文档库 最新最全的文档下载
当前位置:文档库 › 不确定度评定(金属材料抗拉强度)

不确定度评定(金属材料抗拉强度)

不确定度评定(金属材料抗拉强度)
不确定度评定(金属材料抗拉强度)

金属材料抗拉强度测量结果的不确定度评定

一、 概述

1.1 目 的

评定金属材料抗拉强度测量结果的不确定度。 1.2 检测依据的标准

GB/T228—2010《金属材料 室温拉伸试验方法》。 1.3 检测使用的仪器设备

微机控制电子万能试验机,型号:WDW-E100,允差:±1%; 千分尺,型号:0-25mm ,允差:±0.01mm ; 游标卡尺,型号:0-150mm ,允差:±0.02mm 。 1.4 检测程序

金属材料的室温拉伸试验抗拉强度检测时,首先根据试样横截面的种类不同测量厚度、宽度或直径,计算截面积S 0;然后用WDW-E100电子拉伸机以规定速率施加拉力,直至试样断裂,读取断裂过程中的最大力F m ,使用R m =F m /S 0计算出抗拉强度(R m ),在同一试验条件下,试验共进行10次。

二、数学模型

以矩形横截面金属材料试样为例

m m 0m =/=/()R F S F a b (1)

式中:R m —抗拉强度,N/mm 2;

F m —断裂过程中的最大力,N ; S 0—金属材料横截面积,mm 2; a —金属材料厚度,mm ; b —

金属材料宽度,mm 。

三、不确定度来源

金属材料抗拉强度R m 测量结果不确定度来源主要包括:

(1) 厚度测量重复性引入的标准不确定度u A1,采用A 类方法评定; (2) 千分尺误差引入的标准不确定度u B1,采用B 类方法评定; (3) 宽度测量重复性引入的标准不确定度u A2,采用A 类方法评定;

(4) 游标卡尺误差引入的标准不确定度u B2,采用B 类方法评定; (5) 最大力测量重复性引入的标准不确定度u A3,采用A 类方法评定; (6) 拉力机示值误差引入的标准不确定度u B3,采用B 类方法评定; (7) 测量结果数据修约引入的标准不确定度u B4,采用B 类方法评定。

四、标准不确定度评定

在同一试验条件下,金属材料抗拉强度R m 检测共进行10次,得到测量列如表1所示:

表1 金属材料抗拉强度R m 检测原始数据

表1中单次实验标准差使用贝塞尔公式计算:s =

金属材料抗拉强度R m 由算术平均值根据式(1)计算给出:

5729/1.32*10.54=414.97N/mm 2

4.1 厚度测量重复性引入的标准不确定度u A1

根据表1中厚度检测的单次实验标准差计算结果得到,厚度测量重复性引入的相对标准不确定度

u A1=0.0042mm

4.2千分尺误差引入的标准不确定度u B1

千分尺经上级计量部门检定合格,检定证书给出允差为±0.01mm,区间内服从均匀分

布,包含因子k B1a B1=0.01mm,则标准不确定度

u B1= a B1/k B1=0.01/3=0.0058mm

4.3宽度测量重复性引入的标准不确定度u A2

根据表1中宽度检测的单次实验标准差计算结果得到,厚度测量重复性引入的相对标准不确定度

u A2

=0.0083mm

4.4游标卡尺误差引入的标准不确定度u B2

游标卡尺经上级计量部门检定合格,检定证书给出允差为±0.02mm,区间内服从均匀

分布,包含因子k B2a B2=0.02mm,则标准不确定度

u B2= a B2/k B2=0.02/3=0.0116mm

4.5最大力测量重复性的不重复引入的标准不确定度u A3

根据表1中最大力检测的单次实验标准差计算结果得到,厚度测量重复性引入的相对标准不确定度

u A3

4.6拉力机示值误差引入的标准不确定度u B3

拉力机经上级计量部门检定合格,检定证书给出允差为±1%,区间内服从均匀分布,

包含因子k B3a B3=1%,则标准不确定度

u B3= a B3/k B3=0.01/3=0.0058

4.7测量结果数据修约引入的标准不确定度u B4

根据GB/T228—2010《金属材料室温拉伸试验方法》中规定,对于本例中金属材料抗拉强度R m=414.97 N/mm2时,R m修约到1N/mm2,区间内服从均匀分布,包含因子

k B4a B4=1/2=0.5N/mm2,则标准不确定度

u B4= a B4/k B4=0.5/3=0.2887N/mm2

列表给出不确定度汇总如下:

表2 金属材料抗拉强度R m 测量不确定度汇总表

五、合成标准不确定度评定

对于直接测量,由于各输入量直接互不相关且数学模型中均为乘除关系,所以采用简化方法进行合成合成,如式(2)所示:

c =

u (2)

式中: p i —各输入量的幂指数;

r ()i u x —各输入量的相对标准不确定度。

将式(1)改写为1

-1

-1

m m rep R F a b f =???,式中,f rep 是数值修约因素的修正因子,由于各输入量的幂指数绝对值均为1,则金属材料抗拉强度R m 测量结果的合成不确定度:

六、扩展不确定度评定

取包含因子k=2,金属材料抗拉强度测量结果R m的测量不确定度:

2*0.008434*415=7N/mm2

七、报告检测结果和扩展不确定度

金属材料抗拉强度测量结果R m为415N/mm2,其扩展不确定度为:

U=7 N/mm2;k=2。

机械专业基础知识--金属屈服强度、抗拉强度、硬度知识

机械专业基础知识--金属屈服强度、抗拉强度、硬度知识 [日期:2005-03-28编] 来源:Jackyc 原创文稿作者:陈俊光 [字体:大中小] 钢材机械性能介绍 1.屈服点(σs) 钢材或试样在拉伸时,当应力超过弹性极限,即使应力不再增加,而钢材或试样仍继续发生明显的塑性变形,称此现象为屈服,而产生屈服现象时的最小应力值即为屈服点。 设Ps为屈服点s处的外力,Fo为试样断面积,则屈服点σs =Ps/Fo(MPa),MPa称为兆帕等于N(牛顿)/mm2,(MPa=106Pa,Pa:帕斯卡 =N/m2) 2.屈服强度(σ0.2) 有的金属材料的屈服点极不明显,在测量上有困难,因此为了衡量材料的屈服特性,规定产生永久残余塑性变形等于一定值(一般为原长度的0.2%)时的应力,称为条件屈服强度或简称屈服强度σ0.2 。 3.抗拉强度(σb) 材料在拉伸过程中,从开始到发生断裂时所达到的最大应力值。它表示钢材抵抗断裂的能力大小。与抗拉强度相应的还有抗压强度、抗弯强度等。 设Pb为材料被拉断前达到的最大拉力,Fo为试样截面面积,则抗拉强度σb= Pb/Fo (MPa)。 4.伸长率(δs) 材料在拉断后,其塑性伸长的长度与原试样长度的百分比叫伸长率或延伸率。 5.屈强比(σs/σb) 钢材的屈服点(屈服强度)与抗拉强度的比值,称为屈强比。屈强比越大,结构零件的可靠性越高,一般碳素钢屈强比为0.6-0.65,低合金结构钢为0.65-0.75合金结构钢为0.84-0.86。 6.硬度 硬度表示材料抵抗硬物体压入其表面的能力。它是金属材料的重要性能指标之一。一般硬度越高,耐磨性越好。常用的硬度指标有布氏硬度、洛氏硬度和维氏硬度。 ⑴布氏硬度(HB) 以一定的载荷(一般3000kg)把一定大小(直径一般为10mm)的淬硬钢球压入材料表面,保持一段时间,去载后,负荷与其压痕面积之比值,即为布氏硬度值(HB),单位为公斤力/mm2 (N/mm2)。 ⑵洛氏硬度(HR) 当HB>450或者试样过小时,不能采用布氏硬度试验而改用洛氏硬度计量。它是用一个支持角120°的金刚石圆锥体或直径为1.59、3.18mm的钢

测量不确定度评定报告

测量不确定度评定报告1、评定目的识别实验室定量项目检测结果不确定度的来源,明确评定方法,给临床检测结果提供不确定度依据。 、评定依据2CNAS-GL05《测量不确定度要求的实施指南》 JJF 1059-1999《测量不确定度评定和表示》 CNAS— CL01《检测和校准实验室能力认可准则》 、测量不确定度评定流程3 测量不确定度评定总流程见图一。

概述 建立数学模型,确定被测量Y与输入量 测量不确定度来源 标准不确定度分量评 B类评定评类A 计算合成标准不确定 评定扩展不确定 编制不确定度报告 图一测量不确定度评定总流程 测量不确定度评定方法、4建立数学模型 4.1.1 数学模型根据检验工作原理和程序建立,即确定被测量Y(输出量)与影响量(输入量)X,X,…,X间的函数关系f来确定,即:N21 Y=f(X,X,…,X)N12建立数学模型时应说明数学模型中各个量的含义和计量单位。必须注意, 数学模型中不能进入带有正负号(±)的项。另外,数学模型不是唯一的,若采用不同测量方法和不同测量程序,就可能有不同的数学模型。 4.1.2计算灵敏系数 偏导数Y/x=c称为灵敏系数。有时灵敏系数c可由实验测定,iii即通过变化第i个输入量x,而保持其余输入量不变,从而测定Y的变化i量。

不确定度来源分析 测量过程中引起不确定度来源,可能来自于: a、对被测量的定义不完整; b、复现被测量定义的方法不理想; c、取样的代表性不够,即被测量的样本不能完全代表所定义的被测量; d、对测量过程受环境影响的认识不周全或对环境条件的测量和控制不完善; e、对模拟式仪器的读数存在人为偏差(偏移); 、测量仪器的计量性能(如灵敏度、鉴别力阈、分辨力、死区及稳定性f 等)的局限性; 、赋予计量标准的值或标准物质的值不准确;g 、引入的数据和其它参量的不确定度;h 、与测量方法和测量程序有关的近似性和假定性;i 、在表面上完全相同的条件下被测量在重复观测中的变化。j 标准不确定度分量评定 对观测列进行统计分析所作的评估--4.3.1 A 类评定 , x进行n次独立的等精度测量,得到的测量结果为:a对输入量XI 1为xx,…x。算术平均值n2 n1 ∑xx = in n i=1 由贝塞尔公式计算:s(x单次测量的实验标准差)i 1 n ∑ i—i 2 ( xx )S(x)= n-1 i=1

金属材料抗拉强测量不确定度

金属材料抗拉强度测量不确定度分析 1.试验依据 GB228-2002(金属材料拉伸试验方法) 试验采用RGM-100型万能材料试验机,以20~30MPa/s 速率加荷直至将试样拉伸至断裂。试样拉断时的最大力所对应的应力即为金属材料的抗拉强度。 2.钢材抗拉强度测量的影响因素 根据钢材抗拉强度的计算公式为: 24d F πσ= (1) 式中:σ -抗拉强度,单位MPa (N/mm 2); F -拉力,单位 N ; d -钢材直径,单位mm 。 对于钢材抗拉强度检测,只要温度在室温(25~35℃)附近变化不大,温度对试验结果的影响就可以忽略不计;另外,只要加荷速率控制在规范允许范围内(规范允许范围:10-30MPa/s ;实际加荷速率:20-30MPa/s ),加荷速率的影响也可以忽略不计。能够对试验测试结果产生影响的因素主要有:重复测试(同一批试件在相同试验条件下重复测量结果的差异性)、试件截面积变化(归结为直径d 偏差)、荷载测量的精度以及测量结果的数据修约。上述影响因素中,试件材质非均匀性直接表现在测量结果的数据变化上,属于A 类不确定度评定;其余影响因素都是由于影响量的误差而导致试验测试量的偏差,均属B 类不确定度评定。金属材料抗拉强度测量不确定度影响因素汇总于表1中。 表1 影响金属材料抗拉强度测量准确性的主要因素 3.标准不确定度评定 3.1 样品不均匀性引起的标准不确定度R u

从根据这10个测试数据进行钢材抗拉强度测量不确定度的评定,属于A 类不确定度评定,相应的测量不确定度称为重复测量不确定度R u ,可采用贝塞尔法按(2)式进行评定: R u =∑=--n i i n n 1 2)()1(1σσ (2) 式中:n 为重复测量次数,σ i 为第i 次测量的材料强度测量值,σ为同一材料的试件强度各次测量结果的平均值。按式(2)计算,重复测量导致的试件抗拉强度测量标准不确定度为:R u 3.2 试件尺寸导致的测量标准不确定度d u 由于试件直径偏差导致的试件抗拉强度测量不确定度属B 类不确定度。 对于偏差为±a 的影响量x 的不确定度)(x u ,可按式(4)进行评定: )(x u =k a (3) 直径尺寸出现在区间d ±αmm 内各点的概率相等,即直径误差分布为均匀分布,所以其包含因子k =3。根据式(4),试件直径d 的测量不确定度)(d u 为: k a d u =)( (mm ) (4) 试件抗拉强度 σ 对试件直径 d 的灵敏系数d c = d ??σ可以通过对式(1)求偏导数得到: d c =d ??σ=38d F π-=d σ2 (5) 取 σ =σ,d 取标称尺寸,代入上式中得d c MPa/mm ) 由试件直径偏差引起的试件抗拉强度测量标准不确定度d u 为: d u =d c ?)(d u (6) 3.3 试验机拉力误差引起的试件抗拉强度测量标准不确定度F u

测量不确定度评定实例

测量不确定度评定实例 一. 体积测量不确定度计算 1. 测量方法 直接测量圆柱体的直径D 和高度h ,由函数关系是计算出圆柱体的体积 h D V 4 2 π= 由分度值为0.01mm 的测微仪重复6次测量直径D 和高度h ,测得数据见下表。 表: 测量数据 计算: mm 0.1110h mm 80.010==, D 32 mm 8.8064 == h D V π 2. 不确定度评定 分析测量方法可知,体积V 的测量不确定度影响因素主要有直径和高度的重复测量引起的不确定都21u u ,和测微仪示值误差引起的不确定度3u 。分析其特点,可知不确定度21u u ,应采用A 类评定方法,而不确定度3u 采用B 类评定方法。

①.直径D 的重复性测量引起的不确定度分量 直径D 的6次测量平均值的标准差: ()mm 0048.0=D s 直径D 误差传递系数: h D D V 2 π=?? 直径D 的重复性测量引起的不确定度分量: ()3177.0mm D s D V u =??= ②.高度h 的重复性测量引起的不确定度分量 高度h 的6次测量平均值的标准差: ()mm 0026.0=h s 直径D 误差传递系数: 4 2 D h V π=?? 高度h 的重复性测量引起的不确定度分量: ()3221.0mm h s h V u =??= ③测微仪示值误差引起的不确定度分量 由说明书获得测微仪的示值误差范围mm 1.00±,去均匀分布,示值的标准不确定度 mm 0058.0301.0==q u 由示值误差引起的直径测量的不确定度 q D u D V u ??= 3

金属材料的力学性能

金属材料的力学性能 任何机械零件或工具,在使用过程中,往往要受到各种形式外力的作用。如起重机上的钢索,受到悬吊物拉力的作用;柴油机上的连杆,在传递动力时,不仅受到拉力的作用,而且还受到冲击力的作用;轴类零件要受到弯矩、扭力的作用等等。这就要求金属材料必须具有一种承受机械荷而不超过许可变形或不破坏的能力。这种能力就是材料的力学性能。金属表现来的诸如弹性、强度、硬度、塑性和韧性等特征就是用来衡量金属材料材料在外力作用下表现出力学性能的指标。 钢材力学性能是保证钢材最终使用性能(机械性能)的重要指标,它取决于钢的化学成分和热处理制度。在钢管标准中,根据不同的使用要求,规定了拉伸性能(抗拉强度、屈服强度或屈服点、伸长率)以及硬度、韧性指标,还有用户要求的高、低温性能等。 金属材料的机械性能 1、弹性和塑性: 弹性:金属材料受外力作用时产生变形,当外力 去掉后能恢复其原来形状的性能。力和变形同时存在、同时消失。如弹簧:弹簧靠弹性工作。 塑性:金属材料受外力作用时产生永久变形而不至于引起破坏的性能。(金属之间的连续性没破坏)塑性大小以断裂后的塑性变形大小来表示。 塑性变形:在外力消失后留下的这部分不可恢复的变形。 2、强度:是指金属材料在静载荷作用下抵抗变形和断裂的能力。强度指标一般用单位面积所承受的载荷即力表示,单位为MPa。 工程中常用的强度指标有屈服强度和抗拉强度。拉伸图:金属材料在拉伸过程中弹性变形、塑性变形直到断裂的全部力学性能可用拉伸图形象地表示出来。 材料在常温、静载作用下的宏观力学性能。是确定各种工程设计参数的主要依据。这些力学性能均需用标准试样在材料试验机上按照规定的试验方法和程序测定,并可同时测定材料的应力- 应变曲线。 对于韧性材料,有弹性和塑性两个阶段。弹性阶段的力学性能有: 比例极限:应力与应变保持成正比关系的应力最高限。当应力小于或等于比例极限时,应力与应变满足胡克定律,即应力与应变成正比。 弹性极限:弹性阶段的应力最高限。在弹性阶段内,载荷除去后,变形全部消失。这一阶段内的变形称为弹性变形。绝大多数工程材料的比例极限与弹性极限极为接近,因而可近似认为在全部弹性阶段内应力和应变均满足胡克定律。 塑性阶段的力学性能有: 屈服强度:材料发生屈服时的应力值。又称屈服极限。屈服时应力不增加但应变会继续增加。 屈服点:具有屈服现象的金属材料,试样在拉伸过程中力不增加(保持恒定)仍能继续伸长时的应力,称屈服点。若力发生下降时,则应区分上、下屈服点。屈服点的单位为 N/mm2(MPa)。 上屈服点(Re H):试样发生屈服而力首次下降前 的最大应力; 下屈服点(Re L):当不计初始瞬时效应时,屈服阶段中的最小应力。 条件屈服强度:某些无明显屈服阶段的材料,规定产生一定塑性应变量(例如0.2 %)时的应力值,作为条件屈服强度。应力超过屈服强度后再卸载,弹性变形将全部消失,但仍残留部分不可消失的变形,称为永久变形或塑性变形。 规定非比例延伸强度(Rp):非比例延伸率等于规定的引伸计标距百分率时的应力,例如Rp0.2 表示规定非比例延伸率为0.2%时的应力。 规定总延伸强度(Rt ):总延伸率等于规定的引伸计标距百分率时的应力。例如Rt0.5 表示规定总延伸率为

测量不确定度评定报告

测量不确定度评定报告 1、评定目的 识别实验室定量项目检测结果不确定度的来源,明确评定方法,给临床检测结果提供不确定度依据。 2、评定依据 CNAS-GL05《测量不确定度要求的实施指南》 JJF 1059-1999《测量不确定度评定和表示》 CNAS— CL01《检测和校准实验室能力认可准则》 3 、测量不确定度评定流程 测量不确定度评定总流程见图一。 图一测量不确定度评定总流程 4、测量不确定度评定方法 4.1建立数学模型 4.1.1 数学模型根据检验工作原理和程序建立,即确定被测量Y(输出量)与影

响量(输入量)X 1,X 2 ,…,X N 间的函数关系f来确定,即: Y=f(X 1,X 2 ,…,X N ) 建立数学模型时应说明数学模型中各个量的含义和计量单位。必须注意, 数学模型中不能进入带有正负号(±)的项。另外,数学模型不是唯一的,若采用不同测量方法和不同测量程序,就可能有不同的数学模型。 4.1.2计算灵敏系数 偏导数Y/x i =c i 称为灵敏系数。有时灵敏系数c i 可由实验测定,即通 过变化第i个输入量x i ,而保持其余输入量不变,从而测定Y的变化量。 4.2不确定度来源分析 测量过程中引起不确定度来源,可能来自于: a、对被测量的定义不完整; b、复现被测量定义的方法不理想; c、取样的代表性不够,即被测量的样本不能完全代表所定义的被测量; d、对测量过程受环境影响的认识不周全或对环境条件的测量和控制不完善; e、对模拟式仪器的读数存在人为偏差(偏移); f、测量仪器的计量性能(如灵敏度、鉴别力阈、分辨力、死区及稳定性等)的 局限性; g、赋予计量标准的值或标准物质的值不准确; h、引入的数据和其它参量的不确定度; i、与测量方法和测量程序有关的近似性和假定性; j、在表面上完全相同的条件下被测量在重复观测中的变化。 4.3标准不确定度分量评定 4.3.1 A 类评定--对观测列进行统计分析所作的评估 a对输入量X I 进行n次独立的等精度测量,得到的测量结果为: x 1,x 2 , (x) n 。 算术平均值x为 1 n x n= ∑x i n i=1 单次测量的实验标准差s(x i )由贝塞尔公式计算: 1 n S(x i )= ∑ ( x i — x )2 n-1 i=1

金属材料抗拉强度和断后伸长率的测量不确定度评定研究

金属材料抗拉强度和断后伸长率的测量不确定度评定研究 发表时间:2018-10-15T16:57:22.290Z 来源:《防护工程》2018年第11期作者:易丽娜[导读] 对ISO 6892-1:2016 《金属材料拉伸试验第1部分:室温试验方法》中抗拉强度和断后伸长率A的影响因素进行了分析,对测量不确定度的主要分量进行量化,评定了抗拉强度和断后伸长率A的测量不确定度。易丽娜 通标标准技术服务(上海)有限公司 201315摘要:抗拉强度是金属在静拉伸条件下的最大承载能力,断后伸长率是断裂后标距的伸长与原始标距的之比的百分率,是金属材料的最主要力学性能指标。根据JJF 1059.1-2012《测量不确定度评定与表示》,对ISO 6892-1:2016 《金属材料拉伸试验第1部分:室温试验方法》中抗拉强度和断后伸长率A的影响因素进行了分析,对测量不确定度的主要分量进行量化,评定了抗拉强度和断后伸长率A的测量不确定度。关键词:金属材料;不确定度;室温拉伸试验;抗拉强度;断后伸长率 1 引言 所有零部件以及产品在使用过程上往往会受到外力的作用,因此要求金属材料必须在一定程度上具有承受机械载荷而不超过允许变形或破坏的能力,我们把这种能力称为金属材料的力学性能。室温拉伸试验方法是目前使用最普遍的力学性能的试验方法。为了更有效地使用和分析金属材料,我们需要了解材料的力学性能以及影响力学性能的主要因素。试样制备方法、检测设备和仪器、测试方法和结果的处理都会影响力学性能的测量结果,包括抗拉强度、屈服强度、规定塑性延伸强度、断后伸长率等。分析各影响因素对力学性能合成标准不确定度的贡献,可以帮助我们找到主要因素,继而对这些主要因素进行控制和改进。 2 概述 2.1测试设备 (1)万能试验机:新三思CMT-5205微机控制电子万能试验机,精度:0.5级; (2)游标卡尺:广陆数显游标卡尺,测量范围:(0~150)mm,分辨力:0.01mm,不确定度:U=0.01mm(k=2); (3)打点机:上海东星建材试验设备公司DD-II连续式标点机。 2.2 试验条件 环境条件:室温(23±5)℃,湿度(20~80)%RH。 应变速率:根据标准ISO 6892-1:2016采用试验速率控制的方法A2进行基于横梁位移计算得到应变速率控制。 2.3被测对象 热轧钢板t=40mm。 2.4试验方法及过程 试验方法:ISO 6892-1:2016 《金属材料拉伸试验第1部分:室温试验方法》试验过程:确认环境条件是否满足标准要求,同时确认万能试验机、游标卡尺等设备是否处于有效校准周期内,是否处于正常使用状态。使用CMT-5205微机控制电子万能试验机,根据相应规范设定试验速率,开始进行拉伸试验,缓慢施加拉力拉伸试样直到断裂为止。用分辨率0.01mm,量程(0~150)mm的数显游标卡尺测量试验样品的原始直径、断后直径、原始标距和断后标距,依据标准中的定义和公式计算抗拉强度和断后伸长率。 2.5 评定方法 根据文献[2]和文献[3],对金属材料抗拉强度和断后伸长率的测量不确定度进行了评定。 由于测量不确定度通常由若干分量组成,因此每个分量均可用其概率分布的标准偏差估计值表征,即分量的标准不确定度。通常根据在规定测量条件下测得的分量的一系列测得值采用统计分析给出标准不确定度的方法为A类评定;本报告中将采用贝塞尔公式法进行A类评定。在重复性条件或复现性条件下对同一被测量独立重复观测n次,获得 n个测得值,被测量X的最佳估计值是n个独立测得值的算术平均值,按下列公式计算(文献[2], 4.3.2.2):

工业热电阻自动测量系统结果不确定度评定实例

工业热电阻自动测量系统结果不确定度评定实例 用于检定工业热电阻的自动测量系统,根据国家计量检定规程(JJG 229—1998)对不确定度分析时可以在0℃点,100℃点,现在A 级铂热电阻的测量为例. B1 冰点(0℃) B1.1 数学模型,方差与传播系数 根据规定,被检的R(0℃)植计算公式为 R(0℃)=R i 0 =??? ??t dt dR t i = R i 0=??? ??t dt dR * * *0=??? ??-t I dt dR R R ℃)( = R i - 0.00391R * (0℃)×) ℃(0 0.00391R 0* *℃) (R R I - = R i - 0.391×1 .00* *℃) (R R I - = R i - 0.39 [] ℃)( 0* *R R I - 式中: R(0℃)—被检热电阻在0℃的电 阻值,Ω; R i —被检热电阻在0℃附近的测得值,Ω; R *(0℃)—标准器在0℃的电阻值,通常从实测的水三点值计算,Ω; R * i —标准器在0℃附近测的值,Ω。 上式两边除以被检热电阻在0℃的变化率并做全微分变为 dt 0R =d ()391.0R i +d ??? ? ???-2500399.0** 0i R R =dt Ri +dt *0 R +dt *i R 将微小变量用不确定度来代替,合成后可得方差 u 20 R t =u 2i R t +u 2t *0R +u 2t *i R (B-2) 此时灵敏系数C 1=1,C 2=1,C 3=–1。

B1.2 标准不确定分量的分析计算 B1.2.1 u 2i R t 项分量 该项分量是检热电阻在0℃点温度t i 上测量值的不确定度。包括有: a) 冰点器温场均匀性,不应大于0. 01℃,则半区间为0.005℃。均匀分布,故 u 1.1= 3 005.0=0.003℃ 其估计的相对不确定度为20﹪,即自由度1.1ν=12,属B 类分量。 b) 由电测仪表测量被检热电阻所带入的分量。 本系统配用电测仪表多为6位数字表(K2000,HP34401等),在对100Ω左右测量时仍用100Ω挡,此时数字表准确度为 100×106×读数+40×106×量程 对工业铂热电阻Pt100来说,电测仪表带入的误差限(半宽)为 被δ=±(100×100×106-+100×40×106- =±0.014Ω 化为温度:391 .0014 .0±=±0.036℃ 该误差分布从均匀分布,即 u 2.1= 3 036.0=0.021℃ 估计的相对不确定度为10﹪,即1.1ν=50,属B 累类分量。 c) 对被检做多次检定时的重复性 本规范规定在校准自动测量系统时以一稳定的A 级被检铂热电阻作试样检3次,用极差考核其重复性,经实验最大差为4m Ω以内。通道间偏差以阻值计时应不大于2m Ω,故连同通道间差 异同向叠计在内时,重复性为6m Ω,约0.015℃,则 u 3.1= 69 .1015 .0=0.009℃ 3.1ν=1.8,属A 类分量。 d) 被检热电阻自然效应的影响。 以半区间估计为2m Ω计约5mK 。这种影响普遍存在,可视为两点分布,故 u 4.1=1 5=5mK 估计的相对不确定度为30﹪,即4.1ν=5,属B 类分量。

抗拉强度试验结果的不确定度评定

钢管抗拉强度试验结果的不确定度评定 1、 目的:对圆钢抗拉强度试验结果进行不确定评定,以得到抗拉强度实际 不确定度。 2、 方法:从一根钢管(规格Φ114mm ×3.75,牌号Q235)上,取10段长度为35cm 进行抗拉强度试验,按测量不确定度评定程序试验结果作不确定度评定。抗拉试验前,在钢管上测量其直径,取114mm 上的最小值,后计算其抗拉强度。(金属材料 室温拉伸试验方法 GB/T 228-2002) 3、 计算公式: U c 2(R m )=U 2( A F )+U 2(△x ) 3.1 R m =f m /S 0 S 0=ab (1+b 2 /6D (D-2a )) R m 表示抗拉强度,S 0表示最大拉力,D 表示直径,a 表示壁厚,b 表示宽度25mm 。 4、 求平均值:有附表所列钢管抗拉强度实验结果,求得10次抗拉强度平均 值。R m = 425.34MPa ,修约后R m = 425MPa 。 5、 不确定度来源: 5.1、被测材料:从同钢管上抽样,避免不同钢管带来的不确定度;试样的不 均匀性可有重复试验反映。 5.2、检测人员:尺寸、抗拉强度都有同一人操作,可消除有人员带来的不确 定度;读数误差可有多次实验包含。 5.3、检测设备:液压式万能试验机(编号YCZJ-03):最大示值600kN ,示值误 差不超过±1%,最大变动值为0.24% , U 1= KN k a 510.02 34 .425%24.0=?= 不确定度为 0.510KN ( K=2 ) 5.4、拉伸速度:拉伸速度对检测结果有一定影响,本次实验有一人操作,保

持恒定的速率,通过重复实验反映检测值。 5.5 重复性影响,重复性影响是通过多次重复测量来评定的。包括人员操作 的重复性,试验机的重复性,样品的不均匀性等因素,测量次数n=10,单次测量的标准偏差为S (F )=0.6KN ,则U 2= KN F s 424.02 6.02)(== 5.6 读数误差的影响,人工读数可以估计到分度值的五分之一即0.4KN ,不确 定度按均匀分布考虑U 3= KN d k a 23.03 4.0== 5.6、环境条件:实验室温湿度对实验结果影响较小,可忽略不计。 5.7 合成不确定度U 2(F )=U 12+U 22+U 32=0.5102+0.44242+0.232=0.4928KN U r (F)= %12.034 .4254928 .0= 5.8 实测面积误差的影响。 钢管的直径标值为D=114mm b=25mm,最小刻度02.0±mm ;a=3.75mm ,最小刻度01.0±mm 按均匀分布面积的不确定度为 U r (A)=2 ( U r 2(D)+ U r 2(a)+ U r 2(b) ) 1/2 =2× %2.0002.03 25 02.0375.301.0311402.0==++)( U r 2( A F )=U r 2(F)+U r 2(A)=(0.022+0.22)×10-4=0.054% U(A F )= %054.096 .2001000 34.425??=1.142MPa 5.9 由于数值修约的影响:拉伸强度的结果应修约到0或5MP ,由修约导致 的不确定度按均匀分布考虑 U (△x )= k a = 44.13 5.0=I MPa 5.10 合成标准不确定度

金属材料屈服强度的影响因素

材料屈服强度及其影响因素 1. 屈服标准 工程上常用的屈服标准有三种: (1)比例极限应力-应变曲线上符合线性关系的最高应力,国际上常采用σp表示,超过σp时即认为材料开始屈服。 (2)弹性极限试样加载后再卸载,以不出现残留的永久变形为标准,材料能够完全弹性恢复的最高应力。国际上通常以σel表示。应力超过σel时即认为材料开始屈服。 (3)屈服强度以规定发生一定的残留变形为标准,如通常以0.2%残留变形的应力作为屈服强度,符号为σ0.2或σys。 2. 影响屈服强度的因素 影响屈服强度的内在因素有: 结合键、组织、结构、原子本性。如将金属的屈服强度与陶瓷、高分子材料比较可看出结合键的影响是根本性的。从组织结构的影响来看,可以有四种强化机制影响金属材料的屈服强度,这就是:(1)固溶强化; (2)形变强化; (3)沉淀强化和弥散强化; (4)晶界和亚晶强化。 沉淀强化和细晶强化是工业合金中提高材料屈服强度的最常用的手段。在这几种强化机制中,前三种机制在提高材料强度的同时,也降低了塑性,只有细化晶粒和亚晶,既能提高强度又能增加塑性。 影响屈服强度的外在因素有: 温度、应变速率、应力状态。随着温度的降低与应变速率的增高,材料的屈服强度升高,尤其是体心立方金属对温度和应变速率特别敏感,这导致了钢的低温脆化。应力状态的影响也很重要。虽然屈服强度是反映材料的内在性能的一个本质指标,但应力状态不同,屈服强度值也不同。我们通常所说的材料的屈服强度一般是指在单向拉伸时的屈服强度。 3.屈服强度的工程意义 传统的强度设计方法,对塑性材料,以屈服强度为标准,规定许用应力[σ]=σys/n,安全系数n一般取2或更大,对脆性材料,以抗拉强度为标准,规定许用应力[σ]=σb/n,安全系数n一般取6。 需要注意的是,按照传统的强度设计方法,必然会导致片面追求材料的高屈服强度,但是随着材料屈服强度的提高,材料的抗脆断强度在降低,材料的脆断危险性增加了。 屈服强度不仅有直接的使用意义,在工程上也是材料的某些力学行为和工艺性能的大致度量。例如材料屈服强度增高,对应力腐蚀和氢脆就敏感;材料屈服强度低,冷加工成型性能和焊接性能就好等等。因此,屈服强度是材料性能中不可缺少的重要指标。 材料开始屈服以后,继续变形将产生加工硬化。 4.加工硬化指数n的实际意义 加工硬化指数n反应了材料开始屈服以后,继续变形时材料的应变硬化情况,它决定了材料开始发生颈缩时的最大应力。n还决定了材料能够产生的最大均匀应变量,这一数值在冷加工成型工艺中是很重要的。 对于工作中的零件,也要求材料有一定的加工硬化能力,否则,在偶然过载的情况下,会产生过量的塑性变形,甚至有局部的不均匀变形或断裂,因此材料的加工硬化能力是零件安全使用的可靠保证。 形变硬化是提高材料强度的重要手段。不锈钢有很大的加工硬化指数n=0.5,因而也有很高的均匀变形量。不锈钢的屈服强度不高,但如用冷变形可以成倍地提高。高碳钢丝经过

CNAS-CL07 测量不确定度评估和报告通用要求

CNAS—CL07 测量不确定度评估和报告通用要求General Requirements for Evaluating and Reporting Measurement Uncertainty 中国合格评定国家认可委员会

测量不确定度评估和报告通用要求 1.前言 1.1中国合格评定国家认可委员会(英文缩写:CNAS)充分考虑目前国际上与合格评定相关的各方对测量不确定度的关注,以及测量不确定度对测量、试验结果的可信性、可比性和可接受性的影响,特别是这种影响和关注可能会造成消费者、工业界、政府和市场对合格评定活动提出更高的要求。因此,CNAS在认可体系的运行中给予测量不确定度评估以足够的重视,以满足客户、消费者和其他各有关方的期望和需求。 1.2CNAS在测量不确定度评估和应用要求方面将始终遵循国际规范的相关要求,与国际相关组织的要求保持一致,并在国际规范和有关行业制定的相关导则框架内制订具体的测量不确定度要求。 2.适用范围 本文件适用于CNAS对校准和检测实验室的认可活动。同时也适用于其它涉及校准和检测活动的申请人和获准认可机构。 3.引用文件 下列文件中的条款通过引用而成为本文件的条款。以下引用的文件,注明日期的,仅引用的版本适用;未注明日期的,引用文件的最新版本(包括任何修订)适用。 3.1Guide to the expression of uncertainty in measurement(GUM).BIPM,IEC, IFCC,ISO,IUPAC,IUPAP,OIML,lst edition,1995.《测量不确定度表示指南》3.2International Vocabulary of Basic and General Terms in Metrology(VIM). BIPM,IEC,IFCC,ISO,IUPAC,IUPAP,OIML,2nd edition,1993.《国际通用计量学基本术语》 3.3JJF1001-1998《通用计量术语和定义》 3.4JJF1059-1999《测量不确定度评定和表示》

钢筋抗拉强度试验的不确定度评定

钢筋抗拉强度试验的不确定度评定 一、 试验方法 GB/T228-2012《金属材料 室温拉伸试验方法》 二、 试验原理 钢筋试样的横截面为圆形,抗拉强度(R m )是将试样拉至断裂,以试验过程中的最大力(F m )除以试样原始横截面积(S o )来表示。 三、数学模型 R m =0 s F = 2 4d F (P-1) 式中R m ——抗拉强度;(N/mm 2) S o ——原始横截面积;(mm 2) d ——试样直径;(mm) F m ——最大力。(N) 由于数学模型中F m 与d 相互独立,根据不确定度评定程序得到,被测量R m 的合成方差为 u 2c rel (R m )= u 2 rel (F m )+22 u 2 rel (d ) (P-2) 四、测量不确定度分量 现有直径10mm Ⅰ级Q235的光圆钢筋。由于试验方法(GB/T228-2002)中规定:“试验一般在室温10℃~35℃范围内进行。”因实验室安装空调,能满足以上温度要求,故可忽略温度对试验结果的影响。 又由于试验机已安装自动采集装置,其拉伸速率已根据规范调试好,故无须考虑应变率对试验结果的影响。 (1)直径测量,u rel (d )

试样直径用电子数显卡尺测量。直径测量的不确定度由两部分组成:卡尺的示值误差导致的不确定度和操作者所引入的测量不确定度。 a) 电子数显卡尺示值误差导致的不确定度,u 1(d ) 电子数显卡尺的最大允许误差为±10um ,以均匀分布估计,则 u 1(d )= 3 10um =5.77um b) 由操作者所引入的测量不确定度,u 2(d ) 根据经验估计,由操作者引入的测量误差在±10um 范围内,以均匀分布估计,则 u 2(d )= 3 10um =5.77um 两者合成后,得直径测量的标准不确定度为 u (d )=2277.577.5+um=8.16um 若以相对不确定度表示,则为 u rel (d )=10 1016.83 -?=0.08% (2)拉力测量,u rel (F m ) 拉力F m 的测量不确定度来源于万能材料试验机的测量不确定度和读数不确定度两方面。 (a ) 万能材料试验机的测量不确定度, U 1rel (F m ) 万能材料试验机的测量不确定度,根据检定证书为1级,即U 1=1.0%,以正态分布估计,于是标准不确定度为 U 1rel (F m )= 2 % 0.1=0.5% (b ) 读数不确定度,U 2rel (F m )

金属材料学基础试题及答案

金属材料的基本知识综合测试 一、判断题(正确的填√,错误的填×) 1、导热性好的金属散热也好,可用来制造散热器等零件。() 2、一般,金属材料导热性比非金属材料差。() 3、精密测量工具要选用膨胀系数较大的金属材料来制造。() 4、易熔金属广泛用于火箭、导弹、飞机等。() 5、铁磁性材料可用于变压器、测量仪表等。() 6、δ、ψ值越大,表示材料的塑性越好。() 7、维氏硬度测试手续较繁,不宜用于成批生产的常规检验。() 8、布氏硬度不能测试很硬的工件。() 9、布氏硬度与洛氏硬度实验条件不同,两种硬度没有换算关系。() 10、布氏硬度试验常用于成品件和较薄工件的硬度。 11、在F、D一定时,布氏硬度值仅与压痕直径的大小有关,直径愈小,硬度值愈大。() 12、材料硬度越高,耐磨性越好,抵抗局部变形的能力也越强。() 13、疲劳强度是考虑交变载荷作用下材料表现出来的性能。() 14、20钢比T12钢的含碳量高。() 15、金属材料的工艺性能有铸造性、锻压性,焊接性、热处理性能、切削加工性能、硬度、强度等。() 16、金属材料愈硬愈好切削加工。() 17、含碳量大于0.60%的钢为高碳钢,合金元素总含量大于10%的钢为高合金钢。() 18、T10钢的平均含碳量比60Si2Mn的高。() 19、一般来说低碳钢的锻压性最好,中碳钢次之,高碳钢最差。() 20、布氏硬度的代号为HV,而洛氏硬度的代号为HR。() 21、疲劳强度是考虑交变载荷作用下材料表现出来的性能。() 22、某工人加工时,测量金属工件合格,交检验员后发现尺寸变动,其原因可能是金属材料有弹性变形。() 二、选择题 1、下列性能不属于金属材料物理性能的是()。 A、熔点 B、热膨胀性 C、耐腐蚀性 D、磁性 2、下列材料导电性最好的是()。 A、铜 B、铝 C、铁烙合金 D、银 3、下列材料导热性最好的是()。 A、银 B、塑料 C、铜 D、铝 4、铸造性能最好的是()。 A、铸铁 B、灰口铸铁 C、铸造铝合金 D、铸造铝合金 5、锻压性最好的是()。

盲样测量不确定度评定报告

盲样测量不确定度评定报告 1、概述 1.1 测量依据 JJG119-2005《实验室(酸度)计检定规程》 1.2 环境条件: 温度(23±3)℃;相对湿度≤85%RH 1.3 测量标准: pH 标准缓冲溶液,中国计量测试技术研究院提供;酸度计:型号:pHS-3E ; 编号:600709040019;制造厂:上海精密科学仪器有限公司;量程:(0.00~14.00)pH;分辨率:0.01pH;电极编号:05598709J 1.4 被测对象:盲样(新疆维吾尔自治区计量测试研究院提供) 1.5 测量过程: 选用JJG119-2005《实验室(酸度)计检定规程》附录A 表1中规定的一种(或多种)标准溶液,在规定温度的重复性条件下,对pHS-3E 型酸度计进行校准后,测量盲样溶液,重复校准和测量操作6次,6次测量结果的平均值即为盲样的pH 值。 2、数学模型 y=x 3、输入量引入的标准不确定度 3.1测量重复性引入的标准不确定度分量u 1 按照贝塞尔公式计算单次测量的实验标准差: () 1 1 2 --= ∑=n pH pH s n i i (n=6) 平均值的实验标准差: u 1= 6

盲样检测 3.2酸度计引入的不确定度分量u2 用性能已知的pH(酸度)计,对未知pH值的盲样(酸度计溶液标准物质)进行测量。 选用JJG119-2005《实验室(酸度)计检定规程》参照酸度计使用说明书中校准点对传递的酸度计进行校准,用校准过的酸度计对盲样(酸度计溶液标准物质)进行测定6次,得出测量重复性引入的标准不确定度分量u 1 。结合酸度 计引入的不确定度分量u 2和盲样引入的标准不确定度分量u 3 得到合成标准不确 定度,扩展不确定度。

钢卷尺测量不确定度评定报告

钢卷尺测量不确定度评定报告 1测量方法及数学模型 1.1测量依据:依据JJG4-1999《钢卷尺检定规程》 钢卷尺的示值误差:△L=L a-L s+L a*αa*Δt-L s*αs*Δt 式中:L a——被检钢卷尺的长度; L s——标准钢卷尺的长度; αa——被检钢卷尺的膨胀系数; αs——标准钢卷尺的膨胀系数; Δt——被检钢卷尺和标准钢卷尺对参考温度20℃的偏离值。 由于L a-L s很小,则数学模型: △L= L a-L s +L s*△α*Δt 式中:△α——被检钢卷尺和标准钢卷尺的膨胀系数差 1.2方差及传播系数的确定 对以上数学模型各分量求偏导: 得出:c(L a)=1;c(L s)= -1+△α*Δt≈-1;c(△α)= L s*Δt;c(Δt)= L s*△α≈0 则:u c2 =u2(△L)=u2(L s)+ u2(L a) + (L s*Δt )2u2(△α) 2计算分量标准不确定度 2.1标准钢卷尺给出的不确定度u (L s) (1)由标准钢卷尺的测量不确定度给出的分量u (L s1) 根据规程JJG741—2005《标准钢卷尺》,标准钢卷尺的测量不确定度为: U=0.02mm其为正态分布,覆盖因子k=3,自由度v=∞,故其标准不确定度: u (L s1)= 0.02∕3 =0.007 (2)由年稳定度给出的不确定度分量u (L s2) 根据几年的观测,本钢卷尺年变动量不超过0.05mm,认为是均匀分布,则:L a≤5m:u (L s2)=0.05∕31/2 =0.029mm 估计u (L s2)的不可靠性为10%,则自由度v=1/2×(0.1)-2=50 (3)由拉力偏差给出的不确定度分量u (L s3) 由拉力引起的偏差为:△=L×103×△p/(9.8×E×F)

Un-2018-05 拉伸强度不确定度报告

测量不确定度评定报告 拉伸强度不确定度评定报告 报告编号:UN-2018-05 编制:薛亚勤日期:2018-07-12 审批:日期 宁波华众塑料制品有限公司实验中心

拉伸强度不确定度评定报告 一、概述 1. 测量方法:GB/T 1040.1-2006 塑料拉伸性能的测定第1部分:总则; 评定方法:JJG1059-2012《测量不确定度评定与表示》; 2. 环境条件:温度23 °C ± 2 °℃,相对湿度50%±5%; 3. 测试试验设备:拉力试验机 H50KN天氏欧森公司;游标卡尺 GF305061 上海工具厂有限公 司;; 4. 被测对象:同一批次的材料为PE的标准试样,10根; 5. 测量过程:按照GB/T 1033.1-2008中规定温度23 °C ± 2 °C,湿度50%±5%的条件下预处 理24h,将样品夹持在拉力机夹具中心不得歪扭,以50mm/min,至试件拉断为止,记录断裂最大拉力值,检测样条数量10个。 二、数学模型 式1中: 抗拉强度(MPa); F断裂时最大力(N); b为样品宽度(mm); d为样品厚度(mm) 。 三、测量不确定度原因的确定 根据浸渍法密度测试的原理分析,造成测试结果误差的因素主要有以下几项: ( 1) 测量重复性引入的不确定度; ( 2) 拉力机引入的不确定度; ( 3) 试样厚度测量引入的不确定度; ( 4) 试样宽度测量引入的不确定度。 四、测量不确定分量的计算 4.1测量重复性引入的不确定度 表1拉伸强度重复测试结果 n 1 2 3 4 5 6 7 8 9 10 均值σ标准偏差s(σ) σMPa 25.225.52625.325.825.2262625.926.125.7 0.36 如果一次测试重复测量5次,则测量的标准不确定度u r=s(σ)/ 5=0.162MPa 4.2试验机拉力引入的标准不确定度u f 设备精度为±0.5%,在本试验10组的试样中,测量得到的最大拉力值F max=1044N,则试验力值误差为4.18N 按均匀分布考虑,k=3,得到拉力的测量标准不确定度U(F)=4.18/3=2.41N

冷轧带钢抗拉强度与硬度对照表

2)HRC,负荷150公斤的测量值; 3)HRB,用带1/16寸钢球压头,负荷100公斤的测量值. ⑶维氏硬度(HV)以120kg以内的载荷和顶角为136°的金刚石方形锥压入器压入材料表面,用材料压痕凹坑的表面积除以载荷值,即为维氏硬度值(HV) 洛氏硬度中HRA、HRB、HRC的区别 洛氏硬度中HRA、HRB、HRC等中的A、B、C为三种不同的标准,称为标尺A、标尺B、标尺C。洛氏硬度试验是现今所使用的几种普通压痕硬度试验之一,三种标尺的初始压力均为(合10kgf),最后根据压痕深度计算硬度值。标尺A使用的是球锥菱形压头,然后加压至(合60kgf);标尺B使用的是直径为(1/16英寸)的钢球作为压头,然后加压至(合100kgf);而标尺C使用与标尺A相同的球锥菱形作为压头,但加压后的力是1471N(合150kgf)。因此标尺B适用相对较软的材料,而标尺C适用较硬的材料。实践证明,金属材料的各种硬度值之间,硬度值与强度值之间具有近似的相应关系。因为硬度值是由起始塑性变形抗力和继续塑性变形抗力决定的,材料的强度越高,塑性变形抗力越高,硬度值也就越高。 但各种材料的换算关系并不一致硬度換算公式: 1.肖氏硬度(HS)=勃式硬度(BHN)/10+12 2.肖式硬度(HS)=洛式硬度(HRC)+15 3.勃式硬度(BHN)= 洛克式硬度(HV) 4.洛式硬度(HRC)= 勃式硬度(BHN)/10-3 硬度測定範圍: HS<100HB<500HRC<70HV<1300(80~88)HRA, (85~95) HRB, (20~70)HRC 洛氏硬度中HRA、HRB、HRC等中的A、B、C为三种不同的标准,称为标尺A、标尺B、标尺C。洛氏硬度试验是现今所使用的几种普通压痕硬度试验之一,三种标尺的初始压力均为(合10kgf),最后根据压痕深度计算硬度值。标尺A使用的是球锥菱形压头,然后加压至(合60kgf);标尺B使用的是直径为(1/16英寸)的钢球作为压头,然后加压至(合100kgf);而标尺C使用与标尺A相同的球锥菱形作为压头,但加压后的力是1471N(合150kgf)。因此标尺B适用相对较软的材料,而标尺C适用较硬的材料。实践证明,金属材料的各种硬度值之间,硬度值与强度值之间具有近似的相应关系。因为硬度值是由起始塑性变形抗力和继续塑性变形抗力决定的,材料的强度越高,塑性变形抗力越高,硬度值也就越高。但各种材料的换算关系并不一致。硬度表示材料抵抗硬物体压入其表面的能力。它是金属材料的重要性能指标之一。一般硬度越高,耐磨性越好。 常用的硬度指标有布氏硬度、洛氏硬度和维氏硬度。 1.布氏硬度(HB) 以一定的载荷(一般3000kg)把一定大小(直径一般为10mm)的淬硬钢球压入材料表面,保持一段时间,去载后,负荷与其压痕面积之比值,即为布氏硬度值(HB),单位为公斤力/mm2 (N/mm2)。 2.洛氏硬度(HR) 当HB>450或者试样过小时,不能采用布氏硬度试验而改用洛氏硬度计量。它是用一个顶角120°的金刚石圆锥体或直径为、的钢球,在一定载荷下压入被测材料表面,由压痕的深度求出材料的硬度。根据试验材料硬度的不同,分三种不同的标度来表示: HRA:是采用60kg载荷和钻石锥压入器求得的硬度,用于硬度极高的材料(如硬质合金等)。HRB:是采用100kg载荷和直径淬硬的钢球,求得的硬度,用于硬度较低的材料(如退火钢、铸铁等)。 HRC:是采用150kg载荷和钻石锥压入器求得的硬度,用于硬度很高的材料(如淬火钢等)。 3 .维氏硬度(HV) 以120kg以内的载荷和顶角为136°的金刚石方形锥压入器压入材料表面,用材料压痕凹坑的表面积除以载荷值,即为维氏硬度HV值(kgf/mm2)。『HK=?P/L2。式中:HK-努普硬度,Mpa;P-荷重,kg;L-凹坑对角线长度,mm。我国和欧洲各国采用维氏硬度,美国则采用努普硬度。兆帕(MPa)是显微硬度的法定计量单位,而kg/mm2是以前常用的硬度计算单位。它们之间的换算公式为1kg/mm2=。洛氏硬度(HRC)、布氏硬度(HB)等硬度具体区别和换算硬度是衡量材料软硬程度的一个性能指标。硬度试验的方法较多,原理也不相同,测得的硬度值和含义也不完全一样。最常用的是静负荷压入法硬度试验,即布氏硬度HB、洛氏硬度HRA,HRB,HRC、维氏硬度HV,橡胶塑料邵氏硬度HA,HD等硬度其值表示材料表面抵抗坚硬物体压入的能力。而里氏硬度Hl、肖氏硬度HS 则属于回跳法硬度试验,其值代表金属弹性变形功的大小。因此,硬度不是一个单纯的物理量,而是反映材料的弹性、塑性、强度和韧性等的一种综合性能指标。 含意是洛式硬度C标尺, 和HB在生产中的应用都很广泛 适用范围HRC 20--67,相当于HB225--650 若硬度高于此范围则用洛式硬度A标尺HRA。若硬度低于此范围则用洛式硬度B标尺HRB。布式硬度上限值HB650,不能高于此值。 4.洛氏硬度计C标尺之压头为顶角120度的金刚石圆锥,试验载荷为一确定值,中国标准是150公斤力。布氏硬度计之压头为淬硬

相关文档
相关文档 最新文档