文档库 最新最全的文档下载
当前位置:文档库 › 半导体Eg和导带价带能级图

半导体Eg和导带价带能级图

半导体Eg和导带价带能级图

导带、价带、禁带、费米能级

(1)导带conduction band: 导带是由自由电子形成的能量空间。即固体结构内自由运动的电子所具有的能量范围。 对于金属,所有价电子所处的能带就是导带。 对于半导体,所有价电子所处的能带是所谓价带,比价带能量更高的能带是导带。在绝对零度温度下,半导体的价带(valence band)是满带(见能带理论),受到光电注入或热激发后,价带中的部分电子会越过禁带(forbidden band/band gap)进入能量较高的空带,空带中存在电子后即成为导电的能带——导带。 势能动能:导带底是导带的最低能级,可看成是电子的势能,通常,电子就处于导带底附近;离开导带底的能量高度,则可看成是电子的动能。当有外场作用到半导体两端时,电子的势能即发生变化,从而在能带图上就表现出导带底发生倾斜;反过来,凡是能带发生倾斜的区域,就必然存在电场(外电场或者内建电场)。 (2)价带与禁带: 价带(valence band)或称价电带,通常是指半导体或绝缘体中,在0K时能被电子占满的最高能带。对半导体而言,此能带中的能级基本上是连续的。全充满的能带中的电子不能在固体中自由运动。但若该电子受到光照,它可吸收足够能量而跳入下一个容许的最高能区,从而使价带变成部分充填,此时价带中留下的电子可在固体中自由运动。 禁带,英文名为:Forbidden Band 常用来表示价带和导带之间的能态密度为零的能量区间。禁带宽度的大小决定了材料是具有半导体性质还是具有绝缘体性质。半导体的禁带宽度较小,当温度升高时,电子可以被激发传到导带,从而使材料具有导电性。绝缘体的禁带宽度很大,即使在较高的温度下,仍是电的不良导体。无机半导体的禁带宽度从~,π-π共轭聚合物的能带隙大致在~,绝缘体的禁带宽度大于。

半导体物理带图

施主与受主:半导体中掺入施主杂质后,施主电离后将成为带正电离子,并同时向导带提供电子,这种杂质就叫施主;半导体中掺入受主杂质后,受主电离后将成为带负电的离子,并同时向价带提供空穴,这种杂质就叫受主.直接带隙与间接带隙:直接带隙半导体材料就是导带最小值(导带底)和满带最大值在k 空间中同一位置.间接带隙半导体材料导带最小值(导带底)和满带最大值在k 空间中不同位置.简并与非简并半导体:简并半导体:掺杂浓度高,对于n 型半导体,其费米能级EF 接近导带或进入导带中;对于p 型半导体,其费米能级EF 接近价带或进入价带中的半导体.非简并半导体:掺杂浓度较低,其费米能级EF 在禁带中的半导体.少子与多子:半导体中有电子和空穴两种载流子.半导体材料中某种载流子占大多数,则称它为多子,另一种为少子.表面重构与表面弛豫:其表面的分子链、链段和基团会随着环境改变而重新排列以适应环境的变化,使界面能最低达到稳定状态.表面为了适应环境从一个状态到另一个状态的变化过程,称表面重构.空穴与空位:在电子挣脱价键的束缚成为自由电子后,其价键中所留下的空位.一个空穴带一个单位的正电子电量.空位:晶体中的原子或离子由于热运动离开了原来的晶格位置后而留下的.少子寿命与扩散长度:非平衡载流子的平均生存时间,扩散长度则是非平衡载流子深入样品的平均距离.杂质与杂质能级:杂质,半导体中存在的于本体元素不同的其他元素.半导体材料的电磁性质可以通过掺入不同类型和浓度的杂质而加以改变,半导体中的杂质或缺陷可以在禁带中形成电子的束缚能级,称为杂质能级.本征半导体:纯净的,不含任何杂质和缺陷的半导体.杂质带导电:杂质能带中的电子通过杂质电子之间的共有化运动参加导电的现象称为杂质导电.电中性条件:电中性条件是半导体在热平衡情况下,它的内部所必须满足的一个基本条件.电中性条件即是说半导体内部总是保持为电中性的,其中没有多余的空间电荷,即处处正电荷密度等于负电荷密度.禁带窄化效应:杂质能带进入导带或价带,并与导带或价带相连,形成新的简并能带,使能带的状态密度发生了变化,简并能带的尾部伸入到禁带中,称为带尾,导致禁带宽度由Eg 减小到Eg ’,所以重掺杂时,禁带宽度变窄了,称为禁带变窄效应.负阻效应 直接复合与间接复合:直接复合:导带电子和价带空穴之间直接跃迁复合.间接复合:导带电子通过复合中心(禁带中的能级)和价带空穴间接复合. 什么叫浅能级杂质?它们电离后有何特点?答:浅能级杂质是指杂质电离能远小于本征半导体的禁带宽度的杂质.它们电离后将成为带正电(电离施主)或带负电(电离受主)的离子,并同时向导带提供电子或向价带提供空穴.漂移运动与扩散运动之间有什么联系?非简并半导体的迁移率与扩散系数之间有什么联系?解:漂移运动与扩散运动之间通过迁移率与扩散系数相联系.而非简并半导体的迁移率与扩散系数则通过爱因斯坦关系相联系,二者的比值与温度成反比关系,即q 0=μ.何谓非平衡载流子?非平衡状态与平衡状态的差异何在?解:半导体处于非平衡 态时,附加的产生率使载流子浓度超过热平衡载流子浓度,额外产生的这部分载流子就是非平衡载流子.通常所指的非平衡载流子是指非平衡少子.热平衡状态下半导体的载流子浓度是一定的,产生与复合处于动态平衡状态,跃迁引起的产生、复合不会产生宏观效应.在非平衡状态下,额外的产生、复合效应会在宏观现象中体现出来.何谓迁移率?影响迁移率的主要因素有哪些?解:迁移率是单位电场强度下载流子所获得的漂移速率.影响迁移率的主要因素有能带结构(载流子有效质量)温度和各种散射机构.何谓本征半导体?为什么制造半导体器件一般都用含有适当杂质的半导体材料?完全不含杂质且无晶格缺陷的纯净半导体称为本征半导体.杂质能够为半导体提供载流子,对半导体材料的导电率影响极大.简要说明什么是载流子的漂移运动,扩散运动和热运动?他们有何不同?解:载流子因浓度差而引起的扩散运动;在电场力作用下载流子的漂移运动;由外加温度引起的载流子的热运动等.热运动:在没有任何电场作用时,一定温度下半导体中的自由电子和空穴因热激发所产生的运动是杂乱无障的,好像空气中气体的分子热运动一样.由于是无规则的随机运动,合成后载流子不产生定向位移,从而也不会形成电流.漂移运动:在半导体的两端外加一电场E,载流子将会在电场力的作用下产生定向运动.电子载流子逆电场方向运动,而空穴载流子顺着电场方向运动.从而形成了电子电流和空穴电流,它们的电流方向相同.所以,载流子在电场力作用下的定向运动称为漂移运动,而漂移运动产生的电流称漂移电流.扩散运动: 在半导体中,载流子会因浓度梯度产生扩散.如在一块半导体中,一边是N 型半导体,另一边是P 型半导体,则N 型半导体一边的电子浓度高,而P 型半导体一边的电子浓度低.反之,空穴载流子是P 型半导体一边高,而N 型半导体一边低.由于存在载流子浓度梯度而产生的载流子运动称为扩散运动.就你在任何知识渠道所获得的信息,举出一个例子来说明与半导体物理相关的最新知识进展。简述pn 结的形成及平衡pn 结的特点.将P 型半导体与N 型半导体制作在同一块硅片上,在它们的交界面就形成PN 结.PN 结具有单向导电性.在半导体中,费米能级标志了什么?它与哪些因素有关?系统处于热平衡状态,也不对外做功时,系统中增加一个电子所引起系统自由能的变化.其标志了电子填充能级的水平.温度,半导体材料的导电类型,杂质的含量,能量零点的选取等.简述浅能级杂质和深能级杂质的主要区别.解:深能级杂质在半导体中起复合中心或陷阱的作用.浅能级杂质在半导体中起施主或受主的作用.浅能级杂质就是指在半导体中、其价电子受到束缚较弱的那些杂质原子,往往就是能够提供载流子—电子或空穴的施主、受主杂质;它们在半导体中形成的能级都比较靠近价带顶或导带底,因此称其为浅能级杂质.深能级杂质:杂质电离能大,施主能级远离导带底,受主能级远离价带顶.深能级杂质有三个基本特点:一是不容易电离,对载流子浓度影响不大.二是一般会产生多重能级,甚至既产生施主能级也产生受主能级.三是能起到复合中心作用,使少数载流子寿命降低.四是深能级杂质电离后以为带电中心,对载流子起散射作用,使载流子迁移率减小,导电性能下降.简述金半结的形成过程及金半结接触的类型.轻掺杂半导体上的金属与半导体形成整流接触,其接g 半导体中出现成对的电子-空穴对.如果温度升高,则禁带宽度变窄,跃迁所需的能量变小,将会有更多的电子被激发到导带中. 试定性说明Ge 、Si 的禁带宽度具有负温度系数的原因.解:电子的共有化运动导致孤立原子的能级形成能带,即允带和禁带.温度升高,则电子的共有化运动加剧,导致允带进一步分裂,变宽;允带变宽,则导致允带与允带之间的禁带相对变窄.反之,温度降低,将导致禁带变宽.因此,Ge 、Si 的禁带宽度具有负温度系数. 试指出空穴的主要特征.解:空穴是未被电子占据的空量子态,被用来描述半满带中的大量电子的集体运动状态,是准粒子.主要特征如下:A 、荷正电:+q;B 、空穴浓度表示为p (电子浓度表示为n );C 、E P =-E n ;D 、m P *=-m n *.简述Ge 、Si 和GaAS 的能带结构的主要特征.解: Ge 、Si: a )Eg (Si :0K) = 1.21eV ;Eg (Ge :0K) = 1.170eV ; b )间接能隙结构c )禁带宽度E g 随温度增加而减小; GaAs a )E g (300K )= 1.428eV ,Eg (0K) = 1.522eV ;b )直接能隙结构;c )Eg 负温度系数特性: dE g /dT = -3.95×10-4eV/K ;什么叫浅能级杂质?它们电离后有何特点?解:浅能级杂质是指其杂质电离能远小于本征半导体的禁带宽度的杂质.它们电离后将成为带正电(电离施主)或带负电(电离受主)的离子,并同时向导带提供电子或向价带提供空穴. 什么叫施主?什么叫施主电离?施主电离前后有何特征?试举例说明之,并用能带图表征出n 型半导体.解:半导体中掺入施主杂质后,施主电离后将成为带正电离子,并同时向导带提供电子,这种杂质就叫施主.施主电离成为带正电离子(中心)的过程就叫施主电离.施主电离前不带电,电离后带正电.例如,在Si 中掺P,P 为Ⅴ族元素,本征半导体Si 为Ⅳ族元素,P 掺入Si 中后,P 的最外层电子有四个与Si 的最外层四个电子配对成为共价电子,而P 的第五个外层电子将受到热激发挣脱原子实的束缚进入导带成为自由电子.这个过程就是施主电离.n 型半导体的能带图如图所示:其费米能级位于禁带上方. 什么叫受主?什么叫受主电离?受主电离前后有何特征?试举例说明之,并用能带图表征出p 型半导体.解:半导体中掺入受主杂质后,受主电离后将成为带负电的离子,并同时向价带提供空穴,这种杂质就叫受主.受主电离成为带负电的离子(中心)的过程就叫受主电离.受主电离前带不带电,电离后带负电.例如,在Si 中掺B,B 为Ⅲ族元素,而本征半导体Si 为Ⅳ族元素,P 掺入B 中后,B 的最外层三个电子与Si 的最外层四个电子配对成为共价电子,而B 倾向于接受一个由价带热激发的电子.这个过程就是受主电离.p 型半导体的能带图如图所示:其费米能级位于禁带下方.掺杂半导体与本征半导体之间有何差异?试举例说明掺杂对半导体的导电性能的影响.解:在纯净的半导体中掺入杂质后,可以控制半导体的导电特性.掺杂半导体又分为n 型半导体和p 型半导体.例如,在常温情况下,本征Si 中的电子浓度和空穴浓度均为1.5╳1010cm -3.当在Si 中掺入1.0╳1016cm -3 后,半导体中的电子浓度将变为1.0╳1016cm -3,而空穴浓度将近似为2.25╳104cm -3.半导体中的多数载流子是电子,而少数载流子是空穴.两性杂质和其它杂质有何异同?解:两性杂质是指在半导体中既可作施主又可作受主的杂质.如Ⅲ-Ⅴ族GaAs 中掺Ⅳ族Si.如果Si 替位Ⅲ族As,则Si 为施主;如果Si 替位Ⅴ族Ga,则Si 为受主.所掺入的杂质具体是起施主还是受主与工艺有关.深能级杂质和浅能级杂质对半导体有何影响?解:深能级杂质在半导体中起复合中心或陷阱的作用.浅能级杂质在半导体中起施主或受主的作用.何谓杂质补偿?杂质补偿的意义何在?当半导体中既有施主又有受主时,施主和受 画出Si 和GaAs 的能带结构简图,并分析其能带结构特点Ge 、Si: a )Eg (Si :0K) = 1.21eV ;Eg (Ge :0K) = 1.170eV ; b )间接能隙结构c )禁带宽度E g 随温度增加而减小; GaAs : a )E g (300K )= 1.428eV ,Eg (0K) = 1.522eV ;b )直-4段温度很低,本征激发可忽略。 半导体接触形成阻 其接触后的能带图如图

半导体计算题

五、已知室温下硅的本征载流子密度n i=1.5?1010 cm-3,试求掺磷浓度为1.5?1013 cm-3,掺硼浓度为1.0?1013 cm-3的硅样品在室温热平衡状态下的电子密度n 0、空穴密度p 0和费米能级的位置。已知此时硅中杂质原子已全部电离,硅的导带底和价带顶有效态密度分别为 2.8?1019cm-3和1.1?1019cm-3。 解:因为N D=1.5?1013 cm-3,N A=1.0?1013 cm-3,ND>NA 且完全电离,所以n 0 = 有效施主浓度=1.5?1013-1.0?1013 =5?1012(cm-3) 由n 0 p 0=n i2=2.25?1020 cm-6,知 p 0=n i2/n 0=4.5?107(cm-3) 本题属轻掺杂非简并情况,因此由 六、对非简并半导体,从利用等效态密度N C 和N V 求热平衡载流子密度n 0和p 0的公式出发,推出利用本征载流子密度n i 和本征费米能级E i 求n 0和p 0的公式。 解:本征载流子密度即E F=E i 时的热平衡电子密度和空穴密度,于是由 由此两式可将有效态密度N C 和N V 分别用n i 和E i 表示为 九、若硅中施主杂质电离能?E D = 0.04eV ,施主杂质浓度分别为1015 cm-3和1018 cm-3。计算这些杂质①99﹪电离;②90﹪电离;③50﹪电离时的温度。 解:这类题也可利用未电离施主的浓度公式(即电子占据施主能级的几率函数与施主浓度之积) 结果: ND=1015/cm3时,电离度为99﹪、90﹪、50﹪的温度分别为124K 、84K 、59K ND=1018/cm3时,电离度为99﹪、90﹪、50﹪的温度分别为1374K 、427K 、180K 需要注意的是:由参考书中的图3-7可见,当T=1000K 时,硅的本征载流子密度已接近1018cm-3:T=1374K 时,硅的本征载流子密度已将近-3,与解题过程中设定的 n0 = 0.99ND 误差很大,说明这个结果不准确。欲求其准确值,须利用迭代法反复修正,直至求出的温度所对应的 n0与代入式(12-1)中的n0接近相等为止。 其他温度所对应的本征载流子密度都比相应的电离杂质密度低很多数量级,n 0 =(1-D -)ND 的算法是合理的。 11exp()2D D D F N n E E kT =-+0011111exp()1146422exp()2exp()D C F D C C D D n E E E N N N E kT n n T kT ===--?+++?0.04463.54640.026300D E k ?==≈)464exp(2110_T n N D C +=333*21522 32(2)() 5.410n C m k N T T T h π==???? ??--=kT E E N n F C C exp 0)()105 8.2ln(026.0ln 70eV n N kT E E C F C ??==-??? ??--=kT E E N n F C C exp 0??? ??--=kT E E N p V F V exp 0??? ??--=kT E E N n i C C i exp ??? ? ?--=kT E E N n V i V i exp

半导体物理知识点梳理

半导体物理考点归纳 一· 1.金刚石 1) 结构特点: a. 由同类原子组成的复式晶格。其复式晶格是由两个面心立方的子晶格彼此沿其空间对角线位移1/4的长度形成 b. 属面心晶系,具立方对称性,共价键结合四面体。 c. 配位数为4,较低,较稳定。(配位数:最近邻原子数) d. 一个晶体学晶胞内有4+8*1/8+6*1/2=8个原子。 2) 代表性半导体:IV 族的C ,Si ,Ge 等元素半导体大多属于这种结构。 2.闪锌矿 1) 结构特点: a. 共价性占优势,立方对称性; b. 晶胞结构类似于金刚石结构,但为双原子复式晶格; c. 属共价键晶体,但有不同的离子性。 2) 代表性半导体:GaAs 等三五族元素化合物均属于此种结构。 3.电子共有化运动: 原子结合为晶体时,轨道交叠。外层轨道交叠程度较大,电子可从一个原子运动到另一原子中,因而电子可在整个晶体中运动,称为电子的共有化运动。 4.布洛赫波: 晶体中电子运动的基本方程为: ,K 为波矢,uk(x)为一个与晶格同周期的周期性函数, 5.布里渊区: 禁带出现在k=n/2a 处,即在布里渊区边界上; 允带出现在以下几个区: 第一布里渊区:-1/2a

半导体中载流子浓度的计算分析

function varargout = one(varargin) % ONE MATLAB code for one.fig % ONE, by itself, creates a new ONE or raises the existing % singleton*. % % H = ONE returns the handle to a new ONE or the handle to % the existing singleton*. % % ONE('CALLBACK',hObject,eventData,handles,...) calls the local % function named CALLBACK in ONE.M with the given input arguments. % % ONE('Property','Value',...) creates a new ONE or raises the % existing singleton*. Starting from the left, property value pairs are % applied to the GUI before one_OpeningFcn gets called. An % unrecognized property name or invalid value makes property application % stop. All inputs are passed to one_OpeningFcn via varargin. % % *See GUI Options on GUIDE's Tools menu. Choose "GUI allows only one % instance to run (singleton)". % % See also: GUIDE, GUIDATA, GUIHANDLES % Edit the above text to modify the response to help one % Last Modified by GUIDE v2.5 21-Nov-2012 04:20:02 % Begin initialization code - DO NOT EDIT gui_Singleton = 1; gui_State = struct('gui_Name', mfilename, ... 'gui_Singleton', gui_Singleton, ... 'gui_OpeningFcn', @one_OpeningFcn, ... 'gui_OutputFcn', @one_OutputFcn, ... 'gui_LayoutFcn', [] , ... 'gui_Callback', []); if nargin && ischar(varargin{1}) gui_State.gui_Callback = str2func(varargin{1}); end if nargout

导带、价带、禁带.费米能级

【半导体】 (1)导带conduction band 导带是由自由电子形成的能量空间。即固体结构内自由运动的电子所具有的能量范围。 对于金属,所有价电子所处的能带就是导带。 对于半导体,所有价电子所处的能带是所谓价带,比价带能量更高的能带是导带。在绝对零度温度下,半导体的价带(valence band)是满带(见能带理论),受到光电注入或热激发后,价带中的部分电子会越过禁带(forbidden band/band gap)进入能量较高的空带,空带中存在电子后即成为导电的能带——导带。 势能动能:导带底是导带的最低能级,可看成是电子的势能,通常,电子就处于导带底附近;离开导带底的能量高度,则可看成是电子的动能。当有外场作用到半导体两端时,电子的势能即发生变化,从而在能带图上就表现出导带底发生倾斜;反过来,凡是能带发生倾斜的区域,就必然存在电场(外电场或者内建电场)。 (2)价带与禁带 价带(valence band)或称价电带,通常是指半导体或绝缘体中,在0K 时能被电子占满的最高能带。对半导体而言,此能带中的能级基本上是连续的。全充满的能带中的电子不能在固体中自由运动。但若该电子受到光照,它可吸收足够能量而跳入下一个容许的最高能区,从而使价带变成部分充填,此时价带中留下的电子可在固体中自由运动。 禁带,英文名为:Forbidden Band 常用来表示价带和导带之间的能态密度为零的能量区间。禁带宽度的大小决定了材料是具有半导体性质还是具有绝缘体性质。半导体的禁带宽度较小,当温度升高时,电子可以被激发传到导带,从而使材料具有导电性。绝缘体的禁带宽度很大,即使在较高的温度下,仍是电的不良导体。无机半导体的禁带宽度从0.1~2.0eV,π-π共轭聚合物的能带隙大致在1.4~4.2eV,绝缘体的禁带宽度大于4.5eV。 (3)导带与价带的关系: “电子浓度=空穴浓度”,这实际上就是本征半导体的特征,因此可以说,凡是两种载流子浓度相等的半导体,就是本征半导体。 注意:不仅未掺杂的半导体是本征半导体,就是掺杂的半导体,在一定条件下(例如高温下)也可以转变为本征半导体。

导带、价带、

导带、价带都属于允带,允带有很多的能级(不过可视为准连续,因为能级间差距实在是太小了!),原子中电子的填充都是从最低能级开始的,假设有这么一个情形:电子填啊填,填到某一允带的所有能级都被填满时,刚好所有电子都用完了,再没有一个电子需要填充了。那么,这个允带就是“满带”,它的最高的那个能级就是“价带(顶)”,这个允带往上隔了一个禁带Eg之后,又有一个允带(在更高能级位置),我们称之为导带,但是这个允带没有任何电子(因为电子在上一个允带时就已经全部填充完了!所以说所谓允带只是说允许有电子存在,但实际上有没有、有多少呢,却不一定;当然禁带是绝对不可能有电子存在。),所以为“空带”。我们再看回满带,在满带中,每个能级都有且仅有一个电子(为什么每个能级只能有一个电子呢?请自己查找泡利不相容原理的相关资料),那么满带是不导电的(电子都不能在满带的能级间跑动,自然就不可能有电流啦!)。但是,对于半导体,禁带Eg不是太大,故而价带电子有机会跃迁到导带中,成为自由电子(导带中的所有能级几乎全空,电子在这里可以跳来跳去,当然很自由啦!),故而导带可以导电,所以才叫导带嘛。 导带是高架桥,价带是地面人行道。 半导体就像是人满为患时的地面交通,电子君们寸步难行挤成狗,但你若是有本事跳上空旷无人的高架桥,那就可以随便跪”。 高架桥到地面之间的空档,就被称为禁带。所谓禁带就是说电子君没地方可站。相应的,允带就是电子君可以站的地方,所以除了导带和价带,地下通道也是允带。 高架桥若是太高,电子君们跳不上去,交通便陷入彻底瘫痪。这是绝缘体。 高架桥若是接上了地面道路,电子君们就能纷纷上桥,交通立刻顺畅起来。这是金属。 现代半导体技术,之所以能够实现器件的开关,就是能够在高架桥和地面之间架起一-座临时的梯子,它将决定地面上有多少幸运的电子君能够登上高架桥,担负起导电的伟大使命。以上。 让我们从最基本的开始……以下如果没有特别说明主角都是电子。 首先从量子力学的基本假设——不连续性可以推出原子外电子的在条件一定的 情况下只能取到某些特定的能量,这就是能级: width="230">(大家好,我是氢原子的电子能级)

原子的结构 能级汇总

2016年高考物理精品学案之 原子的结构能级 一、考纲要求 二、知识网络 第1讲原子的结构能级 ★一、考情直播 1.考纲解读 考纲内容能力要求考向定位 1.氢原子光谱 1.知道汤姆生发现电子同时提考纲对氢原子光谱、能级

2.氢原子的能级结构、能级公式出枣糕模型 2.知道α粒子散射实验及卢瑟 福的核式结构模型 3.知道波尔的三条假设及对氢 原子计算的两个公式和氢原子能级 结构和能级公式均是Ⅰ级要 求.本部分高考的热点是α粒 子散射实验和波尔理论,高考 中以选择题的形式出现. 2.考点整合 考点一卢瑟福的核式结构模型 1.汤姆生在研究阴极射线时发现了,提出了原子的枣糕模型. 2.α粒子散射实验 α粒子散射实验是用α粒子轰击金箔,结果是穿过金箔后仍沿原来方向前进,发生了较大的偏转,极个别α粒子甚至 . 3.核式结构 卢瑟福从行星模型得到启发,提出了原子的核式结构,这是一种联想思维. 核式结构:在原子的中心有一个很小的,叫原子核,原子的都集中在原子核里,带在核外空间运动. 4.由α粒子散射实验数据还可以估算原子核的大小,卢瑟福估算的结果是:原子核的大小的数量级在以下. [例题1]如图2所示,为α粒子散射实验的示意图,A点为某α粒子运动中离原子核最近的位置,则该α粒子在A点具有 A.最大的速度 B.最大的加速度 C.最大的动能 D.最大的电势能 【解析】α粒子在接近原子核的过程中受到原子核库

仑排斥力的作用,这个力对α粒子做负功,使α粒子的速度减小,动能减小,电势能增大,显然,正确选项应该为BD 答案:BD 【规律总结】本题考查的知识点有两条,一是α粒子与原子核之间的库仑力,二是这个库仑力做负功,距离原子核越近,库仑力越大. 【例题2】.(2008年上海)1991年卢瑟福依据α粒子散射实验中α粒子发生了____(选填“大”或“小”)角度散射现象,提出了原子的核式结构模型.若用动能为1MeV 的α粒子 轰击金箔,则其速度约为_____m/s.(质子和中子的质量均为 1.67×10-27 kg ,1MeV=1 ×106 eV ) 【解析】根据α粒子散射实验现象,α粒子发生了大角度散射. 同时根据:α αm E v v m E k k 22 1 2== 得到 代入数据s m s m v /109.6/10 67.14106.110126 27 196?=??????=-- 答案:大,6.9×106 【规律总结】一是电子伏特与焦耳之间的换算,J ev 19 10 9.11-?=;二是α粒子的质量应 该是两个中子和两个质子的质量和,即:kg m 27 1067.14-??=α. 考点二 波尔模型 1.波尔的三条假设: 1)、能量量子化:原子只能处于一系列 状态中,在这些状态中原子是稳定的,电子虽然绕核运动,但并不向外辐射能量,这些状态叫做 . 对氢原子满足:121 E n E n = ,其中eV E 6.131-= 2)、轨道量子化:原子的 跟电子沿不同的圆形轨道绕核运动 相对应.原子的定态是不连续的,因此电子的可能轨道的分布也是不连续的. 对氢原子满足:12r n r n =,其中m r 10 11053.0-?=. 3)、能级跃迁:原子从一种定态(设能量为E 2)跃迁到另一种定态(设能量为E 1)时,它 一定频率的光子,光子的能量由这两种定态的能量差决定,即12E E h -=ν. 2.氢原子能级图:如图3所示 3.波尔理论的局限性 图3

半导体材料能带测试及计算

半导体材料能带测试及计算 对于半导体,是指常温下导电性能介于导体与绝缘体之间的材料,其具有一定的带隙(E g)。通常对半导体材料而言,采用合适的光激发能够激发价带(VB)的电子激发到导带(CB),产生电子与空穴对。 图1. 半导体的带隙结构示意图。 在研究中,结构决定性能,对半导体的能带结构测试十分关键。通过对半导体的结构进行表征,可以通过其电子能带结构对其光电性能进行解析。对于半导体的能带结构进行测试及分析,通常应用的方法有以下几种(如图2): 1.紫外可见漫反射测试及计算带隙E g; 2.VB XPS测得价带位置(E v); 3.SRPES测得E f、E v以及缺陷态位置; 4.通过测试Mott-Schottky曲线得到平带电势; 5.通过电负性计算得到能带位置. 图2. 半导体的带隙结构常见测试方式。 1.紫外可见漫反射测试及计算带隙 紫外可见漫反射测试 2.制样:

背景测试制样:往图3左图所示的样品槽中加入适量的BaSO4粉末(由于BaSO4粉末几乎对光没有吸收,可做背景测试),然后用盖玻片将BaSO4粉末压实,使得BaSO4粉末填充整个样品槽,并压成一个平面,不能有凸出和凹陷,否者会影响测试结果。 样品测试制样:若样品较多足以填充样品槽,可以直接将样品填充样品槽并用盖玻片压平;若样品测试不够填充样品槽,可与BaSO4粉末混合,制成一系列等质量分数的样品,填充样品槽并用盖玻片压平。 图3. 紫外可见漫反射测试中的制样过程图。 1.测试: 用积分球进行测试紫外可见漫反射(UV-Vis DRS),采用背景测试样(BaSO4粉末)测试背景基线(选择R%模式),以其为background测试基线,然后将样品放入到样品卡槽中进行测试,得到紫外可见漫反射光谱。测试完一个样品后,重新制样,继续进行测试。 ?测试数据处理 数据的处理主要有两种方法:截线法和Tauc plot法。截线法的基本原理是认为半导体的带边波长(λg)决定于禁带宽度E g。两者之间存在E g(eV)=hc/λg=1240/λg(nm)的数量关系,可以通过求取λg来得到E g。由于目前很少用到这种方法,故不做详细介绍,以下主要来介绍Tauc plot法。 具体操作: 1、一般通过UV-Vis DRS测试可以得到样品在不同波长下的吸收,如图4所示; 图4. 紫外可见漫反射图。

半导体物理期末总结

载流子:晶体中荷载电流(或传导电流)的粒子,如电子和空穴。 空穴:在常温下,由于热激发,使一些价电子获得足够的能量而脱离共价键的束缚,成为自由电子,同时共价键上留下的空位。(价带中不被电子占据的空状态,价带顶附近空穴有效质量>0) 杂质的补偿作用:受主能级低于施主能级,所以施主杂质的电子首先跃迁到N A受主能级后,施主能级上还有N D-N A 个电子,在杂质全部电离的条件下,它们跃迁到导带中成为导电电子,这时,n=N D-N A≈N D,半导体是n型的;同理p型。 等电子陷阱:与基质晶体原子具有同数量价电子的杂质原子,它们替代了格点上的同族原子后,基本上仍是电中性的。由于原子序数不同,这些原子的共价半径和电负性有差别,因而它们能俘获某种载流子而成为带电中心。本征半导体:晶体具有完整的(完美的)晶格结构,无任何杂质和缺陷。 有效质量(物理意义?):电子受到外力+原子核势场和其它电子势场力,引入有效质量可以把加速度和外力直接联系。根据势场的作用由有效质量反映,m n*的正负反应了晶体内部势场的作用。 分布函数:能量为E的一量子态被一个电子占据概率为 杂质电离:当电子从施主能级跃迁到导带时产生导带电子;当电子从价带激发到受主能级时产生价带空穴等。费米能级的意义:当它和温度T、半导体材料的导电类型n、p,杂质的含量以及能量零点选取有关。E F是一个很重要的物理参数,只要知道E F数值,在特定T下,电子在各量子态上的统计分布就完全确定。统计理论表明,热力学上费米能级E F是系统的化学势。费米能级位置直观地标志了电子占据量子态情况。固体物理中处于基态的单个Fermi粒子所具有的最大能量—Fermi粒子所占据的最高能级的能量。费米能级标志了电子填充能级的水平。对一系统而言,E F位置较高,有较多的能量较高的量子态上有电子。 杂质散射和格波散射:(1)杂质电离后是一个带电离子,施主电离后带正电,受主电离后带负电。在电离施主或受主周围形成一个库仑势场,局部地破坏周期性势场,是使载流子散射的附加势场。(2)T定,晶格中原子都各自在其平衡位置附近作微振动。晶格中原子的振动都是由若干不同的基波—格波按照波的叠加原理组合而成,声学波声子往往起着交换动量的作用,光学波交换能量。非弹性散射,主要是长波。 复合中心和陷阱中心:(1)对于有效复合中心,r n ≈r p,电子陷阱:r n>r p;空穴陷阱:r p>r n(2)复合中心和电子陷阱中电子的运动途径不同。复合中心的电子直接落入价带与空穴复合;电子陷阱中的电子要和空穴复合,它必须重新激发到导带,再通过有效复合中心完成和空穴的复合。(3)位于禁带中央附近的深能级是最有效的复合中心对于电子陷阱:E F以上的能级,越接近E F,陷阱效应越

导带与价带的关系资料

导带与价带的关系

精品资料 定义 导带(conduction band)是由自由电子形成的能量空间。即固体结构内自由运动的电子所具有的能量范围。对于金属,所有价电子所处的能带就是导带。对于半导体,所有价电子所处的能带是所谓价带,比价带能量更高的能带是导带。在绝对零度温度下,半导体的价带(valence band)是满带(见能带理论),受到光电注入或热激发后,价带中的部分电子会越过禁带(forbidden band/band gap)进入能量较高的空带,空带中存在电子后即成为导电的能带——导带。 导带是半导体最外面(能量最高)的一个能带,是由许多准连续的能级组成的;是半导体的一种载流子——自由电子(简称为电子)所处的能量范围。导带中往往只有少量的电子,大多数状态(能级)是空着的,则在外加作用下能够发生状态的改变,故导带中的电子能够导电,即为载流子。 导带底是导带的最低能级,可看成是电子的势能,通常,电子就处于导带底附近;离开导带底的能量高度,则可看成是电子的动能。当有外场作用到半导体两端时,电子的势能即发生变化,从而在能带图上就表现出导带底发生倾斜;反过来,凡是能带发生倾斜的区域,就必然存在电场(外电场或者内建电场)。 导带底到真空中自由电子能级的间距,称为半导体的亲和能,即是把一个电子载流子从半导体内部拿到真空中去所需要的能量。这是半导体的一个特征参量。 导带与价带的关系 对于未掺杂的本征半导体,导带中的电子是由它下面的一个能带(即价带)中的电子(价电子)跃迁上来而形成的,这种产生电子(同时也产生空穴——半导体的另外一种载流子)的过程,称为本征激发。在本征激发过程中,电子和空穴是成对产生的,则总是有“电子浓度=空穴浓度”。这实际上就是本征半导体的特征,因此可以说,凡是两种载流子浓度相等的半导体,就是本征半导体。这就意味着,不仅未掺杂的半导体是本征半导体,就是掺杂的半导体,在一定条件下(例如高温下)也可以转变为本征半导体。 价带的能量低于导带,它也是由许多准连续的能级组成的。但是价带中的许多电子(价电子)并不能导电,而少量的价电子空位——空穴才能导电,故称空穴是载流子。空穴的最低能量——势能,也就是价带顶,通常空穴就处于价带顶附近。 价带顶与导带底之间的能量差,就是所谓半导体的禁带宽度。这就是产生本征激发所需要的最小平均能量。这是半导体最重要的一个特征参量。 仅供学习与交流,如有侵权请联系网站删除谢谢2

半导体物理-复习题(精)

第七篇题解-半导体表面与MIS结构 刘诺编 7-1、解: 又因为 7-3、解: (1)表面积累:当金属表面所加的电压使得半导体表面出现多子积累时,这就是表面积累,其能带图和电荷分布如图所示:

(2)表面耗尽:当金属表面所加的电压使得半导体表面载流子浓度几乎为零时,这就是表面耗尽,其能带图和电荷分布如图所示: (3)当金属表面所加的电压使得半导体表面的少子浓度比多子浓度多时,这就是表面反型,其能带图和电荷分布如图所示: 7-3、解:理想MIS结构的高频、低频电容-电压特性曲线如图所示;

其中AB段对应表面积累,C到D段为表面耗尽,GH和EF对应表面反型。 7-4、解:使半导体表面达到强反型时加在金属电极上的栅电压就是开启电压。这时半导体的表面势 7-5、答:当MIS结构的半导体能带平直时,在金属表面上所加的电压就叫平带电容。平带电压是度量实际MIS结构与理想MIS结构之间的偏离程度的物理量,据此可以获得材料功函数、界面电荷及分布等材料特性参数。 7-6、解:影响MIS结构平带电压的因素分为两种: (1)金属与半导体功函数差。例如,当W m s 时,将导致 C-V 特性向负栅压方向移动。如图 (1)

恢复平带在金属上所加的电压就是 (2)界面电荷。假设在SiO2中距离金属- SiO2界面x处有一层正电荷,将导致C-V特性向负栅压方向移动。如图 (2) 恢复平带在金属上所加的电压就是 在实际半导体中,这两种因素都同时存在时,所以实际MIS结构的平带电压为 第六篇习题-金属和半导体接触

刘诺编 6-1、什么是功函数?哪些因数影响了半导体的功函数?什么是接触势差? 6-2、什么是Schottky势垒?影响其势垒高度的因数有哪些? 6-3、什么是欧姆接触?形成欧姆接触的方法有几种?试根据能带图分别加以分析。 6-4、什么是镜像力?什么是隧道效应?它们对接触势垒的影响怎样的? 6-5、施主浓度为7.0×1016cm-3的n型Si与Al形成金属与半导体接触,Al的功函数为4.20eV,Si的电子亲和能为4.05eV,试画出理想情况下金属-半导体接触的能带图并标明半导体表面势的数值。 6-6、分别分析n型和p型半导体形成阻挡层和反阻挡层的条件。 6-7、试分别画出n型和p型半导体分别形成阻挡层和反阻挡层的能带图。 6-8、什么是少数载流子注入效应? 6-9、某Shottky二极管,其中半导体中施主浓度为2.5×1016cm-3,势垒高度为0.64eV,加上4V的正向电压时,试求势垒的宽度为多少? 6-10、试根据能带图定性分析金属-n型半导体形成良好欧姆接触的原因。 第六篇题解-金属和半导体接触 刘诺编 6-1、答:功函数是指真空电子能级E0与半导体的费米能级EF之差。影响功函数的因素是掺杂浓度、温度和半导体的电子亲和势。 接触势则是指两种不同的材料由于接触而产生的接触电势差。 6-2、答:金属与n型半导体接触形成阻挡层,其势垒厚度随着外加电压的变化而变化,这就是Schottky势垒。影响其势垒高度的因素是两种材料的功函数,影响其势垒厚度的因素则是材料(杂质浓度等)和外加电压。 6-3、答:欧姆接触是指其电流-电压特性满足欧姆定律的金属与半导体接触。形成欧姆接触的常用方法有两种,其一是金属与重掺杂n型半导体形成能产生隧道效

根据紫外-可见光谱计算半导体能带Eg

根据紫外-可见光谱计算半导体能带Eg 光学吸收系数满足方程:α=(A/hν)(hν-Eg)1/2,其中 A 是比例常数,hν是光子能量,Eg 是ZnO的能隙。Eg可以通过画(αhν)2与hν的曲线,然后把线性部分延长到α=0得出。这些数据先用excel计算出来,再导入origin画出曲线图,然后做切线,切线与和横坐标的交点数值就是禁带宽度 在origin中做曲线的切线的话~那个切点是怎么确定的 下一个画切线的插件targent,它会自动画,切点选一个最陡峭的点 1.薄膜:需要的数据:薄膜厚度d,透过谱T%,并且还要知道半导体是直接还是间接型。首先需要求吸收系数(absorption coefficiency, a) a=-ln(T%)/d A α= d hv的计算在origin里进行,大概可以使用hv=1240/(wavelength(nm))得到 间接半导体:纵坐标为(ahv)^2,横坐标为hv 直接半导体:纵坐标为(ahv)^(1/2),横坐标为hv 最后,做出曲线的切线(这方面我是自己拉一条直线),与横轴的交点就是Eg。 2.粉体:需要的数据:粉体的漫反射谱Rx。同样也需要换算成吸收系数,使用a=(1-Rx)2/2Rx (这个就是Kubelka-Munk Function)。其他的就是按照薄膜同样的方法进行了。 当然,这些方法都是近似的,其中还会存在粉体颗粒对光的散射,薄膜岛状结构对光的散射而对最后结果产生的误差,所以,在研究化学和材料方面可以作为一定知道的数据。 方法1:利用紫外可见漫反射测量中的吸光度与波长数据作图,利用截线法做出吸收波长阈值λg(nm), 利用公式Eg=1240/λg (eV) 计算禁带宽度。 方法2:利用(Ahν)2 对hν做图,利用直线部分外推至横坐标交点,即为禁带宽度值。也可利用(Ahν)0.5 对hν做图,利用直线部分外推至横坐标交点,即为禁带宽度值。前者为间接半导体禁带宽度值,后者为直 接半导体禁带宽度值。A (Absorbance) 即为紫外可见漫反射中的吸光度。 方法3:利用(αhν)2 对hν做图,利用直线部分外推至横坐标交点,即为禁带宽度值。也可利用(αhν)0.5 对hν做图,利用直线部分外推至横坐标交点,即为禁带宽度值。前者为间接半导体禁带宽度值,后者为 直接半导体禁带宽度值。α(Absorption Coefficient ) 即为紫外可见漫反射中的吸收系数。α与A成正比。 方法4:利用[F(R∞)hν]2 对hν做图,利用直线部分外推至横坐标交点,即为禁带宽度值。也可利用 [F(R∞)hν]0.5 对hν做图,利用直线部分外推至横坐标交点,即为禁带宽度值。前者为间接半导体禁带宽度

半导体物理作业

3.试用掺杂半导体的能带图解释说明右图中N型硅中载流子浓度随温度的变化过程。并在图上标出低温弱电离区,中间电离区,强电离区,过渡区,高温本征激发区。 1低温电离区 第四章:半导体的导电性 1.半导体中有哪几种主要的散射机构,它们跟温度的变化关系如何?并从散射的观点解释下图中硅电阻率随温度的变化曲线。 (1)电离杂质的散射温度越高载流子热运动的平均速度越大,可以较快的掠过杂质离子不易被散射P正比NiT(-3/2) (2)晶格振动的散射随温度升高散射概率增大 (3)其他散射机构 1.中性杂质散射在温度很低时,未电离的杂志的书目比电离杂质的数目大的多,这种中性杂质也对周期性势场有一定的微扰作用而引起散射,当温度很低时,晶格振动散射和电离杂志散射都很微弱的情况下,才引起主要的散射作用 2.位错散射位错线上的不饱和键具有中心作用,俘获电子形成负电中心,其周围将有电离施主杂质的积累从而形成一个局部电场,称为载流子散射的附加电场 3.等同能谷间散射对于Ge、Si、导带结构是多能谷的。导带能量极小值有几个不同的波矢值。对于多能谷半导体,电子的散射将不只局限于一个能谷内,可以从一个能谷散射到另一个,称为谷间散射 AB段温度很低本征激发可忽略,载流子主要有杂志电离提供,随温度升高增加散射主要由电离杂质决定,迁移率随温度升高而增大,所以电阻率随温度升高而下降 BC段温度继续升高,杂质已经全部电离,本征激发还不显著,载流子基本上不随温度变化,晶格振动上升为主要矛盾,迁移率随温度升高而降低,所以电阻率随温度升高而下增大C段温度继续升高,本征激发很快增加,大量的本征载流子产生远远超过迁移率减小对电阻率的影响,杂质半导体的电阻率将随温度升高极具的下降,表现出同本征半导体相似的特征 第六章:pn结 1证明:平衡状态下(即零偏)的pn结E F=常数u 2.推导计算pn结接触电势差的表达式。

相关文档
相关文档 最新文档