文档库 最新最全的文档下载
当前位置:文档库 › IO口模拟SPI通信ARM程序

IO口模拟SPI通信ARM程序

IO口模拟SPI通信ARM程序
IO口模拟SPI通信ARM程序

IO口模拟SPI通信C51程序

详解SPI总线应用

详解SPI总线规范 SPI是英文Serial Peripheral Interface的缩写,中文意思是串行外围设备接口,SPI是Motorola公司推出的一种同步串行通讯方式,是一种三线同步总线,因其硬件功能很强,与SPI有关的软件就相当简单,使CPU有更多的时间处理其他事务。 SPI概述 SPI:高速同步串行口。3~4线接口,收发独立、可同步进行. SPI,是英语Serial Peripheral interface的缩写,顾名思义就是串行外围设备接口。是Motorola首先在其MC68HCX X系列处理器上定义的。SPI接口主要应用在EEPROM,FLASH,实时时钟,AD转换器,还有数字信号处理器和数字信号解码器之间。SPI,是一种高速的,全双工,同步的通信总线,并且在芯片的管脚上只占用四根线,节约了芯片的管脚,同时为PCB的布局上节省空间,提供方便,正是出于这种简单易用的特性,现在越来越多的芯片集成了这种通信协议,比如AT91RM9200. SPI总线系统是一种同步串行外设接口,它可以使MCU与各种外围设备以串行方式进行通信以交换信息。外围设置FLASH RAM、网络控制器、LCD显示驱动器、A/D转换器和MCU等。SPI总线系统可直接与各个厂家生产的多种标准外围器件直接接口,该接口一般使用4条线:串行时钟线(SCK)、主机输入/从机输出数据线MISO、主机输出/从机输入数据线MOSI和低电平有效的从机选择线SS(有的SPI接口芯片带有中断信号线INT或INT、有的SPI接口芯片没有主机输出/从机输入数据线MOSI)。 SPI的通信原理很简单,它以主从方式工作,这种模式通常有一个主设备和一个或多个从设备,需要至少4根线,事实上3根也可以(单向传输时)。也是所有基于SPI的设备共有的,它们是SDI(数据输入),SDO(数据输出),SCK(时钟),CS(片选)。 (1)SDO –主设备数据输出,从设备数据输入 (2)SDI –主设备数据输入,从设备数据输出 (3)SCLK –时钟信号,由主设备产生 (4)CS –从设备使能信号,由主设备控制 其中CS是控制芯片是否被选中的,也就是说只有片选信号为预先规定的使能信号时(高电位或低电位),对此芯片的操作才有效。这就允许在同一总线上连接多个SPI设备成为可能。 接下来就负责通讯的3根线了。通讯是通过数据交换完成的,这里先要知道SPI是串行通讯协议,也就是说数据是一位一位的传输的。这就是SCK时钟线存在的原因,由SCK提供时钟脉冲,SDI,SDO则基于此脉冲完成数据传输。数据输出通过SDO线,数据在时钟上升沿或下降沿时改变,在紧接着的下降沿或上升沿被读取。完成一位数据传输,输入也使用同样原理。这样,在至少8次时钟信号的改变(上沿和下沿为一次),就可以完成8位数据的传输。 要注意的是,SCK信号线只由主设备控制,从设备不能控制信号线。同样,在一个基于SPI的设备中,至少有一个主控设备。这样传输的特点:这样的传输方式有一个优点,与普通的串行通讯不同,普通的串行通讯一次连续传送至少8位数据,而SPI允许数据一位一位的传送,甚至允许暂停,因为SCK时钟线由主控设备控制,当没有时钟跳变时,从设备不采集或传送数据。也就是说,主设备通过对SCK时钟线的控制可以完成对通讯的控制。SPI还是一个数据交换协议:因为SPI的数据输入和输出线独立,所以允许同时完成数据的输入和输出。不同的SPI设备的实现方式不尽相同,主要是数据改变和采集的时间不同,在时钟信号上沿或下沿采集有不同定义,具体请参考相关器件的文档。

用GPIO模拟SPI协议的实现

一SPI协议概括 SPI,是英语Serial Peripheral interface的缩写,顾名思义就是串行外围设备接口。是Motorola首先在其MC68HCXX系列处理器上定义的。SPI接口主要应用在EEPROM,FLASH,实时时钟,AD转换器,还有数字信号处理器和数字信号解码器之间。SPI,是一种高速的,全双工,同步的通信总线,并且在芯片的管脚上只占用四根线,节约了芯片的管脚,同时为PCB的布局上节省空间,提供方便,正是出于这种简单易用的特性,现在越来越多的芯片集成了这种通信协议,比如AT91RM9200. SPI的通信原理很简单,它以主从方式工作,这种模式通常有一个主设备和一个或多个从设备,需要至少4根线,事实上3根也可以(单向传输时)。也是所有基于SPI的设备共有的,它们是SDI (数据输入),SDO(数据输出),SCK(时钟),CS(片选)。 (1)SDO –主设备数据输出,从设备数据输入 (2)SDI –主设备数据输入,从设备数据输出 (3)SCLK –时钟信号,由主设备产生 (4)CS –从设备使能信号,由主设备控制

其中CS是控制芯片是否被选中的,也就是说只有片选信号为预先规定的使能信号时(高电位或低电位),对此芯片的操作才有效。这就允许在同一总线上连接多个SPI设备成为可能。 接下来就负责通讯的3根线了。通讯是通过数据交换完成的,这里先要知道SPI是串行通讯协议,也就是说数据是一位一位的传输的。这就是SCK时钟线存在的原因,由SCK提供时钟脉冲,SDI,SDO则基于此脉冲完成数据传输。数据输出通过SDO线,数据在时钟上升沿或下降沿时改变,在紧接着的下降沿或上升沿被读取。完成一位数据传输,输入也使用同样原理。这样,在至少8次时钟信号的改变(上沿和下沿为一次),就可以完成8位数据的传输。 要注意的是,SCK信号线只由主设备控制,从设备不能控制信号线。同样,在一个基于SPI的设备中,至少有一个主控设备。这样传输的特点:这样的传输方式有一个优点,与普通的串行通讯不同,普通的串行通讯一次连续传送至少8位数据,而SPI允许数据一位一位的传送,甚至允许暂停,因为SCK时钟线由主控设备控制,当没有时钟跳变时,从设备不采集或传送数据。也就是说,主设备通过对SCK时钟线的控制可以完成对通讯的控制。SPI还是一个数据交换协议:因为SPI的数据输入和输出线独立,所以允许同时完成数据的输入和输出。不同的SPI设备的实现方式不尽相同,主要是数据改变和采集的时间不同,在时钟信号上沿或下沿采集有不同定义,具体请参考相关器件的文档。

spi通信原理

SPI:高速同步串行口。3~4线接口,收发独立、可同步进行 SPI的通信原理: 主从方式工作,这种模式通常有一个主设备和一个或多个从设备,需要至少4根线,事实上3根也可以(单向传输时)。也是所有基于SPI的设备共有的,它们是SDI(数据输入),SDO(数据输出),SCK(时钟),CS(片选)。 (1)SDO –主设备数据输出,从设备数据输入 (2)SDI –主设备数据输入,从设备数据输出 (3)SCLK –时钟信号,由主设备产生 (4)CS –从设备使能信号,由主设备控制 其中CS是控制芯片是否被选中的,也就是说只有片选信号为预先规定的使能信号时(高电位或低电位),对此芯片的操作才有效。这就允许在同一总线上连接多个SPI设备成为可能。 接下来就负责通讯的3根线了。通讯是通过数据交换完成的,这里先要知道SPI是串行通讯协议,也就是说数据是一位一位的传输的。这就是SCK时钟线存在的原因,由SCK提供时钟脉冲,SDI,SDO则基于此脉冲完成数据传输。数据输出通过SDO线,数据在时钟上升沿或下降沿时改变,在紧接着的下降沿或上升沿被读取。完成一位数据传输,输入也使用同样原理。这样,在至少8次时钟信号的改变(上沿和下沿为一次),就可以完成8位数据的传输。 要注意的是,SCK信号线只由主设备控制,从设备不能控制信号线。同样,在一个基于SPI的设备中,至少有一个主控设备。这样传输的特点:这样的传输方式有一个优点,与普通的串行通讯不同,普通的串行通讯一次连续传送至少8位数据,而SPI允许数据一位一位的传送,甚至允许暂停,因为SCK时钟线由主控设备控制,当没有时钟跳变时,从设备不采集或传送数据。也就是说,主设备通过对SCK时钟线的控制可以完成对通讯的控制。SPI还是一个数据交换协议:因为SPI的数据输入和输出线独立,所以允许同时完成数据的输入和输出。不同的SPI设备的实现方式不尽相同,主要是数据改变和采集的时间不同,在时钟信号上沿或下沿采集有不同定义,具体请参考相关器件的文档。 在点对点的通信中,SPI接口不需要进行寻址操作,且为全双工通信,显得简单高效。在多个从设备的系统中,每个从设备需要独立的使能信号,硬件上比I2C系统要稍微复杂一些。 最后,SPI接口的一个缺点:没有指定的流控制,没有应答机制确认是否接收到数据。 SPI协议举例 SPI是一个环形总线结构,由ss(cs)、sck、sdi、sdo构成,其时序其实很简单,主要是在sck的控制下,两个双向移位寄存器进行数据交换。 假设下面的8位寄存器装的是待发送的数据10101010,上升沿发送、下降沿接收、高位先发送。 那么第一个上升沿来的时候数据将会是sdo=1;寄存器中的10101010左移一位,后面补入送来的一位未知数x,成了0101010x。下降沿到来的时候,sdi上的电平将锁存到寄存器中去,那么这时寄存器=0101010sdi,这样在8个时钟脉冲以后,两个寄存器的内容互相交换一次。这样就完成里一个spi时序。

IO口模拟SPI口

模块名称:spi.h 模块说明: c51单片机的i/o模拟spi操作 创建时间: 2005/03/09 创建者: xichen ******************************************************************************* */ #ifndef SPI_H #define SPI_H sbit SPIS_N = P2^1; sbit SPIC = P2^3; sbit SPID = P2^2; sbit SPIQ = P2^4; extern void spi_reset(); extern void spi_write(unsigned char spi_bValue); extern unsigned char spi_read();

#endif /****************************************************************************** * 模块名称:spi.c 模块说明: c51单片机的i/o模拟spi操作 创建时间: 2005/03/09 创建者: xichen ******************************************************************************* */ #include "includes.h" #define set_spi_cs() SPIS_N =1 #define clr_spi_cs() SPIS_N =0 #define set_spi_clk() SPIC =1 #define clr_spi_clk() SPIC =0 #define set_spi_di() SPID =1 #define clr_spi_di() SPID =0 #define read_spi_do() SPIQ

单片机软件模拟SPI接口—加深理解SPI总线协议

SPI — SPI SPI(Serial Peripheral Interfacer ) SPI RAM EEPROM FlashROM A D D A LED LED I O UART SPI I O SPI I O AT89C205l SPI EEPROM 93CA6 1 I O SPI 93C46 SPI 93CA6 SPI 4 I O (SK) DO DI CS (MSB) (LsB) 93C46 SPI 2

SPI SPI AT89C2051 SPI 1 AT89C2051 EEPROM 93C46 P1 0 SPI SDO P1 2 SPI SCK P1 3 SPI SCS P1 1 SPI SDI P1 2(SCK) 0( ) AT89C2051 P1 0 1 (1) 2 (10) 6 (A5A4A3A2A1A0) P1 1 1 (0) l6 ( ) AT89C2051 P1 0 1 (1) 2 (01) 6 (A5A4A3A2A1A0) P1 0 l6 ( ) (WEN)) 1 (1) 2 (00) 6 (11XXXX) (WDS)) 1 (1) 2 (00) 6 (00XXXX) C51 SPI // I/O sbit SDO=P1^0 sbit SDI=P1^1 sbit SCK=P1^ 2 sbit SCS=P1^3 sbit ACC_7= ACC^7 unsigned int SpiRead(unsigned char add) { unsigned char i unsigned int datal6 add&=0x3f /*6 */ add |=0x80 /* l0*/ SDO=1 /* 1 */ SCK=0 SCK=1 for(i=0 i<8 i++)/* */ { if(add&0x80==1) SDO=1 else SDO=0 SCK=0 /* */ SCK=1 add<<= 1 } SCK=1 /* 1 */

SPI通信协议(SPI总线)学习

SPI通信协议(SPI总线)学习 各位读友大家好!你有你的木棉,我有我的文章,为了你的木棉,应读我的文章!若为比翼双飞鸟,定是人间有情人!若读此篇优秀文,必成天上比翼鸟! SPI通信协议(SPI总线)学习1、什么是SPI?SPI是串行外设接口(Serial Peripheral Interface)的缩写。是Motorola 公司推出的一种同步串行接口技术,是一种高速的,全双工,同步的通信总线。2、SPI优点支持全双工通信通信简单数据传输速率块3、缺点没有指定的流控制,没有应答机制确认是否接收到数据,所以跟IIC总线协议比较在数据可靠性上有一定的缺陷。4、特点1):高速、同步、全双工、非差分、总线式2):主从机通信模式5、协议通信时序详解1):SPI的通信原理很简单,它以主从方式工作,这种模式通常有一个主设备和一个或多个从设备,需要至少4根线,事实上3根也可以(单向传输时)。也是所有基于SPI的设备共有的,它们是SDI(数据输入)、SDO(数据输出)、SCLK(时钟)、CS(片选)。(1)SDO/MOSI –主设备数据输出,从设备数据输入;(2)SDI/MISO –主设备数据输入,从设备数据输出;(3)SCLK –时钟信号,由主设备产生;(4)CS/SS –从设备使能信号,由主设备控制。当有多个从设备的时候,因为每个从设备上都有一个片选引脚接入到主设备机中,当我们的主设备和某个从设备通信时将需要将从设备对应的片选引脚电平拉低或者是拉高。2):需要说明的是,我们SPI通信有4种不同的模式,不

同的从设备可能在出厂是就是配置为某种模式,这是不能改变的;但我们的通信双方必须是工作在同一模式下,所以我们可以对我们的主设备的SPI模式进行配置,通过CPOL(时钟极性)和CPHA(时钟相位)来控制我们主设备的通信模式,具体如下:Mode0:CPOL=0,CPHA=0Mode1:CPOL=0,CPHA=1Mode2:CPOL=1,CPHA=0Mode3:CPOL=1,CPHA=1时钟极性CPOL 是用来配置SCLK的电平出于哪种状态时是空闲态或者有效态,时钟相位CPHA是用来配置数据采样是在第几个边沿:CPOL=0,表示当SCLK=0时处于空闲态,所以有效状态就是SCLK处于高电平时CPOL=1,表示当SCLK=1时处于空闲态,所以有效状态就是SCLK处于低电平时CPHA=0,表示数据采样是在第1个边沿,数据发送在第2个边沿CPHA=1,表示数据采样是在第2个边沿,数据发送在第1个边沿例如:CPOL=0,CPHA=0:此时空闲态时,SCLK处于低电平,数据采样是在第1个边沿,也就是SCLK由低电平到高电平的跳变,所以数据采样是在上升沿,数据发送是在下降沿。CPOL=0,CPHA=1:此时空闲态时,SCLK 处于低电平,数据发送是在第1个边沿,也就是SCLK由低电平到高电平的跳变,所以数据采样是在下降沿,数据发送是在上升沿。CPOL=1,CPHA=0:此时空闲态时,SCLK处于高电平,数据采集是在第1个边沿,也就是SCLK由高电平到低电平的跳变,所以数据采集是在下降沿,数据发送是在上升沿。CPOL=1,CPHA=1:此时空闲态时,SCLK处于高电平,数据发送是在第

51单片机模拟 SPI 总线的方法

51单片机模拟 SPI 总线的方法 1 引言 SPI(Serial Peripheral Interface--串行外设接口)总线系统是一种同步串行外设接口,它可以使MCU与各种外围设备以串行方式进行通信以交换信息。外围设置FLASHRAM、网络控制器、LCD显示驱动器、A/D转换器和MCU等。SPI总线系统可直接与各个厂家生产的多种标准外围器件直接接口,该接口一般使用4条线:串行时钟线(SCK)、主机输入/从机输出数据线MISO、主机输出/从机输入数据线MOSI和低电平有效的从机选择线SS(有的SPI接口芯片带有中断信号线INT或INT、有的SPI接口芯片没有主机输出/从机输入数据线MOSI)。由于SPI系统总线一共只需3~4位数据线和控制即可实现与具有SPI总线接口功能的各种I/O器件进行接口,而扩展并行总线则需要8根数据线、8~16位地址线、2~3位控制线,因此,采用SPI总线接口可以简化电路设计,节省很多常规电路中的接口器件和I/O口线,提高设计的可靠性。由此可见,在MCS51系列等不具有SPI接口的单片机组成的智能仪器和工业测控系统中,当传输速度要求不是太高时,使用SPI总线可以增加应用系统接口器件的种类,提高应用系统的性能。 2 SPI总线的组成 利用SPI总线可在软件的控制下构成各种系统。如1个主MCU和几个从MCU、几个从MCU 相互连接构成多主机系统(分布式系统)、1个主MCU和1个或几个从I/O设备所构成的各种系统等。在大多数应用场合,可使用1个MCU作为控机来控制数据,并向1个或几个从外围器件传送该数据。从器件只有在主机发命令时才能接收或发送数据。其数据的传输格式是高位(MSB)在前,低位(LSB)在后。SPI总线接口系统的典型结构。 当一个主控机通过SPI与几种不同的串行I/O芯片相连时,必须使用每片的允许控制端,这可通过MCU的I/O端口输出线来实现。但应特别注意这些串行I/O芯片的输入输出特性:首先是输入芯片的串行数据输出是否有三态控制端。平时未选中芯片时,输出端应处于高阻态。若没有三态控制端,则应外加三态门。否则MCU的MISO端只能连接1个输入芯片。其次是输出芯片的串行数据输入是否有允许控制端。因此只有在此芯片允许时,SCK脉冲才把串行数据移入该芯片;在禁止时,SCK对芯片无影响。若没有允许控制端,则应在外围用门电路对SCK进行控制,然后再加到芯片的时钟输入端;当然,也可以只在SPI总线上连接1个芯片,而不再连接其它输入或输出芯片。 3 在MCS-51系列单片机中的实现方法 对于不带SPI串行总线接口的MCS-51系列单片机来说,可以使用软件来模拟SPI的操作,包括串行时钟、数据输入和数据输出。对于不同的串行接口外围芯片,它们的时钟时序是不同的。对于在SCK的上升沿输入(接收)数据和在下降沿输出(发送)数据的器件,一般应将其串行时钟输出口P1.1的初始状态设置为1,而在允许接收后再置P1.1为0。这样,MCU 在输出1位SCK时钟的同时,将使接口芯片串行左移,从而输出1位数据至MCS-51单片机的P1.3口(模拟MCU的MISO线),此后再置P1.1为1,使MCS-51系列单片机从P1.0(模拟MCU 的MOSI线)输出1位数据(先为高位)至串行接口芯片。至此,模拟1位数据输入输出便宣告完成。此后再置P1.1为0,模拟下1位数据的输入输出……,依此循环8次,即可完成1次通过SPI总线传输8位数据的操作。对于在SCK的下降沿输入数据和上升沿输出数据的器件,则应取串行时钟输出的初始状态为0,即在接口芯片允许时,先置P1.1为1,以便外围接口芯片输出1位数据(MCU接收1位数据),之后再置时钟为0,使外围接口芯片接收1位数据(MCU发送1位数据),从而完成1位数据的传送。 图2所示为MCS-51系列单片机与存储器X25F008(E2PROM)的硬件连接图,图2中,P1.0

51单片机模拟spi串行接口程序

51单片机模拟spi串行接口程序 51单片机模拟spi串行接口程序,在keilc51下编写 sbit CS=P3^5; sbit CLK= P1^5; sbit DataI=P1^7; sbit DataO=P1^6; #define SD_Disable() CS=1 //片选关 #define SD_Enable() CS=0 //片选开 unsigned char SPI_TransferByte(unsigned char val) { unsigned char BitCounter; for(BitCounter=8; BiCounter!=0; BitCounter--) { CLK=0; DataI=0; // write if(val&0x80) DataI=1; val<<=1; CLK=1; if(DataO)val|=1; // read } CLK=0; return val; }sbit CLK= P1^5; sbit DataI=P1^7;

sbit DataO=P1^6; #define SD_Disable() CS=1 //片选关 #define SD_Enable() CS=0 //片选开 unsigned char SPI_TransferByte(unsigned char val) { unsigned char BitCounter; for(BitCounter=8; BiCounter!=0; BitCounter--) { CLK=0; DataI=0; // write if(val&0x80) DataI=1; val<<=1; CLK=1; if(DataO)val|=1; // read } CLK=0; return val; } sbit CLK= P1^5; sbit DataI=P1^7; sbit DataO=P1^6; #define SD_Disable() CS=1 //片选关 #define SD_Enable() CS=0 //片选开

SPI通信

二、通信的SPI 概念 2.1、SPI:高速同步串行口 SPI:高速同步串行口。是一种标准的四线同步双向串行总线。 SPI,是英语Serial Peripheral interface的缩写,顾名思义就是串行外围设备接口。是Motorola首先在其MC68HCXX系列处理器上定义的。SPI接口主要应用在EEPROM,FLASH,实时时钟,AD转换器,还有数字信号处理器和数字信号解码器之间。SPI,是一种高速的,全双工,同步的通信总线,并且在芯片的管脚上只占用四根线,节约了芯片的管脚,同时为PCB的布局上节省空间,提供方便,正是出于这种简单易用的特性,现在越来越多的芯片集成了这种通信协议,比如AT91RM9200. SPI总线系统是一种同步串行外设接口,它可以使MCU与各种外围设备以串行方式进行通信以交换信息。外围设置FLASHRAM、网络控制器、LCD显示驱动器、A/D转换器和MCU等。SPI总线系统可直接与各个厂家生产的多种标准外围器件直接接口,该接口一般使用4条线:串行时钟线(SCK)、主机输入/从机输出数据线MISO、主机输出/从机输入数据线MOSI和低电平有效的从机选择线SS(有的SPI接口芯片带有中断信号线INT、有的SPI接口芯片没有主机输出/从机输入数据线MOSI)。 SPI的通信原理很简单,它以主从方式工作,这种模式通常有一个主设备和一个或多个从设备,需要至少4根线,事实上3根也可以(用于单向传输时,也就是半双工方式)。也是所有基于SPI的设备共有的,它们是SDI(数据输入),SDO(数据输出),SCK(时钟),CS(片选)。 (1)SDO –主设备数据输出,从设备数据输入 (2)SDI –主设备数据输入,从设备数据输出 (3)SCLK –时钟信号,由主设备产生 (4)CS –从设备使能信号,由主设备控制 其中CS是控制芯片是否被选中的,也就是说只有片选信号为预先规定的使能信号时(高电位或低电位),对此芯片的操作才有效。这就允许在同一总线上连接多个SPI设备成为可能。 接下来就负责通讯的3根线了。通讯是通过数据交换完成的,这里先要知道SPI是串行通讯协议,也就是说数据是一位一位的传输的。这就是SCK时钟线存在的原因,由SCK 提供时钟脉冲,SDI,SDO则基于此脉冲完成数据传输。数据输出通过SDO线,数据在时钟上升沿或下降沿时改变,在紧接着的下降沿或上升沿被读取。完成一位数据传输,输入也使用同样原理。这样,在至少8次时钟信号的改变(上沿和下沿为一次),就可以完成8位数据的传输。 要注意的是,SCK信号线只由主设备控制,从设备不能控制信号线。同样,在一个基于SPI的设备中,至少有一个主控设备。这样传输的特点:这样的传输方式有一个优点,与普通的串行通讯不同,普通的串行通讯一次连续传送至少8位数据,而SPI允许数据一位一位的传送,甚至允许暂停,因为SCK时钟线由主控设备控制,当没有时钟跳变时,从

模拟SPI程序

写程序: void SPIx_WriteByte(u8 TxData) { u8 j=0; SPI_FLASH_CLK_LOW(); //clk=0 if(TxData&0x80) {SPI_FLASH_DI_HIGH();} //mosi=1 else {SPI_FLASH_DI_LOW();} //mosi=0 for(j=0;j<3;j++); //延时 SPI_FLASH_CLK_HIGH(); //clk=1,一个上升沿写入一位for(j=0;j<5;j++); //延时 SPI_FLASH_CLK_LOW(); //clk=0 if(TxData & 0x40) {SPI_FLASH_DI_HIGH();} //mosi=1 else {SPI_FLASH_DI_LOW();} //mosi=0 for(j=0;j<3;j++); //延时 SPI_FLASH_CLK_HIGH(); for(j=0;j<5;j++); SPI_FLASH_CLK_LOW(); if(TxData&0x20) {SPI_FLASH_DI_HIGH();} //mosi=1 else {SPI_FLASH_DI_LOW();} //mosi=0 for(j=0;j<3;j++); //延时 SPI_FLASH_CLK_HIGH(); for(j=0;j<5;j++); SPI_FLASH_CLK_LOW(); if(TxData&0x10) {SPI_FLASH_DI_HIGH();} //mosi=1 else {SPI_FLASH_DI_LOW();} //mosi=0 for(j=0;j<3;j++); //延时 SPI_FLASH_CLK_HIGH(); for(j=0;j<5;j++); SPI_FLASH_CLK_LOW(); if(TxData&0x08) {SPI_FLASH_DI_HIGH();} //mosi=1 else

spi协议实例

竭诚为您提供优质文档/双击可除 spi协议实例 篇一:spi协议 一spi协议概括 spi,是英语serialperipheralinterface的缩写,顾名思义就是串行外围设备接口。是motorola首先在其 mc68hcxx系列处理器上定义的。spi接口主要应用在eepRom,Flash,实时时钟,ad转换器,还有数字信号处理器和数字信号解码器之间。spi,是一种高速的,全双工,同步的通信总线,并且在芯片的管脚上只占用四根线,节约了芯片的管脚,同时为pcb的布局上节省空间,提供方便,正是出于这种简单易用的特性,现在越来越多的芯片集成了这种通信协议,比如at91Rm9200. spi的通信原理很简单,它以主从方式工作,这种模式通常有一个主设备和一个或多个从设备,需要至少4根线,事实上3根也可以(单向传输时)。也是所有基于spi的设备共有的,它们是sdi(数据输入),sdo(数据输出),sck (时钟),cs(片选)。 (1)sdo–主设备数据输出,从设备数据输入

(2)sdi–主设备数据输入,从设备数据输出 (3)sclk–时钟信号,由主设备产生 (4)cs–从设备使能信号,由主设备控制 其中cs是控制芯片是否被选中的,也就是说只有片选信号为预先规定的使能信号时(高电位或低电位),对此芯片的操作才有效。这就允许在同一总线上连接多个spi设备成为可能。 接下来就负责通讯的3根线了。通讯是通过数据交换完成的,这里先要知道spi是串行通讯协议,也就是说数据是一位一位的传输的。这就是sck时钟线存在的原因,由sck 提供时钟脉冲,sdi,sdo则基于此脉冲完成数据传输。数据输出通过sdo线,数据在时钟上升沿或下降沿时改变,在紧接着的下降沿或上升沿被读取。完成一位数据传输,输入也使用同样原理。这样,在至少8次时钟信号的改变(上沿和下沿为一次),就可以完成8位数据的传输。 要注意的是,sck信号线只由主设备控制,从设备不能控制信号线。同样,在一个基于spi的设备中,至少有一个主控设备。这样传输的特点:这样的传输方式有一个优点,与普通的串行通讯不同,普通的串行通讯一次连续传送至少8位数据,而spi允许数据一位一位的传送,甚至允许暂停,因为sck时钟线由主控设备控制,当没有时钟跳变时,从设备不采集或传送数据。也就是说,主设备通过对sck时钟线

模拟SPI程序

写程序: voidSPIx_WriteByte(u8 TxData) { u8 j=0; SPI_FLASH_CLK_LOW(); //clk=0 if(TxData&0x80) {SPI_FLASH_DI_HIGH();} //mosi=1 else {SPI_FLASH_DI_LOW();} //mosi=0 for(j=0;j<3;j++); //延时 SPI_FLASH_CLK_HIGH(); //clk=1,一个上升沿写入一位for(j=0;j<5;j++); //延时 SPI_FLASH_CLK_LOW(); //clk=0 if(TxData & 0x40) {SPI_FLASH_DI_HIGH();} //mosi=1 else {SPI_FLASH_DI_LOW();} //mosi=0 for(j=0;j<3;j++); //延时 SPI_FLASH_CLK_HIGH(); for(j=0;j<5;j++); SPI_FLASH_CLK_LOW(); if(TxData&0x20) {SPI_FLASH_DI_HIGH();} //mosi=1 else {SPI_FLASH_DI_LOW();} //mosi=0 for(j=0;j<3;j++); //延时 SPI_FLASH_CLK_HIGH(); for(j=0;j<5;j++); SPI_FLASH_CLK_LOW(); if(TxData&0x10) {SPI_FLASH_DI_HIGH();} //mosi=1 else {SPI_FLASH_DI_LOW();} //mosi=0 for(j=0;j<3;j++); //延时 SPI_FLASH_CLK_HIGH(); for(j=0;j<5;j++); SPI_FLASH_CLK_LOW(); if(TxData&0x08) {SPI_FLASH_DI_HIGH();} //mosi=1 else

SPI通信协议(SPI总线)学习

SPI通信协议(SPI总线)学习 1、什么是SPI? SPI是串行外设接口(Serial Peripheral Interface)的缩写。是Motorola 公司推出的一 种同步串行接口技术,是一种高速的,全双工,同步的通信总线。 2、SPI优点 支持全双工通信 通信简单 数据传输速率块 3、缺点 没有指定的流控制,没有应答机制确认是否接收到数据,所以跟IIC总线协议比较在数据可靠性上有一定的缺陷。 4、特点 1):高速、同步、全双工、非差分、总线式 2):主从机通信模式 5、协议通信时序详解 1):SPI的通信原理很简单,它以主从方式工作,这种模式通常有一个主设备和一个或多个从设备,需要至少4根线,事实上3根也可以(单向传输时)。也是所有基于SPI的设备共有的,它们是SDI(数据输入)、SDO(数据输出)、SCLK(时钟)、CS(片选)。 (1)SDO/MOSI – 主设备数据输出,从设备数据输入; (2)SDI/MISO – 主设备数据输入,从设备数据输出; (3)SCLK – 时钟信号,由主设备产生; (4)CS/SS – 从设备使能信号,由主设备控制。当有多个从设备的时候,因为每个从设 备上都有一个片选引脚接入到主设备机中,当我们的主设备和某个从设备通信时将需 要将从设备对应的片选引脚电平拉低或者是拉高。 2):需要说明的是,我们SPI通信有4种不同的模式,不同的从设备可能在出厂是就是配置为某种模式,这是不能改变的;但我们的通信双方必须是工作在同一模式下,所以我们可以对我们的主设备的SPI模式进行配置,通过CPOL(时钟极性)和CPHA(时钟相位)来控制我们主设备的通信模式,具体如下: Mode0:CPOL=0,CPHA=0 Mode1:CPOL=0,CPHA=1 Mode2:CPOL=1,CPHA=0 Mode3:CPOL=1,CPHA=1 时钟极性CPOL是用来配置SCLK的电平出于哪种状态时是空闲态或者有效态,时钟相位CPHA 是用来配置数据采样是在第几个边沿: CPOL=0,表示当SCLK=0时处于空闲态,所以有效状态就是SCLK处于高电平时 CPOL=1,表示当SCLK=1时处于空闲态,所以有效状态就是SCLK处于低电平时 CPHA=0,表示数据采样是在第1个边沿,数据发送在第2个边沿 CPHA=1,表示数据采样是在第2个边沿,数据发送在第1个边沿 例如: CPOL=0,CPHA=0:此时空闲态时,SCLK处于低电平,数据采样是在第1个边沿,也就是SCLK由低电平到高电平的跳变,所以数据采样是在上升沿,数据发送是在下降沿。

SPI总线从机接口实时模拟的实现

SPI总线从机接口实时模拟的实现 收稿日期:2005-09-15 作者简介:郭静华(1976-),女,黑龙江人,硕士研究生,研究方向为电子技术在农业中的应用。zhongguoguojinghua@126.com *通讯作者E-mail:ouyangbl@126.com 郭静华,欧阳斌林* (东北农业大学工程学院,哈尔滨 150030) 摘要:MCS51系列单片机由于不带SPI串行总线接口而限制了其在SPI总线接口器件的使用。文章介绍了 SPI串行总线的特征和时序,并以双CPU通信为例,给出了在51系列单片机上利用中断实现SPI串行总线通信的 方法和软件设计程序,从机在实现SPI接口同时还可以完成其他操作任务。 关键词:SPI总线;中断系统;89C52单片机中图分类号:TP23 文献标识码:A SPI (Serialperipheralinterface)总线是Motorola公司提出的一个同步串行外设接口,用于CPU与各种外围器件进行全双工、同步串行通讯。SPI可以同时发出和接收串行数据,它只需4条线就可以完成MCU与各种外围器件的通讯。这些外围器件可以是简单的TTL移位寄存器,复杂的LCD显示驱动器,A/D、D/A转换子系统或其他的 MCU[1] 。 利用SPI总线可在软件的控制下构成各种系统。如1个主MCU和几个从MCU、几个从MCU相互连接构成多主机系统(分布式系统)、1个主 MCU和1个或几个从I/O设备所构成的各种系统 等。在大多数应用场合,可使用1个MCU作为主控机来控制数据,并向1个或几个从外围器件传送该数据。从器件只有在主机发命令时才能接收或发送数据,其数据的传输格式是高位(MSB)在前,低位(LSB)在后。 一般而言,SPI总线接口主要用于主从分布式的通信网络,只需4根I/O接口线,即可完成主从总线之间的数据通信。这4根接口线分别为:时钟线 (SCLK)、数据输入线(MOSI)(主机输出从机输入)、数据输出线(MOSO)(主机输入从机输出)、片选线 (SS)。根据时钟和触发不同SPI总线可以分为4种,图1是其中一种SPI工作时序。 1系统介绍 MCS51等系列单片机由于不带SPI串行总线接 口而限制了其在SPI总线接口器件的使用,但可以使用软件来模拟SPI的操作,包括串行时钟、数据输入和数据输出[2]。本文所介绍的SPI总线实时系统既是在89C52单片机之间实现SPI总线串行通信的功能。系统结构见图2。重点介绍从机SPI的实现。 主CPU的P3.4(选通线)接到从机的INT0口,P3.5 (时钟线)接到从机的INT1口。选通和时钟都采用中断方式,以提高系统的实时性能。 图1SPI时序 Fig.1TheSPIworksequence 图2系统结构 Fig.2Systemstructure 第38卷第5期东北农业大学学报38(5):669 ̄671 2007年10月JournalofNortheastAgriculturalUniversity Oct.2007 文章编号 1005-9369 (2007)05-0669- 03

SPI串口通信协议

SPI串口通信协议 1.1 SPI串口通信介绍 SPI是英文Serial Peripheral Interface的缩写,中文意思是串行外围设备接口,SPI是Motorola公司推出的一种同步串行通讯方式,是一种三线同步总线,因其硬件功能很强,与SPI有关的软件就相当简单,使CPU有更多的时间处理其他事务。 SPI:高速同步串行口。3~4线接口,收发独立、可同步进行. SPI,是英语Serial Peripheral interface的缩写,顾名思义就是串行外围设备接口。是Motorola首先在其MC68HCXX系列处理器上定义的。SPI接口主要应用在EEPROM,FLASH,实时时钟,AD转换器,还有数字信号处理器和数字信号解码器之间。SPI,是一种高速的,全双工,同步的通信总线,并且在芯片的管脚上只占用四根线,节约了芯片的管脚,同时为PCB的布局上节省空间,提供方便,正是出于这种简单易用的特性,现在越来越多的芯片集成了这种通信协议,比如AT91RM9200. SPI总线系统是一种同步串行外设接口,它可以使MCU与各种外围设备以串行方式进行通信以交换信息。外围设置FLASHRAM、网络控制器、LCD显示驱动器、A/D转换器和MCU等。SPI总线系统可直接与各个厂家生产的多种标准外围器件直接接口,该接口一般使用4条线:串行时钟线(SCK)、主机输入/从机输出数据线MISO、主机输出/从机输入数据线MOSI和低电平有效的从机选择线SS(有的SPI接口芯片带有中断信号线INT或INT、有的SPI接口芯片没有主机输出/从机输入数据线MOSI)。 SPI的通信原理很简单,它以主从方式工作,这种模式通常有一个主设备和一个或多个从设备,需要至少4根线,事实上3根也可以(单向传输时)。也是所有基于SPI的设备共有的,它们是SDI(数据输入),SDO(数据输出),SCK(时钟),CS(片选)。 (1)SDO –主设备数据输出,从设备数据输入 (2)SDI –主设备数据输入,从设备数据输出

SPI接口的优缺点及通信原理

SPI接口的优缺点及通信原理 SPI是串行外设接口(Serial Peripheral Interface)的缩写。是一种同步串行接口技术,是高速的,全双工,同步的通信总线。下面就有iBeacon、蓝牙模块厂家-云里物里科技来帮大家讲解下SPI接口的优缺点。 1、SPI接口的优点 支持全双工操作; 操作简单; 数据传输速率较高。 同时,它也具有如下缺点: 需要占用主机较多的口线(每个从机都需要一根片选线); 只支持单个主机; 没有指定的流控制,没有应答机制确认是否接收到数据。 2、SPI通信原理 SPI的通信原理是以主从方式工作,这种模式通常有一个主设备和一个或多个从设备。SPI接口经常被称为4线串行总线,分别是SDI(数据输入)、SDO(数据输出)、SCLK(时钟)、CS(片选)。 (a)SDO/MOSI–主设备数据输出,从设备数据输入; (b)SDI/MISO–主设备数据输入,从设备数据输出; (c)SCLK–时钟信号,由主设备产生; (d)CS/SS–从设备使能信号,由主设备控制。 在SPI总线上,某一时刻可以出现多个从设备,但只能存在一个主设备,主设备通过片选线来确定要通信的从设备。这就要求从设备的MISO口具有三态特性,使得该口线在设备未被选通时表现为高阻抗。

3、数据传输 在一个SPI时钟周期内,会完成如下操作: 1)主设备通过MOSI线发送1位数据,从设备通过该线读取这1位数据; 2)从设备通过MISO线发送1位数据,主设备通过该线读取这1位数据。 这是通过移位寄存器来实现的。如图所示,主设备和从设备各有一个移位寄存器,且二者连接成环。随着时钟脉冲,数据按照从高位到低位的方式依次移出主设备寄存器和从机寄存器,并且依次移入从设备寄存器和主设备寄存器。当寄存器中的内容全部移出时,相当于完成了两个寄存器内容的交换。 4、内部工作机制 SSPSR是SPI设备内部的移位寄存器(Shift Register).它的主要作用是根据SPI时钟信号状态,往SSPBUF里移入或者移出数据,每次移动的数据大小 由Bus-Width以及Channel-Width所决定。

SPI同步串行总线原理

三、SPI是英文Serial Peripheral Interface的缩写,中文意思是串行外围设备接口,SPI是Motorola公司推出的一种同步串行通讯方式,是一种三线同步总线,因其硬件功能很强,与SPI有关的软件就相当简单,使CPU有更多的时间处理其他事务。 SPI概述 SPI:高速同步串行口。3~4线接口,收发独立、可同步进行. SPI,是英语Serial Peripheral interface的缩写,顾名思义就是串行外围设备接口。是Motorola首先在其MC68HCXX系列处理器上定义的。SPI接口主要应用在EEPROM,FLASH,实时时钟,AD转换器,还有数字信号处理器和数字信号解码器之间。SPI,是一种高速的,全双工,同步的通信总线,并且在芯片的管脚上只占用四根线,节约了芯片的管脚,同时为PCB 的布局上节省空间,提供方便,正是出于这种简单易用的特性,现在越来越多的芯片集成了这种通信协议,比如AT91RM9200. SPI总线系统是一种同步串行外设接口,它可以使MCU与各种外围设备以串行方式进行通信以交换信息。外围设置FLASHRAM、网络控制器、LCD显示驱动器、A/D转换器和MCU等。SPI总线系统可直接与各个厂家生产的多种标准外围器件直接接口,该接口一般使用4条线:串行时钟线(SCK)、主机输入/从机输出数据线MISO、主机输出/从机输入数据线MOSI 和低电平有效的从机选择线SS(有的SPI接口芯片带有中断信号线INT或INT、有的SPI接口芯片没有主机输出/从机输入数据线MOSI)。 SPI的通信原理很简单,它以主从方式工作,这种模式通常有一个主设备和一个或多个从设备,需要至少4根线,事实上3根也可以(单向传输时)。也是所有基于SPI的设备共有的,它们是SDI(数据输入),SDO(数据输出),SCK(时钟),CS(片选)。 (1)SDO –主设备数据输出,从设备数据输入 (2)SDI –主设备数据输入,从设备数据输出 (3)SCLK –时钟信号,由主设备产生 (4)CS –从设备使能信号,由主设备控制 其中CS是控制芯片是否被选中的,也就是说只有片选信号为预先规定的使能信号时(高电位或低电位),对此芯片的操作才有效。这就允许在同一总线上连接多个SPI设备成为可能。 接下来就负责通讯的3根线了。通讯是通过数据交换完成的,这里先要知道SPI是串行通讯协议,也就是说数据是一位一位的传输的。这就是SCK时钟线存在的原因,由SCK提供时钟脉冲,SDI,SDO则基于此脉冲完成数据传输。数据输出通过SDO 线,数据在时钟上升沿或下降沿时改变,在紧接着的下降沿或上升沿被读取。完成一位数据传输,输入也使用同样原理。这样,在至少8次时钟信号的改变(上沿和下沿为一次),就可以完成8位数据的传输。 要注意的是,SCK信号线只由主设备控制,从设备不能控制信号线。同样,在一个基于SPI的设备中,至少有一个主控设备。这样传输的特点:这样的传输方式有一个优点,与普通的串行通讯不同,普通的串行通讯一次连续传送至少8位数据,而SPI允许数据一位一位的传送,甚至允许暂停,因为SCK时钟线由主控设备控制,当没有时钟跳变时,从设备不采集或传送数据。也就是说,主设备通过对SCK时钟线的控制可以完成对通讯的控制。SPI还是一个数据交换协议:因为SPI的数据输入和输出线独立,所以允许同时完成数据的输入和输出。不同的SPI设备的实现方式不尽相同,主要是数据改变和采集的时间不同,在时钟信号上沿或下沿采集有不同定义,具体请参考相关器件的文档。 在点对点的通信中,SPI接口不需要进行寻址操作,且为全双工通信,显得简单高效。在多个从设备的系统中,每个从设备需要独立的使能信号,硬件上比I2C系统要稍微复杂一些。 最后,SPI接口的一个缺点:没有指定的流控制,没有应答机制确认是否接收到数据。 AT91RM9200的SPI接口主要由4个引脚构成:SPICLK、MOSI、MISO及/SS,其中SPICLK是整个SPI总线的公用时钟,MOSI、MISO作为主机,从机的输入输出的标志,MOSI是主机的输出,从机的输入,MISO 是主机的输入,从机的输出。/SS是从机的标志管脚,在互相通信的两个SPI总线的器件,/SS管脚的电平低的是从机,相反/SS管脚的电平高的是主机。在一个SPI通信系统中,必须有主机。SPI总线可以配置成单主单从,单主多从,互为主从。 SPI的片选可以扩充选择16个外设,这时PCS输出=NPCS,说NPCS0~3接4-16译码器,这个译码器是需要外接4-16译码器,译码器的输入为NPCS0~3,输出用于16个外设的选择。 [编辑本段] SPI协议举例

相关文档