文档库 最新最全的文档下载
当前位置:文档库 › Buck-Boost变换器状态空间平均模型建模

Buck-Boost变换器状态空间平均模型建模

Buck-Boost变换器状态空间平均模型建模
Buck-Boost变换器状态空间平均模型建模

7状态空间设计法极点配置观测器解析

第7章线性定常离散时间状态空间设计法 7.1引言 7.2状态反馈配置极点 7.3状态估值和状态观测器 7.4利用状态估值构成状态反馈以配置极点 7.5扰动调节 7.6无差调节

7.1 引言 一个被控对象: (1)()()()() ():1,():1,:,:,:x k Fx k Gu k y k Cx k x k n u k m F n n G n m C r n +=+?? =?????? 7.1 当设计控制器对其控制时,需要考虑如下各因素: ● 扰动,比如负载扰动 ● 测量噪声 ● 给定输入的指令信号 ● 输出 如图7.1所示。 给d L (k )扰动 图7.1 控制系统示意图 根据工程背景的不同,控制问题可分为调节问题和跟踪问题,跟踪问题也称为伺服问题。 调节问题的设计目标是使输出迅速而平稳地运行于某一平衡状态。包括指令变化时的动态过程,和负载扰动下的动态过程。但是这二者往往是矛盾的,需要折衷考虑。 伺服问题的设计目标是对指令信号的快速动态跟踪。 本章研究基于离散时间状态空间模型的设计方法。 7.2研究通过状态变量的反馈对闭环系统的全部特征值任意配置——稳定性与快速线。 7.3考虑当被控对象模型的状态无法直接测量时,如何使用状态观测器对状态进行重构。 7.4讨论使用重构状态进行状态反馈时闭环系统的特征值。 7.5简单地讨论扰动调节问题。 7.6状态空间设计时的无差调节问题。

7.2 状态反馈配置极点 工程被控对象如式7.1,考虑状态反馈 ()()()u k v k Lx k =+ 7.2 如图7.2所示。式7.2带入式7.1,得 (1)()()()() ()()()x k Fx k Gu k y k Cx k u k v k Lx k +=+?? =??=+? 7.3 整理得 ()(1)()() ()()x k F GL x k Gv k y k Cx k +=++?? =? 7.4 (k ) v (k ) 图7.2 状态反馈任意配置闭环系统的极点 闭环系统的特征方程为 []det ()0zI F GL -+= 7.5 问题是在什么情况下式7.5的特征根是可以任意配置的?即任给工程上期望的n 个特征根λ1, λ2, ..., λn ,有 []1det ()()0n i i zI F GL z λ=-+=-=∏ 7.6 定理:状态反馈配置极点

状态空间分析法的应用与特点

状态空间分析法的主要特点及其应用 课程:现代控制工程 教师: 学生: 班级:机电研班 学号:

状态空间分析法的主要特点及其应用 机电研班 摘要:现代控制理论是建立在状态空间法基础上的一种控制理论,是自动控制理论的一个主要组成部分。在现代控制理论中,对控制系统的分析和设计主要是通过对系统的状态变量的描述来进行的,基本的方法是时域分析方法。现代控制理论比经典控制理论所能处理的控制问题要广泛得多,包括线性系统和非线性系统,定常系统和时变系统,单变量系统和多变量系统。现代控制理论还为设计和构造具有指定的性能指标的最优控制系统提供了可能性。 本文通过分析比较经典控制理论在多输入多输出方面存在的不足,阐述了现代控制理论中的一种方法——状态空间分析法。本文以线性系统的状态空间表达式为基础对状态空间分析法的特点和应用方面作了一些阐述和论证,并结合现实生活中的一些实际工程问题的分析,论证了此种方法的实用性和先进性。 关键词:现代控制;状态空间分析法;汽轮机;调节系统;动态分析 1引言 经典控制理论主要以传递函数为基础,采用复域分析方法,由此建立起来的频率特性和根轨迹等图解解析设计法,对于单输入——单输出系统极为有效,至今仍在广泛成功地使用。但传递函数只能描述线性定常系统的外部特征,并不能反映其全部内部变量变化情况,且忽略了初始条件的影响,其控制系统的设计建立在试探的基础之上,通常得不到最优控制。复域分析法对于控制过程来说是间接的。 现代控制理论由于可利用数字计算机进行分析设计和实时控制,因此可处理时变、非线性、多输入——多输出系统的问题。现代控制理论主要以状态空间法为基础,采用时域分析方法,对于控制过程来说是直接的。它一方面能使设计者针对给定的性能指标设计出最优控制系统;另一方面还可以用更一般的输入函数代替特殊的所谓“典型输入函数”来实现最优控制系统设计。随着控制系统的高性能发展,最优控制、最佳滤波、系统辨识,自适应控制等理论都是这一领域研究的主要课题。 在用状态空间法分析系统时,系统的动态特性是由状态变量构成的一阶微分方程组来描述的。已能反映系统的全部独立变量的变化,从而能同时确定系统的全部运动状态,而且可以方便地处理初始条件。

状态空间法教案

一、问题引入 结合一些典型问题(分油问题)提出问题: 我们是怎样解决这些问题的?在人工智能领域又可以通过怎样的方法去解决呢?(状态空间法) 2、引导学生思考问题,并得出结论。 二、讲授新课 (一)基础知识部分 1、什么是状态空间法? 许多问题求解方法是采用试探搜索方法的。也就是说,这些方法是通过在某个可能的解空间内寻找一个解来求解问题的。这种基于解答空间的问题表示和求解方法就是状态空间法,它是以状态和算符(operator)为基础来表示和求解问题的。 2、状态空间法三要点 1) 状态(state):表示问题解法中每一步问题状况的数据结构; 2) 算符(operator):把问题从一种状态变换为另一种状态的手段; 3) 状态空间方法:基于解答空间的问题表示和求解方法,它是以状态和算符为基础来表示和求解问题的。

由上可知,对一个问题的状态描述,必须确定3件事: 1) 该状态描述方式,特别是初始状态描述; 2) 操作符集合及其对状态描述的作用; 3) 目标状态描述的特性。 问题的状态空间可用一个三元序组来表示: S:问题的全部初始状态的集合 F:操作的集合 G:目标状态的集合 4、用状态空间表示问题的步骤: 1)定义状态的描述形式 2)用所定义的状态描述形式把问题所有可能的状态都表示出来,并确定初始状态和目标状态的集合描述 3)定义一组算符,使得利用这些算符可以把问题由一个状态转为另一个状态。 4)利用状态空间图表示求解过程。 (二)实践应用部分

【分油问题】有A、B、C三个不带刻度的瓶子,分别能装8kg, 5kg和3kg油。如果A瓶装满油,B和C是空瓶,怎样操作三个瓶,使A中的油平分两份?(假设分油过程中不耗油) 解:第一步:定义问题状态的描述形式: 设Sk=(b,c)表示B瓶和C瓶中的油量的状态。 其中: b表示B瓶中的油量。 c表示C瓶中的油量。 初始状态集:S={(0,0)} 目标状态集:G={(4,0)} 第二步:定义操作符: 操作:把瓶子倒满油,或把瓶子的油倒空。 f1:从A瓶往B瓶倒油,把B瓶倒满。 f2:从C瓶往B瓶倒油,把B瓶倒满。 f3:从A瓶往C瓶倒油,把C瓶倒满。 f4:从B瓶往C瓶倒油,把C瓶倒满。

第三章 知识的状态空间表示法

第三章知识的状态空间表示法 1 课前思考: 人类的思维过程,可以看作是一个搜索的过程。 某个方案所用的步骤是否最少?也就是说它是最优的吗?如果不是,如何才能找到最优的方案?在计算机上又如何实现这样的搜索?这些问题实际上就是本章我们要介绍的搜索问题。 2 学习目标: 掌握回溯搜索算法、深度优先搜索算法、宽度优先搜索算法和A搜索算法,对典型问题,掌握启发式函数的定义方法。 3 学习指南: 了解算法的每一个过程和细节问题,掌握一些重要的定理和结论,在有条件的情况下,程序实现每一个算法,求解一些典型的问题。 4 难重点: 回溯搜索算法、算法及其性质、改进的A*算法。 5 知识点: 本章所要的讨论的问题如下: 有哪些常用的搜索算法。 问题有解时能否找到解。 找到的解是最佳的吗? 什么情况下可以找到最佳解? 求解的效率如何。 3.1 状态空间表示知识 一、状态空间表示知识要点 1.状态 状态(State)用于描述叙述性知识的一组变量或数组,也可以说成是描述问题求解过程中任意时刻的数据结构。通常表示成: Q={q1,q2,……,qn} 当给每一个分量以确定的值时,就得到一个具体的状态,每一个状态都是一个结点(节点)。

实际上任何一种类型的数据结构都可以用来描述状态,只要它有利于问题求解,就可以选用。 2.操作(规则或算符) 操作(Operator)是把问题从一种状态变成为另一种状态的手段。当对一个问题状态使用某个可用操作时,它将引起该状态中某一些分量发生变化,从而使问题由一个具体状态变成另一个具体状态。操作可以是一个机械步骤、一个运算、一条规则或一个过程。操作可理解为状态集合上的一个函数,它描述了状态之间的关系。通常可表示为: F={ f1 , f2,……… fm} 3.状态空间 状态空间(State Space)是由问题的全部及一切可用算符(操作)所构成的集合称为问题的状态空间。用三元组表示为: ({Qs},{F},{Qg}) Qs:初始状态,Qg:目标状态,F:操作(或规则)。 4.状态空间(转换)图 状态空间也可以用一个赋值的有向图来表示,该有向图称为状态空间图,在状态空间图中包含了操作和状态之间的转换关系,节点表示问题的状态,有向边表示操作。 二、状态图搜索 1.搜索方式 用计算机来实现状态图的搜索,有两种最基本的方式:树式搜索和线式搜索。 2.搜索策略 大体可分为盲目搜索和启发式(heuristic)搜索两大类。 搜索空间示意图 例3.1 钱币翻转问题 设有三枚硬币,其初始状态为(反,正,反),允许每次翻转一个硬币(只翻一个硬币,必须翻一个硬币)。必须连翻三次。问是否可以达到目标状态(正,正,正)或(反,反,反)。问题求解过程如下: 用数组表示的话,显然每一硬币需占一维空间,则用三维数组状态变量表示这个知识: Q=(q1 , q2 , q3) 取q=0 表示钱币的正面q=1 表示钱币的反面 构成的问题状态空间显然为: Q0=(0,0,0),Q1=(0,0,1),Q2=(0,1,0),Q3=(0,1,1)

状态空间分析法

第9章 线性系统的状态空间分析与综合 重点与难点 一、基本概念 1.线性系统的状态空间描述 (1)状态空间概念 状态 反映系统运动状况,并可用以确定系统未来行为的信息集合。 状态变量 确定系统状态的一组独立(数目最少)变量,它对于确定系统的运动状态是必需的,也是充分的。 状态向量 以状态变量为元素构成的向量。 状态空间 以状态变量为坐标所张成的空间。系统某时刻的状态可用状态空间上的点来表示。 状态方程 状态变量的一阶导数与状态变量、输入变量之间的数学关系,一般是关于系统的一阶微分(或差分)方程组。 输出方程 输出变量与状态变量、输入变量之间的数学关系。 状态方程与输出方程合称为状态空间描述或状态空间表达式。线性定常系统状态空间表达式一般用矩阵形式表示: ???+=+=Du Cx y Bu Ax x & (9.1) (2)状态空间表达式的建立。系统状态空间表达式可以由系统微分方程、结构图、传递函数等其他形式的数学模型导出。 (3)状态空间表达式的线性变换及规范化。描述某一系统的状态变量个数(维数)是确定的,但状态变量的选择并不唯一。某一状态向量经任意满秩线性变换后,仍可作为状态向量来描述系统。状态变量选择不同,状态空间表达式形式也不一样。利用线性变换的目的在于使系统矩阵A 规范化,以便于揭示系统特性,利于分析计算。满秩线性变换不改变系统的固有特性。 根据矩阵A 的特征根及相应的独立特征向量情况,可将矩阵A 化为三种规范形式:对角形、约当形和模式矩阵。 (4)线性定常系统状态方程解。状态转移矩阵)(t φ(即矩阵指数At e )及其性质:

i . I =)0(φ ii .A t t A t )()()(φφφ ==& iii. )()()()()(122121t t t t t t φφφφφ±=±=+ iv. )()(1 t t -=-φφ v. )()]([kt t k φφ= vi. )( ])exp[()exp()exp(BA AB t B A Bt At =+= vii. )( )ex p()ex p(11非奇异P P At P APt P --= 求状态转移矩阵)(t φ的常用方法: 拉氏变换法 =)(t φL -1])[(1--A sI (9.2) 级数展开法 ΛΛ++++ +=k k At t A k t A At I e ! 12122 (9.3) 齐次状态方程求解 )0()()(x t t x φ= (9.4) 非齐次状态方程式(9.1)求解 ?-+=t Bu t x t t x 0d )()()0()()(τττφφ (9.5) (5)传递函数矩阵及其实现 传递函数矩阵)(s G :输出向量拉氏变换式与输入向量拉氏变换式之间的传递关系 D B A sI C s G +-=-1)()( (9.6) 传递函数矩阵的实现:已知传递函数矩阵)(s G ,找一个系统},,,{D C B A 使式(9.6)成立,则将系统},,,{D C B A 称为)(s G 的一个实现。当系统阶数等于传递函数矩阵阶数时,称该系统为)(s G 的最小实现。 传递函数矩阵的实现并不唯一。实现的常用标准形式有可控标准形实现、可观测标准形实现、对角形实现和约当形实现等。 (6)线性定常连续系统的离散化及其求解 对式(9.1)表示的线性定常数连续系统进行离散化,导出的系统离散状态空间描述

倒立摆系统的状态空间极点配置控制设计

摘要:为实现多输入、多输出、高度非线不稳定的倒立摆系统平衡稳定控制,将倒立摆系统的非线性模型进行近似线性化处理,获得系统在平衡点附近的线性化模型。利用牛顿—欧拉方法建立直线型一级倒立摆系统的数学模型。在分析的基础上,基于状态反馈控制中极点配置法对直线型倒立摆系统设计控制器。由MATLAB仿真表明采用的控制策略是有效的,设计的控制器对直线型一级倒立摆系统的平衡稳定性效果好,提高了系统的干扰能力。 关键词:倒立摆、极点配置、MATLAB仿真 引言:倒立摆是进行控制理论研究的典型试验平台,由于倒立摆本身所具有的高阶次、不稳定、非线性和强耦合性,许多现代控制理论的研究人员一直将他视为典型的研究对象,不断从中发掘出新的控制策略和控制方法。控制器的设计是倒立摆系统的核心内容,因为倒立摆是一个绝对不稳定的系统,为使其保持稳定并且可以承受一定的干扰,基于极点配置法给直线型一级倒立摆系统设计控制器 1.数学模型的建立 倒立摆系统其本身是自不稳定的系统,实验建模存在着一定的困难。在忽略掉一些次要的因素之后,倒立摆系统就是一典型的运动的刚体系统,可以在惯性坐标系中应用经典力学理论建立系统动力学方程。下面采用牛顿-欧拉方法建立直线型一级倒立摆系统的数学模型。 1.1微分方程的数学模型 在忽略了空气阻力和各种摩擦力之后,可将直线一级倒立摆系统抽象成小车和匀质杆组成的系统,如图1所示:

图1:直线一级倒立摆模型 设系统的相关参数定义如下: M:小车质量 m:摆杆质量 b:小车摩擦系数 l:摆杆转动轴心到杆质心的长度 I:摆杆质量 F:加在小车上的力 x:小车位置 Φ:摆杆与垂直方向上方向的夹角 θ:摆杆与垂直方向下方向的夹角(摆杆的初始位置为竖直向下) 如下图2所示为小车和摆杆的受力分析图。其中,N和P为小车与摆杆相互作用力的水平和垂直方向的分量。

状态空间分析法的特点及其应用

状态空间法分析及其应用的特点 摘要 基于为寻求便于分析系统的性能的相应状态变量以及探究状态空间变量线性变换对系统性能的影响,来阐述状态空间分析法的特点。通过应用状态空间法到绞线一叠层橡胶复合支座隔震结构进行数值模拟分析中来进一步阐述其特点,将结构控制理论中的结构状态空间法应用到该复合支座隔震结构的数值模拟分析中。建立了普通框架、安装叠层橡胶支座和安装绞线一叠层橡胶复合支座框架的结构状态方程,应用MATLAB/SIMULINK工具箱建立结构仿真模型,得出不同条件下框架结构的时程反应曲线。通过对比分析可以看出绞线一叠层橡胶复合支座能很好地改变结构的隔震效果,应用状态空间法进行绞线一叠层橡胶复合支座隔震结构的数值模拟分析简单准确。 关键词:系统、传递函数、线性变换、状态空间变量

一、引言 状态空间分析从实质上说并不是什么新颖的东西,其关键思想起源予19世纪到拉格朗日、哈密顿等人在研究经典力学时提出的广义坐标与变分法。当然,由高斯等人奠定的古典概率、估计理论以及线性代数等也具有同样的重要性。上世纪40年代以来,布利斯、庞德里亚金和别尔曼关于极大值原理,卡尔曼、布西与巴丁等人提出的卡尔曼滤波理论,以及许许多多的学者完成的并不具有里程碑意义的研究成果,积累起来却对算法及分析结果产生了决定性意义的贡献。这些便是状态空间方法发展的历史概况。状态空间分析是对线性代数、微分方程、数值方法、变分法、随机过程以及控制理论等应用数学各学科的综台。对动态系统的性能分析,特别是对扰动的响应、稳定性的特性、估计与误差分析以及对控制律的设计及性能评估,这些便构成状态空间分析的内容。这主要表现在利用向量、矩阵等一整套数学符合,把大量资料加以整理与综合,形成了观念上统一的体系——60年代中期之后出现了现代控制理论。 状态空间分析随着动力学与控制问题维数的增加(其中包括坐标、敏感器、执行机构以及其它装置的数量)而越发显得重要。另一方面亦由于计算机软件的不断完善,特别在可靠性及用户接口方面的改善与进展,使得计算工作比以前任何时候都易于进行,使状态空间分析越发显得有生命力。它具有的特性使得在设计控制系统时,不在只局限于输入量、输出量和误差量,为提高系统性能提供了有力的工具,加之可以利用计算机进行分析设计及实时控制,因而可以应用于非线性系统、时变系统、多输入—多输出系统以及随机过程等。

由传递函数转换成状态空间模型(1)

由传递函数转换成状态空间模型——方法多!!! SISO 线性定常系统 高阶微分方程化为状态空间表达式 SISO ()()()()()()m n u b u b u b y a y a y a y m m m n n n n ≥+++=++++--- 1102211 )(2 211110n n n n m m m a s a s a s b s b s b s G +++++++=--- 假设1+=m n 外部描述 ←—实现问题:有了内部结构—→模拟系统 内部描述 SISO ???+=+=du cx y bu Ax x 实现问题解决有多种方法,方法不同时结果不同。 一、 直接分解法 因为 1 0111 11()()()() ()()()() 1m m m m n n n n Y s Z s Z s Y s U s Z s U s Z s b s b s b s b s a s a s a ----?=? =?++++++++ ???++++=++++=----) ()()() ()()(11 11110s Z a s a s a s s U s Z b s b s b s b s Y n n n n m m m m 对上式取拉氏反变换,则 ???++++=++++=----z a z a z a z u z b z b z b z b y n n n n m m m m 1) 1(1)(1)1(1)(0 按下列规律选择状态变量,即设)1(21,,,-===n n z x z x z x ,于是有 ?????? ?+----===-u x a x a x a x x x x x n n n n 12113 221

状态空间分解法计算公式分析

同批工件间同时到达的耦合关系? 工件本来是一个个到达,如C-C+1-C+2,但考虑为批次同时到达,C 可以直接到C+2; 基于更新过程的关键更新定理,将小车与B2、B4间的耦合关系用节点间的批量到达速率、批量离开速率变化替代?B2的输出与B4的输入之间相互依赖 节点二: 两次小车装载之间通常会有多个工件到达B2,在小车两次到达的间隔中B2内的工件数量曲线是单调非减的。因此,实际上小车回到B2时B2拥有的工件数量的期望(锯齿的上尖点)远远比稳态后(稳态后不变,中间水平线)计算的期望要大 节点四: 实际上小车来到B4时B4拥有的工件数量的期望远远比稳态后计算的期望要小,当小车容量C 越大、小车速度越慢(保持当量运载能力不变)的时候这个偏差越明显,这样将提高小车由于阻塞停留在B4处的计算概率(实际堵塞概率比计算值要小),降低前环节的处理能力。 平均在制品数量: ()()()() ()121112223331122334444444441112123 ,,,01 01 11 11C 4,,201 1 WIP=; N N C S w b S w b S w b b w b w b w N i S w b S w b w w P w P w P w P w P N +======+===?+?+?+?+?∑∑∑∑∑∑∑ ∑∑ 第4项改为乘以W4;第五项(节点四在制品数期望)就是小车阻塞的概率乘以节点4的个数 (N4+1) 状态之间的转换速率:存在概率路径,则用概率路径乘以速率,不存在概率路径,则直接用速率。实际上概率路径之和一定=1 1 i b =-0 i b =1 i b =2 i b = B2 B4 节点3:2C+2个状态对应2C+2个方程 右边第一项:上标为W3,漏了V ,第二项是只可能是从小车上只有一个变为空车返回状态

状态空间设计与分析

状态空间分析及设计 姓名:周海波 学号:200740297(15) 班级:自控实验0701班 日期:2010-5-2

目录 一.系统能控性和能观性判定 二.主导极点法进行状态反馈极点配置 三.对称根轨迹法(SRL)进行状态反馈极点配置 四.主导极点法和SRL状态反馈极点配置对比 五.全维观测器设计和分析 1.观测器设计 2.分离定理验证 六.带全维观测器的状态反馈与直接状态反馈对比 七.降阶观测器和带降阶观测器的状态反馈系统的设计和分析八.全维观测器的状态反馈与降阶观测器的状态反馈对比 1.抗过程干扰能力 2.抗测量噪声能力 九.采用内模原则设计状态反馈系统 1.跟踪性能分析 2.抗干扰性能分析

状态空间分析及设计 有以下系统 122201101011x x μ ???????????=?+?????????????i []100y x =要求:对系统设计状态反馈使得系统闭环阶跃响应的超调量小于5%,且在稳态误差值为1%范围内的调节时间小于4.6s. 一.系统能控性和能观性判定 由系统能控性判别矩阵: 224001013115rank B AB A B rank ???????==????????? 由系统能观性判别矩阵:21001223142C rank CA rank CA ????????=???=????????????? 所以系统既是能控的又是能观的。 二.主导极点法进行状态反馈极点配置1.当 4.61% 4.6s n t s ζω?== <%5%e πζσ?=<解得:0.691n ζζω>??>?取0.75 2n ζω==则:2222340 n n s s s s ζωω++=++=所以1,2 1.5 1.323s j =?±,取非主导极点38s =?,则期望特征多项式为: 232(34)(8)112832 s s s s s s +++=+++设[]123K k k k =又

状态空间模型

状态空间模型概述 状态空间模型是动态时域模型,以隐含着的时间为自变量。状态空间模型在经济时间序列分析中的应用正在迅速增加。其中应用较为普遍的状态空间模型是由Akaike提出并由Mehra进一步发展而成的典型相关(canonical correlation)方法。由Aoki等人提出的估计向量值状态空间模型的新方法能得到所谓内部平衡的状态空间模型,只要去掉系统矩阵中的相应元素就可以得到任何低阶近似模型而不必重新估计,而且只要原来的模型是稳定的,则得到的低阶近似模型也是稳定的。 状态空间模型起源于平稳时间序列分析。当用于非平稳时间序列分析时需要将非平稳时间序列分解为随机游走成分(趋势)和弱平稳成分两个部分分别建模。含有随机游走成分的时间序列又称积分时间序列,因为随机游走成分是弱平稳成分的和或积分。当一个向量值积分序列中的某些序列的线性组合变成弱平稳时就称这些序列构成了协调积分(cointegrated)过程。非平稳时间序列的线性组合可能产生平稳时间序列这一思想可以追溯到回归分析,Granger提出的协调积分概念使这一思想得到了科学的论证。Aoki和Cochrane等人的研究表明:很多非平稳多变量时间序列中的随机游走成分比以前人们认为的要小得多,有时甚至完全消失。 协调积分概念的提出具有两方面的意义:

①如果一组非平稳时间序列是协调积分过程,就有可能同时考察他们之间的长期稳定关系和短期关系的变化; ②如果一组非平稳时间序列是协调积分过程,则只要将协调回归误差代入系统状态方程即可纠正系统下一时刻状态的估计值,形成所谓误差纠正模型。 Aoki的向量值状态空间模型在处理积分时间序列时,引入了协调积分概念和与之相关的误差纠正方法,因此向量值状态空间模型也是误差纠正模型。一个向量值时间序列是否为积分序列需判断其是否含有单位根,即状态空间模型的动态矩阵是否含有量值为1的特征值。根据动态矩阵的特征值即可将时间序列分解成两个部分,其中特征值为1的部分(包括接近1的“近积分”部分)表示随机游走趋势,其余为弱平稳部分,两部分分别建模就得到了两步建模法中的趋势模型和周期模型。 状态空间模型的假设条件是动态系统符号马尔科夫特性,即给定系统的现在状态,则系统的将来与其过去独立。 [编辑] 状态空间模型的分类 状态空间模型包括两个模型:一是状态方程模型,反映动态系统在输入变量作用下在某时刻所转移到的状态;二是输出或量

实验八MATLAB状态空间分析

实验八 线性系统的状态空间分析 §8.1 用MATLAB 分析状态空间模型 1、状态空间模型的输入 线性定常系统状态空间模型 x Ax Bu y Cx Du =+=+ 将各系数矩阵按常规矩阵形式描述。 [][][]11 121120 10 1;;;n n n nn n n A a a a a a a B b b b C c c c D d ==== 在MATLAB 里,用函数SS()来建立状态空间模型 (,,,)sys ss A B C D = 例8.1 已知某系统微分方程 22d d 375d d y y y u t t ++= 求该系统的状态空间模型。 解:将上述微分方程写成状态空间形式 0173A ??=??--??,01B ??=???? []50C =,0D = 调用MATLAB 函数SS(),执行如下程序 % MATLAB Program example 6.1.m A=[0 1;-7 -3]; B=[0;1]; C=[5 0]; D=0; sys=ss(A,B,C,D) 运行后得到如下结果 a = x1 x2 x1 0 1

x2 -7 -3

b = u1 x1 0 x2 1 c = x1 x2 y1 5 0 d = u1 y1 0 Continuous-time model. 2、状态空间模型与传递函数模型转换 状态空间模型用sys 表示,传递函数模型用G 表示。 G=tf(sys) sys=ss(G) 状态空间表达式向传递函数形式的转换 G=tf(sys) Or [num,den]=ss2tf(A,B,C,D) 多项式模型参数 [num,den]=ss2tf(A,B,C,D,iu) [z,p,k]=ss2zp(A,B,C,D,iu) 零、极点模型参数 iu 用于指定变换所需的输入量,iu 默认为单输入情况。 传递函数向状态空间表达式形式的转换 sys=ss(G) or [A,B,C,D]=tf2ss(num,den) [A,B,C,D]=zp2ss(z,p,k) 例 8.2 11122211220.560.050.03 1.140.2500.1101001x x u x x u y x y x -??????????=+??????????-????????????????=??????? ????? 试用矩阵组[a ,b ,c ,d]表示系统,并求出传递函数。 % MATLAB Program example 6.2.m

(word完整版)状态空间平均法建模总结,推荐文档

7.1 状态空间平均法 151109,状态空间平均法是平均法的一阶近似,其实质为:根据线性RLC 元件、独立电源和周期性开关组成的原始网络,以电容电压、电感电流为状态变量,按照功率开关器件的“ON ”和“OFF ”两种状态,利用时间平均技术,得到一个周期内平均状态变量,将一个非线性电路转变为一个等效的线性电路,建立状态空间平均模型。 对于不考虑寄生参数的理想 PWM 变换器,在连续工作模式(CCM )下一个开关周期有两个开关状态相对应的状态方程为: 11i x A x B v =+& 0t dT ≤≤ (7-1) 22i x A x B v =+& dT t T ≤≤ (7-2) 式中d 为功率开关管导通占空比,/on d t T =,on t 为导通时间,T 为开关周 期;[] v L C x i =,x 是状态变量,x &是状态变量的导数,L i 是电感电流C v 是电容电压,i V 是开关变换器的输入电压;1A ,2A ,1B ,2B 是系数矩阵与电路的结构参数有关。 对式(7.1)和(7.2)进行平均得到状态平均方程为 x Ax Bv =+& 0t T ≤≤ (7-3) 式中,12(1)A dA d A =+-,12(1)B dB d B =+-,这就是著名的状态空间平均法。可此式可见,时变电路变成了非时变电路,若d 为常数,则这个方程描述的系统是线性系统,所以状态空间平均法的贡献是把一个开关电路用一个线性电路来替代。 对状态平均方程进行小扰动线性化,令瞬时值?d D d =+、'?'d D d =-、'1D D +=、?vg Vg vg =+、?x X x =+。其中?d 、?vg 、?x 是相应D 、vg 、X 的扰动量,将之代入到式(7-3)为: ????()()i i X x A X x B V v +=+++& (7-4) ''1212????????()()()()()()i i i A X x B V v Ax Bx D d A D d A X D d B D d B V ????+++=++++-+++-??? ? (7-5) 将其中的扰动参数变量分离就得到了动态的小信号模型式。 1212????[()()]i i x Ax Bv A A X B B V d =++-+-& (7-6)

第三章 知识得状态空间表示法

第三章知识得状态空间表示法 1 课前思考: 人类得思维过程,可以瞧作就是一个搜索得过程。 某个方案所用得步骤就是否最少?也就就是说它就是最优得吗?如果不就是,如何才能找到最优得方案?在计算机上又如何实现这样得搜索?这些问题实际上就就是本章我们要介绍得搜索问题。 2 学习目标: 掌握回溯搜索算法、深度优先搜索算法、宽度优先搜索算法与A搜索算法,对典型问题,掌握启发式函数得定义方法。 3 学习指南: 了解算法得每一个过程与细节问题,掌握一些重要得定理与结论,在有条件得情况下,程序实现每一个算法,求解一些典型得问题。 4 难重点: 回溯搜索算法、算法及其性质、改进得A*算法。 5 知识点: 本章所要得讨论得问题如下: 有哪些常用得搜索算法。

问题有解时能否找到解。 找到得解就是最佳得吗? 什么情况下可以找到最佳解? 求解得效率如何。 3、1 状态空间表示知识 一、状态空间表示知识要点 1.状态 状态(State)用于描述叙述性知识得一组变量或数组,也可以说成就是描述问题求解过程中任意时刻得数据结构。通常表示成: Q={q1,q2,……,qn} 当给每一个分量以确定得值时,就得到一个具体得状态,每一个状态都就是一个结点(节点)。实际上任何一种类型得数据结构都可以用来描述状态,只要它有利于问题求解,就可以选用。 2.操作(规则或算符) 操作(Operator)就是把问题从一种状态变成为另一种状态得手段。当对一个问题状态使用某个可用操作时,它将引起该状态中某一些分量发生变化,从而使问题由一个具体状态变成另一个具体状态。操作可以就是一个机械步骤、一个运算、一条规则或一个过程。操作可理解为状态集合上得一个函数,它描述了状态之间得关系。通常可表示为: F={ f1 , f2,……… fm} 3.状态空间 状态空间(State Space)就是由问题得全部及一切可用算符(操作)所构成得集合称为问题得状态空间。用三元组表示为: ({Qs},{F},{Qg}) Qs:初始状态,Qg:目标状态,F:操作(或规则)。 4.状态空间(转换)图 状态空间也可以用一个赋值得有向图来表示,该有向图称为状态空间图,在状态空间图中包含了操作与状态之间得转换关系,节点表示问题得状态,有向边表示操作。 二、状态图搜索

状态空间法

状态空间法 对于下列的单自由度系统,其相关参数如下: 1kg m =,100N/m k =,0.2N.s/m c = 系统的运动方程: [M]X +[C]X +[K]X =[P] 对于单自由度系统,其运动方程为: mx cx kx p ++= 0.2100x x x p ++= 对于多自由度系统,其状态空间方程为: x =Ax +Bu y =Cx +Du 式中,A —状态矩阵; B —输入形状矩阵; C —输出形状矩阵; 其具体表达式如下: -1-122-n n ???=????0I A -[M][K][M][C] -12n n ???=????0B -[M] []2n n ?=C I 0 []n n ?=D 0 对于上述单自由度系统,其状态矩阵为: 011000.2x x x x ??????=??????--?????? 011000.2??=??--?? A 求解状态矩阵的特征值与特征向量:

0λ-=A I {}{}φλφ=A 得到的特征值为: 10.110j λ≈-+,20.110j λ≈-- 11{}0.110j φ??=??-+??,21{}0.110j φ??=??--?? 同时可以看出: {}{}(2)1 1(1)1 =0.110j φλφ=-+,{}{}(2)22(1)2=0.110j φλφ=-- 取虚部为正的特征值求系统的特征参数。 系统的固有频率: 110/n rad s ωλ===≈ 阻尼比: 11Re() 0.01λξλ-==≈ 根据其阵型图可以看出,其位于左半平面(即负半平面),因此系统是稳定的。系统阻尼是正值,阻尼起到耗能效果;若阻尼为负值,将位于右半平面,系统将变得不稳定,此时阻尼起到吸收能量的作用。

状态空间模型

引言 状态空间模型是应用状态空间分析法对动态系统所建立的一种数学模型,它是应用现代控制理论对系统进行分析和综合的基础。状态空间模型由描述系统的动态特性行为的状态方程和描述系统输出变量与状态变量间变换关系的输出方程组成。 在经典控制理论中,采用n阶微分方程作为对控制系统输入量u(t)和输出量y(t)之间的时域描述,或者在零初始条件下,对n阶微分方程进行Laplace 变换,得到传递函数作为对控制系统的频域描述,“传递函数”建立了系统输入量U(s)=L[u(t)]和输出量Y(s)=L[y(t)]之间的关系。传递函数只能描述系统的外部特性,不能完全反映系统内部的动态特征,并且由于只考虑零初始条件,难以反映系统非零初始条件对系统的影响。 现代控制理论是建立在“状态空间”基础上的控制系统分析和设计理论,它用“状态变量”来刻画系统的内部特征,用“一阶微分方程组”来描述系统的动态特性。系统的状态空间模型描述了系统输入、输出与内部状态之间的关系,揭示了系统内部状态的运动规律,反映了控制系统动态特性的全部信息。 龙格-库塔(Runge-Kutta)方法是一种在工程上应用广泛的高精度单步算法。由于此算法精度高,采取措施对误差进行抑制,所以其实现原理也较复杂。该算法是构建在数学支持的基础之上的。 标准四阶龙格——库塔法的基本思想 龙格和库塔提出了一种间接地运用Taylor公式的方法,即利用y(x)在若干个待定点上的函数值和导数值做出线性组合式,选取适当系数使这个组合式进Taylor展开后与y(xi+1)的Taylor展开式有较多的项达到一致,从而得出较高阶的数值公式,这就是龙格—库塔法的基本思想。 一、实验原理 龙格——库塔法 龙格—库塔法是仿真中应用最广泛的方法。它以泰勒展开公式为基础,用函数f的线性组合代替f的高阶导数项,避免了高阶导数的运算,又提高了精度。泰勒公式的阶次取得越高,龙格—库塔法所得的误差等级越低,精度越高。最常用的是四阶龙格—库塔法,它虽然有一定的时间损耗,但比梯形法要快,而且与

计算机控制状态空间反馈课程设计

控制系统状态空间设计 设计对象 系统的对象模型为: )8)(4(1)(++=s s s s G 设计目的 A :试确定一个状态负反馈阵K ,使相对于单位阵阶跃参考 输入的输出过渡过程,满足如下的期望指标:超调量<=20%, 峰值时间<=0.4s 。 B :如果系统的状态变量在实际上无法测量,试确定一个状态观 测器(全维状态观测器),使得通过基于状态观测器的状态反馈, 满足上述期望的性能指标。 设计要求 1. 要求学生掌握当Gc (s )设计好后如何将其变换为离散算法Gc (Z ) 以及如何将Gc (Z )转换在计算机上可完成计算的迭代方程。 2. 要求学生能掌握工业中常用的基本PID 算法。 3. 掌握一阶向前,向后差分及双线性变换离散化的具体做法及应用 场合。 4. 熟悉PID 两种基本算法的计算公式:位置算法和增量算法。 5. 熟练使用MATLAB 软件,掌握其仿真的方法、步骤及参数设置。

6. 了解计算机控制系统的组成及相应设备的选用等问题。设计方法及步骤 1.利用Simulink 进行仿真,判断是否满足期望的性能指标。系统仿真方框图如下: 系统仿真结果如下: 有图可知,系统不满足期望的性能指标,需要进行配置。2.由期望的性能指标求出闭环系统的期望极点。 首先有典型二阶系统性能指标与系统参数之间的关系,确定统参数,然后再确定系统的主导极点和非主导极点。 由系统的性能指标:超调量<=20%,峰值时间<=0.4s。可以求

出ζ =0.456 Wn=8.84。 因此选取ζ =0.60 Wn=13.00为系统参数 由系统的特征方程可以求出系统的特征根为: S 1=-7.8+10.4j ,S 2=-7.8-10.4j 令系统的非主导极点为: S 3=-130 则需要配置的极点是是: P=[-7.8+10.4j,-7.8-10.4j,-130]; 3.求出系统空间表达式。利用MATLAB 有关模型转换函数可求得 A =???? ? ??---010001 13212 B =???? ? ??001 C =()100 D =0 4.判断系统的能控能关性,确定系统是否能够通过状态反馈实现极 点的任意配置。 能控性判别矩阵Q=???? ? ??--100121 0112121 系统的可控矩阵阶数为3,为满秩,则系统是能控的。 5.求出用于极点配置的状态矩阵K :利用函数K=acker (A,B,P ),

考研必备之自动化专业自控原理第九章状态空间分析法答案-计算题

9.3.5 计算和证明题 9.3.5.1 已知机械系统如图9-7所示,21,m m 为质量块,1m 受外力)(t F 作用。弹簧的弹性系数如图示,如不计摩擦,自选一定数目的状态变量,建立系统的状态空间描述。 图9-7 题9.3.5.1图 提示:设中间变量质量块1m 的位移为z ,根据牛顿定律有 z m y z k t F 11)()( ① 同理对质量块2m 有 y m y k y z k 221)( ② 设状态变量 z x 1 12x z x y x 3 34x y x 由式① 1 3111112) (m t F x m k x m k z x 由式② 32 211214x m k k x m k y x 因此有 )(00100010 0000 00 1 1432 12 2 1 2 11 1 1143 2 1t F m x x x x m k k m k m k m k x x x x 43210100x x x x y 9.3.5.2 已知系统结构图如图9-8所示。试写出系统的状态方程和输出方程(要求写成矢量形式)。 y 图 9-8 题9.3.5.2图 提示: x y u x x 01101212

9.3.5.3 已知系统的微分方程,试建立其相应的状态空间描述,并画出相应的状态结构图。 (1)u u u y y y y 86375 (2)u u u y y y y 23375 提示:(1) x u x x 168100573100010 y ,状态结构图略 (2) u x u x x 541 10057310 001 y ,状态结构图略。 9.3.5.4判断下列矩阵是否满足状态转移矩阵的条件,如果满足,试求与之对应的A 阵。 (1) t t t t t sin cos 0cos sin 0001)(Φ (2) t t e e t 220 )1(2 11)(Φ 提示:(1)不是状态转移矩阵,因为I )0(Φ。 (2)是。 2010) (0 t t A Φ 9.3.5.5 线性系统u x x 101000 , 11)0(x ,在单位阶跃输入时系统的响应x (t)。 提示: t e t 001)(Φ, )(t x d e e t t t )(110001110010 121t e 9.3.5.6 已知状态空间描述为 x y u x x 02102010 ,试求: (1)根据状态空间描述画出系统状态结构图; (2)判断系统的能控性和能观测性; (3)求系统的传递函数; (4)求系统状态转移矩阵; (5)求该系统的特征方程。 提示:(1)状态结构图略(2)能控且能观测 (3) b A I c 1 )()(s s G ) 2(2 s s (4) t t e e t 220)1(2 11 )(Φ (5)022 s s s A I

状态空间分析法

第9章 线性系统的状态空间分析与综合 ?重点与难点 —、基本概念 1. 线性系统的状态空间描述 (1)状态空间概念 状态 反映系统运动状况,并可用以确定系统未来行为的信息集合。 状态变量 确定系统状态的一组独立(数目最少)变量,它对于确定系统的运动 状态是必需的,也是充分的。 状态向量 以状态变量为元素构成的向量。 状态空间 以状态变量为坐标所张成的空间。系统某时刻的状态可用状态空间上 的点来表示。 状态方程 状态变量的一阶导数与状态变量、输入变量之间的数学关系,一般是 关于系统的一阶微分(或差分)方程组。 输出方程输出变量与状态变量、输入变量之间的数学关系。 状态方程与输出方程合称为状态空间描述或状态空间表达式。线性定常系统状态空 间表达式一般用矩阵形式表示: x y (2) 状态空间表达式的建立。系统状态空间表达式可以由系统微分方程、 传递函数等其他形式的数学模型导出。 (3) 状态空间表达式的线性变换及规范化。描述某一系统的状态变量个数(维数) 是 确定的,但状态变量的选择并不唯一。某一状态向量经任意满秩线性变换后,仍可作 为状态向量来描述系统。状态变量选择不同,状态空间表达式形式也不一样。利用线性 变换的目的在于使系统矩阵 A 规范化,以便于揭示系统特性,利于分析计算。满秩线性 变换不改变系统的固有特性。 根据矩阵A 的特征根及相应的独立特征向量情况,可将矩阵 A 化为三种规范形式: 对角形、约当形和模式矩阵。 (4) 线性定常系统状态方程解。状态转移矩阵 Bu Du (9.1) Ax Cx 结构 图、 (t )(即矩阵指数e At )及其性质:

x(k) 1 UkT )) Dkk)G(T)u(k) (9.8) i . (0) I ii . (t) A (t) (t)A iii . (t 1 t 2 ) (t 1 ) ( t 2) (t 2)(t 1) iv. 1 (t) ( t) v. [(t)]k (kt) vi. exp(At) exp(Bt) exp[( A B)t] (AB B vii . exp(P 1APt) P 1 exo( At)P (P 非奇异) 求状态转移矩阵 (t)的常用方法: 拉氏变换法 (t) L[(sl A)1] 级数展开法 At , ", 1 A 2 2 1"k,k e I At A t A t k! 齐次状态方程求解 x(t) (t)x(0) 非齐次状态方程式(9.1)求解 t x(t) (t)x(0) 0 (t )Bu( )d (5) 传递函数矩阵及其实现 传递函数矩阵G(s):输出向量拉氏变换式与输入向量拉氏变换式之间的传递关系 1 G(s) C(sl A) 1B D (9.6) 传递函数矩阵的实现:已知传递函数矩阵 G(s),找一个系统{代B,C, D }使式(9.6) 成立,则将系统{A, B,C,D }称为G(s)的一个实现。当系统阶数等于传递函数矩阵阶数 时,称该系统为 G(s)的最小实现。 传递函数矩阵的实现并不唯一。实现的常用标准形式有可控标准形实现、可观测标 准形实现、对角形实现和约当形实现等。 (6) 线性定常连续系统的离散化及其求解 对式(9.1)表示的线性定常数连续系统进行离散化,导出的系统离散状态空间描述 为 其中 (T) (t)tT T (9.2) (9.3) (9.4) (9.5)

相关文档
相关文档 最新文档