文档库 最新最全的文档下载
当前位置:文档库 › 戴维南定理和诺顿定理的验证实验+数据

戴维南定理和诺顿定理的验证实验+数据

戴维南定理和诺顿定理的验证实验+数据
戴维南定理和诺顿定理的验证实验+数据

戴维南定理和诺顿定理的验证

一、实验目的

1、掌握有源二端网络代维南等效电路参数的测定方法。

2、验证戴维南定理、诺顿定理和置换定理的正确性。

3、进一步学习常用直流仪器仪表的使用方法。

二、原理说明

1、任何一个线性含源网络,如果仅研究其中一条支路的电压和电流,则可将电路的其余部分看作是一个有源二端网络(或称为含源二端网络)。

2、戴维南定理:任何一个线性有源网络,总可以用一个理想电压源与一个电阻的串联支路来等效代替,此电压源的电压等于该有源二端网络的开路电压U0C,其等效内阻R0等于该网络中所有独立源均置零(理想电压源视为短路,理想电流源视为开路)时的等效电阻。这一串联电路称为该网络的代维南等效电路。

3、诺顿定理:任何一个线性有源网络,总可以用一个理想电流源与一个电阻的并联组合来等效代替,此电流源的电流等于该有源二端网络的短路电流I SC,其等效内阻R0定义与戴维南定理的相同。

4、有源二端网络等效参数的测量方法

U0C、I SC和R0称为有源二端网络的等效电路参数,可由实验测得。

(一)开路电压U OC的测量方法

(1)可直接用电压表测量。

(2)零示法测U OC

在测量具有高内阻有源二端网络的开路电压时,用电压表直接测量会造成较大的误差。为了消除电压表内阻的影响,往往采用零示测量法,如图3-1所示。

零示法测量原理是用一低内阻的稳压电源与被测有源二端网络进行比较,当稳压电源的输出电压与有源二端网络的开路电压相等时,电压表的读数将为“0”。然后将电路断开,测量此时稳压电源的输出电压,即为被测有源二端网络的开路电压。

图3-1 图3-2 (二)等效电阻R0的测量方法

(1)开路电压、短路电流法测R0

该方法只实用于内阻较大的二端网络。因当内阻很小时,若将其输出端口短路则易损坏其内部元件,不宜用此法。

该测量方法是:在有源二端网络输出端开路时,用电压表直接测其输出端的开路电压U 0C ,然后将其输出端短路,用电流表测其短路电流I SC ,则等效内阻为 SC

OC

O I U R = (2)伏安法测R 0

用电压表、电流表测出有源二端网络的外特性如图3-2所示。根据外特性曲线求出斜率tg φ,则内阻:SC

OC

O I U I U tg R =

??=

=φ 。 (3) 若只有电压表及电阻器,没有电流表测短路电流,或者某些被测网络本身不允许短路,则可在网络两端接入已知阻值为R 的电阻器,测量该电阻两端电压U R ,然后按下式计算。

R U U R R OC )1)((0-=

(4) 半电压法测R 0

如图3-3所示,当负载电压为被测网络开路电压的一半时,负载电阻(由电阻箱的读数确定)即为被测有源二端网络的等效内阻值。

图3-3 图3-5

三、实验设备

四、实验内容

被测有源二端网络如图3-4(a)所示。

内容一:有源二端网络戴维南等效电路参数的测定

图3-4

1、用开路电压、短路电流法测定戴维南等效电路的Uoc、R0。

按图3-4(a)接入稳压电源Us =12V和恒流源Is =10mA,不接入R L。测出U OC和Isc,并计算出R0,记录于表1。

表1

2、负载实验

按图3-4(a)接入R L。改变R L(0-10k )阻值,测量有源二端网络的外特性曲线,记录于表2。

表2

3、有源二端网络等效电阻(入端电阻)的直接测量法。见图3-4(a)。将被测有源网络内的所有独立源置零(先断开电流源I S,去掉电压源U S,再将电路中的C、D两点间用导线短接),然后用伏安法或直接用万用表的欧姆档去测定负载R L开路时A、B两点间的电阻,此即为被测网络的等效内阻R0,或称网络的入端电阻Ri。用此法测得的电阻为:527Ω

4、用半电压法测量被测网络的等效内阻R0 ,用零示法测量被测网络的开路电压Uoc 。电路图及数据表格自拟。

内容二:戴维南定理的验证

取一只10K可调电位器,将其阻值调整到等于按内容一中的步骤1所得的等效电阻R0值,然后令其与直流稳压电源(调到步骤1时所测得的开路电压Uoc值)相串联,电路如图3-4(b)所示,仿照内容一中的步骤2测其外特性,对戴维南定理进行验证,记录于表3。

表3

内容三:诺顿定理的验证

取一只10K可调电位器,将其阻值调整到等于按内容一中的步骤1所得的等效电阻R0 值,然后令其与直流恒流源(调到步骤1时所测得的短路电流I SC值)相并联,电路如图3-5所示,仿照内容一中的步骤2测其外特性,对诺顿定理进行验证,记录于表4。

表4

五、注意事项

1. 测量时应注意电流表量程的更换。

2. 实验步骤“5”中,电压源置零时不可将稳压源短接。

3. 用万用表直接测Ro时,网络内的独立源必须先置零,以免损坏万用表。其次,欧姆档必须经调零后再进行测量。

4. 用零示法测量Uoc时,应先将稳压电源的输出调至接近于Uoc,再按图8-3测量。

5. 改接线路时,要关掉电源。

六、预习思考题

1. 在求戴维南或诺顿等效电路时,作短路试验,测Isc的条件是什么?在本实验中可否直接作负载短路实验?请实验前对线路8-4(a)预先作好计算,以便调整实验线路及测量时可准确地选取电表的量程。

答:测Isc的条件是:插入毫安表,短接A、B端。在本实验中可直接做负载短路实验,测出开路电压Uoc与短路电流Isc,等效电阻Ro=Uoc/Isc。

2. 说明测有源二端网络开路电压Uoc及等效电阻R0的几种方法,并比较其优缺点。

答:(1)测开路电压Uoc的方法优缺点比较:

①零示法测Uoc。优点:可以消除电压表内阻的影响;缺点:操作上有难度,难于把握精确度。

②直接用电压表测Uoc。优点:方便简单,一目了然;缺点:会造成较大的误差。

(2)测等效电阻Ro的方法优缺点比较:

①直接用欧姆表测Ro。优点:方便简单,一目了然;缺点:会造成较大的误差。

②开路电压、短路电流测Ro。优点:测量方法简单,容易操作;缺点:当二端网络的内阻很小时,容易损坏其内部元件,因此不宜选用。

③伏安法测Ro。优点:利用伏安特性曲线可以直观地看出其电压与电流的关系;缺点:需作图,比较繁琐。

④半电压法测Ro.优点:方法比较简单;缺点:难于把握精确度

七、实验报告

1. 根据步骤2、3、4,分别绘出曲线,验证戴维南定理和诺顿定理的正确性,并分析产

生误差的原因。

答:误差主要来源于实验操作的不当,读数时存在差异,实验仪器本身的不精确等等,这些都是导致误差的原因

2. 根据步骤1、5、6的几种方法测得的Uoc与Ro与预习时电路计算的结果作比较,你能得出什么结论。

答:R0的理论值为[(330+510)*10]/(330+510+10)+510=520Ω,则:

由1中测得的R0值的相对误差为:(534-520)/520*100%=2.6%;

由5中测得的R0值的相对误差为:(527-520)/520*100%=1.35%;

由6中测得的R0值的相对误差为:(526-520)/520*100%=1.15%.

U的理论值为12+520*0.01=17.2v,则:

由1中测得的U值的相对误差为:(17.2-17.09)/17.2*100%=0.64%;

由6中测得的U值的相对误差为:(17.2-17.08)/17.2*100%=0.70%。

3. 归纳、总结实验结果。

答:在实验测定误差允许的范围内,等效电路与原电路外特性一致。戴维南原理正确,即任何有缘二端口网络均可等效为一个电压源和一个电阻串联组合,其中电压源US大小就是有源二端电路的开路电压Uoc;电阻R0大小是有源二端电路除去电源的等效电阻R0。用半电压法和零示法测量被测网络的等效内阻R0及其开路电压时存在一定的误差。

4. 心得体会及其他。

戴维南定理实验报告

实验一戴维南定理 班级:17信息姓名:张晨瑞学号:20 一、实验目的 1.深刻理解和掌握戴维南定理。 2.掌握测量等效电路参数的方法。 3.初步掌握用Multisim软件绘制电路原理图的方法。 4.初步掌握Multisim软件中的Multimeter、Voltmeter、Ammeter等仪表的使用方法以及DC Operating Point、Parameter Sweep等SPICE仿真分析方法。 5.掌握电路板的焊接技术以及直流电源、万用表等仪器仪表的使用方法。 6.初步掌握Origin绘图软件的应用方法。 二、实验原理 一个含独立源、线性电阻的受控源的一端口网络,对外电路来说,可以用一个电压源和电子的床帘组合来等效置换,去等效电压源的电压等于该一端口网络的开路电压,其等效电阻等于该一端口网络中所有独立源都置为零后的输入电阻。这一定理成为戴维南定理。 三、实验方法 1.比较测量法 戴维南定理是一个等效定理,因此应想办法验证等效前后对其他电路的影响是否一致,即等效前后的外特性是否一致。 实验中首先测量原电路的外特性,在测量等效电路的外特性,最后比较两者是否一致,等效电路中的等效参数的获取,可通过测量得到,并同根据电路结构所推到计算出的结果相比较。 实验中期间的参数应使用实际测量值。实际值和期间的标称值是有差别的,所有的理论计算应基于器件的实际值。 2.等效参数的获取

等效电压Uoc:直接测量被测电路的开路电压,该电压就是等效电压。 等效电阻Ro:将电路中所有电压源短路,所有电流源开路,使用万用表阻挡测量。 3.测量点个数以及间距的选取 测试过程中测量的点个数以及间距的选取与测量特性和形状有关。对于直线特性,应使测量间距尽量平均,对于非线性特性应在变化陡峭处多测些点。测量的目的是为了用有限的点描述曲线的整体形状和细节特征。因此应注意测试过程中测量的点个数以及间距的选取。 为了比较完整地反映特性和形状,一般选取10个以上的测量点。 本实验中由于特性曲线是直线形状,因此测量点应均匀选取。为了办政策亮点分布合理,迎新测量特性的最大值和最小值,再根据点数合理选择测量间距。 4.电路的外特性测量方法 在输出端口上接可变负载(如电位器),改变负载(调节电位器)测量端口的电压和电流。 四、实验仪器与器件 1.计算机一台 2.通用电路板一块 3.万用表两只 4.直流稳压电源一台 5.电阻若干 五、实验内容 1.测量电阻的实际值,填表,并计算等效电源电压和等效电阻 2.Multisim仿真 (1)创建电路; (2)用万用表测量端口开路电压和短路电流,并计算等效电阻; (3)用万用表的Ω挡测量等效电阻,与(2)比较,将测量结果 填入表1中;

戴维南定理和诺顿定理实验_模板

实验三戴维南定理和诺顿定理实验 一、实验目的 1.通过实验验证戴维南定理和诺顿定理,加深理解等效电路的概念 2.学习用补偿法测量开路电压 二、原理 1.戴维南定理:一个含独立电源、线性电阻和受控源的一端口,对外电路来说,可以用一个电压源和电阻的串联组合等效置换。 诺顿定理:一个含独立电源、线性电阻和受控源的一端口,对外电路来说,可以用一个电流源和电导的并联组合等效电路。 以上等效变换的电路如图3-1所示。 (a) 线性含源一端口电路(b) 基于戴维南定理的替代电路(c) 基于诺顿定理的替代电路 图3-1 等效变换图 2.含源一端口网络开路电压的测量方法 (1)直接测量法: 当电压表内阻R v相比可以忽略不计时,可以直接用电压表测量器开路电压U oc。 (2)补偿法: 当电压表内阻R v相比不可忽略时,补偿法可以消除或减小电压表内阻在测量中产生的误差。 图3-2 3.测量一端口网络输入端等效电阻R i (1)测量含源一端口网络的开路电压U oc和短路电流I sc,则

oc i sc U R I = (2)将含源一端口网络除源,化为无源网络P ,然后按图接线,测量U s 和I ,则 s i U R I = 图3-3 三、实验仪器和器材 1. 0-30V 可调直流稳压电源 2. +15直流稳压电源 3. 0~200mA 可调恒流源 4. 电阻 5. 电阻箱 6. 交直流电压电流表/电流表 7. 实验电路板 8. 短接桥 9. 导线 四、实验内容及步骤 1. 测量含源一端口网络的外部伏安特性 测量含源一端口网络的外部伏安特性:用电阻箱作为一端口网络的外接电阻R L ,如图3-4所示,测量结果在表3-1中。

戴维南定理实验报告

戴维南定理实验报告

戴维南定理 班级:14电信学号:1428403003 姓名:王舒成绩:一实验原理及思路 一个含独立源,线性电阻和受控源的二端网络,其对外作用可以用一个电压源串联电阻的. 等效电源代替,其等效电压源的电压等于该二端网络的开路电压,其等效内阻是将该二端网络中所有的独立源都置为零后从从外端口看进去的等效电阻。这一定理称为戴维南定理。 本实验采用如下所示的实验电路图a: 等效后的电路图如下b: 测它们等效前后的外特性,然后验证等效前后对电路的影响。 二实验内容及结果

⒈计算等效电压和电阻 计算等效电压:电桥平衡。∴=,33 1131R R R R Θ Uoc=3 11 R R R +=2.609V 。 计算等效电阻:R= ??? ??? ? ?+++ ??? ??? ??++3311111221 3111121 R R R R R R =250.355 ⒉用Multisim 软件测量等效电压和等效电阻 测量等效电阻是将V1短路,开关断开如下图所示: -+ Ro=250.335O Ω 测量等效电压是将滑动变阻器短路如下图 V120 V R11.8kΩ R2220Ω R112.2kΩ R22270Ω R33330ΩR3270Ω 50% 2 4 J1Key = A XMM1 6 a 1 7 Uo=2.609V ⒊用Multisim 仿真验证戴维南定理 仿真数据

等效电压Uoc=2.609V 等效电阻Ro=250.355Ω 电压/V 2.6 09 2.4 08 2.3 87 2.3 62 2.3 31 2.2 9 2.2 36 2.1 58 2.0 41 1.8 41 1.4 22 电流/mA 0 0.8 03 0.8 85 0.9 84 1.1 1 1.2 72 1.4 9 1.7 99 2.2 68 3.0 68 4.7 4 电压/V 2.6 09 2.4 08 2.3 87 2.3 63 2.3 3 2.2 91 2.2 36 2.1 58 2.0 41 1.8 41 1.4 22 电流/mA 0 0.8 03 0.8 85 0.9 85 1.1 1 1.2 72 1.4 9 1.7 99 2.2 68 3.0 68 4.7 5

戴维南定理实验报告

戴维南定理 学号:1128403019 姓名:魏海龙班级:传感网技术 一、实验目的: 1、深刻理解和掌握戴维南定理。 2、掌握测量等效电路参数的方法。 3、初步掌握用multisim软件绘制电路原理图。 4、初步掌握multisim软件中的multimeter、voltmeter、ammeter 等仪表的使用以及DC operating point、paramrter sweep等 SPICE仿真分析方法。 5、掌握电路板的焊接技术以及直流电源、万用表等仪器仪表的使 用。 6、初步掌握Origin绘图软件的应用。 二、实验器材: 计算机一台、通用电路板一块、万用表两只、直流稳压电源一台、电阻若干。 三、实验原理:一个含独立源、线性电阻和受控源的一端口网络,对 外电路来说,可以用一个电压源和电阻的串联组合来等效置 换,其等效电压源的电压等于该一端口网络的开路电压,其等 效电阻等于该一端口网络中所有独立源都置为零后的数日电 阻。 四、实验内容: 1、电路图:

2、元器件列表: 2、实验步骤: (1)理论分析: 计 算等效电压: 电桥平衡。∴=,331131R R R R Uoc=3 11 R R R +=2.6087V 。 计算等效电阻:R= ??? ??? ? ?+++ ??? ??? ? ?++3311111221 3111121 R R R R R R =250.355

(2)测量如下表中所列各电阻的实际值,并填入表格: 然后根据理论分析结果和表中世纪测量阻值计算出等效电源电压和等效电阻,如下所示: Uc=2.6087V R=250.355Ω (3)multisim仿真: a、按照下图所示在multisim软件中创建电路 b、用万用表测量端口的开路电压和短路电流,并计算等 效电阻,结果如下:Us= 2.609V I= 10.42mA R=250.38Ω

戴维南定理和顿定理的验证实验+数据

戴维南定理和诺顿定理的验证 一、实验目的 1、掌握有源二端网络代维南等效电路参数的测定方法。 2、验证戴维南定理、诺顿定理和置换定理的正确性。 3、进一步学习常用直流仪器仪表的使用方法。 二、原理说明 1、任何一个线性含源网络,如果仅研究其中一条支路的电压和电流,则可将电路的其余部分看作是一个有源二端网络(或称为含源二端网络)。 2、戴维南定理:任何一个线性有源网络,总可以用一个理想电压源与一个电阻的串联支路来等效代替,此电压源的电压等于该有源二端网络的开路电压U0C,其等效内阻R0等于该网络中所有独立源均置零(理想电压源视为短路,理想电流源视为开路)时的等效电阻。这一串联电路称为该网络的代维南等效电路。 3、诺顿定理:任何一个线性有源网络,总可以用一个理想电流源与一个电阻的并联组合来等效代替,此电流源的电流等于该有源二端网络的短路电流I SC,其等效内阻R0定义与戴维南定理的相同。 4、有源二端网络等效参数的测量方法 U0C、I SC和R0称为有源二端网络的等效电路参数,可由实验测得。 (一)开路电压U OC的测量方法 (1)可直接用电压表测量。 (2)零示法测U OC 在测量具有高内阻有源二端网络的开路电压时,用电压表直接测量会造成较大的误差。为了消除电压表内阻的影响,往往采用零示测量法,如图3-1所示。 零示法测量原理是用一低内阻的稳压电源与被测有源二端网络进行比较,当稳压电源的输出电压与有源二端网络的开路电压相等时,电压表的读数将为“0”。然后将电路断开,测量此时稳压电源的输出电压,即为被测有源二端网络的开路电压。 图3-1 图3-2 (二)等效电阻R0的测量方法 (1)开路电压、短路电流法测R0

电路分析基础实验报告

实验一 1. 实验目的 学习使用workbench软件,学习组建简单直流电路并使用仿真测量仪表测量电压、电流。 2.解决方案 1)基尔霍夫电流、电压定理的验证。 解决方案:自己设计一个电路,要求至少包括两个回路和两个节点,测量节点的电流代数和与回路电压代数和,验证基尔霍夫电流和电压定理并与理论计算值相比较。 2)电阻串并联分压和分流关系验证。 解决方案:自己设计一个电路,要求包括三个以上的电阻,有串联电阻和并联电阻,测量电阻上的电压和电流,验证电阻串并联分压和分流关系,并与理论计算值相比较。 3.实验电路及测试数据 4.理论计算 根据KVL和KCL及电阻VCR列方程如下: Is=I1+I2, U1+U2=U3, U1=I1*R1,

U2=I1*R2, U3=I2*R3 解得,U1=10V,U2=20V,U3=30V,I1=5A,I2=5A 5. 实验数据与理论计算比较 由上可以看出,实验数据与理论计算没有偏差,基尔霍夫定理正确; R1与R2串联,两者电流相同,电压和为两者的总电压,即分压不分流; R1R2与R3并联,电压相同,电流符合分流规律。 6. 实验心得 第一次用软件,好多东西都找不着,再看了指导书和同学们的讨论后,终于完成了本次实验。在实验过程中,出现的一些操作上的一些小问题都给予解决了。 实验二 1.实验目的 通过实验加深对叠加定理的理解;学习使用受控源;进一步学习使用仿真测量仪表测量电压、电流等变量。 2.解决方案 自己设计一个电路,要求包括至少两个以上的独立源(一个电压源和一个电流源)和一个受控源,分别测量每个独立源单独作用时的响应,并测量所有独立源一起作用时的响应,验证叠加定理。并与理论计算值比较。 3. 实验电路及测试数据 电压源单独作用:

戴维南定理验证试验

南京信息工程大学 实验(实习)报告 1.实验目的: 熟悉和掌握多功能电表(万用表)、电流表、电压表的使用方法和测量方法。 2.实验内容: 通过试验验证戴维南定理的正确性,并借助多功能电表(万用表)测量等效电阻、戴维南等效电压。 3.实验步骤: (1)完成上述连线后,启动电源开关,并记录电流表和电压表的读数 U= 2.371V ,I= 5.045mA (2) 求A 、B 两端开路电压th E 和等效电阻th R 。首先将L R 电阻两端开路,用万用表电压挡测量A 、B 两端的开路电压 th E ;在L R 电阻两端开路的同时,再将电池短路,用万用表欧姆挡测量A 、B 两端等效电阻th R th E = 3.8095V ,th R =285.1

(3)得到上述测量值th E 、th R 后,将电阻L R 和th E 、th R 、电流表、电压表重新连线,画出下图电路,启动电源开关,记录电流表和电压表的读数 U=2.371 V ,I= 5.045mA 4.实验分析和总结 由上述实验步骤可以证明戴维南定理的正确性,戴维南原理正确,即任何有缘二端口网络均可等效为一个电压源和一个电阻串联组合,其中电压源U 大小就是有源二端电路的开路电压Uo ;电阻R 大小是有源二端电路除去电源的等效电阻R0。 该实验很好的反映了戴维南定理的实际应用,EWB 是较好电路仿真工具,软件能很方便的进行很多原理的仿真,这对我们今后的工作有很大的帮助。通过一节课的上机实验练习及本次报告的书写,我深深的发现了自身的不足,需要继续健身了解该软件,并不断练习巩固,不断总结经验,在一次次试验中得出模拟数据,能够更好地用于实际电路中。

基尔霍夫定律实验报告2(完整版)

报告编号:YT-FS-5753-18 基尔霍夫定律实验报告 2(完整版) After Completing The T ask According To The Original Plan, A Report Will Be Formed T o Reflect The Basic Situation Encountered, Reveal The Existing Problems And Put Forward Future Ideas. 互惠互利共同繁荣 Mutual Benefit And Common Prosperity

基尔霍夫定律实验报告2(完整版) 备注:该报告书文本主要按照原定计划完成任务后形成报告,并反映遇到的基本情况、实际取得的成功和过程中取得的经验教训、揭露存在的问题以及提出今后设想。文档可根据实际情况进行修改和使用。 一、实验目的 (1)加深对戴维南定理和诺顿定理的理解。 (2)学 习戴维南等效参数的各种测量方法。 (3)理解等效置 换的概念。 (4)学习直流稳压电源、万用表、直流电流表和电 压表的正确使用方法。 二、实验原理及说明 (1)戴维南定理是指—个含独立电源、线性电阻和 受控源的一端口,对外电路来说,可以用一个电压源 和一个电阻的串联组合来等效置换。此电压源的电压 等于该端口的开路电压UOC,而电阻等于该端口的全 部独立电源置零后的输入电阻,如图2-l所示。这个 电压源和电阻的串联组合称为戴维南等效电路。等效

电路中的电阻称为戴维南等效电阻Req。 所谓等效是指用戴维南等效电路把有源一端口网络置换后,对有源端口(1-1' )以外的电路的求解是没有任何影响的,也就是说对端口l-1'以外的电路而言,电流和电压仍然等于置换前的值。外电路可以是不同的。 (2)诺顿定理是戴维南定理的对偶形式,它指出一个含独立电源、线性电阻和受控源的一端口,对外电路来说,可以用一个电流源和电导的并联组合来等效置换,电流源的电流等于该一端口的短路电流Isc,而电导等于把该—端口的全部独立电源置零后的输入电导Geq=1/Req,见图2-l。 (3)戴维南—诺顿定理的等效电路是对外部特性而言的,也就是说不管是时变的还是定常的,只要含源网络内部除独立的电源外都是线性元件,上述等值电路都是正确的。 图2-1 一端口网络的等效置换 (4)戴维南等效电路参数的测量方法。开路电压

实验八--戴维南定理和诺顿定理

实验八戴维南定理和诺顿定理 一、实验目的 1.验证戴维南定理和诺顿定理的正确性,加深对两个定理的理解。 2.掌握含源二端网络等效参数的一般测量方法。 3.验证最大功率传递定理。 二、原理说明 戴维南定理与诺顿定理在电路分析中是一对“对偶”定理,用于复杂电路的化简,特别是当“外电路”是一个变化的负载的情况。 在电子技术中,常需在负载上获得电源传递的最大功率。选择合适的负载,可以获得最大的功率输出。 1.戴维南定理 任何一个线性有源网络,总可以用一个含有内阻的等效电压源来代替,此电压源的电动势Es等于该网络的开路电压Uoc,其等效内阻Ro等于该网络中所有独立源均置零(理想电压源视为短接,理想电流源视为开路)时的等效电阻。 2.诺顿定理 任何一个线性含源单口网络,总可以用一个含有内阻的等效电流源来代替,此电流源的电流Is等于该网络的短路电流Isc,其等效内阻Ro等于该网络中所有独立源均置零时的等效电阻。 Uoc、Isc和Ro称为有源二端网络的等效参数。 3.最大功率传递定理 在线性含源单口网络中,当把负载RL以外的电路用等效电路(Es+Ro或Is∥Ro)取代时,若使R L=Ro,则可变负载R L上恰巧可以获得最大功率: P MAX=I sc2.R L/4=Uoc2/4RL (1) 4.有源二端网络等效参数的测量方法 ⑴开路电压Uoc的测量方法 ①直接测量法 直接测量法是在含源二端网络输出端开路时,用电压表直接测其输出端的开路电压Uoc,如图8-1(a)所示。它适用于等效内阻Ro较小,且电压表的内阻Rv>>Ro的情况下。 ②零示法 在测量具有高内阻(Ro>>Rv)含源二端网络的开路电压时,用电压表进行直接测量会造成较大的误差,为了消除电压表内阻的影响,往往采用零示测量法,如图8-1(b)所示。 零示法测量原理是用一低内阻的稳压电源与被测有源二端网络进行比较,当稳压电源的输出电压Es与有源二端网络的开路电压Uoc相等时,电压表的读数将为“0”,然后将电路断开,测量此时稳压电源的输出电压,即为被测有源二端网络的开路电压。 ⑵短路电流Isc的测量方法 ①直接测量法:是将有源二端网络的输出端短路,用电流表直接测其短路电流Isc。此方法适用于内阻值 Ro较大的情况。若 二端网络的内阻值 很低时,会使Isc 很大,则不宜直接测 其短路电流。

戴维南定理实验报告

实验四戴维南定理 一、实验目的 1、验证戴维南定理 2、测定线性有源一端口网络的外特性和戴维南等效电路的外特性。 二、实验原理 戴维南定理指出:任何一个线性有源一端口网络,对于外电路而言,总可以用一个理想电压源和电阻的串联形式来代替,理想电压源的电玉等于原一端口的开路电压Uoc,其电阻(又称等效内阻)等于网络中所有独立源置零时的入端等效电阻Req,见图4-1。 图4- 1 图4- 2 1、开路电压的测量方法 方法一:直接测量法。当有源二端网络的等效内阻Req与电压表的内阻Rv相比可以忽略不计时,可以直接用电压表测量开路电压。 方法二:补偿法。其测量电路如图4-2所示,E为高精度的标准电压源,R为标准分压电阻箱,G为高灵敏度的检流计。调节电阻箱的分压比,c、d两端的电压随之改变,当Ucd=Uab 时,流过检流计G的电流为零,因此

Uab=Ucd =[R2/(R1+ R2)]E=KE 式中K= R2/(R1+ R2)为电阻箱的分压比。根据标准电压E 和分压比Κ就可求得开路电压Uab,因为电路平衡时I G= 0,不消耗电能,所以此法测量精度较高。 2、等效电阻Req的测量方法 对于已知的线性有源一端口网络,其入端等效电Req可以从原网络计算得出,也可以通过实验测出,下面介绍几种测量方法: 方法一:将有源二端网络中的独立源都去掉,在ab端外加一已知电压U, 测量一端口的总电流I总则等效电阻 Req= U/I总 实际的电压源和电流源具有一定的内阻,它并不能与电源本身分开,因此在去掉电源的同时,也把电源的内阻去掉了,无法将电源内阻保留下来,这将影响测量精度,因而这种方法只适用于电压源内阻较小和电流源内阻较大的情况。 方法二:测量ab端的开路电压Uoc及短路电流Isc则等效电阻 Req= Uoc/Isc 这种方法适用于ab端等效电阻Req较大,而短路电流不超过额定值的情形,否则有损坏电源的危险。 图4 – 3 图4-4 方法三:两次电压测量法 测量电路如图4-3所示,第一次测量ab端的开路Uoc,第二次在ab端接一已知电阻RL (负载电阻),测量此时a、b端的负载电压U,则a、b端的等效电阻Req为:

【实验报告】基尔霍夫定律实验报告

基尔霍夫定律实验报告 一、实验目的 (1)加深对基尔霍夫定律的理解。 (2)学习验证定律的方法和仪器仪表的正确使用。 二、实验原理及说明 基尔霍夫定律是集总电路的基本定律,包括电流定律(KCL)和电压定律(KVL)。 基尔霍夫定律规定了电路中各支路电流之间和各支路电压之间必须服从的约束关系,无论电路元件是线性的或是非线性的,时变的或是非时变的,只要电路是集总参数电路,都必须服从这个约束关系。 (1)基尔霍夫电流定律(KCL)。在集总电路中,任何时刻,对任一节点,所有支路电流的代数和恒等于零,即∑i=0。通常约定:流出节点的支路电流取正号,流入节点的支路电流取负号。 (2)基尔霍夫电压定律(KVL)。在集总电路中,任何时刻,沿任一回路所有支路电压的代数和恒等于零,即沿任回路有∑u=0。在写此式时,首先需要任意指定一个回路绕行的方向。凡电压的参考方向与回路绕行方向一致者,取“+”号;电压参考方向与回路绕行方向相反者,取“一”号。 (3)KCL和KVL定律适用于任何集总参数电路,而与电路中的元件的性质和参数大小无关,不管这些元件是线性的、非线性的、含源的、无源的、时变的、非时变的等,定律均适用。 三、实验仪器仪表

四、实验内容及方法步骤 (1)验证(KCL)定律,即∑i=0。分别在自行设计的电路或参考的电路中,任选一个节点,测量流入流出该节点的各支路电流数值和方向,记入附本表1-1~表1-5中并进行验证。参考电路见图1-1、图1-2、图1-3所示。 (2)验证(KVL)定律,即∑u=0。分别在自行设计的电路或参考的电路中任选一网孔(回路),测量网孔内所有支路的元件电压值和电压方向,对应记入表格并进行验证。参考电路见图1-3。 五、测试记录表格 表1-1 线性对称电路 表1-2 线性对称电路 表1-3 线性不对称电路 表1-4 线性不对称电路 表1-5 线性不对称电路 注:1、USA、USB电源电压根据实验时选用值填写。 2、U、I、R下标均根据自拟电路参数或选用电路参数对应填写。 指导教师签字:________________ 年月日 六、实验注意事项 (1)自行设计的电路,或选择的任一参考电路,接线后需经教师检查同意后再进行测量。

实验三、四叠加原理的验证 戴维宁定理的验证

实验三叠加原理的验证 一、实验目的 验证线性电路叠加原理的正确性,加深对线性电路的叠加性和齐次性的认识和理解。 二、原理说明 叠加原理指出:在有多个独立源共同作用下的线性电路中,通过每一个元件的电流或其两端的电压,可以看成是由每一个独立源单独作用时在该元件上所产生的电流或电压的代数和。 线性电路的齐次性是指当激励信号(某独立源的值)增加或减小K 倍时,电路的响应(即在电路中各电阻元件上所建立的电流和电压值)也将增加或减小K倍。 四、实验内容 实验线路如图6-1所示,用HE-12挂箱的“基尔夫定律/叠加原理”线路。 图6-1 基尔霍夫/叠加原理验证

1. 将两路稳压源的输出分别调节为12V和6V,接入U1和U2处。 2. 令U1电源单独作用(将开关K1投向U1侧,开关K2投向短路侧)。用直流数字电压表和毫安表(接电流插头)测量各支路电流及各电阻元件两端的电压,数据记入表6-1。 3. 令U2电源单独作用(将开关K1投向短路侧,开关K2投向U2侧),重复实验步骤2的测量和记录,数据记入表6-1。 4. 令U1和U2共同作用(开关K1和K2分别投向U1和U2侧),重复上述的测量和记录,数据记入表6-1。 5. 将U2的数值调至+12V,重复上述第3项的测量并记录,数据记入表6-1。 6. 将R5(330Ω)换成二极管1N4007(即将开关K3投向二极管IN4007侧),重复1~5的测量过程,数据记入表6-2。 7. 任意按下某个故障设置按键,重复实验内容4的测量和记录,再根据测量结果判断出故障的性质。 故障2 五、实验注意事项 1. 用电流插头测量各支路电流时,或者用电压表测量电压降时,应注意仪表的极性,并应正确判断测得值的+、-号。 2. 注意仪表量程的及时更换。 六、预习思考题

戴维南定理实验报告

戴维南定理实验报告 一、实验目的 1.深刻理解和掌握戴维南定理。 2.掌握和测量等效电路参数的方法。 3.初步掌握用Multisim软件绘制电路原理图。 4.初步掌握Multisim软件中的Multmeter,Voltmeter,Ammeter等仪表的使用以及DC Operating Point,Parameter等SPICE仿真分析方法。 5.掌握电路板的焊接技术以及直流电源、万用表等仪器仪表的使用。 6.初步掌握Origin绘图软件的使用。 二、实验原理 一个含独立源,线性电阻和受控源的一端口网 络,对外电路来说,可以用一个电压源和电阻 的串联组合等效置换、其等效电压源的电压等 于该一端口网络的开路电压,其等效电阻等于 将该一端口网络中所有独立源都置为零后的的 输入电阻,这一定理称为戴维南定理。如图2.1.1 三、实验方法 1.比较测量法 戴维南定理是一个等效定理,因此想办法验证等效前后对其他电路的影响是否一致,即等效前后的外特性是否一致。 整个实验过程首先测量原电路的外特性,再测量等效电路的外特性。最后进行比较两者是否一致。等效电路中等效参数的获取,可通过测量得到,并同根据 电路结构所推导计算出的结果想比较。 实验中期间的参数应使用实际测量值,实际值和器件的标称值是有差别的。 所有的理论计算应基于器件的实际值。 2.等效参数的获取 等效电压Uoc:直接测量被测电路的开路电 压,该电压就是等效电压。 等效电阻Ro:将电路中所有电压源短路, 所有电流源开路,使用万用表电阻档测量。 本实验采用下图的实验电路。 3.电路的外特性测量方法 在输出端口上接可变负载(如电位器),改变负载(调节电位器)测量端口的电压和电流。 4.测量点个数以及间距的选取 测试过程中测量点个数以及间距的选取,与测量特性和形状有关。对于直线特性,应使测量点间隔尽量平均,对于非线性特性应在变化陡峭处多测些点。测量 的目的是为了用有限的点描述曲线的整体形状和细节特征。因此应注意测试过程 中测量点个数及间距的选取。 四、实验注意事项 1.电流表的使用。由于电流表内阻很小,放置电流过大毁坏电流表,先使用大量程(A)

戴维南定理实验报告

戴维南定理 班级:14电信学号:1428403003 姓名:王舒成绩:一实验原理及思路 一个含独立源,线性电阻和受控源的二端网络,其对外作用可以用一个电压源串联电阻的. 等效电源代替,其等效电压源的电压等于该二端网络的开路电压,其等效内阻是将该二端网络中所有的独立源都置为零后从从外端口看进去的等效电阻。这一定理称为戴维南定理。 本实验采用如下所示的实验电路图a: 等效后的电路图如下b: 测它们等效前后的外特性,然后验证等效前后对电路的影响。 二实验内容及结果 ⒈计算等效电压和电阻

计算等效电压:电桥平衡。∴=,33 11 31R R R R Uoc=311R R R +=2.609V 。 计算等效电阻:R= ??? ??? ? ?+++ ??? ??? ? ?++3311111221 3111121 R R R R R R =250.355 ⒉用Multisim 软件测量等效电压和等效电阻 测量等效电阻是将V1短路,开关断开如下图所示: -+ Ro=250.335O Ω 测量等效电压是将滑动变阻器短路如下图 V120 V R11.8kΩ R2220Ω R112.2kΩ R22270Ω R33330ΩR3270Ω RL 4.7kΩ Key=A 50% 2 4 J1Key = A XMM1 XMM2 6 a 1 7 Uo=2.609V ⒊用Multisim 仿真验证戴维南定理 仿真数据 等效电压Uoc=2.609V 等效电阻Ro=250.355Ω

原电路数据 电压/V 2.6 09 2.4 08 2.3 87 2.3 62 2.3 31 2.2 9 2.2 36 2.1 58 2.0 41 1.8 41 1.4 22 电流/mA 0 0.8 03 0.8 85 0.9 84 1.1 1 1.2 72 1.4 9 1.7 99 2.2 68 3.0 68 4.7 4 等效电路数据 电压/V 2.6 09 2.4 08 2.3 87 2.3 63 2.3 3 2.2 91 2.2 36 2.1 58 2.0 41 1.8 41 1.4 22 电流/mA 0 0.8 03 0.8 85 0.9 85 1.1 1 1.2 72 1.4 9 1.7 99 2.2 68 3.0 68 4.7 5

实验2-戴维南定理和诺顿定理的验证——有源二端网络等效参数的测定

实验报告 专业班级:计算机1601/1602 实验日期:2016.11.21 学生姓名:李雨珈 学 号:16131030760 班级:计算1601 成绩: 实验名称:戴维南定理和诺顿定理验证 1、实验目的 (1)验证戴维南定理和诺顿定理的正确性,加深对该定理的理解。 (2)掌握测量有源二端网络等效参数的一般方法。 2、实验原理 1)任何一个线性含源网络,如果仅研究其中一条支路的电压和电流,则可将电路的其余部分看作是一个有源二端网络(或称为含源一端口网络)。 戴维南定理指出:任何一个线性有源网络,总可以用一个电压源与一个电阻的串联来等效代替,此电压源的电动势S U 等于这个有源二端网络的开路电压OC U ,其等效内阻0R 等于该网络中所有独立源均置零(理想电压源视为短路,理想电流源视为开路)时的等效电阻。 诺顿定理指出:任何一个线性有源网络,总可以用一个电流源与一个电阻的并联组合来等效代替,此电流源的电流S I 等于这个有源二端网络的短路电流SC I ,其等效内阻0R 定义同戴维南定理。 OC U (S U )和0R 或者SC I (S I )和0R 称为有源二端网络的等效参数。 2)有源二端网络等效参数的测量方法 (1)开路电压、短路电流法测0R 在有源二端网络输出端开路时,用电压表直接测其输出端的开路电压OC U ,然后再将其输出端短路,用电流表测0R SC OC I U = 其短路电流SC I ,则等效内阻为 如果二端网络的内阻很小,若将其输出端口短路则易损坏 其内部元件,因此不宜用此法。 (2)伏安法测0R

2OC 图 用电压表、电流表测出有源二端网络的外特性曲线,如图-1所示。根据外特性曲线求出斜率Φtg ,则内阻 0R =Φtg =SC OC I U I U = ??,也可以先测量开路电压OC U ,再测量电流为额定值N I 时的输出端电压值N U ,则内阻为0R = N N OC I U U -。 (3)半电压法测0R 如图-2所示,当负载电压为被测网络开路电压的一半时,负载电阻(由电阻箱的读数确定)即为被测有源二端网 络的等效内阻值。 (4)零式法测OC U 在测量具有高内阻有源二端网络的开路电压时,用电压表直接测量会造成较大的误差。为了消除电压表内阻的影响,往往采用零式测量法,如图-3所示。 零式法测量原理是用一低内阻的稳压电源与被测有源二端网络进行比较,当稳压电源的输出电压与有源二端网络的开路电压相等时,电压表的读数将为“0”。然后将电路断开,测量此时稳压电源的输出电压,即为被测有源二端网络的开路电压。

利用Multisim验证戴维南定理

利用Multisim 验证戴维南定理 姓名:XXX 学号:xxxxxxxxxx 一、仿真要求 (1) 构建图附1(a)所示实验电路原理图,测量有源线性二端网络的等效参数; (2) 由二端网络的等效参数构建图1 (b)所示的戴维南等效电路; (3) 分别测试二端网络的外特性和等效电路的伏安特性,验证戴维南定理。 图1被测有源二端网络电路 二、电路图设计及理论分析 (1) 设定电路各元件参数如图2所示 R R R L R L L 图2. 电路参数设定 图3. 戴维南等效电路 (2) 理论分析 断开R L 所在支路,)V (932.4142431 3OC =??? ? ?? +-+=U R R R R R R U )(2.458////4213O Ω=+=R R R R R )mA (764.10O OC SC == R U I 戴维南等效电路如图3所示。

三、Multisim 仿真验证 1、用Multisim 绘制二端口实验电路图 键 = A RL 1.0k Ω 图 4 Multisim 绘制的电路 2、测试二端口网络的等效参数 运行仿真,按空格键使S 1向上,置零U 1,双击万用表,选择欧姆档,测量二端口网络的等效电阻,如图5(a)所示。 按空格键接入U 1,更改万用表,分别选择直流电压和直流电流,测量二端口网络的开路电压和短路电流,如图5 (b)和(c)所示。 (a) 测量等效电阻R O 键 = A 1.0k Ω (b) 接入U 1作用测量 (c) 测量开路电压U OC 和短路电流I SC 图5测量二端口网络的等效参数

3、用参数扫描分析二端口网络的外特性 (1) 添加测量探针 停止仿真,将万用表更改为直流电压测量状态,按“A ”键,接入负载R L 支路,并在电路中添加测量探针,双击测量探针,在其属性窗口的参数栏中设置测量参数为直流电流,在其显示栏中将标识改为“IL ”,如图6所示。 键 = A 图6 添加测量探针 (2) 参数扫描分析电路的外特性。 由图6可见,测量二端网络的外特性就是测量U 45和I L 的关系。所以,在此选择“仿真”菜单下的“分析”/“参数扫描”,在分析参数栏设置扫描参数为“RL ”,扫描范围为线性100Ω ~1k Ω,步进100Ω,待分析量为“直流工作点”,并将扫描结果“在表格中显示”。 在“输出”栏设置测量量为“IL ”和表达式“V(4)-V(5)”。最后,单击仿真按钮,得到图7所示结果。 图7 参数扫描输出 4、用Multisim 绘制等效戴维南电路 绘制等效戴维南电路如图8所示。 5、对等效戴维南电路进行参数扫描分析,此处设置扫描参数为“RL2”,输出设置为“V(UL2_IL2)”和“I(UL2_IL2)”。得到的结果如图9所示。 6、结论 将图8与图9所示的结果整理成数据表格,如表2所示。绘制二者的伏安曲线,可以看到,两条伏安曲线完全重合,如图10所示。证明对于负载电阻来说,二端网络和戴维南电路是等效的。

实验四 戴维南定理的验证实验

实验四 戴维宁定理的验证实验 一、实验目的 1、通过实验验证戴维宁定理。 2、加深对等效电路概念的理解。 二、实验原理 戴维宁定理:在任何一个线性有源电路中,如果只研究其中一个支路电压、电流时,可将电路的其余部分看作是一个有源二端网络如图4-1(a) 所示。任何有源二端网络对外的作 (a ) (b ) 图4 -1 有源二端网络等效电路 用可用一个为U es 的理想电压源和内阻R 0串联的电源来等效代替见图4-1(b)。等效电源的理想电压源U es 就是有源二端网络的开路电压U OC ,即将负载断开后a 、b 两端之间的电压。等效电源的内阻R 0等于有源二端网络中所有电源均除去(将各个理想电压源短路,即其电压为零;将各个理想电流源开路,其电流为零)后所得到的无源网络的内阻。这个定理称为戴维宁定理。 三、实验内容及步骤 如图4-2所示,端子a ,b 左侧部分为一个有源二端网络,R L 是外部负载。依据戴维宁定理,测得a ,b 两端的开路电压U OC 和等效内阻R 0以后将数据代入图4-1(b )内,如果两个电路在负载R L 上产生的电流I 相等,即可验证戴维宁定理。本次实验中,负载R L 以可变电阻代替,可以通过测量多组数据验证定理的正确性。 图4-2 戴维宁定理验证电路图 实验步骤如下: (1) 打开EWB 软件,选中主菜单Circuit/Schematic Options/Grid 选项中的Show grid ,使得 绘图区域中出现均匀的网格线,并将绘图尺寸调节到最佳。 (2) 在Sources 元器件库中调出1个Ground (接地点)和1个Battery (直流电压源)器件, 从Basic 元器件库中调出5个Resistor (电阻)、1个Potentiometer (可变电阻)、5个Switch (开关)器件,从Indicators 元器件库中调出1个V oltmeter (电压表)、1个Ammeter (电流表)器件,最后从Instruments 元器件库中调出1个Multimeter (多用表)器件,按图4-3所示排列好。 (3) 将各元器件的标号、参数值亦改变成与图4-3所示一致。 R L R L R U +- 5 4 R L I

电路分析等效电源定理实验报告

电路分析等效电源定理 实验报告 内部编号:(YUUT-TBBY-MMUT-URRUY-UOOY-DBUYI-0128)

电路分析 等效电源定理 实验报告 一、 实验名称 等效电源定理 二、实验目的 1. 验证戴维宁定理和诺顿定理的正确性,加深对该定理的理解。 2. 掌握测量有源二端网络等效参数的一般方法。 三、原理说明 1. 任何一个线性含源网络,如果仅研究其中一条支路的电压和电流,则可将电路的其余部分看作是一个有源二端网络(或称为含源一端口网络)。 戴维宁定理指出:任何一个线性有源网络,总可以用一个电压源与一个电阻的串联来等效代替,此电压源的电动势Us 等于这个有源二端网络的开路电压Uoc , 其等效内阻R 0等于该网络中所有独立源均置零(理想电压源视为短接,理想电流源视为开路)时的等效电阻。 诺顿定理指出:任何一个线性有源网络,总可以用一个电流源与一个电阻的并联组合来等效代替,此电流源的电流Is 等于这个有源二端网络的短路电流I SC ,其等效内阻R 0定义同戴维宁定理。 Uoc (Us )和R 0或者I SC (I S )和R 0称为有源二端网络的等效参数。 2. 有源二端网络等效参数的测量方法 (1) 开路电压的测量 在有源二端网络输出端开路时,用电压表直接测其输出端的开路电压 Uoc 。 (2)短路电流的测量 在有源二端网络输出端短路,用电流表测其短路电流Isc 。 (3)等效内阻R 0的测量 Uoc R 0= ── Isc 如果二端网络的内阻很小,若将其输出端口短路,则易损坏其内部元件,因此不宜用此法。 四、实验设备

5 万用表 1 自备 6 可调电阻箱 0~99999.9Ω 1 THHE-1 7 戴维宁定理实验电路板 1 THHE-1 五、实验内容 被测有源二端网络如图5-1(a)所示,即HE-12挂箱中“戴维宁定理/诺顿定理”线路。 (a) (b) 图 5-1 1. 用开路电压、短路电流法测定戴维宁等效电路的Uoc 、R 0。 按图5-1(a)接入稳压电源Us=12V 和恒流源Is=10mA ,不接入R L 。测出U Oc 和Isc ,并计算出R 0(测U OC 时,不接入mA 表。),并记录于表1。 表1 实验数据表一 2. 负载实验 按图5-1(a)接入可调电阻箱R L 。按表2所示阻值改变R L 阻值,测量有源二端网络的外特性曲线,并记录于表2。 表2 实验数据表二 3. 验证戴维宁定理 把恒压源移去,代之用导线连接原接恒压源处;把恒流源移去,这时,A 、B 两点间的电阻即为R 0,然后令其与直流稳压电源(调到步骤“1”时所测得的开路电压Uoc 之值)相串联,如图5-1(b)所示,仿照步骤“2”测其外特性,对戴氏定理进行验证,数据记录于表3。 表3 实验数据表三 4. 验证诺顿定理 在图5-1(a )中把理想电流源及理想电压源移开,并在电路接理想电压源处用导线短接(即相当于使两电源置零了),这时,A 、B 两点的等效电阻值即为诺顿定理中R 0, 然后令其与直流恒流源(调到步骤“1”时所测得的短路电流Isc 之值)相并联,如图5-2所示,仿照步骤“2”测其外特性,对诺顿定理进行验证,数据记入表4。 图5-2 表4 实验数据表之四 六、实验结果分析 图2—1 图2—2 1.步骤2和3,分别绘出曲线如图2—1.2—2 由这两个图可以明显看出图1中a 等效于b ,也即戴维南定理得证。

实验5 戴维南定理的验证

实验5 戴维南定理的验证 一、实训目的 1. 验证戴维南定理的正确性,加深对该定理的理解。 2. 掌握测量有源二端网络等效参数的一般方法。 二、原理说明 1. 任何具有两个出线端的部分电路称为二端网络。若网络中含有电源称为有源二端网络,否则称为无源二端网络。 戴维南定理:任何一个线性有源二端网络,对外电路来说,总可以用一个电压源与一个电阻的串联来等效代替,此电压源的电动势Us 等于这个有源二端网络的开路电压Uoc , 其等效内阻R 0等于该网络中所有独立源均置零(理想电压源视为短接,理想电流源视为开路)时的等效电阻。 诺顿南理指出:任何一个线性有源网络,总可以用一个电流源与一个电阻的并联组合来等效代替,此电流源的电流Is 等于这个有源二端网络的短路电流I SC ,其等效内阻R 0定义同戴维南定理。 Uoc (Us )和R 0或者I SC (I S )和R 0称为有源二端网络的等效参数。 2. 有源二端网络等效参数的测量方法 (1) 开路电压、短路电流法测R 0 在有源二端网络输出端开路时,用电压表直接测其输出端的开路电压Uoc ,然后再将其输出端短路,用电流表测其短路电流Isc ,则等效内阻为 Uoc R 0= ── Isc 如果二端网络的内阻很小,若将其输出端口短路 则易损坏其内部元件,因此不宜用此法。 (2) 伏安法测R 0 图5-1有源二端网络外特性曲线 用电压表、电流表测出有源二端网 络的外特性曲线,如图5-1所示。 根据 外特性曲线求出斜率tg φ,则内阻 △U U oc R 0=tg φ= ──=── △I Isc 也可以先测量开路电压Uoc , 图5-2半电压法测R 0电路 再测量电流为额定值I N 时的输出 U oc -U N 端电压值U N ,则内阻为 R 0=──── I N (3) 半电压法测R 0 如图5-2所示,当负载电压为被测网络开 U I A B I U O ΔU ΔI φ sc oc c /2

相关文档
相关文档 最新文档