文档库 最新最全的文档下载
当前位置:文档库 › ZVS移相全桥变换器设计

ZVS移相全桥变换器设计

ZVS移相全桥变换器设计
ZVS移相全桥变换器设计

移相全桥

移相全桥变换器可以大大减少功率管的开关电压、电流应力和尖刺干扰,降低损耗,提高 开关频率。如何以UC3875为核心,设计一款基于PWM软开关模式的开关电源?请见 下文详解。 主电路分析 这款软开关电源采用了全桥变换器结构,使用MOSFET作为开关管来使用,参数为1000V/24A.采用移相ZVZCSPWM控制,即超前臂开关管实现ZVS、滞后臂开关管实 现ZCS.电路结构简图如图1,VT1~VT4是全桥变换器的四只MOSFET开关管,VD1、VD2分别是超前臂开关管VT1、VT2的反并超快恢复二极管,C1、C2分别是为了实现VTl、VT2的ZVS设置的高频电容,VD3、VD4是反向电流阻断二极管,用来实现滞后 臂VT3、VT4的ZCS,Llk为变压器漏感,Cb为阻断电容,T为主变压器,副边由 VD5~VD8构成的高频整流电路以及Lf、C3、C4等滤波器件组成。 图1 1.2kw软开关直流电源电路结构简图 其基本工作原理如下: 当开关管VT1、VT4或VT2、VT3同时导通时,电路工作情况与全桥变换器的硬开 关工作模式情况一样,主变压器原边向负载提供能量。通过移相控制,在关断VT1时并不马上关断VT4,而是根据输出反馈信号决定移相角,经过一定时间后再关断VT4,在关断 VT1之前,由于VT1导通,其并联电容C1上电压等于VT1的导通压降,理想状况下其 值为零,当关断VT1时刻,C1开始充电,由于电容电压不能突变,因此,VT1即是零电 压关断。 由于变压器漏感L1k以及副边整流滤波电感的作用,VT1关断后,原边电流不能突变,继续给Cb充电,同时C2也通过原边放电,当C2电压降到零后,VD2自然导通,这时 开通VT2,则VT2即是零电压开通。

电压型单相全桥逆变电路

1.引言 逆变电路所谓逆变,就是与整流相反,把直流电转换成某一固定频率或可变频率的交流电(DC/AC)的过程。 当把转换后的交流电直接回送电网,即交流侧接入交流电源时,称为有源逆变;而当把转换后的交流电直接供给负载时,则称为无源逆变。通常所讲的逆变电路,若不加说明,一般都是指无源逆变电路。 1. 电压型逆变器的原理图 当开关S1、S4闭合,S2、S3断开时,负载电压u o为正;当开关S1、S4断开,S2、S3闭合时,u o为负,如此交替进行下去,就在负载上得到了由直流电变换的交流电,u o的波形如图7.4(b)所示。输出交流电的频率与两组开关的切换频率成正比。这样就 t (b) (a) u o t3 t2 t1 i o u o Z u o i o U d _ + S3 S2S 4 S1

实现了直流电到交流电的逆变。 2. 电压型单相全桥逆变电路 它共有4个桥臂,可以看成由两个半桥电路组合而成。 两对桥臂交替导通180°。 输出电压和电流波形与半桥电路形状相同,幅值高出一倍。 改变输出交流电压的有效值只能通过改变直流电压U d来实现。 输出电压定量分析 u o成傅里叶级数 基波幅值 基波有效值 ? ? ? ? ? + + + = t t t U uω ω ω π 5 sin 5 1 3 sin 3 1 sin 4 d o d d o1m 27 .1 4 U U U= = π d d 1o 9.0 2 2 U U U= = π

当u o为正负各180°时,要改变输出电压有效值只能改变U d 来实现 可采用移相方式调节逆变电路的输出电压,称为移相调压。 各栅极信号为180o正偏,180o反偏,且T1和T2互补,T3和T4互补关系不变。T3的基极信号只比T1落后q ( 0

移相全桥PWM DC-DC变换器的数学建模

移相全桥 移相全桥ZVS 变换器由于其充分利用了电路本身的寄生参数,使开关管工作在软开关状态,降低了开关管的开关噪声和开关损耗,提高了变换器的效率,近年来在中大功率场合得到广泛应用。随着微处理器价格的不断下降和计算能力的不断提高,采用数字控制已经成为中大功率开关电源的发展趋势,许多数字控制方法相继提出。但对于DC/ DC 变换器这种强非线性系统,传统的基于线性系统理论的控制方法并不能获得理想的动态特性。 该文在建立移相全桥变换器模型的基础上,提出一种新的模糊PID 预测控制策略,将传统控制方法与智能控制方法相结合,通过模糊控制对传统PID 控制器进行增益调节,同时采用预测控制以补偿数字控制系统中的时延。这种控制策略比较简单,易于数字控制器的实现,该文采用MA TLAB 方法进行了仿真研究。 2 移相全桥变换器小信号模型的建立 一般建立DC/ DC 变换器的小信号模型的方法是状态空间平均法,但对于移相全桥ZVS 变换器来说,用状态空间平均法建模是一项十分复杂的工作。因为这种变换器具有12种开关状态,因此列写状态空间方程式是一个非常复杂的工作。 根据移相全桥ZVS PWM 变换器源于BUCK 变换器的事实,从电路工作的描述中可以 看出变压器副边的有效占空比^ off off off d D d =-,变压器原边电压的占空比d 而且依靠输出滤波电感电流L i ,漏感lk L ,输入电压in V 和开关频率s f ,所以移相全桥变换器小信号传递 函数也将取决于漏感lk L ,开关频率s f ,滤波电感电流扰动^ L i ,输入电压扰动^in V ,和变压 器原边占空比扰动^ d 等因素。为了精确地建立移相全桥变换器的动态特性模型,找出lk L , s f ,^ L i ,^in V 和^ d 对^ off d 的影响是必要的。这些影响可以加入到PWM BUCK 变换器的小 信号电路模型中(图1),从而获得移相全桥PWM 变换器的小信号模型(图2)。 我们知道由于谐振电感lk L 和变压器副边整流二级管的影响,移相全桥变换器存在占空比丢失的现象,副边有占空比为:off D D D =-? 即()()221/21lk off L o in nL D D I D V T L V T =- --???? 移相全桥变换器输出电压增益为: ()()2 221/22o lk off L o in in V n L nD nD I D V T L V V T ==- --???? 其中,n 为变压器副边匝数与原边匝数的比值;L I 为电感电流平均值。 下面通过式(l )来分析对off D 产生影响的因素。 l )占空比扰动^ d 对off D 的影响^ d d 由式(l )可得

移相全桥零电压开关PWM设计实现

题目:移相全桥零电压开关PWM设计实现

移相全桥零电压开关PWM设计实现 摘要 移相全桥电路具有结构简单、易于恒频控制和高频化,通过变压器的漏感和功率开关器件的寄生电容构成谐振电路,使开关器件的应力减小、开关损耗减小等优点,被广泛应用于中大功率场合。近年来随着微处理器技术的发展,各种微控制器和数字信号处理器性能价格比的不断提高,采用数字控制已经成为大中功率开关电源的发展趋势。相对于用实现的模拟控制,数字控制有许多的优点。本文的设计采用TI公司的高速数字信号处理器TMS320F28027系列的DSP作为控制器。该模块通过采样移相全桥零电压DC-DC变换器的输出电压、输入电压及输出电流,通过实时计算得出移相PWM信号,然后经过驱动电路驱动移相全桥零电压DC-DC变换器的四个开关管来达到控制目的。实验表明这种控制策略是可行的,且控制模块可以很好的实现提出的控制策略。 关键词:移相全桥;零电压;DSP

Phase-shifted Full-bridge Zero-voltage Switching PWM Design and Implementation ABSTRACT Phase-shifted full-bridge circuit has the advantages of simple structure, easy to constant frequency control and high-frequency resonant circuit constituted by the leakage inductance of the transformer and the parasitic capacitance of the power switching devices, to reduce the stress of the switching devices, switching loss is reduced,which widely used in high-power occasion. In recent years, with the development of microprocessor technology, a variety of

移相全桥ZVZCSDCDC变换器综述

移相全桥ZVZCSDC/DC变换器综述 河北秦皇岛燕山大学朱艳萍电源技术应用 摘要:概述了9种移相全桥ZVZCSDC/DC变换器,简要介绍了各种电路拓扑的工作原理,并对比了优缺点,以供大家参考。 关键词:移相控制;零电压零电流开关;全桥变换器 1概述 所谓ZVZCS,就是超前桥臂实现零电压导通和关断,滞后桥臂实现零电流导通和关断。ZVZCS方案可以解决ZVS方案的故有缺陷,即可以大幅度降低电路内部的循环能量,提高变换效率,减小副边占空比丢失,提高最大占空比,而且其最大软开关范围不受输入电压和负载的影响。 滞后桥臂零电流开关是通过在原边电压过零期间使原边电流复位来实现的。即当原边电流减小到零后,不允许其继续反方向增长。原边电流复位目前主要有以下几种方法: 1)利用超前桥臂开关管的反向雪崩击穿,使储存在变压器漏感中的能量完全消耗在超前桥臂的IGBT中,为滞后桥臂提供零电流开关的条件; 2)在变压器原边使用隔直电容和饱和电感,在原边电压过零期间,将隔直电容上的电压作为反向阻断电压源,使原边电流复位,为滞后桥臂开关管提供零电流开关的条件; 3)在变压器副边整流器输出端并联电容,在原边电压过零期间,将副边电容上的电压反射到原边作为反向阻断电压源,使原边电流迅速复位,为滞后桥臂开关管提供零电流开关的条件。 2 电路拓扑 根据原边电流复位方式的不同,下面列举几种目前常见的移相全桥ZVZCSPWMDC/DC 拓扑结构,以供大家参考。 1)NhoE.C.电路如图1所示[1]。该电路是最基本的移相全桥ZVZCS变换器,它的驱动信号采用有限双极性控制,从而实现超前桥臂的零电压和滞后桥臂的零电流开关。这种拓扑结构的缺陷是L1k要折衷选择,L1k太小,在负载电流很小时,超前桥臂不能实现零电压开关;L1k太大,又限制了iL1k的变化速度,从而限制了变换器开关频率的提高。变换器给负载供电方式是电流源形式,电感L1k电流交流变化,输入电流脉动很大,要求滤波电容很大。该电路可以工作在电流临界连续状态,但必须采用频率控制,不利于滤波器的优化设计。

移相全桥参数

● 输入电压mod in V -:270VDC ±20% ● 输出电压o V :60V ● 输出电流mod o I -:25A 4.1.2 变压器的设计 1)原副边匝比 为了降低输出整流二极管的反向电压,降低原边开关管的电流应力,提高高频变压器的利用率,高频变压器原副边匝比应尽可能大一些。为了在输入电压围能够输出所要求的电压,变压器的匝比应按输入电压最低时来选择。设副边最大占空比为0.425,此时副边电压为sec min V : sec min max 73.1762o D Lf e V V V V D ++==(V) (4.1) 其中, o V 为变换器的输出电压, 1.2D V V =为副边整流二极管的导通压降,1Lf V V =为输出滤波电感寄生电阻在变换器额定输出时的直流压降,max e D 为变压器副边的最大占空比。 变压器的原副边匝比为:mod min secmin 270(120%) 2.95273.176 in V K V -?-= == 2)选磁芯 初选新康达锰锌软磁铁氧体铁芯EE42A ,其2235e A mm =。 3)确定原副边匝数 匝数的确定可以先确定原边,也可先确定副边,但由于原边的电压是变化的,可根据输出是固定的来先确定副边匝数N s ,由电磁感应定律有: 4o s s m e V N f B A = (4.2) 将60o V V =,310010s f Hz =?,0.15m B T =,2235e A mm =代入上式有: 36 60 4.25534100100.1523510s N -==????? 取4s N =匝,又由11.75p s N K N =?=,取12p N =匝,N p 为变压器原边匝数。 4)导线的选取 导线应根据导线的集肤效应的影响来选取导线的线径,即根据穿透深度的大小来选取线径,导线线径应小于两倍的穿透深度?,穿透深度根据下面的公式计算: ?=(4.3)

移相全桥ZVZCS主电路综述

移相全桥ZVZCS DC/DC变换器综述 [导读]移相全桥ZVZCS DC/DC变换器综述摘要:概述了9种移相全桥ZVZCSDC/DC 变换器,简要介绍了各种电路拓扑的工作原理,并对比了优缺 关键词:变换器 移相全桥ZVZCS DC/DC变换器综述 摘要:概述了9种移相全桥ZVZCSDC/DC变换器,简要介绍了各种电路拓扑的工作原理,并对比了优缺点,以供大家参考。 关键词:移相控制;零电压零电流开关;全桥变换器 1 概述 所谓ZVZCS,就是超前桥臂实现零电压导通和关断,滞后桥臂实现零电流导通和关断。ZVZCS方案可以解决ZVS方案的故有缺陷,即可以大幅度降低电路内部的循环能量,提高变换效率,减小副边占空比丢失,提高最大占空比,而且其最大软开关范围不受输入电压和负载的影响。 滞后桥臂零电流开关是通过在原边电压过零期间使原边电流复位来实现的。即当原边电流减小到零后,不允许其继续反方向增长。原边电流复位目前主要有以下几种方法: 1)利用超前桥臂开关管的反向雪崩击穿,使储存在变压器漏感中的能量完全消耗在超前桥臂的IGBT中,为滞后桥臂提供零电流开关的条件; 2)在变压器原边使用隔直电容和饱和电感,在原边电压过零期间,将隔直电容上的电压作为反向阻断电压源,使原边电流复位,为滞后桥臂开关管提供零电流开关的条件; 3)在变压器副边整流器输出端并联电容,在原边电压过零期间,将副边电容上的电压反射到原边作为反向阻断电压源,使原边电流迅速复位,为滞后桥臂开关管提供零电流开关的条件。 2 电路拓扑 根据原边电流复位方式的不同,下面列举几种目前常见的移相全桥ZVZCS PWM DC/DC拓扑结构,以供大家参考。 1)Nho E.C.电路如图1所示[1]。该电路是最基本的移相全桥ZVZCS变换器,它的驱动信号采用有限双极性控制,从而实现超前桥臂的零电压和滞后桥臂的零电流开关。这种拓扑结构的缺陷是L1k要折衷选择,L1k 太小,在负载电流很小时,超前桥臂不能实现零电压开关;L1k太大,又限制了i L1k的变化速度,从而限制了变换器开关频率的提高。变换器给负载供电方式是电流源形式,电感L1k电流交流变化,输入电流脉动很大,

移相全桥大功率软开关电源的设计

移相全桥大功率软开关电源的设计 移相全桥大功率软开关电源的设计 1引言 在电镀行业里,一般要求工作电源的输出电压较低,而电流很大。电源的功率要求也比较高,一般都是几千瓦到几十千瓦。目前,如此大功率的电镀电源一般都采用晶闸管相控整流方式。其缺点是体积大、效率低、噪音高、功率因数低、输出纹波大、动态响应慢、稳定性差等。 本文介绍的电镀用开关电源,输出电压从0~12V、电流从0~5000A连续可调,满载输出功率为60kW.由于采用了ZVT软开关等技术,同时采用了较好 的散热结构,该电源的各项指标都满足了用户的要求,现已小批量投入生产。 2主电路的拓扑结构 鉴于如此大功率的输出,高频逆变部分采用以IGBT为功率开关器件的全桥拓扑结构,整个主电路,包括:工频三相交流电输入、二极管整流桥、EMI滤波器、滤波电感电容、高频全桥逆变器、高频变压器、输出整流环节、输出LC滤波器等。 隔直电容Cb是用来平衡变压器伏秒值,防止偏磁的。考虑到效率的问题,谐振电感LS只利用了变压器本身的漏感。因为如果该电感太大,将会导致过高 的关断电压尖峰,这对开关管极为不利,同时也会增大关断损耗。另一方面,还会造成严重的占空比丢失,引起开关器件的电流峰值增高,使得系统的性能降低。 图1主电路原理图 3零电压软开关 高频全桥逆变器的控制方式为移相FB2ZVS控制方式,控制芯片采用Unitrode公司生产的UC3875N。超前桥臂在全负载范围内实现了零电压软开关,滞后桥臂在75%以上负载范围内实现了零电压软开关。图2为滞后桥臂IGBT的驱动电压和集射极电压波形,可以看出实现了零电压开通。

开关频率选择20kHz,这样设计一方面可以减小IGBT的关断损耗,另一方面又可以兼顾高频化,使功率变压器及输出滤波环节的体积减小。 图2IGBT驱动电压和集射极电压波形图 4容性功率母排 在最初的实验样机中,滤波电容C5与IGBT模块之间的连接母排为普通的功率母排。在实验中发现IGBT上的电压及流过IGBT的电流均发生了高频震荡,图3为满功率时采集的变压器初级的电压、电流波形图。原因是并联在IGBT模块上的突波吸收电容与功率母排的寄生电感发生了高频谐振。满载运行一小时后,功率母排的温升为38℃,电容C5的温升为24℃。 图3使用普通功率母排时变压器初级电压、电流波形 为了消除谐振及减小功率母排、滤波电容的温升,我们最终采用了容性功率母排,图4为采用容性功率母排后满功率时采集的变压器初级的电压、电流波形图。从图中可以看出,谐振基本消除,满载运行一小时后,无感功率母排的温升为11℃,电容C5的温升为10℃。 图4使用容性功率母排后变压器初级电压和电流波形 5采用多个变压器串并联结构,使并联的输出整流二极管之间实现自动均流为了进一步减小损耗,输出整流二极管采用多只大电流(400A)、耐高电压(80V)的肖特基二极管并联使用。而且,每个变压器的次级输出采用了全波整流方式。这样,每一次导通期间只有一组二极管流过电流。同时,次级整流二极管配上了RC吸收网络,以抑止由变压器漏感和肖特基二极管本体电容引起 的寄生震荡。这些措施都最大限度地减小了电源的输出损耗,有利于效率的提高。 对于大电流输出来说,一般要把输出整流二极管并联使用。但由于肖特基二极管是负温度系数的器件,并联时一般要考虑它们之间的均流。二极管的并联方

ZVS移相全桥变换器设计

Z V S移相全桥变换器设 计 公司标准化编码 [QQX96QT-XQQB89Q8-NQQJ6Q8-MQM9N]

电气工程学院课程设计说明书 设计题目: 系别: 年级专业: 学生姓名: 指导教师:

电气工程学院《课程设计》任务书 课程名称:电力电子与电源综合课程设计 说明:1、此表一式三份,系、学生各一份,报送院教务科一份。 2、学生那份任务书要求装订到课程设计报告前面。 电气工程学院教务科

电力电子与电源课程设计组内自评表

摘要 首先,本文阐述PWM DC/DC变换器的软开关技术,且根据移相控制PWM全桥变换器的主电路拓扑结构,选定适合于本论文的零电压开关软开关技术的电路拓扑,并对其基本工作原理进行阐述,同时给出ZVS软开关的实现策略。 其次,对选定的主电路拓扑结构进行电路设计,给出主电路中各参量的设计及参数的计算方法,包括输入、输出整流桥及逆变桥的器件的选型,输入整流滤波电路的参数设计、高频变压器及谐振电感的参数设计以及输出整流滤波电路的参数设计。 然后,论述移相控制电路的形成,对移相控制芯片进行选择,同时对移相控制芯片UC3875进行详细的分析和设计。对主功率管MOSFET的驱动电路进最后,基于理论计算,对系统主电路进行仿真,研究其各部分设计的参数是否合乎实际电路。搭建移相控制ZVS DC/DC全桥变换器的实验平台,在系统实验平台上做了大量的实验。 实验结果表明,本文所设计的DC/DC变换器能很好的实现软开关,提高效率,使输出电压得到稳定控制,最后通过调整移相控制电路,可实现直流输出的宽范围调整,具有很好的工程实用价值。行分析和设计。 关键词开关电源;高频变压器;移相控制;零电压开关;UC3875

ZVZCS移相全桥软开关工作原理

ZVZCS移相全桥软开关工作原理 (1) 主电路拓扑 本设计采用ZVZCS PWM移相全桥变换器,采用增加辅助电路的方法复位变压器原边电流,实现了超前桥臂的零电压开关(ZVS)和滞后桥臂的零电流开关(ZCS)。电路拓扑如图3.6所示。 图3.6 全桥ZVZCS电路拓扑 当1S、4S导通时,电源对变压器初级绕组正向充电,将能量提供给负载,同时,输出端钳位电容Cc充电。当关断1S时,电源对1C充电,2C通过变压器初级绕组放电。由于1C的存在,1S为零电压关断,此时变压器漏感k L和输出滤波电感o L串联,共同提供能量,由于Cc的存在使得变压器副边电压下降速度比原边慢,导致电位差并产生感应电动势作用于L,加速了2C的放电,为2S的零电压开通提供条件。当Cc放电完全后,整流二极管全部k 导通续流,在续流期间原边电流已复位,此时关段4S,开通3S,由于漏感k L两边电流不能突变,所以4S为零电流关断,3S为零电流开通。 (2) 主电路工作过程分析[7] 半个周期内将全桥变换器的工作状态分为8种模式。 ①模式1 S、4S导通,电源对变压器初级绕组正向充电,将能量提供给负载,同时,输出端箝1 位电容Cc充电。输出滤波电感o L与漏感k L相比较大,视为恒流源,主电路简化图及等效电路图如图3.7所示。

图3.7 模式1主电路简化图及等效电路图 由上图可以得到如下方程: p Cc o s k dI V V V L n n dt = ++ (3-3) p c o I nI nI += (3-4) Cc c c dV I C dt =- (3-5) 由(3-3)式得: 2p Cc k d I dV nL dt dt =- (3-6) 将(3-6)式代入(3-5)式得: 22 p c c k d I I nC L dt = (3-7) 将(3-7)式代入(3-4)式得: 22 2 p p c k o d I I n C L nI dt += (3-8) 解微分方程: 22 2p p o c k c k d I I I nC L dt n C L + = (3-9) 其初始条件为: (0)0Cc t V ==;(0)0c t I == (3-10) 代入方程解得: ()sin s o p o k V V n I t t nI L ωω -= + (3-11) ()sin p s o c o k I V V n I t I t n nL ωω -=- =- (3-12)

10kW移相全桥ZVS设计

10kW全桥移相ZVS PWM整流模块的设计 摘要:本文介绍了10kW全桥移相ZVS PWM直流整流模块主电路和控制电路的设计,给出了主 变压器和谐振电感的参数计算,最后给出了实验波形。叙词:全桥移相, 零电压开关, 降频Abst ract: This paper introduces the structure of 10kW ZVS-FB PWM Switch Power Module, then discu sses the design of main circuit and control system and parameter calculation, finally presents the experim ent result. Keywords: full bridge phase-shift, zero-voltage switching (ZVS), frequency reduced 1 引言 在大型发电厂中,由于需要的直流负荷比较大,蓄电池的容量通常都在2000AH以上。若采用常规的10A或20A的开关整流模块,一般需要20或10以上的模块并联,但并联的模块过多,对模块之间的均流会带来一定的影响, 而且模块的可靠性并不随着模块的增加而增加, 一般并联的模块数量最好在10个以下。目前在电厂中大容量的直流充电电源采用相控电源的比较多,因此很有必要开发针对电厂用户的大容量开关整流充电电源。本文介绍的10kW 全桥移相ZVS PWM整流模块正是考虑了这种要求,它采用了加钳位二极管的ZVS-FB P WM直流变换技术,控制电路采用UC38专用全桥移相控制芯片,同时在轻载时采用了降低开关频率等技术,具有重量轻,效率高等优点。 2 整流模块主电路设计与参数计算 整流模块的主电路原理框图如图1所示,由输入EMI滤波器,整流滤波,ZVS全桥变换器,输出整流滤波和输出EMI滤波器等组成。 图1中由PQ1~PQ4开关管,钳位二极管D1,D2,谐振电感Lr,隔直电容CB,主变压器T 1以及吸收电阻和电容等组成全桥移相ZVS变换器,其中PQ1,PQ3为超前管,PQ2,PQ4为滞后管。PQ1(PQ3)超前PQ4(PQ2)一定的角度,即移相角。PQ1~PQ4采用IGBT单管并联组成,开关频率为25KHZ。

大功率移相全桥软开关电源的设计

工程硕士学位论文 大功率移相全桥软开关电源的设计 THE DESIGN ON SOFT SWITCHING POWER SUPPLY WITH HIGH POWER PHASE-SHIFTED FULL-BRIDGE 雷连方 哈尔滨工业大学 2006年12月

国内图书分类号 : TM92 国际图书分类号: 621.38 工程硕士学位论文 大功率移相全桥软开关电源的设计 硕士研究生:雷连方 导师:刘瑞叶 教授 副导师:肖连存 高工 申请学位:工程硕士 学科、专业:电气工程 所在单位:中国科工集团第三总体设计部 答辩日期:2006年12 月 授予学位单位:哈尔滨工业大学

Classified Index: TM92 U.D.C: 621.38 Dissertation for the Master Degree in Engineering THE DESIGN ON SOFT SWITCHING POWER SUPPLY WITH HIGH POWER PHASE-SHIFTED FULL-BRIDGE C a n d i d a t e:Lei Lianfang Supervisor:Prof. Liu Ruiye Associate Supervisor:Senior Engineer Xiaolianchun Academic Degree Applied for:Master of Engineering Speciality:Electrical Engineering Affiliation:The 3rd Headquarters of China Aerospace Science Industry Company Date of Defence:December,2006 Degree-Conferring-Institution:Harbin Institute of technology

1KW移相全桥变换器设计

课程设计 课程名称电力电子技术课程设计 题目名称1kW移相全桥直流变换器设计专业班级11级电气工程及其自动化学生姓名 学号 指导教师 二○一四年四月十三日 目录

一,设计内容和要求 (3) 1.1 主电路参数 (3) 1.2 设计内容 (3) 1.3 仿真波形 (3) 二,设计方案 (3) 2.1 主电路工作原理 (3) 2.2 芯片说明 (4) 2.2.1采用的芯片说明 (4) 2.2.2 UCC3895引脚说明 (5) 2.2.3 UCC3895工作原理 (6) 图2-4 基于ucc3895芯片的控制电路图 (8) 2.3控制电路设计 (8) 三,设计论述 (8) 3.1电路参数设计: (8) 3.1.1 主电路参数: (8) 3.1.2 变压器的设计 (9) 3.1.3 输出滤波电感的设计 (10) 3.1.4 功率器件的选择 (11) 3.1.5 谐振电感的设计 (12) 3.1.6 输出滤波电容和输入电容和选择 (13) 四,仿真设计 (14) 五,结论 (15) 六,参考文献 (16)

一,设计内容和要求 Vin=300VDC,Vo=48VDC,Po=1kW,fs=100kHz,输出电压纹波为0.1V 1.2 设计内容 主电路:选择开关管、整流二极管型号,计算滤波电感感值、滤波电容容值,谐振电感感值、占空比、变压器匝比等电路参数。 控制电路:UCC3895芯片周边元器件参数 1.3 仿真波形 给出仿真电路,得到仿真波形 二,设计方案 2.1 主电路工作原理 控制主要有两种:双极性控制和移相控制,本设计主要使用移相控制。由图2-2可见,电路结构与普通双极性PWM变换器类似。Q1、D1和Q4、D4组成超前桥臂、Q2、D2和Q3、D3组成滞后桥臂;C1~C4分别是Q1~Q4的谐振电容,包括寄生电容和外接电容;Lr是谐振电感,包括变压器的漏感;T副方和DR1、DR2组成全波整流电路,Lf、Cf组成输出滤波器,R1是负载。Q1和Q3分别超前Q4和Q2一定相位(即移相角),通过调节移相角的大小来调节输出电压。由图2可见,在一个开关周期中,移相全桥ZVS PWM DC-DC变换器有12种开关模态,通过控制4个开关管Q1~Q4在A、B两点得到一个幅值为Vin的交流方波电压;经过高频变压器的隔离变压后,在变压器副方得到一个幅值为Vin/K的交流方波电压,然后通过由DR1和DR2构成的输出整流桥,得到幅值为Vin/K的直流方波电压。这个直流方波电压经过 Lf和Cf组成的输出滤波器后成为一个平直的直流电压,其电压值为Uo=DVin/K(D是占空比)。Ton是导通时间Ts是开关周期(T=t12-t0)。通过调节占空比D来调节输出电压Uo。

移相全桥为主电路的软开关电源设计详解

移相全桥为主电路的软开关电源设计详解 2014-09-11 11:10 来源:电源网作者:铃铛 移相全桥变换器可以大大减少功率管的开关电压、电流应力和尖刺干扰,降低损耗,提高开关频率。如何以UC3875为核心,设计一款基于PWM软开关模式的开关电源?请见下文详解。 主电路分析 这款软开关电源采用了全桥变换器结构,使用MOSFET作为开关管来使用,参数为1000V/24A。采用移相ZVZCSPWM控制,即超前臂开关管实现ZVS、滞后臂开关管实现ZCS。电路结构简图如图1,VT1~VT4是全桥变换器的四只MOSFET开关管,VD1、VD2分别是超前臂开关管VT1、VT2的反并超快恢复二极管,C1、C2分别是为了实现VTl、VT2的ZVS设置的高频电容,VD3、VD4是反向电流阻断二极管,用来实现滞后臂VT3、VT4的ZCS,Llk为变压器漏感,Cb为阻断电容,T 为主变压器,副边由VD5~VD8构成的高频整流电路以及Lf、C3、C4等滤波器件组成。 图1 1.2kw软开关直流电源电路结构简图 其基本工作原理如下: 当开关管VT1、VT4或VT2、VT3同时导通时,电路工作情况与全桥变换器的硬开关工作模式情况一样,主变压器原边向负载提供能量。通过移相控制,在关断VT1时并不马上关断VT4,而是根据输出反馈信号决定移相角,经过一定时间后再关断VT4,在关断VT1之前,由于VT1导通,其并联电容C1上电压等于VT1的导通压降,理想状况下其值为零,当关断VT1时刻,C1开始充电,由于电容电压不能突变,因此,VT1即是零电压关断。 由于变压器漏感L1k以及副边整流滤波电感的作用,VT1关断后,原边电流不能突变,继续给Cb充电,同时C2也通过原边放电,当C2电压降到零后,VD2自然导通,这时开通VT2,则VT2即是零电压开通。 当C1充满电、C2放电完毕后,由于VD2是导通的,此时加在变压器原边绕组和漏感上的电压为阻断电容Cb两端电压,原边电流开始减小,但继续给Cb 充电,直到原边电流为零,这时由于VD4的阻断作用,电容Cb不能通过VT2、

移相控制全桥ZVS—PWM变换器的分析与设计

移相控制全桥ZVS—PWM变换器的分析与设计 摘要:阐述了零电压开关技术(ZVS)在移相全桥变换器电路中的应用。分析了电路原理和各工作模态,给出了实验结果。着重分析了主开关管和辅助开关管的零电压开通和关断的过程厦实现条件。并且提出了相关的应用领域和今后的发展方向。关键词:零电压开关技术;移相控制;谐振变换器 0 引言 上世纪60年代开始起步的DC/DC PWM功率变换技术出现了很大的发展。但由于其通常采用调频稳压控制方式,使得软开关的范围受到限制,且其设计复杂,不利于输出滤波器的优化设计。因此,在上世纪80年代初,文献提出了移相控制和谐振变换器相结合的思想,开关频率固定,仅调节开关之间的相角,就可以实现稳压,这样很好地解决了单纯谐振变换器调频控制的缺点。本文选择了全桥移相控制ZVS-PWM谐振电路拓扑,在分析了电路原理和各工作模态的基础上,设计了输出功率为200W的DC/DC变换器。 1 电路原理和各工作模态分析 1.1 电路原理 图1所示为移相控制全桥ZVS—PWM谐振变换器电路拓扑。Vin为输入直流电压。Si(i=1.2.3,4)为第i个参数相同的功率MOS开关管。Di和Gi(i=l,2,3,4)为相应的体二极管和输出结电容,功率开关管的输出结电容和输出变压器的漏电感Lr作为谐振元件,使4个开关管依次在零电压下导通,实现恒频软开关。S1和S3构成超前臂,S2和S4构成滞后臂。为了防止桥臂直通短路,S1和S3,S2和S4之间人为地加入了死区时间△t,它是根据开通延时和关断不延时原则来设置同一桥臂死区时间。S1和S4,S2和S3之间的驱动信号存在移相角α,通过调节α角的大小,可调节输出电压的大小,实现稳压控制。Lf和Cf构成倒L型低通滤波电路。 图2为全桥零电压开关PWM变换器在一个开关周期内4个主开关管的驱动信号、两桥臂中点电压VAB、变压器副边电压V0以及变压器原边下面对电路各工作模态进行分析,分析时时假设:

单相全桥逆变电路原理

单相全桥型逆变电路原理 电压型全桥逆变电路可看成由两个半桥电路组合而成,共4个桥臂,桥臂1和4为一对,桥臂2和3为另一对,成对桥臂同时导通,两对交替各导通180° 电压型全桥逆变电路输出电压uo 的波形和半桥 电路的波形uo 形状相同,也是矩型波,但幅值 高出一倍,Um=Ud 输出电流io 波形和半桥电路的io 形状相同,幅值增加一倍 VD1 、V1、VD2、V2相继导通的区间,分别对应VD1和VD4、V1和V4、VD2和VD3、V2和V3相继导通的区间 + - VD 3 VD 4

单相半桥电压型逆变电路工作波形 全桥逆变电路是单相逆变电路中应用最多的, 对电压波形进行定量分析将幅值为Uo 的矩形波 uo 展开成傅里叶级数,得 其中基波幅值Uo1m 和基波有效值Uo1分别为 上述公式对半桥逆变电路也适用,将式中的ud 换成Ud /2 d d o1m 27.14U U U == π d d 1o 9.022U U U == π O ON u o U - U m i o VD 1 VD 2 VD 1 VD 2 ?? ? ??+++= t t t U u ωωωπ5sin 513sin 31sin 4d o

uo 为正负电压各为180°的脉冲时,要改变输出电压有效值只能通过改变输出直流电压Ud 来实现 t 1时刻前V 1和V 4导通,输出电压u o 为u d t 1时刻V 3和V 4栅极信号反向,V 4截止,因i o 不能突变,V 3不能立即导通,VD 3导通续流,因V 1和VD 3同时导通,所以输出电压为零 各 IGBT 栅极信号uG1~uG4及输出电压uo 、输出电流io 的波形 u u u u i o u o 实际就是调节输出电压脉冲的宽度 ? 各IGBT 栅极信号为180°正偏, 180°反偏,且V 1和V 2栅极信号互补,V 3和V 4栅极信号互补 ? V 3的基极信号不是比V 1落后 180°,而是只落后θ ( 0< θ <180°) ? V 3、V 4的栅极信号分别比V 2、V 1 VD 3 VD 4 采用移相方式调节逆变电路的输出电压

全桥型开关稳压电源设计

电力电子课程设计说明书 全桥型开关稳压电源设计 摘要 本次课程设计了一台输出电压为48V稳压范围宽、大功率的全桥型开关稳压电源、并给出了设计波形图。 该课程设计主要运用了软开关PWM技术。给出了全桥整流电路、逆变电路驱动电路、控制电路的具体设计方法。本全桥型开关稳压电源最大功率达1000W,输出电流约为20A,设计采用了AC/DC/AC/DC变换方案。一次整流后的直流电压,经过有源功率因数校正环节以提高系统的功率因数,再经全桥变换电路逆变后,由高频变压器隔离降压,最后整流输出直流电压。 在设计中首先画出主电路图,主电路图由整流电路、逆变电路组成。全桥电路的开关元件使用的是MOSFET。全桥移相电路采用UC3875控制芯片,并作数据处理,MATLAB仿真作出了不同角度的仿真波形图。并说明其工作原理,再通过基本计算,选择触发电路和保护电路的结构以及晶闸管的型号和变压器的变比及容量,完成本设计的任务。 关键词:开关电源;全桥;PWM控制电路;整流;逆变;高频变压器 ABSTRACT

The curriculum design a output voltage 48V voltage wide range, high power full bridge switch regulated power supply and given the waveform diagram is designed. This course design mainly uses the soft switch PWM technology. The design method of the circuit and the control circuit of the whole bridge rectifier circuit and the inverter circuit are given.. The full bridge switch regulated power supply maximum power up to 1000W, output current is about 20a, designed using AC / DC / AC / DC converter scheme. A rectified DC voltage, by means of active power factor correction link to improve the power factor of the system, again after full bridge converter inverter circuit, by the high frequency transformer isolated buck. Finally, the output DC voltage. In the design, the main circuit diagram is drawn, the main circuit diagram is composed of the rectifier circuit and the inverter circuit.. The switching element of the whole bridge circuit is MOSFET. The full bridge phase shifted circuit uses UC3875 control chip, and data processing, MATLAB simulation to make a different angle of the simulation waveforms. And explain its working principle, again through the basic calculation, select trigger circuit and protection circuit structure and thyristor model and transformer ratio and capacity, complete the design task. Key words switching power supply; full bridge; PWM control circuit; rectifier; inverter; HF transformer 目录

全桥移相开关电源设计毕业论文

全桥移相开关电源设计毕业论文 目录 摘要 (1) ABSTRACT (2) 第一章引言 (4) 1.1开关电源简介 (4) 1.2开关电源的发展动向 (4) 1.3本设计的主要容 (5) 第二章相关电力电子器件介绍 (6) 2.1二极管 (6) 2.2双极型晶体管 (7) 2.3光电三极管 (8) 2.4场效应管 (8) 第三章 UC3875原理和应用 (10) 3.1 UC3875简介 (10) 3.1.1 uc3875各个管脚简要说明 (10) 3.1.2 uc3875的特点 (12) 3.2UC3875的应用 (12) 第四章 PWM控制技术 (14) 4.1PWM控制 (14) 4.1.1 PWM控制的基本原理 (14) 4.1.2 PWM控制具体过程 (15) 4.1.3 PWM控制的优点 (15) 4.1.4 几种PWM控制方法 (16) 4.2PWM逆变电路及其控制方法 (18) 4.2.1 计算法和调制法 (18) 4.2.2 异步调制和同步调制 (21) 第五章电力变换电路介绍 (23) 5.1整流电路 (23) 5.1.1 桥式不可控整流电路 (23) 5.1.2 单相桥式全控整流电路 (24) 5.2逆变电路 (25)

5.2.1逆变电路的基本工作原理 (26) 5.2.2电压型逆变电路 (26) 第六章 ZVS-PWM全桥移相开关电源设计 (28) 6.1电路图设计 (28) 6.2电路图原理 (28) 总结 (32) 致谢 (33) 参考文献 (34)

第一章引言 1.1开关电源简介 开关电源是利用现代电力电子技术,控制开关管开通和关断的时间比率,维持稳定输出电压的一种电源,开关电源一般由脉冲宽度调制(PWM)控制IC和MOSFET构成。开关电源和线性电源相比,二者的成本都随着输出功率的增加而增长,但二者增长速率各异。线性电源成本在某一输出功率点上,反而高于开关电源,这一点称为成本反转点。随着电力电子技术的发展和创新,使得开关电源技术也在不断地创新,这一成本反转点日益向低输出电力端移动,这为开关电源提供了广阔的发展空间。 开关电源高频化是其发展的方向,高频化使开关电源小型化,并使开关电源进入更广泛的应用领域,特别是在高新技术领域的应用,推动了高新技术产品的小型化、轻便化。另外开关电源的发展与应用在节约能源、节约资源及保护环境方面都具有重要的意义。 开关电源中应用的电力电子器件主要为二极管、IGBT和MOSFET。 SCR在开关电源输入整流电路及软启动电路中有少量应用,GTR驱动困难,开关频率低,逐渐被IGBT和MOSFET取代。 开关电源的三个条件 1、开关:电力电子器件工作在开关状态而不是线性状态 2、高频:电力电子器件工作在高频而不是接近工频的低频 3、直流:开关电源输出的是直流而不是交流 人们在开关电源技术领域是边开发相关电力电子器件,边开发开关变频技术,两者相互促进推动着开关电源每年以超过两位数字的增长率向着轻、小、薄、低噪声、高可靠、抗干扰的方向发展。开关电源可分为AC/DC和DC/DC两大类,DC/DC变换器现已实现模块化,且设计技术及生产工艺在国外均已成熟和标准化,并已得到用户的认可,但AC/DC的模块化,因其自身的特性使得在模块化的进程中,遇到较为复杂的技术和工艺制造问题。以下分别对两类开关电源的结构和特性作以阐述。

相关文档
相关文档 最新文档