文档库 最新最全的文档下载
当前位置:文档库 › _笨_方法巧解一道竞赛题

_笨_方法巧解一道竞赛题

_笨_方法巧解一道竞赛题

/笨0方法巧解一道竞赛题

赵文苑 (湖南省长沙县实验中学 410100) 指导教师 赵优良

试题 如图1,P 是抛物线y 2

=2x 上的动点,点B,C 在y 轴上,圆(x -1)2+y 2=1内切于v PBC ,求v PB C 面积的最小值.(2008年全国高中数学联合竞赛试题)

图1

简洁的文字,优美的图形,还有那圆和切线,不就是刚学的内容吗!抱着试一试的心态,便开始求解.当我把试题完整地阅读了几遍之后才发现根本无从下手,于是就仔细地看参考答案:

解 设P (x 0,y 0),

B(0,b),C(0,c),不妨设b > c.直线PB 的方程:y

-b =

y 0-b

x 0

x ,化简得(y 0-b)x -x 0y +x 0b =0.又圆心(1,0)到PB 的距离为1,所以|y 0-b +x 0b |

(y 0-b)2+x 20

=1,

故(y 0-b)2+x 20=(y 0-b)2

+2x 0b(y 0-b)+x 2

0b 2

,

易知x 0>2,上式化简得(x 0-2)b 2+2y 0b -x 0=0,

同理有(x 0-2)c 2+2y 0c -x 0=0.

所以b+c =-2y 0x 0-2,bc =-x 0

x 0-2,则(b-c)2

=4x 20+4y 2

0-8x 0(x 0-2)2

.

因P(x 0,y 0)是抛物线上的点,有y 2

0=2x 0,

则(b -c)2

=4x 20(x 0-2)

2,b -c =2x 0x 0-2.所以S v PBC =12(b -c)#x 0=x 0

x 0-2

#x 0=(x 0-2)+

4x 0-2

+4\24+4=8.

当(x 0-2)2

=4时,上式取等号,此时x 0=

4,y 0=?22.因此S v PBC 的最小值为8.

参考答案上的解法太巧妙了,我怎么也想不到把B,C 两点坐标设出来会有这么大的用处,真是神来之笔.还有没有别的解答方法呢?受原参考答案的启发,利用直线的斜率,得到如下解法:

解 由于切线要与y 轴有交点,所以其斜率必然存在.设过抛物线y 2=2x 上点P (x 0,y 0)的圆的切线l 的斜率为k ,其方程为y -y 0=k(x -x 0),化简为

kx -y +y 0-kx 0=0.(1)因直线l 与圆(x -1)2+y 2=1相切,故圆心(1,0)到切线l 的距离为1,即

|k +y 0-kx 0|

k 2

+1=1.故(x 20-2x 0)k 2+2(1-x 0)y 0k+y 2

0-1=0.

所以k 1+k 2=-2(1-x 0)y 0

x 20-2x 0

,k 1#k 2=y 20-1

x 20-2x 0.

所以(k 1-k 2)2

=(k 1+k 2)2

-4k 1#k 2

=-2(1-x 0)y 0x 2

0-2x 02

-4@y 20-1x 20-2x 0

=-2(1-x 0)x 20-2x 02

2x 0-4@2x 0-1x 20-2x 0

(因y 2

=2x 0)

=4

(x 0-2)2

,又易知x 0>2,故|k 1-k 2|=

2x 0-2

.由(1)得过点P (x 0,y 0)作圆(x -1)2+y 2

=1的两条切线在y 轴上的截距离分别为

b 1=y 0-k 1x 0,b 2=y 0-k 2x 0,

故BC =|b 1-b 2|=|k 1-k 2|#x 0=2x 0

x 0-2.

所以S v PBC =12|BC |#x 0=x 0

x 0-2#x 0=

(x 0-2)+4x 0-2

+4\2(x 0-2)#

4x 0-2

+4=8,

当x 0-2=

4

x 0-2,即(x 0-2)=4时,上式取等号,此时x 0=4,y 0=?22.因此S v PBC 的最小值为8.

做完这道题后,我兴奋不已,同时也发现这么难的竞赛题也可以用常规的/笨0方法入手解答,这大大地增强了我学习数学的信心.

#

43#2010年第4期 中学数学月刊

一道高考数学几何题的多种解法探究

一道高考数学几何题的多种解法探究 本文通过一个高考填空题的四种解法着重阐明解析 几何的思想和方法。解法一打破题目所给的坐标系的禁锢,重新建立坐标系另辟蹊径。解法二根据直线AC⊥BD以此建立新的坐标系,这是本题的又一个另辟蹊径。有了参数α,写出新坐标系下的圆的方程,再数形结合用根与系数的关系求弦长。解法三采用直线参数方程,再一次另辟蹊径为解决本题寻求新的方法,其根本目的是便于计算弦长。解法四是几何法,用添加两条垂线的巧妙运用,结合几个重要定理求出弦长,用重要不等式求四边形的最大值。有了这些好方法,使本来很难做的问题得以迎刃而解。 命题:如图⑴已知AC、BD为⊙O:x?+y?=4的两条互相垂直的弦, 垂足为M(1,),则四边形ABCD的面积的最大值是__. 解法一: 由于|OM|= ,考虑到原来的坐标系中两条弦长的计算比较繁琐,因此可改变方法,以 直线OM为x轴,建立新的直角坐标系,此时M的坐标是(,0)。 1.直线AC与BD有一条斜率不存在时,另一条的斜率

为0.不妨设BD的斜率 不存在,则BD⊥x轴,另一条|AC|为直径4,弦|BD|= 此时四边形ABCD 的面积S=1/2|AC|?|BD|=4 2.当直线AC与BD的斜率都存在时,不妨设AC的斜率为k,(k≠0)则BD的斜率为-1/k.所以AC的直线方 k?x-y-k=0,BD的直线方程为x+k?y-=0 。 设O到AC、BD的距离分别是d1,d2,则d1=,d2= 由垂径定理和相交弦定理得|AC|?=4(|AC|/2)?=4(2+d1)(2-d1)=4(4-d1?)类似地可得到|BD|? S?=(1/2|AC|?|BD|)? ∴S ≤ 5. 当k?=1/k?时k=±1时等式成立,此时四边形ABCD的面积S取得最大值5。 坐标系的恰当建立是解析法解题的重要基础和关键,否则会使计算繁琐。本题解法打破题目所给的直角坐标系的禁锢,重新建立坐标系,这就是另辟蹊径的重要途径。然后再综合运用圆的垂经定理和相交弦定理,点到直线的距离公式和重要不等式定理就可解决问题。 解法二:由于AC⊥BD,分别以AC、BD所在直线为x′、y′轴,建立如图新的直角坐标系设∠xMx′=α,则M的坐标为(0,0),O的坐标是(-cosα,sinα),圆的方程是(x′+cosα)?+(y′-sinα)?=4

一道竞赛试题的解法探究

44 福建中学数学 2012年第3期 一道竞赛试题的解法探究 浙江省温州市第二十二中学(325000) 2011年全国高中数学联合竞赛第2题,试题简约,寓意深刻,考生可以从多个角度切高洪武 吴勇军 一试(A 卷)中22(1)1(1)y x t t x t t =??? ?令=??=≥?? (*2) 而直线入,很好地考查高中数学常见的一些思想方法以及学生对基本知识、基本技能的掌握情况.本文拟从四个角度出发,对该题目进行初步的剖析,以 期引发更多的思考. 题目 (2011年全国高中数学联合竞赛一试试题 (A (1)t y x =? 过定点(1,0).当时,两曲线有公共点,则; 0y >1y >时,两曲线有公共点,x 直线(1t y 当0y <)=?应 绕着点(1,0)从逆时针方向旋转到的位置,与 曲线t 2L 卷)第2 题)函数()1 f x x = ?的值域是 . 解法一三角换元法 令tan x θ=,(22θπ?<<,且π4 θπ ≠) (注:换元时保持变量的等价性) 则y tan 1cos θθ? = 11 sin cos )4 θθθ==π??. 22θππ?<<∵,且4θπ≠, 3444 <,且0θπππ ∴?π?, ()f x ∴ 的值域为((12 ?∞?+∞∪,,). 评析 此函数为分式型无理函数,解决此类问题 通常是化无理式为有理式,即努力将根式中的被开方数(式)化成完全平方数(式),由221tan 1cos θθ+=联想到三角换元,思路由此打开.解法二 数形结合法 y =∵ ,(y x ∴1)?=(*1), 322t x L 3L 1(1)?=≥切. 相联立方程221t x (1)t y x =????=?, 得(1)y x ??. 即2222(1)210y x y x y ,22210x ?=??+?=. 若直线1)(t y x =?x t ≥相切, )4(0y y 与2t ?=21( 1)2y =?则2(21)222Δ=?=??,. ∴直线(1)t y x =?绕着点(1,逆时针方向旋转过程中,0)从2 L 2 到L 的y ≤3. 综上得y ≤或即函数的值域为 1y >, ((1)?∞+∞∪,, . 解法比较巧妙地函数值赋予“特殊身份”,想,将问题转化为我们熟悉的两类曲线有公共点问题.其转化基本思路为:函数 有意义评析 本将利用数形结合思方程有解曲线有公共点. ←←解法三 基本不等式法 (1) 若1x >, ()f x 1x >∵,20x x ∴+?>2x x ∴+>,, 2 1112x x ∴+>+?,f x ()1∴>(2)若. , x 1<

一题多解之五种方法解一道经典数学题

1 O B C D ① A 一题多解之五种方法解一道经典数学题 江苏海安紫石中学 黄本华 一题多解是我们学习数学的特好方法!通过一题多解,我们可以多角度、多方位地去思考解题的方案,这样不仅能加强知识间的联系,同时也增添新颖性和趣味性,优化我们的思维结构,提升我们的思维能力。更重要的是,一题多解让我们不仅只满足解题目标的实现,而是让我们拥有了研究学问的态度! 例题 如图,在平面直角坐标系中,点A (-1,0),B (0,3),直线BC 交坐标轴于B , C 两点,且∠CBA =45°.求直线BC 的解析式. 【分析】要求BC 解析式,现在已经知道了B 点坐标,所以只要求到C 点坐标就好了。这就要用到条件∠CBA =45°。但这个条件如何用呢?这是本题的难点,也是关键点。考虑到这个角是45°,我们可以尝试做垂线,构造等腰直角三角形。如图①,作AD ⊥BC 于D ,由A 、B 的坐标可知1OA =,3OB =,根据勾股定理2 2 10AB OA OB =+=, 5BD AD ==AC x =,则1OC x =+,25DC x =-255BC x =-,在 RT OBC ?中, 根据勾股定理得出222OC OB BC +=,即()2 222 13(55)x x ++=-,解得15 2 x =- (舍去),25x =,求得6OC =,得出C (﹣6,0),然后根据待定系数法即可求得BC 的解析式. 解法一:如图①,作AD ⊥BC 于D , ∵点A (﹣1,0),B (0,3), ∴1OA =,3OB =,∴2 2 10AB OA OB =+=, ∵∠CBA =45°,∴△ABD 是等腰直角三角形, ∴5BD AD == 设AC x =,则1OC x =+, ∴25DC x =-,∴BC=+255BC x = -+, 在152 x =- 中,222OC OB BC +=2 ,即()222213(55)x x ++=-), 解得x 1=﹣ (舍去),25x =, ∴5AC =,6OC =,∴C (﹣6,0), 设直线BC 的解析式为3y kx =+,

一元一次不等式组的竞赛题巧解举例

一元一次不等式(组)的竞赛题巧解举例 一元一次不等式(组)是初中数学竞赛试题中经常出现的重点内容。根据不等式的基本性质和一元一次不等式(组)的解的概念,适当地进行变换,可以巧妙解决一些关于不等式(组)的竞赛题。 一、 巧用不等式的性质 例1 要使a 5<a 3<a <a 2<a 4成立,则a 的取值范围是( ) A.0<a <1 B. a >1 C.-1<a <0 D. a <-1 分析:由a 3<a 到a 2<a 4,是在a 3<a 的两边都乘以a ,且a <0来实现的;在a 3<a 两边都除以a ,得a 2>1,显然有a <-1。故选D 点评:本题应用不等式的性质,抓住题目给出的一个不等式作为基础进行变形,确定 a 的取值范围。 例2 已知6<a <10, 2 a ≤ b ≤a 2,b a c +=,则c 的取值范围是 。 分析:在2a ≤b ≤a 2的两边都加上a ,可得23a ≤b a +≤a 3,再由6<a <10可得9<b a +<30,即9<c <30 点评:本题应用不等式的基本性质,在2 a ≤ b ≤a 2的两边都加上a 后,直接用关于a 的不等式表示 c ,再根据6<a <10求出c 的取值范围。 二、 由不等式的解集确定不等式中系数的取值范围 例3 若关于x 的不等式组 ?????+++②m <x ①x >x 0 1456 的解集为4x <,则m 的取值范围是 。 分析:由①得 205244++x >x ,解之得4x <。 由②得 m x <-。 因为原不等式组的解集为4x <,所以4≥-m ,所以4-≤m 。 点评:本题直接解两个不等式得到4x <且m x <-。 若m -≤4,则其解集为4x <,若m >-4,则其解集为m x <-,而原不等式的解集为4x <,所以4≥-m ,即4-≤m 。对此理解有困难的学生,可以通过在数轴上表示不等式的解集来帮助理

一道高考数学试题的多种解法

一道高考试题的多种解法 2007年普通高等学校招生全国统一考试卷Ⅰ理科数学19题: S?ABCDABCD为平行四边形底面,四棱锥中, CBBCS?A面侧.已知底面2BC?23?SA?SB2?AB45??ABC. ,,,BC?SA; 证明(Ⅰ)SABSD. 与平面所成的角的大小(Ⅱ)求直线下面只列,第一问证法较多,第二问相对作法较少: 举几种第一问的证法AOO?BCSSO. )垂足为证法一:过(如图作,连接1,?SOCDBC?ABS面底得由侧面底面 ABCDSASBCDAOBOAB内的射,、分别是、在底面影. ?OBOASA?SB? ,又45??ABC?ABO?, 形直,角三角又是等腰?OB?OA. BC?SA. 由三垂线定理得SOOAO?BCA1). 连接如图,垂足为(:证法二过,作?SBCSBCSASOSBC?ABCDAO?且由侧面,在侧面底面内的射 影得是,侧面BO,AO?AO?SO. 45?ABO??SBO????SA?ABO?SBSAOOBOA?. .,在又,中90SOA???SOB??SOOB?. 即BCSA?. 由三垂线定理得 OBCAC连接,记证法三:连接的中点为,ABCAOSO?中2).、在(如图 2BC?245??ABC?2AB?ABC?,,,?BCAO?) .(是等腰直角三角形, 下同证法二OACBC连接的中点为,记,证法四:连接 2BC?245ABO???2AB?ABC?SOAO?ABC是等腰直角,中,,2).、(如图在?BC?AO. 三角形, ??SBCSOSASBCSBCABCDAO?. 在侧面,是又侧面底面,内的射影侧面3?cosSBA?SAB?. 在中易得3. 6???SBCcosCBAcos??cos?SBCcos?SBA. 又3?3SC?SO??BCSBC. 中由余弦定理得,在SA?BC. 由三垂线定理得AAO?BCOSO(如图,连接,垂足为过证法五:1). 作?SOSA?SBCSBCSBC?ABCDAO内的射影侧面由侧面,,底面在侧面得且是AO?SO,AO?BO. OA?OB?245??ABC?2AB?ABO?Rt. ,在中,AOS?SORt??12SA?3,AO?. ,在中BOSSO?1?OB?SO?2BO?SB?3,. 中在,,SA?BC. 由三垂线定理得?SBABCDABCDBCSBC?. ,证法六: 侧面在底面内的射影为底面 3??SBAcosSAB?. 中易得在36?cos?SBC?CBA??SBA?cos?SBCcoscos又. 3 SC?3SBC?. 在中由余弦定理得?AO?ABCDBC?SOBCOAOSOSO?是记则的中点为,连接底面、,(如图1),SAABCD内的射影.

二元一次方程组竞赛题集答案解析

二元一次方程组提高练习题 【例1】已知方程组的解x,y满足方程5x-y=3,求k 的值. 【思考与分析】本题有三种解法,前两种为一般解法,后一种为巧解法. (1)由已知方程组消去k,得x与y的关系式,再与5x-y=3联立组成方程组求出x,y的值,最后将x,y的值代入方程组中任一方程即可求出k的值. (2)把k当做已知数,解方程组,再根据5x-y=3建立关于k的方程,便可求出k的值. (3)将方程组中的两个方程相加,得5x-y=2k+11,又知5x-y=3,所以整体代入即可求出k的值. 【例2】某种商品价格为每件33元,某人身边只带有2元和5元两种面值的人民币各若干张,买了一件这种商品. 若无需找零钱,则付款方式有哪几种(指付出2元和5元钱的张数)?哪种付款方式付出的张数最少? 【思考与分析】本题我们可以运用方程思想将此问题转化为方程来求解. 我们先找出问题中的数量关系,再找出最主要的数量关系,构建等式. 然后找出已知量和未知量设元,列方程组求解.

【例3】解方程组 【思考与分析】本例是一个含字母系数的方程组.解含字母系数的方程组同解含字母系数的方程一样,在方程两边同时乘以或除以字母表示的系数时,也需要弄清字母的取值是否为零. 对于x、y的方程组中,a1、b1、c1、a2、b2、c2均为已知数,且a1与b1、a2与b2都至少有一个不等于零,则 ①时,原方程组有惟一解; ②时,原方程组有无穷多组解; ③时,原方程组无解. 【例4】某中学新建了一栋4层的教学大楼,每层楼有8间教室,这栋大楼共有4道门,其中两道正门大小相同,两道侧门大小也相同.安全检查中,对4道门进行了训练:当同时开启一道正门和两道侧门时,2分钟内可以通过560名学生;当同时开启一道正门和一道侧门时,4分钟可以通过800名学生. (1)求平均每分钟一道正门和一道侧门各可以通过多少名学生?(2)检查中发现,紧急情况时因学生拥挤,出门的效率将降低20%.安全检查规定,在紧急情况下全大楼的学生应在5分钟内通过这4道门安全撤离.假设这栋教学大楼每间教室最多有45名学生,问:建造的这4道门是否符合安全规定?请说明理由.

小学数学竞赛:统筹规划.学生版解题技巧 培优 易错 难

统筹规划 教学目标 1.掌握合理安排时间、地点问题. 2.掌握合理布线和调运问题. 知识点拨 知识点说明: 统筹学是一门数学学科,但它在许多的领域都在使用,在生活中有很多事情要去做时,科学的安排好先后顺序,能够提高我们的工作效率.我国著名数学家华罗庚教授生前十分重视数学的应用,并亲自带领小分队推广优选法、统筹法,使数学直接为国民经济发展服务,他在中学语文课本中,曾有一篇名为《统筹原理》的文章详,细介绍了统筹方法和指导意义.运筹学是利用数学来研究人力、物力的运用和筹划,使它们能发挥最大效率的科学。它包含的内容非常广泛,例如物资调运、场地设置、工作分配、排队、对策、实验最优等等,每类问题都有特定的解法。运筹学作为一门科学,要运用各种初等的和高等的数学知识及方法,但是其中分析问题的某些朴素的思想方法,如高效率优先的原则、调整比较的思想、尝试探索的方法等,都是我们小学生能够掌握的。这些来源于生活实际的问题,正是启发同学们学数学、用数学最好的思维锻炼题目。 本讲主要讲统筹安排问题、排队问题、最短路线问题、场地设置问题等。这些都是人们日常生活、工作中经常碰到的问题,怎样才能把它们安排得更合理,多快好省地办事,就是这讲涉及的问题。 “节省跑空车的距离”是物资调运问题的一个原则。 “发生对流的调运方案”不可能是最优方案。 “小往大靠,支往干靠”。 例题精讲 板块一、合理安排时间 【例 1】一只平底锅上最多只能煎两张饼,用它煎1张饼需要2分钟(正面、反面各1分钟).问:煎3张饼需几分钟?怎样煎? 【巩固】烙饼需要烙它的正、反面,如果烙熟一块饼的正、反面,各用去3分钟,那么用一次可容下2块饼的锅来烙21块饼,至少需要多少分钟? 【巩固】一只平底锅上最多只能煎两张饼,用它煎1张饼需要2分钟(正面、反面各1分钟).问:煎2009张饼需几分钟?

2020年中考数学 一道竞赛题的多种解法

一道竞赛题的多种解法 数学被公认为是“思维的体操”,原因之一是数学题目本身蕴含或隐藏着各种各样的联系,促使我们去分析,去发现;同时,在一个题目周围,又往往能衍生出一大批与之相关的,相似的内容丰富的问题,引发我们进一步探究和深思。数学解题不在多,而在深。认真研究某一问题,深入钻研进去,就会有异常的收获,因此解题要注意,扩大解题成果。 题:已知a、b、c是三角形ABC的三条边长,△是该三角形的面积. 求证: a2+b2+c2≥43△,指出在什么条件下等号成立? 解一:分析: 探索求解思路:求证的不等式可以改写为: 先考虑特殊情形:三角形ABC是等边三角形时,即a=b=c时, ∴ △ABC为等边三角形时成立. 又利用“三角形周长一定时,以等边三角形的面积为最大(不妨设为T)”的结论,只需证明“”即可. 证明:∵当三角形的周长a+b+c一定时,以等边三角形的面积为最大,则: ∴ 当且仅当a=b=c时取等号.

证明二:由 得证. 证明三:由三角形面积的海伦公式 16△2=2a2b2+2b2c2+2c2a2-a4-b4-c4 又 a4+b4+c4-(a2b2+b2c2+c2a2) ∴a4+b4+c4≥a2b2+b2c2+c2a2 ∴(a2+b2+c2)2=a4+b4+c4+2a2b2+2b2c2+2a2c2 ≥3(2a2b2+2b2c2+2c2a2-a4-b4-c4) =3×16△2=48△2 从而得证. 证明四: (b+c-a)(c+a-b)(a+b-c) 其中当且仅当b+c-a=c+a-b=a+b-c, 即a=b=c时,等号成立. 此题的证法不只限于这几种,大家还可想出更多的新的解题思路。

一道高考选择题的多种解法

一道高考选择题的多种解法 题目:两个可视为质点的小球a 和b ,用质量可忽略的刚性细杆相连,放置在一个光滑的半球面内,如图所示。已知小球a 和b 的质量之比为3,细杆长度是球面半径的2倍。两球处于平衡状态时,细杆与水平面的夹角θ是( ) A. 45 B. 30 C. 5.22 D. 15 解法一:力矩平衡 辅助线如图所示,其中ON 垂直ab ,OM 垂直水平虚线,则θ=∠MON 。又由于R ab 2=,所以三解形aOb 为等腰直角三角形。以O 点为转轴,用力矩平衡原理有(图中未做出转轴到力的作用线的距离): ?? ? ??+=??? ??-θπθπ4sin 4sin gR m gR m b a 整理得 ?? ? ??+=??? ??-θπθπ4sin 4sin 3…………………………(1) 将四个选项代入可知,选项D 正确。 附:若将上面的(1)式展开来看,可以直接求出关于关于θ的三角函数值,但从下面的计算可以看出,这样做来选择正确选项,并不是容易的。 θθθθcos 2 2sin 22sin 223cos 223+=?-? 整理可得: 32tan -=θ 图2 图1

可以很容易的知道A 和B 是不正确的,但由于我们没有记住C 和D 的角度的正切值,所以说不易找到结果。这说明了解选择题和解答题的解法是不同的。 解法二:共点力平衡——正弦定理 受力分析如图3所示,由于两物体处于平衡状态,所以所受到的三个力将分别构成封闭的三角形。 由两直线平行,同位角相等,可知a 、b 两物体所受支持与直方向的夹角分别为θπ -4和 θπ +4。在两个三角形中分别用正弦定理,有 4sin 4sin 1π θπg m F =??? ??- (2) 4sin 4sin 2π θπg m F =??? ??+ (3) (2)式除以(3)式,整理可得 34sin 4sin 12==?? ? ??-??? ??+m m θπθπ 将四个选项分别代入上式可以找到正确答案。 解法三:共点力平衡——正交分解法 如图对a 进行受力分析并建立直角坐标系。由共点力平衡条件可知 图4 图3

一道几何常规题的五种解法

一道几何常规题的五种解法 发表时间:2019-06-10T15:11:06.673Z 来源:《知识-力量》2019年8月28期作者:向星[导读] 一道数学题可以涵盖很多知识点。当然,一道数学题的解法也有很多。在数学教学中,教师引导学生探究一道数学题的多种解法是很有必要的。因此,本文就从一道数学常规题出发,探讨了它的多种解法。通过对不同方法的分析,旨在给我们的数学带来一定的启示。(湖北省秭归县归州镇初级中学,湖北省宜昌市 443601) 摘要:一道数学题可以涵盖很多知识点。当然,一道数学题的解法也有很多。在数学教学中,教师引导学生探究一道数学题的多种解法是很有必要的。因此,本文就从一道数学常规题出发,探讨了它的多种解法。通过对不同方法的分析,旨在给我们的数学带来一定的启示。关键词:数学教学;几何题;多种解法 在平常做数学题时,同学们受时间和知识局限等因素的影响,解题方法往往较单一,如果遇到问题多角度的思考,会回忆出更多的基础知识,收获一些解决问题的方法。下面笔者用一个常规题进行说明,供同学们参考。 如图1:正方形ABCD边BC上一点E,过E作AE的垂线交 BCD的外角平分线于点F,求证:AE=EF。 分析:本题是以正方形为条件,证两线段相等问题。对于几何证明题,若能根据已知求证并结合所给图形的特征(数字、关系、结构),通过分析,适当添置辅助线,则能形成证题思路。 方法1:构造全等 本题是最常见的证明线段相等问题,最常规的方法也就是证明全等,观察AE和EF,所在的三角形有两种(并不全等),一个是直角三角形,一个是钝角三角形,很显然要紧扣条件构造全等。 俗话说:“条条大路通罗马”。以上展示了几种解法,都可以解决问题,构造全等(相似),利用对称转化是几何计算证明的常规方法;代几结合是一种数形结合思想所以每道题做完后,不妨再想一想,还有没有其它解法呢?如果能养成这样的思考习惯,或许能开阔我们做题的思路,又能加强数学知识的横向联系。 参考文献 [1]教育部.义务教育数学课程标准(2011年版)[M].北京:北京师范大学出版社,2011.

用“光的折射原理”巧解两道竞赛题

用“光的折射原理”巧解两道竞赛题 福建南平三中郑书光 光线从水中的A 点经水面M 折射后经过空气中的B 点,如图1所示(这是同学们在光学中很熟悉的光路图).光不是沿着最短路径而是沿着经历时间 最少的路径进行,我们把它说成“光的折射原理”.设光在水中和 空气中速度分别为v A 和v B ,N N ˊ是法线,O 点是入射点,入射 角为α,折射角为β,光从A 到B 的最小时间必须满足的条件是: B A sin sin v v =βα,或αβsin sin B A v v =(因为v A <v B ,所以,α<β).下面通过两道物理竞赛试题加以说明。 例题1 如图2所示,海水浴场的救生员在沙 滩上的P 处巡视,AB 是海岸线,他发现海水中Q 处有人溺水,他需要以最短时间到达Q 处施救。 已知他在沙滩上跑动的速度大于在海水中游泳的 速度。现在1、2、3、4四条路径,请你帮他选择 一条用时间最短的方案(用数字代替方案) A. 1 B. 2 C. 3 D. 4 (2016年青岛市第二届“二中杯”初中物理竞 赛试题第9题) 解析:救生员在沙滩上速度v 沙大于在海水中游泳的速度v 水,即v 水<v 沙。救生员入 水点O 当作光的入射点,过入射点O 做一法线,P 点到O 点当作入射光线,设入射角为i ,连接Q 点到O 点,当作折射光线,设折射角为γ,根据“光的折射原理”得到: i v v sin sin 水沙=γ,因为v 水<v 沙,i sin sin <γ,即入射角为i 大于射角为γ(i >γ) 。由图2可知路径1,i <γ,路径1不行。图2可知路径2,i=γ,路径2也不行。图2可知路径4,i >γ,但00=γ,不可能发生这种折射,只有入射角是00时,折射角才是00。路径图1

一道数学竞赛试题的解法探索及启示.doc

一道数学竞赛试题的解法探索及启示 一、的提出 笔看在分析2010年全国初中数学联合竟赛试题时.对第一大题 第4小禽产生了极大的兴趣。厚题如下:若方程。. 3x-l=0(l)的两个根 也是方程x\ax4bxM=0(2)的根, 则ib-2c 的值为(,)(A)?13 (B)-9 (C)6 (D)0 为什么笔者会对这道试题特别感兴趣?我们一起从解决这一试题 的思路形成过程及解答过程中寻求答案。 二、何题的分析及解决 该题纶出的参冬答案中解答如下: 设m是方程x2-3x-l=O的一个根,则m2-3m-l=O,所以mJ3m+l o 由鹿意.m也是方程x4>ax2fbx>cxO得根,所以m4fam2+ bin代 =0,把代人上式,得(3m+l)A?mJbmM=0,整理 AVTT -2~ 将x>x2分别代入方程联立方程组并化简得: (952^-264 VTT+88a+24a VTT+24b+8b VIT+】6c=0 (3) '952-264\/TT*88a-24aV1T4-24b-8bx/1T?l^O (4) (3*)得:3a+b=-33 (5) (3 片(4)得:lla?3b+2c=-l 19 (6) (5)x4-(6)得:wb-2g-13 反思一:该思路清嘶、明了 .但在具体运算中.计算过程比较 繁琐,且技巧性比较强?则有下面的分析: 思路分析二:若方程(1)的两个根也是方程(2)的根.则多项式 x^ax^bx+c可分解为/?3x-l与另一个因式乘积的形式,可设 x%ax24-bx-H:=(x2-3x-1 Xx2^mx+n) (7) 其中?mji为待定的系IL为了得到a+b-2c的值,可以有两种 解法. 解必二:由多顼式恒等定理知道,两个多项式恒等,对应次项 的系数对应相等,即由x4+ax2+bx-H5=x4-Hm-3)x3+(n-3in-1) x2- (m+3n)x-n,得 m-3=0 n-3m-l=a m+3n=-b ic=f 典I a+b-2c—13 解法三:(7)式既然是怛等式,那么该式对所有实数均成立, 令x=(?=l得: n=-c -3(m+n+ l)=a+b+c+1 1 +a-b+c=4( 1 -m+n) *l<#a+b-2c=-13 反思二:由思路分析二可知,x%ax、bwc能被F?3x?l 整 除,设其商式F+mx+n,姻余式为O0此时,问题转换为求X、 ax24bx*c 除以x^-Sx-l 的商? 解法四:由长除法m x4 4-0-jr1?-女-1 * -3.?X 4 >3X4(0 4 10X^30 J G X-t-far +c 3? -X -* (a^lO)j^ +(64 3)x (o ? 10湿 T。? 10U - 10) (8 + 3a + 33)x +(Q + c*10)(余式) 右jb+3a+33=O 侣:aw 10=0 解之得:a+b-2c=-13 反思三:由解法四可知.当按长除法计算两多项式之商时,各项排列的位置完全可以表示它们所含字母的次救,故可以略去字母而只写出系数,以简化计算,此方法称为分离系数的长除法。 僻法五:由分离系数的长除法⑶ 1 ?0 40 ?!> ?c 1 ?3 T ■)1 T T h *3 .("10X商式) 3 +("1)?b 3 “?3 _______________ ("10) ?(8?3) +c 9 + 10) -3("10) -(。+ 10) (8i?33) ?("?c?10X余式) 下同解法四。 反思四:显然,分离系数的长除法比长除法简单,为使除法书写更简单一些。下面我们进一步讨论被除式、除式、商以及余式之间的系数关系:设 Rx)二KX W.I LI???”以+炒。(a.#0)? 除以x-a的商及余数分别是q(x)、r,其中 b#T??4遇1蛎。(bi。。) 得(9.a)mW6*b)m+c+1 =0。 从而可知:方程x2-3x-1=O的两根也是方程(9+a)mW6+ b)m-K>l=0的根,这两个方程实质上应该是同一个一元二次方程,从而有(9+a)m2+<6+b)m+c+l =k(x2-3x-1)(k 为常数),故9±a_=6^=c+t,所以Jb=-3a律3 .因此出扯&-也 1 一3 —1 ic=—a—iu 笔者在对这道题经过研究,又得到了下面几种解法: 思路分析一:由原题可知,方程(1)的两个根也是方程(2)的根,据此得: 解法一:求出方程(1)的炯个根:由=号豆?%= 下用待定系数法来确定q(x)中的系数与余数r o f(x)Hx-a)q(x片 T,即 ? ? ? fxQao =b-ixN

一道三角函数竞赛题的多种解法

一道三角函数竞赛题的多种解法 《华罗庚数学奥林匹克竞赛集训教材》第169页有这样一道竞赛题: 求满足下式的锐角x :4sin 347cos 1215=-+-x x 由于此题较难,所以笔者将它作为我校高二竞赛培训中的一道压轴考试题,但考试结果较好。笔者收集了几种颇具代表性的解答,供竞赛教练和同学参考。 解法1:考虑构造余弦定理(此法与教程相同)。 因4)90cos(3432cos 31223123222=-?-++?-+x x 在ABC Rt ?中,设3 =CE ,x ACD =∠,则x BCD -?=∠90。 如图,||4|||AB BE AE ≥=+,又4412||=+=AB 所以点E 、D 重合。设y AD =||,于是 )]90sin(2sin 32[32 132x x S S S BCD ACD ABC -?+?= +==??? ?=??+=?60)30sin(1x x 解法2:运用柯西不等式。 因≥?? ????-+-???????+2222sin 347cos 4513x x 2sin 3471cos 453??????-?+-?≥x x 16sin 347cos 12152=??????-+-=x x 当且仅当x x sin 3471cos 453-=-,即4cos sin 33=-x x , 因x x x f cos sin 33)(-=在??? ?? 2 ,0π上递增,又4)3(==πf ,则3π =x 。 解法3:分子有理化巧妙化简。 因4sin 347cos 1215=-+-x x ① 则?=------4sin 347cos 1215) sin 347()1215(x x x cocx x x x x sin 3cos 32sin 347cos 1215+-=--- ② 由(①+②2)整理得:04)sin 3(cos 4)sin 3(cos 2=++-+x x x x 则2sin 3cos =+x x ,从而?=60x . 12 3 2 C A B D E

二元一次方程组竞赛题集答案解析

二元一次方程组典型例题 【例1】 已知方程组的解x ,y 满足方程5x-y=3,求k 的值. 【思考与分析】 本题有三种解法,前两种为一般解法,后一种为巧解法. (1) 由已知方程组消去k ,得x 与y 的关系式,再与5x-y=3联立组成方程组求出x ,y 的值,最后将x ,y 的值代入方程组中任一方程即可求出k 的值. (2) 把k 当做已知数,解方程组,再根据5x-y=3建立关于k 的方程,便可求出k 的值. (3) 将方程组中的两个方程相加,得5x-y=2k+11,又知5x-y=3,所以整体代入即可求出k 的值. 把代入①,得,解得 k=-4. 解法二: ①×3-②×2,得 17y=k-22, 解法三: ①+②,得 5x-y=2k+11. 又由5x-y=3,得 2k+11=3,解得 k=-4. 【小结】 解题时我们要以一般解法为主,特殊方法虽然巧妙,但是不容易想到,有思考巧妙解法的时间,可能这道题我们已经用一般解法解了一半了,当然,巧妙解法很容易想到的话,那就应该用巧妙解 二元一次方程组能力提升讲义 知识提要 1. 二元一次方程组???=+=+222 111c y b x a c y b x a 的解的情况有以下三种:

① 当2 12121c c b b a a ==时,方程组有无数多解。(∵两个方程等效) ② 当2 12121c c b b a a ≠=时,方程组无解。(∵两个方程是矛盾的) ③ 当 2121b b a a ≠(即a 1b 2-a 2b 1≠0)时,方程组有唯一的解: ??? ????--=--=12212 11212211221b a b a a c a c y b a b a b c b c x (这个解可用加减消元法求得) 2. 方程的个数少于未知数的个数时,一般是不定解,即有无数多解,若要求整数解,可按 二元一次方程整数解的求法进行。 3. 求方程组中的待定系数的取值,一般是求出方程组的解(把待定系数当己知数),再解 含待定系数的不等式或加以讨论。(见例2、3) 例题 例1. 选择一组a,c 值使方程组???=+=+c y ax y x 275 1.有无数多解, 2.无解, 3.有唯一的解 【例2】 解方程组 【思考与分析】 本例是一个含字母系数的方程组.解含字母系数的方程组同解含字母系数的方程一样,在方程两边同时乘以或除以字母表示的系数时,也需要弄清字母的取值是否为零. 解:由①,得 y=4-mx , ③ 把③代入②,得 2x+5(4-mx )=8, 解得 (2-5m )x=-12,当2-5m =0, 即m =时,方程无解,则原方程组无解. 当2-5m ≠0,即m ≠时,方程解为 将代入③,得 故当m ≠时, 原方程组的解为 例3. a 取什么值时,方程组???=+=+31 35y x a y x 的解是正数?

二元一次方程组竞赛题集(答案解析解析)

二元一次方程组典型例题 【例1】已知方程组的解x,y满足方程5x-y=3,求k的值. 【思考与分析】本题有三种解法,前两种为一般解法,后一种为巧解法. (1)由已知方程组消去k,得x与y的关系式,再与5x-y=3联立组成方程组求出x,y的值,最后将x,y的值代入方程组中任一方程即可求出k的值. (2)把k当做已知数,解方程组,再根据5x-y=3建立关于k的方程,便可求出k 的值. (3)将方程组中的两个方程相加,得5x-y=2k+11,又知5x-y=3,所以整体代入即可求出k的值. 把代入①,得,解得k=-4. 解法二:①×3-②×2,得17y=k-22, 解法三:①+②,得5x-y=2k+11.

又由5x-y=3,得 2k+11=3,解得 k=-4. 【小结】 解题时我们要以一般解法为主,特殊方法虽然巧妙,但是不容易想到,有思考巧妙解法的时间,可能这道题我们已经用一般解法解了一半了,当然,巧妙解法很容易想到的话,那就应该用巧妙解 二元一次方程组能力提升讲义 知识提要 1. 二元一次方程组???=+=+222 1 11c y b x a c y b x a 的解的情况有以下三种: ① 当 2 1 2121c c b b a a ==时,方程组有无数多解。(∵两个方程等效) ② 当 2 1 2121c c b b a a ≠=时,方程组无解。(∵两个方程是矛盾的) ③ 当 2 1 21b b a a ≠(即a 1b 2-a 2b 1≠0)时,方程组有唯一的解: ??? ????--=--=12212 11212211221b a b a a c a c y b a b a b c b c x (这个解可用加减消元法求得) 2. 方程的个数少于未知数的个数时,一般是不定解,即有无数多解,若要求整数解,可按 二元一次方程整数解的求法进行。 3. 求方程组中的待定系数的取值,一般是求出方程组的解(把待定系数当己知数),再解 含待定系数的不等式或加以讨论。(见例2、3) 例题 例1. 选择一组a,c 值使方程组?? ?=+=+c y ax y x 27 5 1.有无数多解, 2.无解, 3.有唯一的

一道数学竞赛题的探究(1)

2),则sin3αcosα+ cos3 αs inα的最小值为( ) (A)2764. ( B)35槡2.(C)1. (D)56 槡3.本文首先给出问题的多种解法,然后对问题作引申推广. 一、一题多解 解法1 ∵α∈( 0,π2 ),∴sinα>0,cosα>0,∴sin3 αcosα+cos3 αsinα= sinαcosα (1-cos2α)+cosαsinα(1-sin2 α)=sinαcosα+cosαsinα-s i n 2α≥2-1=1. 等号成立当且仅当α=π4. 因此,sin3 αcosα+cos3 αs inα的最小值为1.解法2 ∵α∈( 0,π2 ),∴sinα>0,cosα>0,由柯西不等式得 (sinαcosα+sinαcosα)(sin3αcosα+cos3 αsinα)=[(sinαcos槡α)2+(sinαcos槡α)2 ]· [(sin3αcos槡α )2+(cos3 αsin槡 α)2 ] ≥(sinαcos槡α·sin3 αcos槡 α +sinαcos槡α·cos3 α sin槡 α )2 =(sin2α+cos2α)2 =1, ∴sin3αcosα+cos3 αsinα≥1sin 2α ≥1.等号成立当且仅当α=π4 . 因此,sin3αcosα+cos3αs inα的最小值为1.解法3 ∵α∈( 0,π2 ),∴sinα>0,cosα>0,由均值不等式,得 sin3αcosα+sin3αcosα +co s2 α≥3 3 (sin3 αcosα )2cos2槡 α=3sin2 α,cos3αsinα+cos3 αsinα +si n2 α≥3 3 (cos3 αsinα )2sin2槡 α=3cos2 α,将上面二式相加,整理得sin3αcosα+cos3 αs inα≥1.等号成立当且仅当α=π4 .因此,sin3αcosα+cos3αsinα的最小值为1.二、引申推广 对问题作引申推广,可得如下命题. 命题1 设α∈(0,π2),则sinn+2αcosnα+cosn+ 2αsinn α 的最小值为1. 证明 ∵α∈(0,π2 ),∴sinα>0,cosα>0,由均值不等式,得 sinn+2αcosnα+sinn+2αcosn α +cosα+cosα+…+cos烉烇烋αn个 ≥( n+2)n+ 2(sinn+ 2αcosnα )2cos2n槡 α,即2sinn+ 2αcosn α +ncos2α≥(n+2)sin2 α,65数学通讯———2012年第4期(上半月) ·课外园地·

一道高考题的五种解法

一道高考题的五种解法-中学数学论文 一道高考题的五种解法 高成龙 (首都师范大学数学科学学院,北京100048) 摘要:数学被称为思维的体操,一题多解可以透过多个角度来审视一道题目,对学生的解题能力有很大提高。本文通过对一道高考题进行深入分析,得出五种解法,拓展了解题思路,培养学生探究式学习的兴趣。 关键词:三角函数;一题多解;高考 中图分类号:G633文献标识码:A文章编号:1005-6351(2013)-11-0025-01 题目:(2012年全国大纲卷·理7)已知α为第二象限角,且si nα+cosα=33,则cos2α=() A.-53 B.-59 C.53 D.59 分析一:利用三角函数基本公式sin2α+cos2α=1,联立方程组来求解得sinα,cosα的值,进而求得cos2α的值. 解法一:sin2α+cos2α=1(1),sinα+cosα=33(2),联立(1)式与(2)式消去cosα得:2sin2α-233sinα-23=0, 求得sinα=3+156或sinα=3-156. 又由题设α为第二象限角,所以sinα0,即sinα=3+156 ,代入(2)式得cosα=3-156,由cos2α=cos2α-sin2α得cos2α=-53,选A. 分析二:在解法一中求得sinα的值之后,无需在求cosα,直接利用cos2α=1-2sin2α来求cos2α的值. 解法二:由解法一求得sinα=3+156,由cos2α=1-2sin2α得cos2α=1-

2sin2α=1-23+1562=-53,选A. 分析三:根据sinα+cosα=33先求得sin2α的值,进而求得cos2α的值. 解法三:因为sinα+cosα=33,将其两边完全平方得: sinα+cosα2=1+sin2α=13,解得:sin2α=-23,利用sin22α+cos22α=1得cos2α=±53,由题设α∈π2,π,则2α∈π,2π,即2α位于第三或第四象限,这样cos2α的符号不唯一,因此这种方法不能确定cos2α的符号. 下面从另一个角度来确定cos2α的符号:根据二倍角公式cos2α=cos2α-sin2α=cosα+sinα·cosα-sinα,因为α为第二象限角,所以cosα0,sinα0,从而cosα-sinα0,另外sinα+cosα=330,因此cos2α0,从而cos2α=-53,选A. 分析四:解法思路同解法三相同,区别在于判断cos2α的符号取决于cosα与sinα的大小. 解法四:同解法三实质一样,求得cos2α=±53,下面来判断cos2α的符号,因为α为第二象限角,所以cosα0,sinα0,且sinα+cosα=330,从而sinαcosα,因此cos2α=cosα2-sinα20,从而cos2α=-53,选A. 分析五:由已知sinα+cosα的值,利用恒等式去求解cosα-sinα的值,进而求得cos2α的值. 解法五:由于题目已知sinα+cosα=33,为避免求sin2α的值,直接利用恒等式cosα+sinα2+cosα-sinα2=2得cosα-sinα2=53,又由解法三cosα-sinα0,因此cosα-sinα=-153,从而cos2α=cosα+sinα·cosα-sinα=33×-153=-53,选A. 作者简介:高成龙,首都师范大学数学科学学院,2012级研究生,研究方向:

相关文档
相关文档 最新文档