文档库 最新最全的文档下载
当前位置:文档库 › 混凝土碳化机理_影响因素及预测模型_陈树亮

混凝土碳化机理_影响因素及预测模型_陈树亮

混凝土碳化机理_影响因素及预测模型_陈树亮
混凝土碳化机理_影响因素及预测模型_陈树亮

第31卷第3期2010年6月

华 北 水 利 水 电 学 院 学 报

Journa l o f N orth Ch i na Institute ofW ate r Conse rvancy and H ydro electr i c Pow er

V o l 131N o 13Jun 12010

收稿日期:2010-05-17

作者简介:陈树亮(1982)),男,广西合浦人,助理工程师,主要从事混凝土施工方面的研究.

文章编号:1002-5634(2010)03-0035-05

混凝土碳化机理、影响因素及预测模型

陈树亮

(广西壮族自治区水利科学研究院,广西南宁530023)

摘 要:为寻找碳化混凝土的处理方法、防止混凝土碳化,总结了影响混凝土碳化的因素及其对混凝土碳化的影响,介绍了国内外学者提出的碳化预测模型.发现了导致钢筋表面的钝化膜破坏以致钢筋锈蚀,是造成混凝土结构耐久性劣化、影响混凝土结构寿命的重要因素.提出了对碳化混凝土的处理方法和防止混凝土碳化的措施.

关键词:碳化机理;影响因素;预测模型;混凝土;预防措施中图分类号:TU 528 文献标志码:A

碳化是指酸性物质CO 2与混凝土接触后,在有水存在的条件下,与混凝土中的碱性物质发生反应,造成混凝土中碱度下降的过程.其他的酸性物质如

SO 3,H C,l C l 2也会与混凝土中的碱性物质发生反应造成混凝土的碱度下降,这也就是广义的碳化,即混凝土的中性化.在通常大气环境下,混凝土中性化主要是由碳化造成的.

1 混凝土碳化机理

混凝土是一种多孔的结构材料,其内部存在着大量的微孔,这些微孔大多通过直接或间接的方式连通

[1]

.混凝土暴露在空气中时,空气中的CO 2渗

透入混凝土的表面以及微孔中,在有水存在的情况下,与其中的碱性物质C a(OH )2和C -S-H 凝胶等发生反应,生成CaCO 3和H 2O.这一碳化过程是在气相、液相和固相中进行的一个复杂的多相连续的物理化学过程.碳化的结果[2]

:一方面,生成的CaCO 3等固态物质,会堵塞在混凝土孔隙中,使混凝土的孔隙率下降,大孔减少,减弱了后续的CO 2的扩散,从而提高混凝土的密实度和强度;另一方面,会降低孔隙水中的C a(OH )2浓度以及pH 值,导致钢筋钝化膜破坏,引起钢筋锈蚀.

2 碳化的影响因素

混凝土的碳化影响因素有很多,主要的影响因素可以分为3类.2.1 材料因素

2.1.1 水灰比

水灰比在一定程度上决定了C O 2的扩散系数,会影响到混凝土的碳化速率.水灰比是决定混凝土孔结构与孔隙率的主要因素,一般情况下,水灰比增大,混凝土的孔隙率会增大,CO 2的扩散系数增加,混凝土的碳化速率加大.

2.1.2 水泥的品种与用量

水泥的品种和用量决定了水化后单位体积混凝土中水化产物的含量,即有多少可以碳化的物质.另外,不同品种的水泥、混凝土的渗透性能也不相同,并且会影响到混凝土的碳化速率.试验表明[3]

,矿渣水泥混凝土比一般普通硅酸盐水泥混凝土碳化快10%~20%,在室外暴露条件下更快达50%~90%.水泥品种确定的情况下,水泥用量越大,单位体积混凝土中可碳化的水化产物就越多,可以消耗的C O 2也就越多,从而碳化速率也就越小.

2.1.3 骨料的品种及粒径

骨料的粒径大小对骨料)水泥浆粘结有很大的影响,而骨料)水泥浆的界面有一个过渡层,过渡层

内结构疏松,孔隙较多.因此,不同骨料,不同的粒径对界面层有影响,自然也会影响CO2的扩散,从而对混凝土的碳化速率造成影响[4].

一般说来,骨料的粒径太大使得其与水泥浆结合较差,粒径太小又会使结合面的面积增大,因此,只有选择较为合适的粒径的骨料,才会使碳化速率小.另外,具有碱活性的骨料在混凝土的养护过程中会发生碱-骨料反应,消耗C a(OH)2,从而使碳化速率加快.

2.1.4混凝土掺合料

把粉煤灰掺入普通水泥混凝土中,由于水泥中的熟料量相应的减少了,混凝土吸附CO2的能力也会降低;同时由于粉煤灰混凝土的早期强度比较低,孔结构差,加速了CO2的扩散速度,从而会加快碳化速度.Pagataki研究了砂浆与混凝土中掺加粉煤灰对碳化的影响,结果表明,粉煤灰掺量为10%, 20%,30%的混凝土的碳化速率与不掺粉煤灰的混凝土相比,其碳化速率分别提高了1.06,1. 13,1119倍[5].

2.1.5外加剂

混凝土中加了减水剂或者掺引气剂均能大大降低混凝土的碳化速率.因为减水剂能直接减少用水量;引气剂能使混凝土中的毛细孔形成封闭的互不连通的气孔,切断毛细管的通路,两者都能使CO2的扩散系数显著减小[6].

此外,混凝土的强度也能反映密实度、孔隙率的大小,能宏观反映其抗碳化性能.混凝土强度越高,内部结构越致密,碳化速率越小.

2.2环境因素

2.2.1CO2的浓度

环境中的CO2浓度越大,混凝土内外CO2的浓度梯度就越大,CO2向混凝土内部扩散的动力也就越大,越容易扩散进混凝土孔隙中;同时,CO2的浓度越大,发生碳化的各个反应的反应速度就越大.因此,C O2的浓度也是决定混凝土碳化速率的一个重要因素.

一般来讲,大气中的CO2浓度较低,乡村约为0.03%,城市约为0.04%.碳化速度近似与CO2的平方根成正比[7].

2.2.2相对湿度

环境湿度对混凝土的碳化速率有着比较大的影响.湿度较高时,混凝土的含水率较高,微孔中充满了水,阻碍了CO2气体在混凝土中的扩散,碳化速率也较慢.在湿度较小即很干燥而C O2浓度又较大的情况下,虽然CO2的扩散较快,但由于提供反应的溶液较少,碳化速率还是较慢.研究表明,相对湿度在70%~80%左右的中等湿度时,碳化速率最快[8].

2.2.3温度

温度对化学反应的影响通常用A rrhen i u s方程来表示,即

k=Z exp(-Ea/RT),

式中:k为化学反应的反应速率常数;Z为活化能;R 为气体常数;T为绝对温度.

对于一般的化学反应,温度每升高10e,反应速率加快2~3倍.温度对混凝土碳化的影响有两方面:温度的升高使CO2的溶解度降低,但有使反应常数增大的可能.目前,各国学者在CO2对混凝土碳化速率的影响方面的意见不太一致.

2.2.4应力状态

试验表明,当f不超过0.7f c(f c为混凝土的抗压强度)时,压应力对碳化起延缓作用;压应力为0.7f c 时的碳化速率与无压应力时相当;当压应力超过0.7f c时会使碳化速率加快.在拉应力作用下,当拉应力f不超过0.3f t(f t为混凝土的抗拉强度)时,应力作用不明显;当拉应力为0.7f t时,碳化速率增加近30%.

2.3施工因素

施工质量直接影响混凝土的力学性能和耐久性,当然对混凝土的碳化也有很大的影响.在实际施工中,混凝土的碳化深度往往比实验室大得多,这是因为施工质量直接影响混凝土的密实度.实际调查结果表明,施工质量好,混凝土强度高,密实度好,其抗碳化性能强;施工质量差,混凝土表面不平整,内部有裂缝、蜂窝、孔洞等,增加了混凝土中的扩散路径,使混凝土的碳化速度加快.

混凝土的早期养护不良,水泥水化不充分,使表层混凝土孔隙率增大,碳化加快.

3混凝土碳化深度的预测模型

近30多年来,混凝土碳化深度的预测模型一直是混凝土材料和结构界研究的热点问题,国内外的学者纷纷提出了各种碳化预测模型,多达数十种.这些模型基本上可以归为3种类型:1基于扩散理论建立的理论模型;o基于碳化试验建立的经验模型;?基于碳化理论与试验结果的碳化模型.

3.1基于扩散理论的理论模型

这类模型都做了如下的基本假设:

a.CO2在混凝土的孔隙中的扩散遵守Fick第

36华北水利水电学院学报2010年6月

一定律J =D

d C

d t

.b.C O 2从混凝土表面向混凝土内部扩散,其浓度呈线性降低[9]

,C O 2浓度分布假设曲线如图

1所示

.

图1 CO 2浓度分布假设

c .忽略部分碳化区内混凝土的碳化影响,即假定存在一个碳化界面,界面两侧物质的浓度是常量

[10]

,如图2所示

.

图2 碳化界面区假设

3.1.1 阿列克谢耶夫模型

苏联的阿列克谢耶夫等人在深入分析碳化的多

相物理化学过程后,认为控制混凝土的碳化速率的是CO 2在混凝土孔隙中的扩散过程.根据F ick 第一定律以及CO 2在多孔介质中的扩散和吸收特点,得到混凝土碳化理论数学模型

X =K t =

2D CO 2C CO 2

M CO 2

t

,式中:x 为碳化深度;K 为碳化速率系数;t 为碳化时

间;D CO 2为CO 2在混凝土中的扩散系数,C CO 2为混凝土表面的CO 2的浓度;M CO 2是单位混凝土能吸收CO 2的量.3.1.2 Papadakis 模型

希腊学者Papadakis 等人在分析研究碳化的整个物理化学过程后,根据CO 2及各可碳化物质(Pa -padakis 认为Ca(OH )2,C -S-H,C 2S 和C 3S 都是可碳化物质)在碳化过程中的质量平衡条件,建立了偏微分方程组,经适当的简化,得到

式中:C Ca(O H )2,C C-S-H ,C C 3S ,C C 2S 分别为Ca(OH )2,C -S-H,C 2S ,C 3S 的初始浓度.3.2 经验模型

3.2.1 基于水灰比的经验模型

a .日本学者岸谷孝一基于碳化试验和自然暴露试验,提出了如下的预测公式:w c

-1

>0.6时,

X =r c r a r s

w c -1

-0.25

0.3(1.15+3w c -1

)t ,w c -1

[0.6时,

X =r c r a r s

416w c

-1-1.76

7.2

t ,

式中:w c -1

为水灰比;r c 为水泥品种影响系数;r a 为骨料品种影响系数;r s 混凝土参加剂影响系数.

b .依田彰彦提出的经验预测公式:当C 0=0.03%时,

X =(148.8A B C )-1

2

(100X c -1

-38.44)t 12

,当C 0=0.1%时,

X =(258.1A B C )

-1

2

(100X c -1

-22.16)t 1

2

,

式中:A 表示混凝土的品质系数;B 表示装饰层对碳化的延迟系数;C 表示环境条件系数;C 0是环境中的C O 2的浓度.

c .山东建筑科学研究院的朱安明考虑材料和环

境条件的影响,提出预测公式

[11]X =C 1C 2C 3(12.1w c -1

-3.2)t ,

式中:C 1为水泥品种影响系数,矿渣水泥取1.0,普通硅酸盐水泥取0.5~0.7;C 2为粉煤灰影响系数,掺量小于15%时取1.1;C 3为气象条件影响系数,中部地区取1.0,南方潮湿地区取0.5~0.8,北方干燥地区取1.1~1.2.d .日本的鱼本健一等基于快速碳化试验,并考虑环境温度和CO 2的浓度的影响,提出了预测公式

X =k CO 2k T k w t ,

式中:k CO 2为环境C O 2浓度的影响系数,k CO 2=(21804-0.847lg (C CO 2))C CO 2;k T 为环境温度影响系数,k T =e

81748-2563T -1

;T 为绝对温度;k w 为水灰

比影响系数,k w =2.94w c

-1

-1.012 或

k w =2.39w 2c -2

+0.446w c

-1

-0.398.

e .日本混凝土配合比设计规程中提出的碳化深

度预测公式

X =

(w /c -0125)

2

013(1115+3w /c)t

t ,

式中t 0为混凝土养护龄期.

37第31卷第3期陈树亮: 混凝土碳化机理、影响因素及预测模型

3.2.2基于水灰比和水泥用量的经验公式

基于水灰比的经验公式只考虑了水灰比的影响,而没有考虑可碳化物质含量的影响,一些学者提出了考虑水灰比和水泥用量的经验公式.

a.黄士元等提出如下预测公式:

w c-1>0.6时,x=104.27k k0154

c k 0147

w t,

w c-1[0.6时,x=73.54k k0183c k0143

w t.

式中:k为水泥品种影响系数,普通硅酸盐水泥取110,矿渣水泥取1.43,掺粉煤灰硅酸盐水泥取1156,掺粉煤灰矿渣水泥取1.78;k c,k w分别为水泥用量和水灰比影响系数,k c=(-0.0191C+9.311) @10-3,k w=(9.844w c-1-2.982)@10-3.

b.龚洛书等人提出的多因素碳化模型

x=k c k w k f kk g k y A t,

式中:k c为水泥用量影响系数,k c=4.15w c-1-1.02;k w为水灰比影响系数,k w=253c-01964;k f为粉煤灰掺量影响系数,k f=0.968+0.032FA,FA为粉煤灰掺量;k为水泥品种影响系数,普通硅酸盐水泥为1.0,矿渣水泥为1.35;k g为骨料品种影响系数; k y为养护方法影响系数;A为混凝土品质影响系数,普通混凝土取0.121,轻集料混凝土取0.219.

3.2.3基于混凝土强度的经验模型

a.Lesache de Fon tenay C研究了混凝土外加剂、混凝土组成和暴露条件对碳化的影响,得到了混凝土强度与碳化深度之间的关系

X=[6800(F28+25)-1.5-6]t,

式中F28为28d抗压强度9MPa.

b.Sm o lczyk根据经验的经验公式

X=250(R-12c-R-12g)t,

式中:R g为假定不碳化混凝土的极限强度,R g= 625kg/c m2;R c为混凝土的抗压强度.

c.中国建筑科学研究院邸小坛等人通过对混凝土碳化的长期观测结果的统计分析,提出以混凝土抗压强度标准值为主要参数,考虑环境条件、养护条件和水泥品种因素修正的碳化计算公式

X=A1A2A3(60f-1cuk-1.0)t,

式中:A1为养护条件修正系数;A2为水泥品种修正系数;A3为环境条件修正系数;f cuk为混凝土抗压强度标准值,MPa.

3.2.4基于扩散理论与试验的预测模型

同济大学的张誉等人在Papadak is碳化机理的基础上,推导出碳化深度预测的实用数学模型,然后通过试验验证与修正,得到一个将扩散理论和试验数据结合起来预测公式

X=839k RH k CO

2

k T k S(1-R H)1.1#

w(c C c)-1-0134

C H

D C c c C CO2t,

式中:k RH为环境湿度影响系数;k CO

2

为环境CO2浓度影响系数;k T为环境温度影响系数;C HD为水泥水化程度修正系数,90d养护取1.0,28d取0.85;C c为水泥品种修正系数,硅酸盐水泥取1.0,其他取1.0为掺合料含量;k S为应力状态影响系数.

3.3预测碳化深度的随机模型

混凝土碳化是个复杂的物理化学过程,由于建筑物所处环境和混凝土本身质量都有很大的随机性,混凝土的碳化深度也具有很大的随机性.因此,又有人提出了混凝土碳化的随机模型.

统计研究表明,混凝土的碳化深度服从正态分布,混凝土的一维概率密度函数可以表示为

f x(x,t)=

1

2PR x(t)

exp-

[x-L x(t)]2

2[R x(t)]2

,

式中:L x(t)为混凝土碳化深度的平均值函数;R x(t)为混凝土碳化深度的标准差函数;t为碳化时间.

混凝土碳化的随机模型

x=k m c k j k CO

2

k p k s k c k f t,

式中:k mc为计算模式不定随机变量,主要反应碳化模型计算结果与实际测试结果之间的差异,同时也包含其他一些在计算模型中未能考虑的随机因素对混凝土碳化的影响;k j为角部修正系数,角部取1.4,

非角部取1.0;k CO

2

为CO2浓度影响因素,k CO

2

=

33.3C CO

2

;k p为浇注面影响系数,主要考虑混凝土在施工过程中振捣、养护和拆模时间对碳化的影响,对浇注面取1.2;k s为工作应力影响系数,受拉取1.1,受压取1.0;k c为环境因子随机变量,主要考虑环境温度和相对湿度对碳化的影响,k c= 21564T(1-R H)R H;k f为混凝土质量影响系数, k f=57194f-1cuk-0176.

4混凝土碳化的处理与防治

4.1碳化混凝土的处理

碳化会对混凝土结构产生很大的危害,对于已碳化或正在碳化的混凝土要根据碳化程度进行处理[12].

对碳化深度过大,钢筋锈蚀严重,危及结构安全的构件应该进行拆除重建;对于碳化深度小于钢筋保护层厚度的混凝土结构,可以用优质涂料进行封闭处理;对于碳化深度大于钢筋保护层厚度或碳化

38华北水利水电学院学报2010年6月

深度虽然小但是疏松脱落的,应该凿去碳化层,再浇注高强度等级混凝土;对于钢筋锈蚀严重的,应在修

补前除锈或加筋.4.2 碳化预防措施

预防混凝土碳化的措施主要是阻断CO 2入侵混凝土碱性介质的途径,目前常用的混凝土碳化防护措施主要有:

a .涂保护层,在混凝土表面涂一层密封层,使得混凝土不与空气及水接触;

b.严格控制水灰比或用外加剂,减少混凝土中的微孔,减少的CO 2向混凝土内部的扩散

[13]

;

c .严格控制原材料的质量;

d .控制施工质量,控制混凝土浇筑与养护质量提高混凝土耐久性.

参 考 文 献

[1]Erli n ,Bernard ,H i m e ,e t a.l Carbona ti on o f concrete [J].

Concrete Constructi on-W orld o f C oncrete ,2004,49(8):22-26.

[2]L i ang M i ngte ,L i n Shieng m i n .M athema ti ca l m ode li ng and

app licati ons f o r conc rete carbona ti on[J].Journa l o fM a ri ne Sc i ence and T echno logy ,2003,11(1):20-33.

[3]Sanjuan M A,A ndrade C,Cheyrezy M.Concre te ca rbona -

ti on tests i n na t ura l and acce lerated cond iti ons[J].A d -vances i n C e m ent R esearch ,2003,15(4):171-180.[4]刘志勇,孙伟.多因素下混凝土碳化模型及寿命预测

[J].混凝土,2003,170(12):3-7.

[5]屈文俊,白文静.风压加速混凝土碳化的计算模型[J].

同济大学学报,2003,31(11):1280-1284.

[6]金伟良,赵羽习.混凝土结构耐久性[M ].北京:科技出

版社,2002.

[7]牛荻涛.混凝土结构耐久性与寿命预测[M ].北京:科

技出版社,2003.

[8]徐善华,牛荻涛,王庆霖.钢筋混凝土结构碳化耐久性

分析[J].建筑技术开发,2002,29(8):8-10.

[9]金祖权,孙伟,张云升.载荷作用下混凝土的碳化深度

[J].建筑材料学报,2005,8(2):179-183.

[10]徐道富.环境气候条件下混凝土碳化速度研究[J].西

部探矿工程,2005,115(11):210-214.

[11]赵尚传,赵国藩.混凝土结构碳化寿命的概率模型研

究[J].四川建筑科学研究,2002,28(3):24-26.[12]李果,袁迎曙,耿欧.气候条件对混凝土碳化速度的影

响[J].混凝土,2004,181(11):49-52.

[13]Khayat A lH,H aque M N,F attuh i N I .Concre te carbona -ti on i n ari d cli m ate [J].M a teria l s and Structures ,2002,35(251):421-426.

M echanis m,Influencing Fact ors and ForecastingM ode ls of Concrete Carbonation

C H E N Shu-li a ng

(G uangx iH ydrauli c R esearch Institute ,N ann i ng 530023,Chi na)

Abstrac t :In orde r to fi nd the d i sposa lw ays of carbon i zed concrete ,t he fac t o rsw hich i nfl uence t he concrete carbona ti on and its i nfl u -ence on concrete carbona ti on a re su mm ed up ,and the carbonation f o recasti ng m ode ls propo sed by do m esti c and fo re i gn experts are i n -troduced .T he resu lts s how tha t ,t he da m ag e of t he passi ve fil m on the concrete iron surface leadi ng t o eros i on is the key factor wh i ch causes the endurance deg radati on and i nfl uences t he qua lity period o f concrete structure .F urt her ,the d isposal m et hods o f carbonized concre te and the m easures of preventi ng concrete carbona ti on are put forwo rd .

K ey word s :carbonati on m echanis m;i n fluenci ng factor ;forecasti ng m ode ;l parcauti on measure

(责任编辑:孙垦)

39第31卷第3期陈树亮: 混凝土碳化机理、影响因素及预测模型

混凝土碳化机理及处理措施

混凝土碳化机理及处理措施 朱茂根田芝龙李建民 1 前言 混凝土的强度和耐久性是混凝土结构的两个重要指标。现行规范对强度指标有详细的计算和试验方法,达不到指标的即为不合格产品,而对耐久性,却没有严格的衡量参数,同一强度指标的混凝土其实际耐久性可能相差很大。混凝土抗碳化能力是衡量混凝土结构耐久性非常重要的一个指标。过去由于在设计和施工时对混凝土碳化问题重视不够,导致混凝土抗碳化能力较低,造成不少建筑物的耐久性差,被迫提前加固。本文通过对混凝土碳化和钢筋去钝化物理化学反应的分析,揭示了混凝土碳化对结构破坏的机理和规律,提出了在设计和施工时对混凝土防碳化处理的建议,并提供了一些在除险加固工程中实用的防碳化处理方案。 2 混凝土碳化机理 拌和混凝土时,硅酸盐水泥的主要成份CaO水化作用后生成Ca(OH)2,它在水中的溶解度低,除少量溶于孔隙液中,使孔隙液成为饱和碱性溶液外,大部分以结晶状态存在,成为孔隙液保持高碱性的储备,它的PH值为12.5~13.5。空气中的CO2气体不断地透过混凝土中未完全充水的粗毛细孔道,气相扩散到混凝土中部分充水的毛细孔中,与其中的孔隙液所溶解的Ca(OH)2进行中和反应。反应产物为CaCO3和H2O,CaCO3溶解度低,沉积于毛细孔中。该反应式为: Ca(OH)2+CO2→CaCO3↓+H2O 反应后,毛细孔周围水泥石中的羟钙石补充溶解为Ca2+和OH-,反向扩散到孔隙液中,与继续扩散进来的CO2反应,一直到孔隙液的PH值降为8.5~9.0时,这层混凝土的毛细孔中才不再进行这种中和反应,此时即所谓“已碳化”。确切地说,碳化应称为碳酸盐化。另外,凡是能与Ca(OH)2进行中和反应的一切酸性气体,如SO2、SO3、H2S以至于气相HCI 等,均能进行上述中和反应,使混凝土碱度降低,故混凝土碳化应广义地称为“中性化”。混凝土表层碳化后,大气中的CO2继续沿混凝土中未完全充水的毛细孔道向混凝土深处气相扩散,更深入地进行碳化反应。 碳化后的混凝土质地疏松,强度降低。 3 混凝土中钢筋锈蚀机理 最初的混凝土孔隙中充满了饱和Ca(OH)2溶液,它使钢筋表层发生初始的电化学腐蚀,该腐蚀物在钢筋表面形成一层致密的覆盖物,即Fe2O3和Fe3O4,这层覆盖物称为钝化膜,在高碱性环境中,即PH≥11.5时,它可以阻止钢筋被进一步腐蚀。 当混凝土碳化深度超过保护层达到钢筋表面时,钢筋周围孔隙液的PH值降低到8.5~9.0,钝化膜被破坏,钢筋将完成电化学腐蚀,导致钢筋锈蚀。

混凝土碳化的几点原因

1.混凝土碳化 混凝土的碳化是指大气中的二氧化碳首先渗透到混凝土内部的孔隙中,而后溶解于毛细孔中的水分,与水泥水化过程中所产生的水化硅酸钙和氢氧化钙等水化产物相互作用,生成碳酸钙等产物。所以,混凝土碳化是由于混凝土存在着孔隙,里面充满着水分和空气,在混凝土的气相、液相、固相中进行着一个十分复杂的多相物理化学连续过程。 2.混凝土碳化影响因素 有内在因素,也有外界因素。 2.1影响混凝土碳化的内在因素 不同的水泥,其矿物组成、混合材量、外加剂、生料化学成分不同,直接影响着水泥的活性和混凝土的碱度,对碳化速度有重要影响。一般而言,水泥中熟料越多,则混凝土的碳化速度越慢。外加剂(减水剂、引气剂)一般均能提高抗渗性,减弱碳化速度,但含氯盐的防冻、早强剂则会严重加速钢筋锈蚀,应严格控制其用量。集料品种和级配不同,其内部孔隙结构差别很大,直接影响着混凝土的密实性。材质致密坚实,级配较好的集料的混凝土,其碳化的速度较慢。 增加水泥用量,一方面可以改变混凝土的和易性,提高混凝土的密实性;另一方面还可以增加混凝土的碱性储备,使其抗碳化性能增强,碳化速度随水泥用量的增大而减少。 在水泥用量一定的条件下,增大水灰比,混凝土的孔隙率增加,密实度降低,渗透性增大,空气中的水分及有害化学物质较多的浸入混凝土体内,加快混凝土碳化。 施工质量差表现为振捣不密实,造成混凝土强度低,蜂窝、麻面、空洞多,为大气中的二氧化碳和水分的渗入创造了条件,加速了混凝土的碳化。

混凝土成型后,必须在适宜的环境中进行养护。养护好的混凝土,具有胶凝好、强度高、内实外光和抗侵蚀能力强,能阻止大气中的水分和二氧化碳侵入其内,延缓碳化速度。 2.2影响混凝土碳化的外界因素 酸性气体(如CO2)渗入混凝土孔隙溶解在混凝土的液相中形成酸,与水泥石中的氢氧化钙、硅酸盐、铝酸盐及其他化合物发生中和反应,导致水泥石逐渐变质,混凝土的碱度降低,这是引起混凝土碳化的直接原因。试验研究已证明,混凝土的碳化速度与二氧化碳浓度的平方根成正比,即混凝土碳化速度系数随二氧化碳浓度的增加而加快。 在混凝土浸水饱和或水位变化部位,由于温度交替变化,使混凝土内部孔隙水交替地冻结膨胀和融解松弛,造成混凝土大面积疏松剥落或产生裂缝,导致混凝土碳化。渗漏水会使混凝土中的氢氧化钙流失,在混凝土表面结成碳酸钙结晶,引起混凝土水化产物的分解,其结果是严重降低混凝土强度和碱度,恶化钢筋锈蚀条件。混凝土温度骤降,其表面收缩产生拉力,一旦超过混凝土的抗拉强度,混凝土表面便开裂,导致形成裂缝或逐渐脱落,为二氧化碳和水分渗入创造了条件,加速混凝土碳化。

混凝土回弹与碳化深度

应该是“混凝土碳化作用”,是指碳酸气或含碳酸的水与混凝土中氢氧化钙作用生成碳酸钙的反应,正确地说,应是“碳酸化作用”,可是在国内已有通称“碳化作用”的习惯。碳化作用通常是指C02气体的作用,它不会直接引起混凝土性能的劣化,经过碳化的水泥混凝土,表面强度、硬度、密度还能有所提高。混凝土碳化作用的机理,即:碳化过程乃是外界环境中的C02通过混凝土表层的孔隙和毛细孔,不断地向内部扩散的过程。混凝土的碳化一定要有水分存在。若在毛细孔的孔壁上附着一层含有Ca(OH)2的水膜,则碳化就从带水膜的毛细孔壁开始。当环境的相对湿度为50--60%时,碳化的反应最快,可是当孔隙全部为水分所充满时,也会妨碍CO 2的扩散。CO2扩散的深度,通常用来作为评价混凝土抗碳化性能的技术参数,因为表面暴露在大气之中的混凝土,无论如何都免不了被碳化,只是碳化速度和抑制碳化进展的能力不同而已。 碳化对混凝土的不利影响:混凝土碳化后强度硬度有所提高,但由于碳化一般均在结构表面,深度不大,故对整体结构强度影响不大。但是混凝土碳化后会产生体积收缩,当收缩应力超过混凝土表面抗拉强度时,会在表面产生裂缝。潮湿空气进入裂缝使裂缝处的混凝土碳化收缩,继而使裂缝向混凝土内部发展。当裂缝穿透混凝土保护层到达钢筋时,由于混凝土碱性降低,湿气锈蚀钢筋,锈蚀严重时会胀裂保护层,加速锈蚀进程,最终有可能影响结构安全。耐久性良好的混凝土应该具有一定的抗拉强度、良好的抗渗透性能及良好的体积稳定性。 砼碳化指砼中的Ca(OH)2与空气中CO2或水中溶的CO2或其它酸性物质反应变成CaCO3而失去碱性的过程。砼的碳化值指砼自表面的碳化深度。它是钢筋保层厚度的依据。当砼失去碱性环境,钢筋就易锈蚀膨胀并胀裂砼,最终削弱砼对钢筋的握裹力,导至钢筋砼构件的破坏。

混凝土碳化深度及对回弹影响

混凝土碳化深度及对回弹影响 混凝土的碳化是混凝土所受到的一种化学腐蚀。空气中CO2气渗透到混凝土内,与其碱性物质起化学反应后生成碳酸盐和水,使混凝土碱度降低的过程称为混凝土碳化,又称作中性化,其化学反应为:Ca(OH)2+CO2=CaCO3+H2O。水泥在水化过程中生成大量的氢氧化钙,使混凝土空隙中充满了饱和氢氧化钙溶液,其碱性介质对钢筋有良好的保护作用,使钢筋表面生成难溶的Fe2O3和Fe3O4,称为钝化膜(碱性氧化膜)。碳化后使混凝土的碱度降低,当碳化超过混凝土的保护层时,在水与空气存在的条件下,就会使混凝土失去对钢筋的保护作用,钢筋开始生锈。可见,混凝土碳化作用一般不会直接引起其性能的劣化,对于素混凝土,碳化还有提高混凝土耐久性的效果,但对于钢筋混凝土来说,碳化会使混凝土的碱度降低,同时,增加混凝土孔溶液中氢离子数量,因而会使混凝土对钢筋的保护作用减弱。 影响混凝土碳化速度的因素是多方面的。首先影响较大的是水泥品种,因不同的水泥中所含硅酸钙和铝酸钙盐基性高低不同;其次,影响混凝土碳化主要还与周围介质中CO2的浓度高低及湿度大小有关,在干燥和饱和水条件下,碳化反应几乎终止,所以这是除水泥品种影响因素以外的一个非常重要的原因;再次,在渗透水经过的混凝土时,石灰的溶出速度还将决定于水中是否存在影响Ca(OH)2溶解度的物质,如水中含有Na2SO4及少量Mg2+时,石灰的溶解度就会增加,如水中含有Ca(HCO3)2的Mg(HCO3)2对抵抗溶出侵蚀则十分有利。因为它们在混凝土表面形成一种碳化保护层;另外,混凝土的渗透系数、透水量、混凝土的过度振捣、混凝土附近水的更新速度、水流速度、结构尺寸、水压力及养护方法与混凝土的碳化都有密切的关系。 混凝土碳化破坏的防治,对于混凝土的碳化破坏,我们在施工中总结出了一系列治理措施:一是,在施工中应根据建筑物所处的地理位置、周围环境,选择合适的水泥品种;对于水位变化区以及干湿交替作用的部位或较严寒地区选用抗硫酸盐普通水泥;冲刷部位宜选高强度水泥;二是,分析骨料的性质,如抗酸性骨料与水、水泥的作用对混凝土的碳化有一定的延缓作用;三是,要选好配合比,适量的外加剂,高质量的原材料,科学的搅拌和运输,及时的养护等各项严格的工艺手段,以减少渗流水量和其它有害物的侵蚀,以确保混凝土的密实性;另外,若建筑物地处环境恶劣的地区,宜采取环氧基液涂层保护效果较好,对建筑物地下部分在其周围设置保护层;用各种溶注液浸注混凝土,如:用溶化的沥青涂抹。还有,若建筑物一旦发生了混凝土碳化,最好采用环氧材料修补,若碳化深度较大,可凿除混凝土松散部分,洗净进入的有害物质,将混凝土衔接面凿毛,用环氧砂浆或细石混凝土填补,最后以环氧基液做涂基保护。 测碳化很简单: 1.在砼表面凿个小洞,深1cm左右; 2.用洗耳球或小皮老虎吹掉灰尘碎屑;文档冲亿季,好礼乐相随mini ipad移动硬盘拍立得百度书包 3.在凿开的砼表面滴或者喷1%的酚酞酒精溶液; 4.用游标卡尺或碳化深度深度测定仪测定没有变色的砼的深度规范有规定,超过6mm就要抽芯修正平均碳化深度值小于或等于0.4mm时,视为无碳化;大于或等于6.0mm时,取6.0mm。对于新浇注的混凝土不超过3个月龄期的,视为无碳化答案补充你可以看下这本书《建筑结构检测技术标准》GB/T50344-2004 答案补充碳化深度值的测量准确与否与回弹值一样,直接影响推定混凝土强度的精度。测出来的值是越小越正常提高回弹法检测混凝土抗压强度精确度的探讨回弹法检测混凝土抗压强度在我国使用已达四十余年,因其简便、灵活、准确、可靠、快速、经济等特点而倍受工程检测人员的青睐,是我国目前工程检测中应用最为广泛的检测仪器之一。当对工程结构质量有怀疑时,均可运用回弹法进行检测。但回弹法在使用过程中还是出现了较多的操作不规范、随意性大、计算方法不当等问题,造成了较大的测试误

混凝土的碳化深度

混凝土的碳化深度 混凝土碳化深度: 土碳化是指混凝土中的高碱性物质(主要是氢氧化钙)同大气中的二氧化碳(CO2)发生化学反应的现象。由于混凝土碳化是在混土碳化是在混凝土的构件外表面及表面下形成一个坚硬的碳化表皮,所以又称为混凝土“表面碳化”。 测定混凝土碳化深度值的意义: 检测混凝土碳化深度的目的之一是混凝土碳化深度的大小直接影响采用回弹法检测混凝土强度的 测定结果,即(对回弹法检测混凝土强度测定值进行修正)必须考虑混凝土碳化深度。 检测混凝土碳化深度的目的之二是由此可定性地推定混凝土中的钢筋锈蚀情况。下面简述混凝土碳化与钢筋锈蚀的关系分析。 混凝土碳化与钢筋锈蚀的关系: 普通硅盐水泥在水化过程中生成大量的氢氧 化钙。混凝土孔隙中充满了饱和氢氧化钙溶液,钢筋在碱性介质中表面生成难溶的Fe2O3和Fe3O4,这层保护膜(或钝化膜)使钢筋难以生锈。

混凝土硬化以后,表面遭受空气中二氧化碳的作用,氢氧化钙慢慢变成碳酸钙而失去碱性,即前述的混凝土碳化。 图c示出混凝土碳化深度达到钢筋表面,碳化部分的钢筋表面使氧化膜破坏而开始生锈,但碱性部分的钢筋表面并不生锈。钢筋一生锈,铁锈的体积增大,破坏了混凝土保护层,沿钢筋产生裂缝,水、空气进入裂缝,加速了钢筋的锈蚀。 因此,一般认为当混凝土保护层厚度大于碳化深度时,钢筋没有锈蚀;保护层厚度与碳化深度接近时,则钢筋表面开始有局部锈点出现,当碳化浓度大于保护层时,锈蚀一般不可避免地要出现。 由于已碳化混凝土中钢筋锈蚀将产生钢筋截面削弱、钢筋与混凝土相互作用能力降低,所以一般也认为当钢筋锈蚀发展

到混凝土保护层沿钢筋开裂的程度时,尽管尚不影响构件安全使用,但可认为是开始危及结构安全的前兆,甚至可认为这是构件使用寿命的一种极限状态。 混凝土碳化深度的检测方法: 碳化深度,可用合适的工具(如钻、凿子)在测区表面形成直径约为15mm的孔洞,其深度约等于保护层厚度,然后除去孔洞中的粉末和碎屑,不能用液体冲洗。用浓度为1%的酚酞酒精溶液立即洒在孔洞壁的边缘处,再用钢尺测量自混凝土表面至深处不变色、(未碳化部分呈紫红色)有代表性的交界处垂直距离1~2次,该距离即为混凝土的碳化深度值。每次测读至0.5mm。 在测区中选取n个碳化深度测点,得到相应碳化深度测量值,即可进行平均碳化深度值的计算。

砼防碳化处理方案

关于博恩花园四期92#楼结构砼表面碳化处理意见 针对博恩花园四期92#楼8层楼层碳化深度大于2.5mm,我单位也对现场进行了勘查,从耐久性等方面考虑,在粉刷前采用环氧厚浆涂料掺细砂喷涂,不但经济、耐久也不耽误工期:1. 环氧厚浆涂料性能特点 环氧厚浆涂料是由环氧基料、增韧剂、防锈剂、防锈防渗填料及固化剂等多种成份组成,适用于混凝土表层封闭。它具有以下一些特点:①、稳定性好。该涂料在大气、淡水、海水及酸碱溶液等介质中长期稳定。②、物理机械性能好。该涂料附着力强,涂层坚硬耐磨,耐热性及电绝缘性好。③、密封性能好。该涂料涂刷后能完全密闭受涂物表面,耐水、耐湿。 ④、保护周期长。使用寿命在12年以上。⑤、施工方便,适合机械喷涂。 2.施工工艺 (1)表面处理 混凝土表面处理是除掉混凝土上的污迹、浮物。用钢丝刷在混凝土上来回拉刷,直至除掉混凝土表面的污迹,再用高压水泵冲洗。表面处理后,对于混凝土上显露出来的裂缝、蜂窝、麻面等缺陷要先进行修补,完全补好后才能进行涂装,这样才能彻底保护混凝土。混凝土表面处理后待完全干燥后才能进行涂装。 (2)涂料使用要求 环氧厚浆涂料分甲、乙两组分,使用时一般按甲、乙组分比7∶1混合均匀后使用。配制量要根据需求适量配制,及时用完。 (3)表面涂装环氧厚浆涂料的人工涂装方法与一般涂料相同,机械喷涂采用高压无气喷涂工艺。 (4)用量 环氧厚浆涂料固体组分多,挥发组分少,一般应涂刷3~4遍,厚度达到0.25mm左右,用量0.5~0.6kg/m2,机械喷涂一遍即可,用量一般0.6~0.8kg/㎡。 3.质量检查及验收 (1)为保证施工质量,施工要由有经验的施工人员或施工前经过培训的人员进行,施工单位应设专人负责施工质量的管理与控制。 (2)环氧厚浆涂料喷涂要均匀,不应有裂纹、脱皮、流淌和皱皮现象,均匀一致。 (3)参加称料、配料操作人员必须责任心强。在正式大面积施工前,必须要作试验并进行操作演练。

混凝土碳化的几点原因

混凝土碳化的几点原因集团公司文件内部编码:(TTT-UUTT-MMYB-URTTY-ITTLTY-

1.混凝土碳化 混凝土的碳化是指大气中的二氧化碳首先渗透到混凝土内部的孔隙中,而后溶解于毛细孔中的水分,与水泥水化过程中所产生的水化硅酸钙和氢氧化钙等水化产物相互作用,生成碳酸钙等产物。所以,混凝土碳化是由于混凝土存在着孔隙,里面充满着水分和空气,在混凝土的气相、液相、固相中进行着一个十分复杂的多相物理化学连续过程。 2.混凝土碳化影响因素 有内在因素,也有外界因素。 2.1 影响混凝土碳化的内在因素 不同的水泥,其矿物组成、混合材量、外加剂、生料化学成分不同,直接影响着水泥的活性和混凝土的碱度,对碳化速度有重要影响。一般而言,水泥中熟料越多,则混凝土的碳化速度越慢。外加剂(减水剂、引气剂)一般均能提高抗渗性,减弱碳化速度,但含氯盐的防冻、早强剂则会严重加速钢筋锈蚀,应严格控制其用量。 集料品种和级配不同,其内部孔隙结构差别很大,直接影响着混凝土的密实性。材质致密坚实,级配较好的集料的混凝土,其碳化的速度较慢。 增加水泥用量,一方面可以改变混凝土的和易性,提高混凝土的密实性;另一方面还可以增加混凝土的碱性储备,使其抗碳化性能增强,碳化速度随水泥用量的增大而减少。 在水泥用量一定的条件下,增大水灰比,混凝土的孔隙率增加,密实度降低,渗透性增大,空气中的水分及有害化学物质较多的浸入混凝土体内,加快混凝土碳化。 施工质量差表现为振捣不密实,造成混凝土强度低,蜂窝、麻面、空洞多,为大气中的二氧化碳和水分的渗入创造了条件,加速了混凝土的碳化。

混凝土成型后,必须在适宜的环境中进行养护。养护好的混凝土,具有胶凝好、强度高、内实外光和抗侵蚀能力强,能阻止大气中的水分和二氧化碳侵入其内,延缓碳化速度。 2.2影响混凝土碳化的外界因素 酸性气体(如CO2)渗入混凝土孔隙溶解在混凝土的液相中形成酸,与水泥石中的氢氧化钙、硅酸盐、铝酸盐及其他化合物发生中和反应,导致水泥石逐渐变质,混凝土的碱度降低,这是引起混凝土碳化的直接原因。试验研究已证明,混凝土的碳化速度与二氧化碳浓度的平方根成正比,即混凝土碳化速度系数随二氧化碳浓度的增加而加快。 在混凝土浸水饱和或水位变化部位,由于温度交替变化,使混凝土内部孔隙水交替地冻结膨胀和融解松弛,造成混凝土大面积疏松剥落或产生裂缝,导致混凝土碳化。渗漏水会使混凝土中的氢氧化钙流失,在混凝土表面结成碳酸钙结晶,引起混凝土水化产物的分解,其结果是严重降低混凝土强度和碱度,恶化钢筋锈蚀条件。 混凝土温度骤降,其表面收缩产生拉力,一旦超过混凝土的抗拉强度,混凝土表面便开裂,导致形成裂缝或逐渐脱落,为二氧化碳和水分渗入创造了条件,加速混凝土碳化。

混凝土碳化问题

混凝土碳化深度 目录 介绍 混凝土的碳化是混凝土所受到的一种化学腐蚀。空气中CO2气渗透到混凝土内,与其碱性物质起化学反应后生成碳酸盐和水,使混凝土碱度降低的过程称为混凝土碳化,又称作中性化,其化学反应为:Ca(OH)2+CO2=CaCO3+H2O。水泥在水化过程中生成大量的氢氧化钙,使混凝土空隙中充满了饱和氢氧化钙溶液,其碱性介质对钢筋有良好的保护作用,使钢筋表面生成难溶的Fe2O3和Fe3O4,称为钝化膜(碱性氧化膜)。碳化后使混凝土的碱度降低,当碳化超过混凝土的保护层时,在水与空气存在的条件下,就会使混凝土失去对钢筋的保护作用,钢筋开始生锈。可见,混凝土碳化作用一般不会直接引起其性能的劣化,对于素混凝土,碳化还有提高混凝土耐久性的效果,但对于钢筋混凝土来说,碳化会使混凝土的碱度降低,同时,增加混凝土孔溶液中氢离子数量,因而会使混凝土对钢筋的保护作用减弱。 混凝土碳化对我们的影响 影响混凝土碳化速度的因素是多方面的。首先影响较大的是水泥品种,因不同的水泥中所含硅酸钙和铝酸钙盐基性高低不同;其次,影响混凝土碳化主要还与周围介质中CO2的浓度高低及湿度大小有关,在干燥和饱和水条件下,碳化反应几乎终止,所以这是除水泥品种影响因素以外的一个非常重要的原因;再次,在渗透水经过的混凝土时,石灰的溶出速度还将决定于水中是否存在影响Ca(OH)2溶解度的物质,如水中含有Na2SO4及少量Mg2+时,石灰的溶解度就会增加,如水中含有Ca(HCO3)2的Mg(HCO3)2对抵抗溶出侵蚀则十分有利。因为它们在混凝土表面形成一种碳化保护层;另外,混凝土的渗透系数、透水量、混凝土的过度振捣、混凝土附近水的更新速度、水流速度、结构尺寸、水压力及养护方法与混凝土的碳化都有密切的关系。 混凝土碳化破坏的防治,对于混凝土的碳化破坏,我们在施工中总结出了一系列治理措施:一是,在施工中应根据建筑物所处的地理位置、周围环境,选择合适的水泥品种;对于水位变化区以及干湿交替作用的部位或

混凝土碳化深度与处理措施

目录 一、碳化作用机理 (2) 二、影响商品混凝土碳化的因素 (2) 三、商品混凝土碳化的预防措施 (5) 四、混凝土碳化处理措施 (6)

混凝土碳化的影响因素及其预防措施 商品混凝土碳化是影响商品混凝土耐久性的一个重要因素。本文对商品混凝土碳化的影响因素及其预防措施进行了总结。从商品混凝土本身的密实度和碱性大小的角度考虑,商品混凝土的碳化受材料、环境和施工等因素的影响。降低水灰比、优化配合比设计、加强养护和增加保护层厚度可以提高商品混凝土的抗碳化能力。 一、碳化作用机理 空气中CO2渗透到商品混凝土内,与其碱性物质发生化学反应生成碳酸盐和水,使商品混凝土碱度降低的过程称为商品混凝土碳化,也可称为中性化,其化学反应为: Ca(OH)2 + CO2 = CaCO3 + H2O 水泥在水化过程中生成大量的氢氧化钙,使商品混凝土空隙中充满了饱和C a(OH)2溶液,其碱性介质对钢筋有良好的保护作用,使钢筋表面生成难溶的Fe 2O3和Fe3O4,称为钝化膜。 碳化本身对商品混凝土没有破坏作用,其主要危害是由于碳化会降低商品混凝土的碱度。当碳化超过商品混凝土的保护层时,在水与空气同时存在的条件下,钢筋开始生锈。钢筋锈蚀产生的体积膨胀将导致钢筋长度方向出现纵向裂缝,并使保护层脱落,进而使得构件的截面减小、承载能力降低,最终将使结构构件破损或者失效。 二、影响商品混凝土碳化的因素 影响商品混凝土碳化最主要的因素是商品混凝土本身的密实度和碱性大小,即商品混凝土的渗透性及其Ca(OH)2含量。影响商品混凝土碳化的因素主要分为三个方面:材料因素、环境因素和施工因素。 2.1 材料因素 材料因素包括水灰比、水泥品种与用量、掺合料、外加剂、骨料品种与级配、商品混凝土表面覆盖层等等,主要通过影响商品混凝土的碱度和密实性来影响商品混凝土的碳化速度。 2.1.1 水灰比 水灰比是决定混凝土性能的重要参数,对混凝土碳化速度影响极大。众所周知,水灰比基本上决定了混凝土的孔结构,水灰比越大,混凝土内部的孔隙率就越大。混凝土中的气孔主要有胶孔、气孔和毛细孔。胶孔的半径很小,CO2分子很难自由进出;CO2扩散均在内部的气孔和毛细孔中进行。因此水灰比一定程度上决定了CO2在混凝土中的扩散速度,水灰比越大,孔隙率越高,CO2的扩散越容易,混凝土碳化速度越快。另外,水灰比大会使商品混凝土孔隙中的游离水增多,一定程度上也有利于碳化反应。研究结果表明:当水灰比大于0.65时,碳化深度会急剧加大。国内外进行了大量的快速碳化试验和长期暴露试验来研究水灰比与混凝土碳化速度的关系。得到碳化速度与水灰比的关系,暴露试验给出了碳化速度系数与水灰比的表达式:

混凝土碳化影响因素及减缓措施

混凝土碳化影响因素及减缓措施 摘要:所谓混凝土的碳化,是指水泥石中的水化产物与周围环境中的二氧化碳作用,生成碳酸盐或其他物质的现象。碳化将使混凝土的内部组成及组织发生变化,使得混凝土结构内部环境由强碱性变为弱碱性,破坏钢筋表面的钝化膜,导致钢筋锈蚀,严重的将导致混凝土结构的保护层剥落。 关键词:混凝土;碳化;保护层 1.混凝土碳化影响因素 1.1材料因素:材料因素包括水灰比、水泥品种与用量、掺合料、外加剂等,它们主要通过影响混凝土的碱度和密实性来影响混凝土碳化速度。 (1)水灰比 水灰比W/C是决定混凝土孔结构与孔隙率的主要因素,其中游离水的多少还关系着孔隙饱和度(孔隙水体积与孔隙总体积之比)的大小,因此,水灰比是决定CO2有效扩散系数及混凝土碳化速度的主要因素之一。水灰比增加,则混凝土的孔隙率加大,CO2有效扩散系数扩大,混凝土的碳化速度也加大。水灰比在正常施工条件下,混凝土的碳化速度随水灰比减小而降低。此外,龚洛书最早通过试验给出了水灰比对碳化深度的影响系数拟合公式,碳化深度随水灰比的变大而线性升高。 (2)水泥品种和水泥用量 用矿渣水泥的混凝土比同水灰比的普通混凝土碳化程度快10%~20%。水泥用量越大,则单位体积混凝土中可碳化物质的含量越多,消耗的CO2也越多,从而碳化速度越慢。在水泥用量相同时,掺混合材料的水泥水化后单位体积混凝土中可碳化物质含量减少,且一般活性混合材由于二次水化反应还要消耗一部分可碳化物质Ca(OH)2,使可碳化物质含量更少,故碳化速度加快。因此,相同水泥用量的硅酸盐水泥混凝土的碳化速度最小,普通硅酸盐水泥混凝土次之,粉煤灰水泥、火山灰质硅酸盐和矿渣硅酸盐水泥最大。同一品种的掺混合材水泥,碳化速度随混合材掺量的增加而加大 (3)粉煤灰掺量 在硅酸盐水泥混凝土中,掺入粉煤灰有正负两方面的作用,一方面由于水泥用量减少,水化反应生成的可碳化物质减少,碱储备降低,抗碳化能力降低。另一方面,粉煤灰的二次水化填充效应可显著改善混凝土的孔结构,提高混凝土的密实性。

混凝土回弹与碳化深度

混凝土回弹与碳化深度

综述:碳化深度过深会降低混凝土的碱性,影响结构的耐久度。碳化就是混凝土中的Ca(OH)2和空气中的CO2反应生成CaCO3和水的过程。 碳化深度主要与水灰比和周围环境有关。一般说来,水泥用量一定的时候,水灰比越大,碳化越快。当水灰比一定的时候,水泥用量越少,碳化越快。从碳化的定义我们可以看出如果水泥用量多的话,混凝土中的Ca(OH)2就多碱性就越强,越不容易碳化。还有就是周围的环境,CO2的浓度及湿度。非常潮湿和非常干燥的时候,混凝土都不易碳化。太湿可以隔离CO2与Ca(OH)2的反映,太干CO2无法结合到水生成H2CO3(碳酸),混凝土也不会碳化。 回弹检测混凝土强度是以混凝土的表面硬度来推断混凝土强度的.碳化会增大混凝土表面硬度,所以回弹判定其强度时需要检测碳化深度进行修正。 一、混凝土碳化机理及原因 1、混凝土碳化机理 拌和混凝土时,硅酸盐水泥的主要成份CaO水化作用后生成Ca(OH)2,它在水中的溶解度低,除少量溶于孔隙液中,使孔隙液成为饱和碱性溶液外,大部分以结晶状态存在,成为孔隙液保持高碱性的储备,它的PH值为12.5~13.5。空气中的CO2气体不断地透过混凝土中未完全充水的粗毛细孔道,气相扩散到混凝土中部分充水的毛细孔中,与其中的孔隙液所溶解的Ca(OH)2进行中和反应。反应产物为CaCO3和H2O,CaCO3溶解度低,沉积于毛细孔中。

该反应式为:Ca(OH)2+CO2→CaCO3↓+H2O 反应后,毛细孔周围水泥石中的羟钙石补充溶解为Ca2+和OH-,反向扩散到孔隙液中,与继续扩散进来的CO2反应,一直到孔隙液的PH值降为8.5~9.0时,这层混凝土的毛细孔中才不再进行这种中和反应,此时即所谓“已碳化”。确切地说,碳化应称为碳酸盐化。另外,凡是能与Ca(OH)2进行中和反应的一切酸性气体,如SO2、SO3、H2S以至于气相HCI等,均能进行上述中和反应,使混凝土碱度降低,故混凝土碳化应广义地称为“中性化”。混凝土表层碳化后,大气中的CO2继续沿混凝土中未完全充水的毛细孔道向混凝土深处气相扩散,更深入地进行碳化反应。 2、混凝土碳化原因 混凝土的主要成分有水泥、粗细骨料、水以及外加剂。水泥掺与混凝土的拌合中,水泥中主要成分是CaO,经水化作用后生成Ca(OH)2 ,混凝土的碳化,是指混凝土中的Ca(OH)2与空气中的CO2起化学反应,生成中性的碳酸盐CaCO3 。未碳化的混凝土呈碱性,混凝土中钢筋保持钝化状态的最低(临界)碱度是PH 值为11.5,碳化后的混凝土PH值为8.5~9.5。碳化使混凝土的碱度降低,同时,增加混凝土孔溶液中氢离子数量,使混凝土对钢筋的保护作用减弱。当碳化超过混凝土的保护层时,在水与空气存在的条件下,就会使混凝土失去对钢筋的保护作用,钢筋开始生锈。钢筋锈蚀后,锈蚀产生的体积比原来膨胀2~4倍,从而对周围混凝土产生膨胀应力,锈蚀越严重,铁锈越多,膨胀力越大,最后导致混凝土开裂形

SCL混凝土防碳化技术

SCL混凝土防碳化技术 SCL混凝土防碳化技术 一、防碳化处理设计 混凝土的碳化是混凝土所受到的一种化学腐蚀。空气中二氧化碳渗透到混凝土内,与其碱性物质起化学反应后生成碳酸盐和水,使混凝土碱度降低的过程称为混凝土碳化,又称作中性化。 根据混凝土结构碳化原理,对现有已经发生碳化混凝土结构,水泥品种是无法改变的,那么,要控制混凝土进一步碳化,就是控制它周围介质环境条件,即二氧化碳浓度及湿度大小。 故将SP202高徽浆与SP201混凝土保护剂相结合的方法对混凝土进行防碳化处理。 SP201混凝土保护剂是一种高科技、环保型、无毒液凝胶剂,其作用于混凝土上,渗透入混凝土深度达5—50mm,与混凝土中的游离物质产生化学反应,生成稳定的枝蔓状晶体胶质,能有效地堵塞混凝土内部毛细空隙,使混凝土结构具有持久的防水功能和更好的密实度,同时还能有效的阻止酸性物质、氯离子等对混凝土的侵蚀。 对结构露筋,风化剥落部位除去松脱层,用SP202高徽浆进行修补。然后进行全面防碳化处理。 1 / 9 二、施工方法 1)施工工序流程 基层处理→涂刷SP202高徽浆→ SP201混凝土保护剂制备→ SP201混凝土保护剂施工→养护→检查验收 2)施工工艺 a.基层处理:在喷涂SP201混凝土保护剂之前,混凝土表层必须进行清洁处理,把粉尘、浮浆、混凝土上的脏污、油渍清洗干净,裂缝处需作修补。对于混凝土缺陷,包括蜂窝麻面、孔洞、裂缝,需要采用SP202高徽浆修补。

b.S P201混凝土保护剂制备:SP201混凝土保护剂为单组份液体,不需要混合搅拌,使用之前,要充分摇匀,不要与其他溶液和流质物稀释。 c.S P201混凝土保护剂施工:采用喷射器喷涂施工,细部采用刷子、辊筒涂抹。SP201混凝土保护剂的喷涂垂直面要从底部开始,并做到均匀。 喷涂第二遍SP201混凝土保护剂前,要待第一层混凝土表层晾干后方可进行,相隔时间一般为16-24小时。喷涂完SP201混凝土保护剂第二遍之后,需确保混凝土有自然养护时间达16小时以上。 d.养护:工作环境条件为摄氏4.5-35度之间。表层温度在摄氏1.6-32度之间,若表层温度高于设施32度,需要在使用SP201混凝土保护剂之前洒水。 三、材料简介 高徽浆SP202 1)产品说明 高徽浆SP202是一种高性能水泥基聚合物复合材料,含有独特的共聚成分,在水泥中引起交叉反应链形成聚合物——水泥水化物的互传网络结构,产生化学与机械结合的内聚力与附着力,提高了拉伸强度和粘结强度,涂覆在混凝土表面并与之牢固粘结形成高强坚韧耐久的保护层,是一种单组份、干粉状高耐久性的新型保护封闭材料。 2)使用范围 广泛适用于水利水电、港口、隧道、桥梁及其它工业与民用建筑等钢筋混凝土结构的防碳化、防渗、防水、防腐等,提高结构使用寿命。如冷却塔、渡槽、水闸、大坝、桥梁、蓄水池、污水处理池、混凝土电杆等工程。 特点 a)良好的粘结强度与粘结能力,可涂刷在多种建筑材料表面; b)抵抗大气侵蚀,抗紫外线照射、耐磨损、耐裂; c)优良的抗渗性和耐水性,能在立面和潮湿基面上进行操作; d)具有良好的防水和密封性能,防止外界雨水对结构的侵蚀; e)良好的抗有害气体,如二氧化碳、氧气、盐雾等的渗透性能,防止混凝 土碳化化;

混凝土碳化的影响因素及应对措施

混凝土碳化的影响因素及应对措施 钱大伟戴炜 (宿迁市建设工程质量检测中心有限公司) 【摘要】本文先介绍了混凝土的碳化机理,然后分三个方面详细研究了混凝土碳化的影响因 素,最后给出了相应的防碳化措施。 【关键词】混凝土;碳化;影响;措施 1 前言 混凝土的强度和耐久度是混凝土结构的两个重要指标,随着技术的不断进 步,人们从片面追求混凝土的高强度转移到重视混凝土结构的耐久度上来。混凝 土抗碳化能力是衡量混凝土结构耐久性的一个重要指标。抗碳化能力差的混凝土 构件,会引起钢筋的锈蚀,导致混凝土结构破坏,减少建筑物的使用寿命。随着 经济的发展,温室效应越来越显著,大气中CO2浓度越来越高,大量处于暴露环 境中的混凝土结构物面临的碳化问题越来越严重。因此,研究混凝土碳化的影响 因素及应对措施就显得尤为重要。 2 混凝土的碳化机理 混凝土的基本组成材料为水泥、水、砂和石子,其中硅酸盐水泥熟料矿物主 要由硅酸三钙和硅酸二钙组成,在拌合混凝土时,它们与水发生如下的化学反应: 2(3CaO·SiO2)+6H2O=3CaO·2SiO2·3H2O+3Ca(OH)2 2(2CaO·SiO2)+4H2O=3CaO·2SiO2·3H2O+Ca(OH)2 由上可知,硅酸盐水泥的主要水化产物为水化硅酸钙和Ca(OH)2 ,其中Ca(OH)2 在 水中的溶解度极低,除少量溶于孔隙液中,使孔隙液成为饱和碱性溶液,它的 PH值为12.5~13.5,这种高碱性的环境有利于保护钢筋,相当于在钢筋周围产 生了一层“保护膜”,使其免遭锈蚀。 由于施工过程中的种种原因,混凝土内部存在许多大小不一的毛细孔、孔隙、 气泡、甚至缺陷,因此形成的混凝土实际是一个含固相、液相、气相的非均匀物 质,于是环境中的二氧化碳气体便通过这些无法避免的缺陷,渗透到毛细孔和孔 隙中,与其中的孔隙液所溶解的Ca(OH)2 进行中和反应,其化学方程式如下: CO2+ H2O =H2CO3 Ca(OH)2+H2CO3=CaCO3+2H2O 反应后,毛细孔周围水泥石中的羟钙石补充溶解为Ca+2和OH-,反向扩散到 孔隙液中,与继续扩散进来的CO2反应,一直到孔溶液中的PH值降为8.5~9.0 时]1[,这层毛细孔才不再进行这种中和反应,即所谓“已碳化”,混凝土表层碳 化后,大气中的CO2继续沿混凝土中未完全充水的毛细孔道向混凝土深处气相扩 散,更深入地进行碳化反应。这些反映使混凝土中的碱度降低,破坏钢筋周围的 “保护膜”,这样就会加速钢筋的锈蚀,因锈蚀就会引起体积膨胀使混凝土覆盖 层遭受破坏,从而发生沿钢筋界面出现裂缝以及混凝土覆盖层剥落等现象。 3 混凝土碳化的影响因素 经上所述,碳化对钢筋混凝土结构有不利影响,必须对其影响因素进行全面 的了解以采取积极有效的预防措施。混凝土碳化速度取决于混凝土的密实度及其 碱储备量,混凝土的密实度越大,碱储备量越多,其抗碳化能力越强。影响混凝

混凝土碳化研究现状_武俊曦

四川建筑科学研究Sichuan Building Science 第37卷第6期2011年12月 收稿日期:2010-06-10作者简介:武俊曦(1977-),男,陕西西安人,工程师,主要从事建筑施工工作。 E -mail :wujunxi1977@126.com 混凝土碳化研究现状 武俊曦1 ,王 艳 2 (1.陕西建工集团第三建筑工程有限公司,陕西西安710054;2.西安建筑科技大学土木工程学院,陕西西安710055) 摘要:混凝土碳化是一个非常复杂的物理化学过程,国内外众多学者分别从碳化机理、影响碳化的因素、碳化深度预测模型 等方面, 对这个问题进行了深入研究。本文对这些成果进行了总结与分类,在此基础上提出了尚存在的问题,并对混凝土碳化研究发展方向进行了展望。 关键词:混凝土;碳化;碳化速度;碳化深度中图分类号:TU528文献标识码:B 文章编号:1008-1933(2011)06-202-03 0前言 Mahta 教授在题为《混凝土耐久性———50年进 展》的主旨报告中指出:“当今世界,混凝土破坏原 因,按重要性递减顺序排列是钢筋腐蚀、寒冷气候下 的冻害、侵蚀环境的物理化学作用”。因此,钢筋锈 蚀是影响混凝土耐久性的主要因素之一。而混凝土碳化又是引起钢筋锈蚀最主要的原因。20世纪60年代,国际上一些发达国家就开始重视混凝土结构的耐久性问题,对混凝土碳化进行了大量的试验研究及理论分析。国内从20世纪80年代开始研究混凝土碳化与钢筋锈蚀问题,通过快速碳化实验、长期暴露实验及实际工程调查,研究混凝土碳化的影响因素与碳化深度预测模型。经过40多年的研究,国内外对混凝土碳化机理与影响因素已经有了深刻的 认识, 并提出了很多种碳化深度的计算模型。1混凝土碳化机理的研究 混凝土碳化是一个非常复杂的物理化学过程, 国内外很多学者从不同的角度对这个问题进行了深入研究。 普通水泥混凝土水泥熟料的主要矿物成分是硅酸三钙C 3S (3CaO ·SiO 2)、硅酸二钙C 2S (2CaO ·SiO 2)、铁铝酸四钙C 4AF (4CaO ·Al 2O 3·Fe 2O 3)和 铝酸三钙C 3A (3CaO ·Al 2O 3), 另外,还有少量的石膏C SH 2(CaSO 4·2H 2O )等。其水化产物为氢氧化钙(约占25%)、水化硅酸钙(约占60%)、水化铝酸钙、水化硫铝酸钙等,充分水化后,混凝土孔隙水溶液为氢氧化钙饱和溶液,其pH 值约为12 13,呈强碱性。在水泥水化过程中,由于化学收缩、自由水蒸发等多种原因,在混凝土内部存在大小不同的毛细 管、 孔隙、气泡等,大气中的二氧化碳通过这些孔隙向混凝土内部扩散,并溶解于孔隙内的液相,在孔隙溶液中与水泥水化过程中产生的可碳化物质发生碳 化反应, 生成碳酸钙。混凝土碳化的主要化学反应式如下[1] :Ca (OH )2+CO 2→CaCO 3+H 2O 3CaO ·2SiO 2·3H 2O +3CO 2→3CaCO 3·2SiO 2 ·3H 2O 3CaO ·SiO 2+3CO 2+γH 2O →SiO 2·γH 2O +3CaCO 3 2CaO ·SiO 2+2CO 2+γH 2O →SiO 2·γH 2O +2CaCO 3 文献[2]研究表明,混凝土孔溶液中绝大多数组分为Na + , K +和与其保持电性平衡的OH –,Ca 2+含量微乎其微, Ca (OH )2大部分是以晶体存在的。当CO 2扩散到混凝土孔溶液,并分别与Na + , K +,Ca 2+反应生成Na 2CO 3,K 2CO 3,CaCO 3。由于Na 2CO 3,K 2CO 3溶解度大,孔溶液中的Na + ,K +浓度不会发生变化,除非这些溶液干燥时达到过饱和析 出晶体;而孔溶液中的Ca 2+与CO 2- 3发生反应生成溶解度极低的CaCO 3,并沉积在孔壁表面,导致孔溶 液中Ca 2+ 浓度降低,因此Ca (OH )2晶体继续溶解,并补充孔溶液中失去的Ca 2+ 浓度。Ca (OH )2晶体逐渐溶解而碳化反应过程中CaCO 3晶体逐渐增多,这种循环反应一直进行到Ca (OH )2晶体完全溶解和消耗为止,此时混凝土pH 值降低,混凝土发生中性化现象。 混凝土孔溶液的pH 值越高,CaCO 3溶解度越小,孔溶液中发生中性化反应之后Ca 2+ 的浓度减少 得也越多, Ca (OH )2晶体的溶解速度也越快。随着中性化过程的继续,孔溶液的pH 不断降低, Ca (OH )2晶体的溶解速度也会减慢,碳化速度相应会有一些降低。 另外,由于碳化反应的主要产物碳酸钙属非溶 解性钙盐,比原反应物的体积膨胀约11.6%[3] ,因 2 02

混凝土的碳化及影响因素

混凝土的碳化及影响因素 【摘要】混凝土碳化是影响温凝土结构耐久性的重要原因之一,通过对混凝土碳化机理以及影响因素的分析,我们可以采取更好的相关控制措施来减少碳化的危害。 【关键词】混凝土;碳化;影响因素;控制措施 空气、土壤或地下水中酸性物质,如CO2 、HCl 、SO2 、Cl2 深入混凝土表面,与水泥石中的碱性物质发生反应的过程称为混凝土的中性化。混凝土在空气中的碳化是中性化最常见的一种形式,它是空气中二氧化碳与水泥石中的碱性物质相互作用很复杂的一种物理化学过程。在某些条件下,混凝土的碳化会增加其密实性,提高温凝土的抗化学腐蚀能力,但由于碳化会降低混凝土的碱度,破坏钢筋表面的钝化膜,使混凝土失去对钢筋的保护作用,给混凝土中钢筋锈蚀带来不利的影响。同时,混凝土碳化还会加剧混凝土的收缩,这些都可能导致混凝土的裂缝和结构的破坏。由此可见,混凝土的碳化对钢筋混凝土结构的耐久性有很大的影响。因此,混凝土碳化机理、影响因素及其控制的分析很重要。 1 混凝土的碳化机理 1. 1 碳化反应 混凝土的基本组成材料为水泥、水、砂和石子,其中的水泥与水发生水化反应,生成的水化物自身具有强度(称为水泥石) ,同时将散粒状的砂和石子粘结起来,成为一个坚硬的整体。混凝土的碳化,是指水泥石中的水化产物与周围环境中的二氧化碳作用,生成碳酸盐或其他的物质的现象。碳化将使混凝土的内部组成及组织发生变化。由于混凝土是一个多孔体,在其内部存在大小不同的毛细管、孔隙、气泡,甚至缺陷等。空气中的二氧化碳首先渗透到混凝土内部充满空气的孔隙和毛细管中,而后溶解于毛细管中的液相,与水泥水化过程中产生的氢氧化钙和硅酸三钙、硅酸二钙等水化产物相互作用,形成碳酸钙。所以,混凝土碳化也可用下列化学反应表示: CO2 + H2O H2CO3 Ca (OH) 2 + H2CO3 CaCO3 + 2H2O 3CaO·2SiO2·3H2O + 3H2CO3 3CaCO3 + 2SiO2 + 6H2O 2CaO·SiO2·4H2O + 2H2CO3 2CaCO3 + SiO2 + 6H2O 可以看出,混凝土的碳化是在气相、液相、和固相中进行的一个复杂的多相物理化学连续过程。

混凝土碳化的机理

混凝土的碳化及其对钢筋腐蚀的影响摘要:本文分析了大气环境中CO2、SO 2 等物质使混凝土发生碳化的作用机理及影响混凝土碳化的主要因素,阐述了钢筋混凝土结构中钢筋腐蚀的电化学过程,运用混凝土碳化原理分析了混凝土的碳化对钢筋蚀的影响。关键词:混凝土;碳化;钝化膜;钢筋腐蚀自从1824 年波特兰水泥(又称之为硅酸盐水泥)问世以来,混凝土材料就以其性能优越、施工方便和经济成本低等方面的显著优势在土木工程领域内得到广泛的应用。然而在大气中的CO 2、SO2 等外部介质作用下,混凝土结构会逐渐发生碳化,从而导致钢筋腐蚀(锈蚀),其性能产生衰减,混凝土结构的使用寿命往往也没有人们所预想的那样长。根据煤碳部1996 年对部分矿区生产系统的钢筋混凝土结构建筑的调查报告,显示因混凝土碳化造成混凝土中钢筋锈蚀,其钢筋锈蚀深度达20% 以上,结构的可靠度大大降低。因此混凝土碳化对钢筋腐蚀的影响逐渐引起了结构工程界的重视。 1混凝土的碳化1.1混凝土碳化的作用机理混凝土的碳化是指空气中的CO 2、SO 2 等酸性气体与混凝土中液相的Ca (OH)2作用,生成CaCO和HO的中性化过程。此外水泥石中水化硅酸钙(CSH和未水化的硅酸三钙(GS)及硅酸二钙(GS)也要消耗一定的CO 2气体。由于混凝土是一种多孔性材料,在其内部往往存在着大小不同的毛细管、孔隙、气泡等缺陷,具有一定的透气性。空气中的CO2 首先渗透到混凝土内部充满空气的孔隙和毛细管中,而后溶解于毛细管中的液相,与水泥水化过程中产生的Ca (OH 2和水化硅酸钙(CSH 等物质相互作用,形成CaCQ Ca (OH 2 是水泥的主要水化产物之一,对于普通硅酸盐水泥而言,水化生成的Ca (OH )2可达10%- 15%。Ca (OH 2 一方面是混凝土高碱度的主要提供者,另一方面又是混凝土中最不稳定的成分之一,很容易与环境中的酸性介质发生中和反应,从而使混凝土碳化。 经过大量的研究表明,混凝土的碳化过程是CO2 气体由表及里向混凝土内部逐渐扩散、反应复杂的物理化学过程,主要的碳化反应方程如下: Ca (OH ) 2 + H 2O + CC2 ~CaCO3 + 2 H 2O 3CaO?2S iS02 ?3H O2 + 3 CQ —3CaCO a ? S iO 2 ?3H 2O 3CaO?2 S iSO 2 H O 2 + nH2O — 3 CaCO ?2 S iO 2 ? nH 2O 3CaO-2 S iSO 2 H O 2 + nH2O —2 CaCQ ? S iO2 ? nH 2O

相关文档
相关文档 最新文档