⅲ] 在封闭的直三棱柱ABC - A 1B 1C 1内有一个体积为V 的球.若AB ⊥BC ,AB =6,BC =8,AA 1=3,则V 的最大值是( ) A .4π B.9π2 C .6π D.32π 3 [解析]B 当球与三侧面相切时,设球的半径为r 1,∵AB ⊥BC ,AB =6,BC =8,∴8-r 1+6-r 1=10,解得r 1=2,不合题意;当球与直三棱柱的上、下底面相切时,设球的半径为r 2, 则2r 2=3,即r 2=32.∴球的最大半径为32,故V 的最大值为43π×????323=92 π. 3.[2016·郑州模拟] 在平行四边形ABCD 中,∠CBA =120°,AD =4,对角线BD =23,将其沿对角线BD 折起,使平面ABD ⊥平面BCD ,若四面体ABCD 的顶点在同一球面上,则该球的体积为________. 答案:2053 π;解析:因为∠CBA =120°,所以∠DAB =60°,在三角形ABD 中,由余弦 定理得(23)2=42+AB 2-2×4·AB ·cos 60°,解得AB =2,所以AB ⊥BD .折起后平面ABD ⊥平面BCD ,即有AB ⊥平面BCD ,如图所示,可知A ,B ,C ,D 可看作一个长方体中的四个顶点,长方体的体对角线AC 就是四面体ABCD 外接球的直径,易知AC =22+42=25, 所以球的体积为205 3 π. 4.[2016·山西右玉一中模拟] 球O 的球面上有四点S ,A ,B ,C ,其中O ,A ,B ,C 四点共面,△ABC 是边长为2的正三角形,平面SAB ⊥平面ABC ,则棱锥S-ABC 的体积的最大 值为( ) A . 3 3 B . 3 C .2 3 D .4 选A ;[解析] (1)由于平面SAB ⊥平面ABC ,所以点S 在平面ABC 上的射影H 落在AB 上,根据球的对称性可知,当S 在“最高点”,即H 为AB 的中点时,SH 最大,此时棱锥S -ABC 的体积最大. 因为△ABC 是边长为2的正三角形,所以球的半径r =OC =23CH =23×32×2=23 3 . 在Rt △SHO 中,OH =12OC =3 3 ,

数学研究课题---空间几何体的外接球与内切球问题.

高中数学课题研究 几何体与球切、接的问题 纵观近几年高考对于组合体的考查,与球相关的外接与内切问题是高考命题的热点之一.高考命题小题综合化倾向尤为明显,要求学生有较强的空间想象能力和准确的计算能力,才能顺利解答.从实际教学来看,这部分知识学生掌握较为薄弱、认识较为模糊,看到就头疼的题目.分析原因,除了这类题目的入手确实不易之外,主要是学生没有形成解题的模式和套路,以至于遇到类似的题目便产生畏惧心理. 下面结合近几年高考题对球与几何体的切接问题作深入的探究,以便更好地把握高考命题的趋势和高考的命题思路,力争在这部分内容不失分.从近几年全国高考命题来看,这部分内容以选择题、填空题为主,大题很少见. 首先明确定义1:若一个多面体的各顶点都在一个球的球面上,则称这个多面体是这个球的内接多面体,这个球是这个多面体的外接球。 定义2:若一个多面体的各面都与一个球的球面相切, 则称这个多面体是这个球的外切多面体,这个球是这个多面体的内切球. 1 球与柱体的切接 规则的柱体,如正方体、长方体、正棱柱等能够和球进行充分的组合,以外接和内切两种形态进行结合,通过球的半径和棱柱的棱产生联系,然后考查几何体的体积或者表面积等相关问题. 1.1 球与正方体 如图所示,正方体1111ABCD A B C D -,设正方体的棱长为a ,,,,E F H G 为棱的中点,O 为球的球心.常见组合方式有三类:一是球为正方体的内切球,截面图为正方形EFGH 和其内切圆,则2a OJ r ==;二 是与正方体各棱相切的球,截面图为正方形EFGH 和其外接圆,则GO R a ==;三是球为正方体的 外接球,截面图为长方形11ACA C 和其外接圆,则12 A O R a '==.通过这三种类型可以发现,解决正方体与球的组合问题,常用工具是截面图,即根据组合的形式找到两个几何体的轴截面,通过两个截面图的位置关系,确定好正方体的棱与球的半径的关系,进而将空间问题转化为平面问题.

立体几何之外接球问题含答案

立体几何之外接球问题一 讲评课1课时总第课时月日1、已知如图所示的三棱锥的四个顶点均在球的球面上,和所在的平面互 相垂直,,,,则球的表面积为( ) A. B. C. D. 2、设三棱柱的侧棱垂直于底面,所有棱的长都为,顶点都在一个球面上,则该球的表面积为() A. B. C. D. 3、已知是球的球面上两点,,为该球面上的动点,若三棱锥体积的最大值为,则球的表面积为( ) A. B. C. D. 4、如图是某几何体的三视图,正视图是等边三角形,侧视图和俯视图为直角三角形,则该几何体外接球的表面积为() A.B. C. D. 5、已知都在半径为的球面上,且,,球心到平面的距离为1,点是线段的中点,过点作球的截面,则截面面积的最小值为() A. B. C. D.

6、某几何体的三视图如图所示,这个几何体的内切球的体积为() A.B. C. D. 7、四棱锥的所有顶点都在同一个球面上,底面是正方形且和球心在同一平面内,当此四棱锥的体积取得最大值时,它的表面积等于,则球的体积等于() A. B. C. D. 8、一个三条侧棱两两互相垂直并且侧棱长都为的三棱锥的四个顶点全部在同一个球面上,则该球的表面积为( ) A.B. C. D. 9、一个棱长都为的直三棱柱的六个顶点全部在同一个球面上,则该球的表面积为( ) A.B. C. D. 10、一个几何体的三视图如图所示,其中正视图是正三角形,则几何体的外接球的表面积为( ) A. B. C. D.

立体几何之外接球问题二 讲评课1课时总第课时月日 11、若圆锥的内切球与外接球的球心重合,且内切球的半径为,则圆锥的体积为__________. 12、底面为正三角形且侧棱与底面垂直的三棱柱称为正三棱柱,则半径为的球的内接正三棱柱的体积的最大值为__________. 13、底面为正三角形且侧棱与底面垂直的三棱柱称为正三棱柱,则棱长均为的正三棱柱外接球的表面积为__________. 14、若一个正四面体的表面积为,其内切球的表面积为,则__________. 15、若一个正方体的表面积为,其外接球的表面积为,则__________.

高考文科数学中的内切球和外接球问题专题练习

高考文科数学中的内切球 和外接球问题专题练习Newly compiled on November 23, 2020

内切球和外接球问题 如果一个多面体的各个顶点都在同一个球面上,那么称这个多面体是球的内接多面体,这个球称为多面体的外接球.有关多面体外接球的问题,是立体几何的一个重点,也是高考考查的一个热点.考查学生的空间想象能力以及化归能力.研究多面体的外接球问题,既要运用多面体的知识,又要运用球的知识,并且还要特别注意多面体的有关几何元素与球的半径之间的关系,而多面体外接球半径的求法在解题中往往会起到至关重要的作用. 一、直接法(公式法) 1、求正方体的外接球的有关问题 例1 (2006年广东高考题)若棱长为3的正方体的顶点都在同一球面上,则该球的表面积为______________ . 解析:要求球的表面积,只要知道球的半径即可.因为正方体内接于球,所以它的体对角线正好为球的直径,因此,求球的半径可转化为先求正方体的体对角线长,再计算半径.故表面积为27π. 例2 一个正方体的各顶点均在同一球的球面上,若该正方体的表面积为24,则该球的体积为______________. 解析:要求球的体积,还是先得求出球的半径,而球的直径正好是正方体的体对角 线,因此,由正方体表面积可求出棱长,从而求出正方体的体对角线是 故该球的体积为. 2、求长方体的外接球的有关问题 例3 (2007年天津高考题)一个长方体的各顶点均在同一球面上,且一个顶点上的三条棱长分别为1,2,3,则此球的表面积为 .

解析:关键是求出球的半径,因为长方体内接于球,所以它的体对角线正好为球的1414π. 例4、(2006年全国卷I )已知各顶点都在一个球面上的正四棱柱高为4,体积为16,则这个球的表面积为( ). A. 16π B. 20π C. 24π D. 32π 解析:正四棱柱也是长方体。由长方体的体积16及高4可以求出长方体的底面边长为2,因此,长方体的长、宽、高分别为2,2,4,于是等同于例3,故选C. 3.求多面体的外接球的有关问题 例5. 一个六棱柱的底面是正六边形,其侧棱垂直于底面,已知该六棱柱的顶点都在 同一个球面上,且该六棱柱的体积为9 8,底面周长为3,则这个球的体积为 . 解 设正六棱柱的底面边长为x ,高为h ,则有263,1,2936,38x x x h h =?? =?? ∴?? =??=??. ∴正六棱柱的底面圆的半径 1 2r = ,球心到底面的距离 3d = .∴外接球的半径221R r d =+=.43V π ∴= 球. 小结 本题是运用公式222 R r d =+求球的半径的,该公式是求球的半径的常用公式. 二、构造法(补形法) 1、构造正方体 例5 (2008年福建高考题)若三棱锥的三条侧棱两 3_______________. 解析:此题用一般解法,需要作出棱锥的高,然后 再

【精品】2019年高考数学中的内切球和外接球问题

【精品】2019年高考数学中的内切球和外接球问题 一、 有关外接球的问题 一、直接法(公式法) 1、求正方体的外接球的有关问题 例1若棱长为3的正方体的顶点都在同一球面上,则该球的表面积为______________ . 例2一个正方体的各顶点均在同一球的球面上,若该正方体的表面积为24,则该球的体积为______________. 2、求长方体的外接球的有关问题 例3一个长方体的各顶点均在同一球面上,且一个顶点上的三条棱长分别为1,2,3,则此球的表面积为 . 例4已知各顶点都在一个球面上的正四棱柱高为4, 体积为16,则这个球的表面积为( ). A. 16π B. 20π C. 24π D. 32π 3.求多面体的外接球的有关问题 例5一个六棱柱的底面是正六边形,其侧棱垂直于底面,已知该六棱柱的顶点都在同一个球面上,且该六棱柱的体积为8 9,底面周长为3,则这个球的体积为 . 解 设正六棱柱的底面边长为x ,高为h ,则有 ??????==h x x 2436893 6 ?????==213x h

∴正六棱柱的底面圆的半径21=r ,球心到底面的距离2 3= d .∴外接球的半径22d r R +=. 体积:334R V π=. 小结 本题是运用公式222d r R +=求球的半径的,该公式是求球的半径的常用公式. 二、构造法(补形法) 1、构造正方体 例5 若三棱锥的三条侧棱两两垂直,且侧棱长均为3,则其外接球的表面积是_______________. 例3 若三棱锥的三个侧面两两垂直,且侧棱长均为3,则其外接球的表面积是 . 故其外接球的表面积ππ942==r S . 小结:一般地,若一个三棱锥的三条侧棱两两垂直,且其长度分别为c b a ,,,则就可以将这个三棱锥补成一个长方体,于是长方体的体对角线的长就是该三棱锥的外接球的直径.设其外接球的半径为R ,则有2222c b a R ++=. 出现“墙角”结构利用补形知识,联系长方体。 【原理】:长方体中从一个顶点出发的三条棱长分别为c b a ,,,则体对角线长为222c b a l ++=,几何体的外接球直径为R 2体对角线长l 即2 222c b a R ++=

几何体外接球精美讲义

第二讲 几何体的外接球和内切球问题 ※ 基础知识: 1.常见平面图形:正方形,长方形,正三角形的外接圆和内切圆 长方形(正方形)的外接圆半径为对角线长的一半,正方形的内切圆半径为边长的一半; 正三角形的内切圆半径:6a 外接圆半径:3a 三角形面积:24a 正三角形三心合一,三线合一,心把高分为2:1两部分。 2.球的概念: 概念1:与定点距离等于或小于定长的点的集合,叫做球体,简称球.,定长叫球的半径; 与定点距离等于定长的点的集合叫做球面.一个球或球面用表示它的球心的字母表示,例如球O 或O . 概念2:半圆以它的直径为旋转轴,旋转所成的曲面叫做球面,球面所围成的几何体叫做球体,简称球。 3.球的截面: 用一平面α去截一个球O ,设OO '是平面 α的垂线段,O '为垂足,且OO d '=,所得的截面是以球心在截面内的射影为圆心,以r 径的一个圆,截面是一个圆面. 球面被经过球心的平面截得的圆叫做大圆,被不经过球心的平面截得的圆叫做小圆. 4.空间几何体外接球、内切球的概念: 定义1:若一个多面体的各顶点都在一个球的球面上,则称这个多面体是这个球的内接多面体,这个球是这个多面体的外接球。 定义2:若一个多面体的各面都与一个球的球面相切, 则称这个多面体是这个球的外切多面体,这个球是这个多面体的内切球。 长方体的外接球 正方体的内切球

5.外接球和内切球性质: (1)内切球球心到多面体各面的距离均相等,外接球球心到多面体各顶点的距离均相等。 (2)正多面体的内切球和外接球的球心重合。 (3)正棱锥的内切球和外接球球心都在高线上,但不重合。 (4)基本方法:构造三角形利用相似比和勾股定理。 (5)体积分割是求内切球半径的通用做法。 长方体的外接球半径公式:22 22 c b a R ++=,其中,,a b c 分别为长方体共顶点的3条棱长 正棱锥的外接球半径公式:2 ,2a R h = 2侧棱=2R h ?外正棱锥,其中a 为侧棱长,h 为正棱锥 的高 正棱柱的外接球球心在两底面中心连线的中点处。 ※典型例题: 题型一:球的概念 例1. (1)已知球的直径为8cm ,那么它的表面积为__________,体积为___________ (2)已知球的表面积为144π2cm ,那么它的体积为___________ (3)已知球的体积为36π,那么它的表面积为__________ (4)如果两个球的体积之比为8:27,那么两个球的表面积之比为__________ 例2.(1)(2012年新课标文科)平面α截球O 的球面所得圆的半径为1,球心O 到平面α ) A B . C . D . (2)已知过球面上,,A B C 三点的截面和球心的距离为球半径的一半,且2AB BC CA ===,求球的表面积. (3)(2013年高考课标Ⅰ卷(文))已知H 是球O 的直径AB 上一点,:1:2AH HB =,AB ⊥平面α,H 为垂足,α截球O 所得截面的面积为π,则球O 的表面积为_______.

2内切球外接球含习题

内切球,外接球 球内接长方体的对角线是球的直径。正四面体(棱长为a )的外接球半径R 与内切球半径r 之比为R :r =3:1。外接球半径:a R 46=。内切球半径:a r 126= 结论:正四面体与球的接切问题,可通过线面关系证出,内切球和外接球的两个球心是重合的,为正四面体高的四等分点,即定有内切球的半径h r 4 1=(h 为正四面体的高),且外接球的半径r R 3=. 正四面体的外接球问题:已知正四面体A BCD -,H 为底面的中心,O 为外接球的球心,设棱长为a ,外接球半径为R ,内切球半径为r ,试求R. 方法一:易知,由等积法得:( 可求外接球半径和内切球半径) A BCD O ABC O BCD O CDA O DAB V V V V V -----=+++ 所以: 11433BCD BCD AH S r S ???=?? 故14r AH =,34 R AH = 所以 R =. 方法二:如图AHM BNM ???所 HM ON AM OA =,即13r R =,又由R+r=AH=可得 4R = . 方法三: 如图设延长AH 交球面上一点K,则AK=2R,在直角三角形ABK 中由射

影定理得2AB AH AK =? 即223a a R =? 故得4 R a =. 方法四:如图正四面体可补成一个边长为a 的正方体,显然正方体的外接球 )22a R =故可得4 R =. 四面体的内切球问题:关键是抓住球心到四面体的每个面的距离等于球的半径来找等量关系. 【例6】求棱长为a 的正四面体内切球的体积. 练习 1.(球内接正四面体问题)(2003年江苏卷第12题)一个四面体的所有棱长都为2,四个顶点在同一球面上,则此球的表面积为( )

外接球与内切球问题

立体图形的外接球与内切球问题 一、基础知识与概念: 1.球的截面:用一个平面去截球,截面是圆面;用一个平面去截球面,截面是圆. 大圆:截面过球心,半径等于球半径(截面圆中最大);小圆:截面不过球心. 2.球心和截面圆心的连线垂直于截面. 3.球心到截面的距离d 与球半径R 及截面圆半径r 的关系:222R d r =+. 4.几何体的外接球:几何体的顶点都在球面上;几何体的内切球:球与几何体的各个面都相切. 二、多面体的外接球(球包体) 模型1:球包直柱(直锥):有垂直于底面的侧棱(有垂底侧边棱) 球包 直柱 球径公式:2 22h R r ? ? =+ ??? , (r 为底面外接圆半径) 球包正方体 球包长方体 球包四棱柱 球包三棱柱 球 包直锥 三棱锥 四棱锥 r 速算 模型2:“顶点连心”锥:锥体的顶点及球心在底面的投影都是底面多边形外接圆的圆心(两心一顶连成线) 实例:正棱锥 球径计算方程:()2 2 2 h R r R -+=22 22 202h r h hR r R h +?-+=?=, (h 为棱锥的高,r 为底面外接圆半径) 特别地, (1)边长为a 正四面体的外接球半径:R =______________. (2)底面边长为a ,高为h 的正三棱锥的外接球半径:R =__________. (3)底面边长为a ,高为h 的正四棱锥的外接球半径:R =__________. 例:1.(2017年全国卷III 第8题)已知圆柱的高为,它的两个底面的圆周在直径为的同一个球的球面上,则该圆柱的体积为 A . B . C . D . π34 π2 π4 π

内切球和外接球问题专题复习

内切球和外接球问题 一个多面体的各个顶点都在同一个球面上,那么称这个多面体是球的内接多面体,这个球称为多面体的外接球.有关多面体外接球的问题,是立体几何的一个重点,也是高考考查的一个热点.考查学生的空间想象能力以及化归能力.研究多面体的外接球问题,既要运用多面体的知识,又要运用球的知识,并且还要特别注意多面体的有关几何元素与球的半径之间的关系,而多面体外接球半径的求法在解题中往往会起到至关重要的作用. 一、直接法(公式法) 1、求正方体的外接球的有关问题 例1 (2006年广东高考题)若棱长为3的正方体的顶点都在同一球面上,则该球的表面积为______________ . 解析:要求球的表面积,只要知道球的半径即可.因为正方体内接于球,所以它的体对角线正好为球的直径,因此,求球的半径可转化为先求正方体的体对角线长,再计算半径. 故表面积为27π. 例2 一个正方体的各顶点均在同一球的球面上,若该正方体的表面积为24,则该球的体积为______________. 解析:要求球的体积,还是先得求出球的半径,而球的直径正好是正方体的体对角线, 23所以球的半径为3.因此,由正方体表面积可求出棱长,从而求出正方体的体对角线是 43π. 故该球的体积为 2、求长方体的外接球的有关问题 例3 (2007年天津高考题)一个长方体的各顶点均在同一球面上,且一个顶点上的三 1,2,3,则此球的表面积为. 条棱长分别为 解析:关键是求出球的半径,因为长方体内接于球,所以它的体对角线正好为球的直径。长方体体对角线长为14,故球的表面积为14π. 例4、(2006年全国卷I)已知各顶点都在一个球面上的正四棱柱高为4,体积为16,则这个球的表面积为(). A. 16π B. 20π C. 24π D. 32π 解析:正四棱柱也是长方体。由长方体的体积16及 高4可以求出长方体的底面边长为2,因此,长方体的长、 宽、高分别为2,2,4,于是等同于例3,故选C. 3.求多面体的外接球的有关问题 例5. 一个六棱柱的底面是正六边形,其侧棱垂直于 底面,已知该六棱柱的顶点都在同一个球面上,且该六棱

难点突破:立体图形的外接球与内切球问题

*创作编号:GB8878185555334563BT9125XW* 创作者:凤呜大王* 2019届高三数学第一轮复习教学案18:难点突破:立体图形的外接球与内切球问题 一、基础知识与概念: 1.球的截面:用一个平面去截球,截面是圆面;用一个平面去截球面,截面是圆. 大圆:截面过球心,半径等于球半径(截面圆中最大);小圆:截面不过球心. 2.球心和截面圆心的连线垂直于截面. 3.球心到截面的距离d与球半径R及截面圆半径r的关系:222 R d r =+. 4.几何体的外接球:几何体的顶点都在球面上;几何体的内切球:球与几何体的各 个面都相切. 二、多面体的外接球(球包体) 模型1:球包直柱(直锥):有垂直于底面的侧棱(有垂底侧边棱) 球 包 直 柱 球径公式: 2 2 2 h R r ?? =+ ? ?? ,球包正方体球包长方体球包四棱柱球包三棱柱

四 棱 锥 r 速 算 模型2:“顶点连心”锥:锥体的顶点及球心在底面的投影都是底面多边形外接圆的圆心(两心一顶连成线)实例:正棱锥 例:1.(2017年全国卷III第8题)已知圆柱的高为1,它的两个底面的圆周在直径 为2的同一个球的球面上,则该圆柱的体积为 A.πB. 3 4 π C. 2 π D. 4 π 【解析】模式辨识:“球包体”中的“垂底侧边棱(母线)”类型,1 h=,1 R=,底 面半径为r,则由 2 2 2 h R r ?? =+ ? ?? 2 222 13 1 24 r r ?? =+?= ? ?? ,2 3 4 V r h π π ==. 2.(2010年全国新课标卷第10题)设三棱柱的侧棱垂直于底面,所有棱的长都为a, 顶点都在一个球面上,则该球的表面积为

解决几何体的外接球与内切球

解决几何体的外接球与内切球,就这6个题型! 一、外接球的问题 简单多面体外接球问题是立体几何中的难点和重要的考点,此类问题实质是解决球的半径尺或确定球心0的位置问题,其中球心的确定是关键. (一)由球的定义确定球心 在空间,如果一个定点与一个简单多面体的所有顶点的距离都相等,那么这个定点就是该简单多面体的外接球的球心. 由上述性质,可以得到确定简单多面体外接球的球心的如下结论. 结论1:正方体或长方体的外接球的球心其体对角线的中点. 结论2:正棱柱的外接球的球心是上下底面中心的连线的中点. 结论3:直三棱柱的外接球的球心是上下底面三角形外心的连线的中点. 结论4:正棱锥的外接球的球心在其高上,具体位置可通过计算找到. 结论5:若棱锥的顶点可构成共斜边的直角三角形,则公共斜边的中点就是其外接球的球心. (二)构造正方体或长方体确定球心

长方体或正方体的外接球的球心是在其体对角线的中点处.以下是常见的、基本的几何体补成正方体或长方体的途径与方法. 途径1:正四面体、三条侧棱两两垂直的正三棱锥、四个面都是是直角三角形的三棱锥都分别可构造正方体. 途径2:同一个顶点上的三条棱两两垂直的四面体、相对的棱相等的三棱锥都分别可构造长方体和正方体. 途径3:若已知棱锥含有线面垂直关系,则可将棱锥补成长方体或正方体. 途径4:若三棱锥的三个侧面两两垂直,则可将三棱锥补成长方体或正方体. (三)由性质确定球心 利用球心O与截面圆圆心O1的连线垂直于截面圆及球心O与弦中点的连线垂直于弦的性质,确定球心.

二、内切球问题 若一个多面体的各面都与一个球的球面相切,则称这个多面体是这个球的外切多面体,这个球是这个多面体的内切球。 1、内切球球心到多面体各面的距离均相等,外接球球心到多面体各顶点的距离均相等。 2、正多面体的内切球和外接球的球心重合。 3、正棱锥的内切球和外接球球心都在高线上,但不重合。 4、基本方法:构造三角形利用相似比和勾股定理。 5、体积分割是求内切球半径的通用做法。

高考数学中的内切球和外接球问题---专题复习

高考数学内切球和外接球问题 如果一个多面体的各个顶点都在同一个球面上,那么称这个多面体是球的内接多面体,这个球称为多面体的外接球.有关多面体外接球的问题,是立体几何的一个重点,也是高考考查的一个热点.考查学生的空间想象能力以及化归能力.研究多面体的外接球问题,既要运用多面体的知识,又要运用球的知识,并且还要特别注意多面体的有关几何元素与球的半径之间的关系,而多面体外接球半径的求法在解题中往往会起到至关重要的作用. 一、直接法(公式法) 1、求正方体的外接球的有关问题 例1、若棱长为3的正方体的顶点都在同一球面上,则该球的表面积为______________ . 解析:要求球的表面积,只要知道球的半径即可.因为正方体内接于球,所以它的体对角线正好为球的直径,因此,求球的半径可转化为先求正方体的体对角线长,再计算半径.故表面积为π 27. 例2、一个正方体的各顶点均在同一球的球面上,若该正方体的表面积为24,则该球的体积为______________. 解析:要求球的体积,还是先得求出球的半径,而球的直径正好是正方体的体对角线,因此,由正方体表面积可求出棱长,从而求出正方体的体对角线是3 2所以球的半径为3.故该球的体积为π3 4. 2、求长方体的外接球的有关问题 例1、一个长方体的各顶点均在同一球面上,且一个顶点上的三条棱长分别为1,2,3,则此球的表面积为 . 解析:关键是求出球的半径,因为长方体内接于球,所以它的体对角线正好为球的直径。长方体体对角线长为14,故球的表面积为14π. 例2、已知各顶点都在一个球面上的正四棱柱高为4,体积为16,则这个球的表面积为(). A. 16π B. 20π C. 24π D. 32π 解析:正四棱柱也是长方体。由长方体的体积16及高4可以求出长方体的底面边长为2,因此,长方体的长、宽、高分别为2,2,4,于是等同于例3,故选C. 3.求多面体的外接球的有关问题 例1、一个六棱柱的底面是正六边形,其侧棱垂直于 底面,已知该六棱柱的顶点都在同一个球面上,且该六棱 柱的体积为9 8,底面周长为3,则这个球的体积为 . 解设正六棱柱的底面边长为x,高为h,则有

相关文档
相关文档 最新文档