文档库 最新最全的文档下载
当前位置:文档库 › 屋面雪荷载计算

屋面雪荷载计算

屋面雪荷载计算
屋面雪荷载计算

不平衡积雪荷载

雪荷载是房屋屋面的主要荷载之一,属于结构上的可变荷载。在我国寒冷地区及其他大雪地区,因雪荷载导致屋面结构以及整个结构破坏的事例时有发生(如下图所示)。尤其是大跨度结构以及轻型屋盖对雪荷载更为敏感。因此,在有雪地区,在结构设计中必须考虑雪荷载的作用。

两个雪荷载倒塌事故

1. 基本雪压

所谓雪压是指单位水平面积上的积雪重量。

雪压的计算公式:s =rd

式中 s ——雪压(N/2

m )

r ——雪重度(N/2m )

d ——雪深(m )

雪重度r 是一个随时间和空间变化的量,越靠近地面,雪的重度越大,雪深越大,下层的重度越大。

屋面水平投影面上的雪荷载标准值,按下式计算:

0k r S S μ= k S ——雪荷载标准值(kN/2m );

r μ——屋面积雪分布系数;

0S ——基本雪压(kN/2m );

基本雪压(0S )是雪荷载的基准压力,一般按当地空旷平坦地面上积雪自重的观测数据,经概率统计得出50年一遇最大值确定。可以在《建筑结构荷载规范》附录表D4中直接

查出。

2.屋面的雪压

影响屋面雪压的因素有:风、屋面形式、屋面散热等。

1) 风对屋面积雪的影响

风对屋面积雪的影响:主要是由风的漂积作用引起的。在下雪过程中,风会把部分本将飘落在屋面上的雪积吹到附近的地面或其它较低的物体上,这种影响就叫风的漂积作用。当风速较大或房屋处于曝风位置时,部分已经积在屋面上的雪会被风吹走,从而导致平屋面或小坡度(坡度小于10度)屋面上的雪压普遍比邻近地面上的雪压要小。在高低跨屋面的情况下,由于风对雪的漂积作用,会将较高屋面的雪吹落在较低屋面上,在低屋面上形成局部较大的漂积荷载。对多坡度屋面及曲线型屋面,屋谷附近区域的积雪比屋脊区大,其原因之一是作用下的雪漂积,屋脊区的部分积雪被风吹在屋谷区内。

对于高低跨屋面,由于风对雪的漂积作用,会将较高屋面的雪吹落在较低屋面上,在低屋面上形成局部较大的漂积荷载。苏联根据西伯利亚地区的屋面荷载的调查,对屋面积雪分布系数r μ规定为

r μ=2h/0S ≤4.0

式中 h ——屋面高低差,m ;

0S ——基本雪压,kN/2

m 。

并规定积雪分布宽度1α=2h ,但不小于5m ,不大

于10m 。积雪按三角形分布,如图所示。根据我国的

积雪情况调查,高低屋面堆雪集中程度远小于西伯利

亚地区,形成三角形分布的情况较小,一般高低屋面

处存在风涡作用,雪堆多形成曲线图形的堆积情况。

因此,我国规范将其简化为矩形分布的雪堆,对r μ取

平均值2.0,雪堆长度2h 不小于4 m 。但不大于8 m 。

对多跨坡屋面及曲线型屋面,屋谷附近区域的积雪比屋脊区大,也受风作用下的雪漂积的影响,屋脊区的部分积雪被风吹积在屋谷区内,造成局部堆雪及局部滑雪。因而,对多跨坡屋面及曲线型屋面,风作用除了使总的屋面积雪减少外,还会引起屋面的不平衡积雪荷载。

2)屋面坡度对积雪的影响

屋面雪荷载与屋面坡度密切相关,一般随坡度的增加而减小,主要原因是风的作用和雪滑移所致。

当屋面坡度大于到某一角度时,积雪就会在屋面产生滑移或滑落,坡度越大滑落的雪越多。屋面表面的光滑程度对雪滑移的影响较大。雪滑移带来的另一个问题是滑落的雪堆积在与坡屋面领接的较低屋面上。风作用使总的屋面积雪减少,对双坡屋面及曲线型屋面,还会引起屋面的不平衡积雪荷载。

3)屋面温度对积雪的影响

屋面散发的热量使部分积雪融化,同时也使雪滑移更易发生。

不连续加热的屋面,加热期融化的雪在不加热期间可能重新冻结。在屋面较低处结成较厚的冰层,产生附加荷载。重新冻结的冰雪还会减低坡屋面上的雪滑移能力。融化后的雪水常常会在檐口处冻结为冰凌及冰坝。这一方面会出现渗漏现象;另一方面会对结构产生不利的荷载效应。

我国南部气候较暖,屋面积雪容易融化;北部寒潮风较大,屋面积雪容易吹掉。与苏联、加拿大、北欧等国相比,积雪情况不甚严重.积雪期也较短。因此。我国《建筑结构荷载规范》(GB50009-2001)根据以往的设计经验,参考国际标准ISO 4355及国外相关资料,对屋面积雪分布仅概括地规定了8种典型屋面积雪分布系数,见表2—3。其中大部分屋面都列出了积雪均匀分带和不均匀分布两种情况,后一种主要是考虑雪的滑移和堆积后的效应。

此外,根据英国建筑标准,可按如下方式计算1.一般坡屋面

2.拱形屋面

3.多跨坡屋面及拱形屋面屋谷

4.屋面高度突变区域

5.相交坡屋面

6.局部遮挡物及障碍物

荷载规范—雪荷载

7雪荷载 7.1雪荷载标准值及基本雪压 7.1.1屋面水平投影面上的雪荷载标准值应按下式计算: Sk=μrSO 式中:Sk一一雪荷载标准值(kN/nr); μr一一屋面积雪分布系数; SO一一基本雪压(kN/nr)。 7.1.2基本雪压应采用按本规范规定的方法确定的50年重现期的雪压;对雪荷载敏感的结构,应采用100年重现期的雪压。 7.1.3全国各城市的基本雪压值应按本规范附录E中表E.5重现期R为50年的值采用。当城市或建设地点的基本雪压值在本规范表E.5中没有给出时,基本雪压值应按本规范附录E规定的方法,根据当地年最大雪压或雪深资料,按基本雪压定义,通过统计分析确定,分析时应考虑、样本数量的影响。当地没有雪压和雪深资料时,可根据附近地区规定的基本雪压或长期资料,通过气象和地形条件的对比分析确定;也可比照本规范附录E中附图E.6.1全国基本雪压分布图近似确定。 7.1.4山区的雪荷载应通过实际调查后确定。当无实测资料时,可按当地邻近空旷平坦地面的雪荷载值乘以系数1.2采用。

7.1.5雪荷载的组合值系数可取0.7;频遇值系数可取0.6;准永久值系数应按雪荷载分区I、E和皿的不同,分别取O.5、O.2和0;雪荷载分区应按本规范附录E.5或附图E.6.2的规定采用。 7.2屋面积雪分布系数 7.2.1屋面积雪分布系数应根据不同类别的屋面形式,按表7.2.1采用。 表7.2.1屋面积雪分布系数 注:1.第2项单跨双坡屋面仅当坡度α在20°至30°范围时,可采用不均匀分布情况; 2.第4、5项只适用于坡度α不大于25°的一般工业厂房屋面; 3.第7项双跨双坡或拱形层面,当α不大于25°或f/l不大于0.1时,只采用均匀分布情况; 4.多跨屋面的积雪分布系数,可参照第7项的规定采用。 7.2.2设计建筑结构及屋面的承重构件时,应按下列规定采用积雪的分布情况: 1.屋面板和擦条按积雪不均匀分布的最不利情况采用; 2.屋架和拱壳应分别按全跨积雪的均匀分布、不均匀分布 和半跨积雪的均匀分布按最不利'情况采用; 3.框架和柱可按全跨积雪的均匀分布情况采用。

风荷载计算

4.2风荷载 当空气的流动受到建筑物的阻碍时,会在建筑物表面形成压力或吸力,这些压力或吸力即为建筑所受的风荷载。 4.2.1单位面积上的风荷载标准值 建筑结构所受风荷载的大小与建筑地点的地貌、离地面或海平面高度、风的性质、风速、风向以高层建筑结构自振特性、体型、平面尺寸、表面状况等因素有关。 垂直作用于建筑物表面单位面积上的风荷载标准值按下式计算:(-1) 式中: 1.基本风压值Wo 按当地空旷平坦地面上10米高度处10分钟平均的风速观测数据,经概率统计得出50年一遇的 值确定的风速V0(m/s)按公式确定。但不得小于0.3kN/m2。 对于特别重要或对风荷载比较敏感的高层建筑,基本风压采用100年重现期的风压值;对风荷载是否敏感主要与高层建筑的自振特性有关,目前还没有实用的标准。一般当房屋高度大于60米时,采用100年一风压。 《建筑结构荷载规范》(GB50009-2001)给出全国各个地方的设计基本风压。 2.风压高度变化系数μs 《荷载规范》把地面粗糙度分为A、B、C、D四类。 A类:指近海海面、海岸、湖岸、海岛及沙漠地区; B类:指田野、乡村、丛林、丘陵及房屋比较稀疏的城镇及城市郊区; C类:指有密集建筑群的城市市区; D类:指有密集建筑群且房屋较高的城市市区; 书P55页表4.2给出了各类地区风压沿高度变化系数。位于山峰和山坡地的高层建筑,其风压高系数还要进行修正,可查阅《荷载规范》。 3.风载体型系数μz 风荷载体型系数是指建筑物表面实际风压与基本风压的比值,它表示不同体型建筑物表面风力的小。一般取决于建筑建筑物的平面形状等。 计算主体结构的风荷载效应时风荷载体型系数可按书中P57表4.2-2确定各个表面的风载体型或由风洞试验确定。几种常用结构形式的风载体型系数如下图

2竖向荷载统计和内力计算

荷载统计 一、恒荷载统计(标准值) 1.屋面(不上人屋面) 防水层:SBS改性沥青防水卷材 0.4 KN/m2 找平层:15厚水泥砂浆 0.015?20=0.3 KN/m2 找坡层:40厚水泥石灰焦渣砂浆0.3%找平 0.04?14=0.56 KN/m2 找平层:15厚水泥砂浆 0.015?20=0.3 KN/m2 保温层:80厚矿渣水泥 0.08?14.5=1.16 KN/m2结构层:100厚钢筋混凝土板 0.1?5=2.5 KN/m2 20厚混合砂浆纸筋石灰面 0.02?18=0.36 KN/m2 =5.58 KN/m2 合计 g k 2.楼面 10厚陶瓷地砖面层 0.01?22=0.22KN/m2 10厚1:2.5水泥砂浆结合层 0.01?20=0.2KN/m2 20厚1:3水泥砂浆找平层 0.02?20=0.4 KN/m2 100厚钢筋混凝土板 0.1?25=2.5 KN/m2 20厚混合砂浆纸筋石灰面 0.02?18=0.36 KN/ m2 =3.68 KN/m2 合计 g k 3.墙体自重 (1)外墙 240mm厚烧结空心砖及贴砖 0.24?18+0.5=4.82 KN/ m2保温层:80厚矿渣水泥 0.08?14.5=1.16 KN/m2 两面10mm厚混合砂浆抹灰 0.01?17?2=0.34 KN/m2 合计 g =6.32 KN/m2 k (2)内墙 240mm厚烧结空心砖及贴砖 0.24?18+0.5=4.82 KN/ m2两面10mm厚混合砂浆抹灰 0.01?17?2=0.34 KN/m2 =4.66 KN/m2 合计 g k

(3)女儿墙 100mm厚现浇钢筋混凝土 0.1?25?0.24=0.6KN/ m2 240mm厚烧结空心砖及贴砖 0.24?18+0.5=4.82 KN/ m2两面10mm厚混合砂浆抹灰 0.01?17?2=0.34 KN/m2 合计 g =5.76 KN/m2 k 4.门窗自重 (1)铝合金门窗 0.4 KN/m2 (2)木门 0.2 KN/m2 (3)玻璃门 0.2 KN/m2 5.构件自重 (1)梁自重:(横向框架梁) 教室: (300mm?600mm) 0.3?0.6?25=4.5 KN/m 10mm厚水泥砂浆 0.01?17?[(0.6-0.1)?2+0.3]=0.221 KN/m =4.721 KN/m 合计 g k 走廊: (200mm?400mm) 0.2?0.4?25=2 KN/m 10mm厚水泥砂浆 0.01?17?[(0.4-0.1)?2+0.2]=0.136 KN/m =2.136 KN/m 合计 g k (纵向框架梁) (200mm?350mm) 0.2?0.35?25=1.75 KN/m 10mm厚水泥砂浆 0.01?17?[(0.35-0.1)?2+0.2]=0.119KN/m =1.869 KN/m 合计 g k (2)柱自重: (500mm?500mm) 0.5?0.5?25=6.25 KN/m 10mm厚水泥砂浆 0.01?17?0.5?4=0.34KN/m =6.59 KN/m 合计 g k 二、活荷载统计(标准值) 1.屋面和楼屋面活荷载标准值

【精品文档类】风荷载计算规律及公式

第二部分 风荷载计算 一:风荷载作用下框架的弯矩计算 (1)风荷载标准值计算公式:0k z s z W w βμμ=??? 其中k W 为垂直于建筑物单位面积上的风荷载标准值 z β为z 高度上的风振系数,取 1.00z β= z μ为z 高度处的风压高度变化系数 s μ为风荷载体型系数,取 1.30s μ= 0w 为攀枝花基本风压,取00.40w = 该多层办公楼建筑物属于C 类,位于密集建筑群的攀枝花市区。 (2)确定各系数数值 因结构高度19.830H m m =<,高宽比19.8 1.375 1.514.4 H B ==<,应采用风振系数z β来考虑风压脉动的影响。该建筑物结构平面为矩形, 1.30s μ=,由《建筑结构荷载 规范》第3.7查表得0.8s μ=(迎风面)0.5s μ=-(背风面),风压高度变化系数z μ可根据各楼层标高处的高度确定,由表4-4查得标准高度处的z μ值,再用线性插值法求得所求各楼层高度的z μ值。 层数 ()i H m z μ z β 1()/q z KN m 2()/q z KN m 7女儿墙底部 17.5 0.79 1.00 2.370 1.480 6 16.5 0.77 1.00 2.306 1.441 5 13.2 0.74 1.00 2.216 1.385 4 9.9 0.74 1.00 2.216 1.385 3 6.6 0.74 1.00 2.216 1.385 2 3.3 0.74 1.00 2.216 1.385 1 -3.3 0.00 0.00 0.000 0.000 (3)计算各楼层标高处的风荷载z 。攀枝花基本风压取00.40/w KN mm =,取②轴横向框架梁,其负荷宽度为7.2m,由0k z s z W w βμμ=???得沿房屋高度分布风荷载标准值。 7.20.4 2.88z z s z z s z q βμμβμμ=?=,根据各楼层标高处的高度i H ,查得z μ代入上式,可 得各楼层标高处的()q z 见表。其中1()q z 为迎风面,2()q z 背风面。 风正压力计算: 7. 1() 2.88 2.88 1.00 1.300.790.8 2.370/z s z q z KN m βμμ==????= 6. 1() 2.88 2.88 1.00 1.300.770.8 2.306/z s z q z KN m βμμ==????= 5. 1() 2.88 2.88 1.00 1.300.740.8 2.216/z s z q z KN m βμμ==????= 4. 1() 2.88 2.88 1.00 1.300.740.8 2.216/z s z q z KN m βμμ==????= 3. 1() 2.88 2.88 1.00 1.300.740.8 2.216/z s z q z KN m βμμ==????= 2. 1() 2.88 2.88 1.00 1.300.740.8 2.216/z s z q z KN m βμμ==????= 1. 1() 2.88 2.880.00 1.300.740.80.000/z s z q z KN m βμμ==????= 风负压力计算: 7. 2() 2.88 2.88 1.00 1.300.790.5 1.480/z s z q z KN m βμμ==????= 6. 2() 2.88 2.88 1.00 1.300.770.5 1.441/z s z q z KN m βμμ==????= 5. 2() 2.88 2.88 1.00 1.300.740.5 1.385/z s z q z KN m βμμ==????= 4. 2() 2.88 2.88 1.00 1.300.740.5 1.385/z s z q z KN m βμμ==????= 3. 2() 2.88 2.88 1.00 1.300.740.5 1.385/z s z q z KN m βμμ==????=

(工程建筑套表)建筑施工之荷载与结构静力计算表最新版

(工程建筑套表)建筑施工之荷载与结构静力计算表

建筑施工之荷载和结构静力计算表 2-1-1荷载 1.结构上的荷载 结构上的荷载分为下列三类: (1)永久荷载如结构自重、土压力、预应力等。 (2)可变荷载如楼面活荷载、屋面活荷载和积灰荷载、吊车荷载、风荷载、雪活载等。 (3)偶然荷载如爆炸力、撞击力等。 建筑结构设计时,对不同荷载应采用不同的代表值。 对永久荷载应采用标准值作为代表值。 对可变荷载应根据设计要求,采用标准值、组合值、频遇值或准永久值作为代表值。 对偶然荷载应按建筑结构使用的特点确定其代表值。 2.荷载组合 建筑结构设计应根据使用过程中在结构上可能同时出现的荷载,按承载能力极限状态和正常使用极限状态分别进行荷载(效应)组合,且应取各自的最不利的效应组合进行设计。 对于承载能力极限状态,应按荷载效应的基本组合或偶然组合进行荷载(效应)组合。 γ0S≤R(2-1) 式中γ0——结构重要性系数; S——荷载效应组合的设计值;

R——结构构件抗力的设计值。 对于基本组合,荷载效应组合的设计值S应从下列组合值中取最不利值确定:(1)由可变荷载效应控制的组合 (2-2) 式中γG——永久荷载的分项系数; γQi——第i个可变荷载的分项系数,其中Y Q1为可变荷载Q1的分项系数; S GK——按永久荷载标准值G K计算的荷载效应值; S QiK——按可变荷载标准值Q ik计算的荷载效应值,其中S Q1K为诸可变荷载效应中起控制作用者; ψci——可变荷载Q i的组合值系数; n——参和组合的可变荷载数。 (2)由永久荷载效应控制的组合 (2-3) (3)基本组合的荷载分项系数 1)永久荷载的分项系数 当其效应对结构不利时: 对由可变荷载效应控制的组合,应取1.2; 对由永久荷载效应控制的组合,应取1.35; 当其效应对结构有利时: 壹般情况下应取1.0; 对结构的倾覆、滑移或漂浮验算,应取0.9。 2)可变荷载的分项系数

雪荷载论文

探讨建筑结构设计施工中的雪荷载 作者姓名:王先锋 学号:2011800237 学科专业:土木工程 学院:建筑与土木工程 指导教师: 张道明 日期: 2013年12月

探讨建筑结构设计施工中的雪荷载 摘要:为了提高建筑结构的防灾能力,针对我国08年南方冰雪灾害引起的工程事故,本文探讨了建筑结构设计雪荷载的取值问题,分析了屋面高差、屋顶坡度、屋而形状、局部风速对雪荷载的影响机理,提出了建筑结构雪荷载设计方法,通过加强施工监管,预防、降低冰雪灾害工程事故的发生,为建筑结构雪荷载设计 与施工提供指导。 关键词:雪荷载;防灾;结构;设计;施工 E x p l o r a t i o n o n S n o w L o a d i n A r c h i t e c t u r a l D e s i g n a n d C o n s t r u c t i o n A b s t r a c t:F o r i m p r o v i n g t h e d i s a s t e r-p r e v e n t i o n c a p a c i t y,t h i s p a p e r p u t s f o r w a r d t h e a d o p t i o n o f s n o w p r e s s u r e b a s e d o n t h e a n a l y s i s o f e n g i n e e r i n g a c c i d e n t i n t h e2008 s n o w d i s a s t e r i n s o u t h e r n C h i n a, a n a l l y z e s t h e m e c h a n i s m o f r o o f h e i g h t d f f e r e n c e s,r o o f p i t c h,r o o f s h a p e s a n d t h e l o c a l w i n d s p e e d p u t s f o r w a r d t h e d e s i g n m e t h o d s,a n d e m p h a s i z e s t h e c o n s t r u c t i o n m a n a g e m e n t t o p r e v e n t a n d d e c r e a s e e n g i n e e r i n g a c c i d e n t s c a u s e d b y s n o w d i s a s t e r s. K e y s u r d s:s n o w l o a d; d i s a s t e r-p r e v e n t i o n;s t r u c t u r e; d e s i g n;c o n s t r u c t i o n

幕墙工程如何按《建筑结构荷载规范》计算风荷载标准值

幕墙工程如何按《建筑结构荷载规范》计算风荷载 标准值 中国建筑装饰协会与制品委员会专家组成员张芹 建设部2006年7月25日发布《建筑结构荷载规范》局部修订的公告,对《建筑结构荷载规范》局部修改(2006年11月1日起执行),修改后的《建筑结构荷载规范》对风荷载标准值的计算规定如下: 7.1.1垂直于建筑物表面上的风荷载标准值,应按下述公式计算: 1当计算主要承重结构时 Wk=βzμsμzW0(7.1.1-1) 2当计算围护结构时 Wk=βgzμs1μzW0(7.1.1-2) 式中:μs1——局部风压体型系数。 7.3.3验算围护构件及其连接的强度时,可按下列规定采用局部风压体型系数μs1: 一、外表面 1.正压区按表7.3.1采用; 2.负压区 —对墙面,取-1.0 —对墙角边,取-1.8 二、内表面 对封闭式建筑物,按表面风压的正负情况取-0.2或0.2。 注:上述的局部体型系数μs1(1)是适用于围护构件的从属面积A小于或等于1m2的情况,当围护构件的从属面积A大于或等于10m2时,局部风压体型系数μs1(10)可乘以折减系数0.8,当构件的从属面积小于10m2而大于1m2时,局部风压体型系数μs1(A)可按面积的对数线性插值,即

μs1(A)=μs1(1)+[μs1(10)-μs1(1)]logA 算例 W0=450N/m2Z=50mC类地区层高3.6m 分格宽1.5mμz=1.25βgz=1.73 墙角区验算面板玻璃1.5×1.8=2.7m2log2.7=0.431 μz1(A)=-{1.8+[0.8×1.8-1.8]×0.431}=-1.64 μz1=-1.64+(-0.2)=-1.84 WK=βgzμzμz1W0=1.73×1.25×1.84×450=1791N/m2 验算从属面积大于1m2且与面板直接连接的支承结构从属面积 1.5×3.6=5.4m2log5.4=0.732 μz1(A)=-{1.8+[0.8×1.8-1.8]×0.732}=-1.54 μz1=-1.54+(-0.2)=-1.74 WK=βgzμzμz1W0=1.73×1.25×1.74×450=1693N/m2 墙面区验算面板玻璃1.5×1.8=2.7m2log2.7=0.431 μz1(A)=-{1.0+[0.8×1.0-1.0]×0.431}=-0.914 μz1=-0.914+(-0.2)=-1.114 WK=βgzμzμz1W0=1.73×1.25×1.114×450=1084N/m2 验算从属面积大于1m2且与面板直接连接的支承结构从属面积 1.5×3.6=5.4m2log5.4=0.732 μz1(A)=-{1.0+[0.8×1.0-1.0]×0.732}=-0.854 μz1=-0.854+(-0.2)=-1.054 WK=βgzμzμz1W0=1.73×1.25×1.054×450=1026N/m2 说明:本例从属面积大于1m2且与面板直接连接的支承结构含立柱、横梁,从属面积是按立柱考虑的,横梁从属面积小于此面积,由于横梁即使按立柱的作用验算也大大富裕,为简化计算不再另行计算。

荷载计算表

做设计经常取平均值: 设计关键参数的确定: 基本风压=0.35N/m2 抗震设防烈度=6度,0.05g,,一组 楼板面荷载: 恒载:假定楼板厚度均为120mm,0.12x25=3KN/m2 附加面层恒载一般是:1.5~2.0kn 3+2=5KN/M2 活载:查荷载规范:民用建筑楼面均布活荷载2.0 屋面荷载:恒载:假定楼板厚度均为120mm,0.12x25=3KN/m2 附加面层恒载一般是:3.5kn 3+3.5=6.5KN/M2 活载:查荷载规范:民用建筑楼面均布活荷载3.0 隔墙荷载:14kn/m3x0.2(墙厚)=2.8kn/m2(砖墙重) 0.04(抹灰厚)x20kn/m3=0.8kn/m2(抹灰) 2.8+0.8= 3.6kn/m2 实心墙:3.6x3(墙高)=10.8KN/M 有窗户:7.0 目录 第一部分主体设计 一、计算依据 二、荷载计算 三、内力分析及结构设计 第二部分人防设计 一、计算依据 二、荷载计算 三、内力分析及配筋设计 第三部分基础设计 一、计算依据 第一部分:主体设计: 一、计算依据: 1.我国现行的《建筑结构荷载规范(GB50009-2001)》、《混凝土结构设计规范(GB50010-2002)》、《建筑抗震设计规范(GB50011-2001)》、《高层建筑混凝土结构技术规程(JGJ 3-2002)》以及《建筑用料说明(陕02J)》。 2.建筑施工图中的用料说明表;以及相关专业的互提资料。 二、荷载计算: 1.各层楼板面荷载计算: 根据建施平面及功能布置,以及(GB50038-2001)相关章节之规定。未注荷载单位为kN/m2(面荷载)。 1)地下室顶板荷载统计:

3 荷载计算

3 荷载计算 3.1竖向荷载计算 3.1.1楼面与屋面恒荷载 楼面与屋面的恒荷载包括结构构件自重和构造层重量等重力荷载,其标准值按结构构件的设计尺寸、构造层材料和设计厚度以及材料容重标准值计算。 1、 标准层楼面恒荷载标准值: 水泥花砖面层,水泥粗砂打底,水泥砂浆擦缝 260.0kN/m 30厚1:2.5水泥砂浆底层纯水泥浆一道 2260.020030.0kN/m kN/m =? 120mm 厚钢筋混凝土楼板 23312025kN/m m . kN/m =? 20mm 厚混合砂浆板底抹灰 2334.002017kN/m m .kN/m =? 合计: 254.4kN/m 2、 厨房楼面恒荷载标准值:荷载计算 小瓷砖地面,水泥粗砂打底 255.0kN/m 20厚水泥砂浆结合层 2240.020020.0kN/m kN/m =? 5厚聚合物水泥防水涂料 205.0kN/m 2%找坡层,最薄处15mm 2240.020020.0kN/m kN/m =?

120mm 厚钢筋混凝土楼板 23312025kN/m m . kN/m =? 20mm 厚混合砂浆板底抹灰 2334.002017kN/m m .kN/m =? 合计: 274.4kN/m 3、 卫生间楼面恒荷载标准值: 小瓷砖地面,水泥粗砂打底 255.0kN/m 20mm 水泥砂浆结合层 2240.020020.0kN/m kN/m =? 5mm 厚聚合物水泥防水涂料 205.0kN/m 50mm 厚细石混凝土 2275.025050.0kN/m kN/m =? 200mm 厚建筑碎料填实 22315200.0kN/m kN/m =? 120mm 厚钢筋混凝土楼板 23312025kN/m m . kN/m =? 20mm 厚混合砂浆板底抹灰 2334.002017kN/m m .kN/m =? 合计: 254.8kN/m 4、 屋面层楼面恒荷载标准值: 50mm 厚素混凝土面层 2325.10500025kN/m m .kN/m .=? 1:3水泥砂浆结合层 235.002500020kN/m m .kN/m .=? 80mm 厚聚苯乙烯泡沫塑料 2304.0080500kN/m m .kN/m .=? 5mm 厚改性沥青 205.0kN/m 20mm 厚1:3水泥砂浆 234000200020kN/m .m .kN/m .=?

雪风和地震荷载计算方法

雪、风和地震荷载的计算方法 1 雪荷载 1.1 文献[2]中国《建筑结构荷载规范GB 50009-2001》 文献[2]我国《建筑结构荷载规范GB 50009-2001》第6.1.1条规定,屋面水平投影面上的雪荷载标准值,应按下式计算: s k=μr s o(1-1) 式中:s k为雪荷载标准值,[kN/m2];μ r为屋面积雪分布系数;s o为基本雪压,[kN/m2]。 规范第6.1.2条规定,基本雪压应按该规范附录D.4中附表D.4给出的50年一遇的雪压采用。高于1989年同名规范30年一遇的标准。第6.1.3是对规范没有给出基本雪压的地点取值方法的规定。第6.1.4条是对山区基本雪压的规定。屋面积雪分布系数μ r根据屋面形状按表6.2.1确定。 1.2 文献[7]美国《建筑及其它结构最小设计荷载》1994年版 文献[7]美国《建筑及其它结构最小设计荷载》1994年版7.3规定,斜度小于1/12的平屋面的雪荷载按下式计算: p f=αC e C t I p g (1-2) 式中:p f为雪荷载,[lb/ft2];α系数,美国本土为0.7,阿拉斯加为0.6;C e为暴露系数;C t为热力系数;I为重要性系数,根据表1及表20,一般公用发电厂I=1.0;p g为地面雪荷载。据规范解释对7.2的说明,地面雪荷载系基于雪荷载超过的年概率为2%(即平均重现期50年)的数值。 1.3 文献[12]《火力发电厂烟风煤粉管道设计技术规程DL/T5121-2000》 从上可见,文献[7]考虑的系数更多。 为了考虑与文献[12]《火力发电厂烟风煤粉管道设计技术规程DL/T5121-2000》一致,采用文献[2]的标准。因矩形烟风道为平顶,根据后者的表6.2.1第1项取μ r =1.0。 Page 1 of 8

Robot结构分析风雪荷载【翻译】

Robot结构分析风雪荷载对话框【翻译】 Snow/Wind Loads Snow/wind loads can be generated by ?Clicking the Loads menu > Wind & Snow > Wind and Snow 2D/3D. ?Clicking . Note: The Snow/Window Loads option is available only for plane frame and plane truss structures. You can generate snow/wind loads for 3D frames and 3D trusses. This option is unavailable if you have not defined a structure.

注意:“雪/窗荷载”选项仅适用于平面框架和平面桁架结构。可以为三维框架和三维桁架生成雪/风荷载。如果尚未定义结构,则此选项不可用。 The Snow/Wind Load dialog has conditions for which snow/wind loads are generated:

“雪/风荷载”对话框具有生成雪/风荷载的条件: ?Envelope - Defines those structure elements for which snow and wind loads will be generated. The numbers of the selected nodes create the envelope. It is a required parameter for defining global snow and wind coefficients of a structure. ??包络线-定义将产生雪荷载和风荷载的结构构件。选定节点的编号将创建封套。它是定义结构整体雪和风系数的必需参数。 Note: To correctly generate snow and wind loads this option must be specified. 注意:要正确生成雪和风荷载,必须指定此选项。

一般情况下的风荷载计算

参考规范: 《建筑结构荷载规范》GB50009-2012 《高层建筑混凝土结构技术规程》JGJ3-2010 风荷载: 风荷载标准值 《荷载规范》8.1.1、《高规》4.2.1 0w w z s z k μμβ= (1)该风荷载标准值的计算公式适用于计算主要承重(主体)结构的风荷载; (2)所求的风荷载标准值为顺风向的风荷载; (3)风荷载垂直于建筑物的表面; (4)风荷载作用面积应取垂直于风向的最大投影面积; (5)适用于计算高层建筑的任意高度处的风荷载。 基本风压 《荷载规范》3.2.5第2款 对雪荷载和风荷载,应取重现期为设计使用年限…… 《荷载规范》8.1.2 基本风压应采用按本规范规定的方法确定的50年重现期的风压,但不得小于0.3kN/㎡。 《荷载规范》E.5 《高规》4.2.2 ……对风荷载比较敏感的高层建筑,承载力设计时应按基本风压的1.1倍采用。 (条文说明)……一般情况下,对于房屋高度大于60m 的高层建筑,承载力设计时风荷载计算可按基本风压的1.1倍采用…… 《烟规》5.2.1 ……基本风压不得小于0.35kN/㎡。对于安全等级为一级的烟囱,基本风压应按100年一遇的风压采用。 风压高度变化系数 《荷载规范》8.2.1 地面粗糙度 A 类 近海海面和海岛、海岸、湖岸及沙漠地区 B 类 田野、乡村、丛林、丘陵以及房屋比较稀疏的乡镇 C 类 密集建筑群的城市市区 D 类 密集建筑群且房屋较高的城市市区 《荷载规范》表8.2.1 对墙、柱的风压高度变化系数,均按墙顶、柱顶离地面距离作为计算高度z ,查表用插入法确定。 风压体型系数 《荷载规范》8.3.1 围墙:按第32项,取1.3 《高规》4.2.3 1 圆形平面建筑取0.8; 2 正多边形及截角三角形平面建筑,由下列计算:n s /2.18.0+=μ 3 高宽比H/B 不大于4的矩形、方形、十字形平面建筑取1.3; 4 下列建筑取1.4: 1)V 形、Y 形、弧形、双十字形、井字形平面建筑; 2)L 形、槽形和高宽比H/B 大于4的十字形平面建筑;

修订说明-雪荷载资料

7 雪荷载 7.1 雪荷载标准值及基本雪压 7.1.1 影响结构雪荷载大小的主要因素是当地的地面积雪白重和结构上的积雪分布,它们直接关系到雪荷载的取值和结构安全,要以强制性条文规定雪荷载标准值的确定方法。 7.1.2 基本雪压的确定方法和重现期直接关系到当地基本雪压值的大小,因而也直接关系到建筑结构在雪荷载作用下的安全,必须以强制性条文作规定。确定基本雪压的方法包括对雪压观测场地、观测数据以及统计方法的规定,重现期为50年的雪压即为传统意义上的50年→遇的最大雪压,详细方法见本规范附录E。对雪荷载敏感的结构主要是指大跨、轻质屋盖结构,此类结构的雪荷载经常是控制荷载,极端雪荷载作用下的容易造成结构整体破坏,后果特别严重,应此基本雪压要适当提高,采用100年重现期的雪压。 本规范附录E表E.5中提供的50年重现期的基本雪压值是根据全国672个地点的基本气象台(站)的最大雪压或雪深资料,按附录E 规定的方法经统计得到的雪压。本次修订在原规范数据的基础上,补充了全国各台站自1995年至2008年的年极值雪压数据,进行了基本雪压的重新统计。根据统计结果,新疆和东北部分地区的基本雪压变化较大,如新疆的阿勒泰基本雪压由1.25增加到1.65,伊宁由1.0增加到1.4,黑龙江的虎林由0.7增加到1.4。近几年西北、东北及华北地区出现了历史少见的大雪天气,大跨轻质屋盖结构工程因雪灾遭受破坏的事件时有发生,应引起设计人员的足够重视。

我国大部分气象台(站)收集的都是雪深数据,而相应的积雪密度数据又不齐全。在统计中,当缺乏平行观测的积雪密度时,均以当地的平均密度来估算雪压值。 各地区的积雪的平均密度按下述取用:东北及新疆北部地区的平均密度取150kg/m3;华北及西北地区取130kg/m3,其中青海取120kg/m3气淮河、秦岭以南地区一般取150kg/m3,其中江西、浙江取200kg/m3。 年最大雪压的概率分布统一按极值I型者虑,具体计算可按本规范附录E的规定。我国基本雪压分布图且有如下特点: 1)新疆北部是我国突出的雪压高值区。该区由于冬季受北冰洋南侵的冷温气流影响,雪量丰富,且阿尔泰山、天山等山脉对气流有阻滞和抬升作用,更利于降雪。加上温度低,积雪可以保持整个冬季不融化,新雪覆老雪,形成了特大雪压。在阿尔泰山区域雪压值达 1.65kN/㎡。 2)东北地区由于气旋活动频繁,并有山脉对气流的抬升作用,冬季多降雪天气,同时因气温低,更有利于积雪。因此大兴安岭及长白山区是我国又一个雪压高值区。黑龙江省北部和吉林省东部的广泛地区,雪压值可达0.7kN/㎡以上。但是吉林西部和辽宁北部地区,因地处大兴安岭的东南背风坡,气流有下沉作用,不易降雪,积雪不多,雪压不大。 3)长江中下游及淮河流域是我国稍南地区的一个雪压高值区。该地区冬季积雪情况不很稳定,有些年份一冬无积雪,而有些年份在某

屋面雪荷载计算

屋面雪荷载计算 不平衡积雪荷载 雪荷载是房屋屋面的主要荷载之一,属于结构上的可变荷载。在我国寒冷地区及其他大雪地区,因雪荷载导致屋面结构以及整个结构破坏的事例时有发生(如下图所示)。尤其是大跨度结构以及轻型屋盖对雪荷载更为敏感。因此,在有雪地区,在结构设计中必须考虑雪荷载的作用。 两个雪荷载倒塌事故 1. 基本雪压 所谓雪压是指单位水平面积上的积雪重量。 雪压的计算公式:s,rd 2式中 s——雪压(N/m) 2m r——雪重度(N/) d——雪深(m) 雪重度r是一个随时间和空间变化的量,越靠近地面,雪的重度越大,雪深越大,下层的重度越大。 屋面水平投影面上的雪荷载标准值,按下式计算: SS,, kr0

2mS——雪荷载标准值(kN/); k ,——屋面积雪分布系数; r 2mS——基本雪压(kN/); 0 S基本雪压()是雪荷载的基准压力,一般按当地空旷平坦地面上积雪自重的观测数0 据,经概率统计得出50年一遇最大值确定。可以在《建筑结构荷载规范》附录表D4中直接查出。 2.屋面的雪压 影响屋面雪压的因素有:风、屋面形式、屋面散热等。 1) 风对屋面积雪的影响 风对屋面积雪的影响:主要是由风的漂积作用引起的。在下雪过程中,风会把部分本将飘落在屋面上的雪积吹到附近的地面或其它较低的物体上,这种影响就叫风的漂积作用。当风速较大或房屋处于曝风位置时,部分已经积在屋面上的雪会被风吹走,从而导致平屋面或小坡度(坡度小于10度)屋面上的雪压普遍比邻近地面上的雪压要小。在高低跨屋面的情况下,由于风对雪的漂积作用,会将较高屋面的雪吹落在较低屋面上,在低屋面上形成局部较大的漂积荷载。对多坡度屋面及曲线型屋面,屋谷附近区域的积雪比屋脊区大,其原因之一是作用下的雪漂积,屋脊区的部分积雪被风吹在屋谷区内。 对于高低跨屋面,由于风对雪的漂积作用,会将较高屋面的雪吹落在较低屋面上,在低屋面上形成局部较大的漂积荷载。苏联根据西伯利亚地区的屋面荷载的调查,对屋面积雪分 ,规定为布系数r ,=2h/4.0 S,r0 式中 h——屋面高低差,m;

重力荷载计算

重力荷载计算 1.屋面及楼面的永久荷载标准值 屋面(上人) 30厚细石混凝土保护层22×0.33=0.66kN/ m2 三毡四油防水层0.4kN/ m2 20厚水泥砂浆找平层20×0.02=0.4 kN/ m2 150厚水泥蛭石保护层5×0.15=0.75 kN/ m2 100厚钢筋混凝土板25 ×0.1=25kN/ m2 V型轻钢龙骨吊顶0.25k N/ m2 合计 4.96 kN/ m 1—9层楼面: 瓷砖地面(包括水泥粗砂打底)0.55 kN/ m2 100厚钢筋混凝土25 ×0.1=2.5kN/ m2 V型轻钢龙骨吊顶0.25k N/ m2 合计 3.30kN/ m2 2.屋面及楼面可变荷载标准值 上人屋面均布活荷载标准值 2.0kN/ m2 楼面活荷载标准值 2.0kN/ m2 屋面雪荷载标准值Sk=μrSo=1.0×0.2= 0.2kN/ m2 3.梁、柱、墙、窗、门重力荷载计算 梁、柱可根据截面尺寸、材料容重及粉刷等计算出单位长度上的重力荷载;对墙门窗等可计算出单位面积上的重力荷载。具体计算过程从略,计算结果见下 注:1表中β为考虑梁、柱的粉刷层重力荷载而对其重力荷载的增大系数;g表示单位长度构件重力荷载;n为构件数量 2梁长度取净长;柱长度取层高 墙体为240mm厚粘土空心砖,外墙面贴瓷砖(0.5kN/ m2),内墙面为20mm 厚抹灰,铝合金窗单位面积重力荷载取0.4 5kN/ m2 则外墙荷载为: (1)标准层 A轴(D)轴: 铝合金窗4×1.2×1.2×0 .45=2.592kN 墙自重0.39×{(3.6-0.7)×7.8-4×1.2×1.2}×11.8=77.60kN 瓷砖(3.6×7.8-4×1.2×1.2)×0.5= 11.16kN 抹灰(3.6×7.8-4×1.2×1.2)×17×0.02=7.59 kN

风荷载计算算例

3.6.风荷载计算 根据《建筑结构荷载规范》(GB50009-2012)规范,风荷载的计算公式为: 0k z s z w u u βω= (8.1.1-1) s u ——体型系数 z u ——风压高度变化系数 z β——风振系数 0ω——基本风压 k w ——风荷载标准值 体型系数s u 根据建筑平面形状由《建筑结构荷载规范》表7.3.1确定。本项目建筑平面为规则的矩形,查表8.3.1项次30,迎风面体型系数0.8(压风指向建筑物内侧),背风面-0.5(吸风指向建筑外侧面),侧风面-0.7(吸风指向建筑外侧面)。 风压高度变化系数z u 根据建筑物计算点离地面高度和地面粗糙度类别,按照规范表8.2.1确定。本工程结构顶端高度为3.0x30+0.6=90.6米,建筑位于北京市郊区房屋较稀疏,由规范8.2.1条地面粗糙度为B 类。 由表8.2.1高度90米和100米处的B 类地面粗糙度的风压高度变化系数分别为1.93和2.00。 则90.6米高度处的风压高度变化系数通过线性插值为: 90.690(2.00 1.93) 1.93 1.934210090z u -=-+=-

对于高度大于30m 且高宽比大于1.5的房屋,以及基本自振周期T1大于0.25s 的各种高耸结构,应考虑风压脉动对结构产生顺风向风振的影响。 本工程30层钢结构建筑。基本周期估算为()1T =0.10~0.15n=3.0~4.5s ,应考虑脉动风对结构顺风向风振的影响,并由下式计算: 1012Z z gI B β=+ (8.4.3) 式中: g ——峰值因子,可取2.5 10I ——10m 高度名义湍流强度,对应ABC 和D 类地面粗糙,可分别取0.12、0.14、0.23和0.39; R ——脉动风荷载的共振分量因子 z B ——脉动风荷载的背景分量因子 脉动风荷载的共振分量因子可按下列公式计算: R = (8.4.4-1) 115x x => (8.4.4-2) 式中: 1f ——结构第1阶自振频率(Hz ) w k ——地面粗糙度修正系数,对应A 、B 、C 和D 类地面粗糙,可分别取1.28、1.0、0.54和0.26; 1ζ——结构阻尼比,对钢结构可取0.01,对有填充墙的钢结构房屋可取0.02,对钢筋混凝土及砌体结构可取0.05,对其他结构可根据工程经验确定。 经过etabs 软件分析,结构自振周期1 4.67f s =

屋面楼面荷载取值表教学内容

屋面楼面荷载取值表

荷载取值 屋面 常屋1. Ⅲ级柔性防水层节能屋面(非上人)(K=0.5) 1. 4厚自带保护层SBS改性沥青防水卷材一道 11×0.004=0.05 2. 30 厚C20细石混凝土找平层 24×0.3=0.72 3. 1:6 水泥焦渣找坡2%最薄处30厚(坡长12米) 14×(12/2×2%+0.03)=2.1 4. 80厚聚苯板保温层 0.5×0.8=0.04 5. 钢筋混凝土屋面板(H=100mm) 25×0.1=2.5 合计:5.41KN/㎡ 实取:5.60 KN/㎡ 常屋2.Ⅲ级柔性防水层非节能屋面(非上人)(K=0.9) 1. 4厚自带保护层SBS改性沥青防水卷材一道 11×0.004=0.05 2. 30 厚C20细石混凝土找平层 24×0.3=0.72 3. 1:6 水泥焦渣找坡2%最薄处30厚(坡长12米) 14×(12/2×2%+0.03)=2.1 4. 90厚水泥聚苯板保温层 3×0.09=0.27 5. 钢筋混凝土屋面板(H=100mm) 25×0.1=2.5 合计:5.64KN/㎡ 实取:5.80 KN/㎡ 坡度: 4米:2.32 KN/㎡ 6米:2.69 KN/㎡ 8米:3.06 KN/㎡ 10米:3.43 KN/㎡ 12米:3.81 KN/㎡ 14米:4.18 KN/㎡

16米:4.56 KN/㎡ 18米:4.93 KN/㎡ 楼面 常屋5.Ⅲ级防水防滑地砖面层节能屋面(上人)(K=0.5) 1. 8-10厚防滑地砖用3厚水泥砂浆(加建筑胶)粘贴,缝宽3,用1:1水泥砂浆(加建筑胶)勾缝 0.55 2. 20厚1:3水泥砂浆找平层 20×0.02=0.4 3. 3厚麻刀灰(或纸筋灰)隔离层 16×0.003=0.048 4. 4厚SBS改性沥青防水卷材一道 11×0.004=0.044 5. 30厚C20细石混凝土找平层 24×0.03=0.72 6. 1:6 水泥焦渣找坡2%最薄处30厚(坡长12米) 14×(12/2×2%+0.03)=2.1 7. 80厚聚苯板保温层 0.5×0.8=0.04 8. 钢筋混凝土屋面板(H=100mm) 25×0.1=2.5 合计:6.402KN/㎡ 实取:6.60 KN/㎡

风荷载计算方法与步骤

1风荷载 当空气的流动受到建筑物的阻碍时,会在建筑物表面形成压力或吸力,这些压力或吸力即为建筑物所受的风荷载。 1.1单位面积上的风荷载标准值 建筑结构所受风荷载的大小与建筑地点的地貌、离地面或海平面高度、风的性质、风速、风向以及高层建筑结构自振特性、体型、平面尺寸、表面状况等因素有关。 垂直作用于建筑物表面单位面积上的风荷载标准值ω(KN/m2)按下式计算: ω 风荷载标准值(kN/m2)=风振系数×风荷载体形系数×风压高度变化系数×基本风压 1.1.1基本风压 按当地空旷平坦地面上10米高度处10分钟平均的风速观测数据,经概率统计得出50年一遇的最大值确定的风速v0(m/s),再考虑相应的空气密度通过计算确定数值大小。 按公式确定数值大小,但不得小于0.3kN/m2,其中的单位为t/m3,单位为kN/m2。 也可以用公式计算基本风压的数值,也不得小于0.3kN/m2。 1.1.2风压高度变化系数 风压高度变化系数在同一高度,不同地面粗糙程度也是不一样的。规范以B类地面粗糙程度作为标准地貌,给出计算公式。 1.1.3风荷载体形系数 1)单体风压体形系数 (1)圆形平面;

(2)正多边形及截角三角平面,n为多边形边数; (3)高宽比的矩形、方形、十字形平面; (4)V形、Y形、L形、弧形、槽形、双十字形、井字形、高宽比的十字形、高宽比,长宽比的矩形、鼓形平面; (5)未述事项详见相应规范。 2)群体风压体形系数 详见规范规程。 3)局部风压体形系数 檐口、雨棚、遮阳板、阳台等水平构件计算局部上浮风荷载时,不宜小于2.0。未述事项详见相应规范规程。 1.1.4风振系数 对于高度H大于30米且高宽比的房屋,以及自振周期的各种高耸结构都应该考虑脉动风压对结构发生顺向风振的影响。(对于高度H大于30米、高宽比且可忽略扭转的 高层建筑,均可只考虑第一振型的影响。) 结构在Z高度处的风振系数可按下式计算: ○1g为峰值因子,去g=2.50;为10米高度名义湍流强度,取值如下: ○2R为脉动风荷载的共振分量因子,计算方法如下: 为结构阻尼比,对钢筋混凝土及砌体结构可取; 高层建筑的基本自振周期可以由结构动力学计算确定,对于较规则的高层建筑也可采用

相关文档