文档库 最新最全的文档下载
当前位置:文档库 › 微波组合干燥技术的研究现状.

微波组合干燥技术的研究现状.

微波组合干燥技术的研究现状.
微波组合干燥技术的研究现状.

微波组合干燥技术的研究现状

[ 09-07-17 10:49:00 ] 作者:雷隆城编辑:studa090420

论文关键词:微波组合干燥现状

论文摘要:本文阐述了国内外微波真空干燥的研究现状,重点分析了各种微波干燥,并分析了微波真空于燥技术的几个问题。

1.序言

微波是指频率为300MHz~300GHz、波长为lmm~lm的电磁波。它的干燥原理是:微波发生器将微波辐射到待干燥的物料上,当微波射人物料内部时,使物料内的水等极性分子按微波频率作同步旋转和摆动;水等极性分子高速旋转的结果,使物料内部瞬时产生摩擦热,导致物料内部和表面同时升温,使大量的水分子从物料中蒸发逸出,从而达到干燥的目的。

微波真空干燥是随微波干燥技术发展起来的一项新的组合干燥技术。它不仅具有干燥速度快、时问短、物料温度低、色香味及营养成分保留好等优点,而且参数容易控制,能干燥多种不同类型的物料。目前我国虽有一些单位正在进行研究,但其技术性能还需要完善,在机理和工艺方面也还有很多问题需要深化和研究。

2.国内外研究现状

早在上世纪80年代,美国、加拿大、英国和德国就开始研究微波真空干燥技术,主要集中在美国的威斯康辛大学、加利福尼亚大学,加拿大的Britis C0lumbia大学,德国的Karlsruhe大学,英国的Queen University,希腊的国立科技大学,法国的Albi研究所等。研究的内容涉及微波真空干燥机理、传热传质微波真空干燥模拟、微波真空干燥能耗与工艺以及各种不同类型物料(香蕉,萝卜片,果胶,土豆,浆果等)的微波真空干燥操作等。

国内目前的研究单位有江南大学食品学院、东北大学、大连水产大学、中国农业大学、浙江大学、上海工程技术大学、华南理工大学、华南农业大学、天津轻工大学、上海辰灿轻工机械公司、四川大学食品学院食品科学与工程系、南京三乐微波技术有限公司等。

江南大学食品学院进行了甘蓝的微波真空和热风联合干燥试验。试验结果表明:微波真空联合干燥缩短干燥时问48%,提高了营养成分和叶绿素的保存率,改善了干燥品质。

大连水产大学张国琛进行了扇贝柱的微波-真空-联合干燥,试验研究了微波功率、真空度,微波炉启闭比、预处理盐水浓度和扇贝大小对干燥效果的影响,建立了扇贝微波真空干燥的动力学模型。

3. 微波组合干燥技术

组合干燥是一种具有广阔发展前景的干燥技术,它可以发挥各种干燥工艺的长处,克服各自缺点,借长补短,达到高效率、低能耗、优品质的干燥目的。由于微波干燥是一种完全不同于其它干燥方式的干燥技术,所以它也是与其它干燥方式组合最多的一种干燥技术,同时也是当前国际上研究最多的一种干燥技术。以下是几种较常见的组合方式。

3.1微波热风组合干燥(也称微波对流干燥)

在与微波组合的干燥方法中,微波热风组合干燥是研究最多的一种。由于热风干燥时间长、质量差,故不适合干燥热敏性物料;采用热风微波组合干燥可以克服上述缺点。此外,微波干燥的成本与热风干燥相比还是很高,单纯微波干燥是不经济的。热风干燥对物料来说是从表面向内干燥,温度梯度与水分转移的方向相反,而微波干燥是从内部加热,温度梯度与水分转移的方向相同,二者结合,可以达到既缩短干燥时间又降低成本的目的。微波与热风干燥可以有三种结合方式。

3.1.1.在临界含水率处加入微波

当干燥从恒速段进入降速段(即物料含水率达到临界水分 )时将微波能引入干燥器,使物料内部产生热量和蒸汽压,使水分扩散至物料的表面并被排除,这时利用微波会非常显著地提高干燥速度。

3.1.2.在干燥器的终端加入微波

单一的干燥系统在接近干燥终了时效率最低去除几个百分点的水分往往需要很长的时间,利用微波可以显著减少干燥时间。

3.1.3.在最初预热阶段加入微波

在干燥前物料含水率较高,可以先用微波将物料加热到蒸发温度,然后用普通热风干燥,去除表面水分,干燥时间可以缩短。

3.2.微波真空组合干燥

微波虽然具有加热速度快、干燥时间短、选择性好、能源利用率高和便于控制等优点,但单纯使用微波进行食品干燥,容易产生由于过热引起的烧伤现象和食品边缘焦化、结壳和硬化等现象;上述现象多半是由于温度过高和干燥过快引起的。采用真空可以降低水的蒸发温度,使物料在较低的温度下快速蒸发,同时还可避免氧化,因而改善了干燥品质。在医药、食品和化工领域有很多热敏性物料需要低温快速干燥,因此,将微波技术与真空技术相结合就成为一项极具发展前景和实用价值的新技术。从国内外有关微波干燥的研究现状来看,微波真空组合干燥也是目前发展较快的一种组合干燥技术。

3.2.1.脉冲间歇式微波真空干燥

微波干燥虽有许多优点,但经常会发生局部过热、表面硬化、颜色不正和加热不均匀等现象;此外,能量效率不高也是一个缺点。产生这些现象的原因之一就是热质传递控制不当,解决的方法之一是采用脉冲方式输入微波能,即短时间的微波加热和较长时间的间断。试验证明:当物料干燥到临界水分以后,连续施加微波能并不能加速水分的蒸发;采用间歇干燥的方法,不仅可以节省能量、提高干燥效率,还可以改善干后物料的品质。脉冲间歇式微波真空干燥技术是Edh0lm于1933年提出的。采用这种技术的特点是使物料中的水分和温度在间歇阶段能够均衡再分配,减少水分梯度,这将有利于提高下阶段的干燥速率。

试验还表明,脉冲微波干燥时,微波接通时间越长、断开时间越短,物料温度越高。因此,通过调节脉冲比或真空度可以改变物料的温度。

3.2.2.变功率微波真空干燥

加拿大食品工程研究所 Christene H.等进行了萝卜片的变功率微波真空干燥,微波的频率为2450MHz,微波功率4kW可调,真空度为13.3kPa,萝卜片的终水分为10%,微波谐振腔为圆筒形,直径350mm,长度500mm,采用的干燥工艺为:干燥开始后的最初19min微波功率为3kW,中间4min为1kW,最后10min为0.5kW。试验过程研究了颜色、复水性、密度和胡萝卜素、维生素含量等质量指标。结果表明:如果综合考虑,微波真空干燥的性能甚至优于真空冷冻干燥。美国加利福尼亚大学研制的微波真空干燥设备谐振腔是一个长12.2m 的不锈钢圆筒,中间有输送带,沿长度方向分为三个干燥区,第一干燥区的微波功率较大,真空度为1.33~3.99kPa,第二、第三干燥区的微波功率递减。说明变功率微波真空干燥是一个研究方向。

微波技术小论文

微波技术小论文 题目名称微波技术的发展方向与前景 概述 学院(系)电子与信息工程学院 专业电子信息工程 学生姓名任子辉学号1152351 2014 年 5 月21 日

微波技术小论文 1.引言 微波技术是近一个世纪以来最重要的科学技术之一,从雷达到广播电视、无线电通信再到微波炉,微波技术对社会的发展和人们生活的进步产生着深远的影响。微波通常是指频率范围在300MHz-300GHz内的电磁波,其波长约在1米到1毫米之间,可被进一步细分为分米波,厘米波和毫米波,其对应频率分别为特高频(UHF,ultra high frequency),超高频(SHF,super high frequency),极高频(EHF,extremely high frequency)。随着现代微波技术的发展,波长在1毫米以下的亚毫米波也被视为微波的范畴,这相当于把微波的频率范围进一步扩大到更高的频率。因此,有的文献里也把微波的频率范围定义为300MHZ-3000GHZ 本文介绍了微波技术的发展以及在各个领域中的应用,并对微波技术未来的发展方向进行了讨论。 2.微波技术发展简史 微波有着不同于其他波段的重要特点,它自被人类发现以来,就不断地得到发展和应用。自从19世纪末德国物理学家赫兹发现并用实验证明了电磁波的存在后,对电磁波的研究便迅速展开。对微波直到20世纪初期对微波技术的研究又有了一定的进展。但早期的设备不能满足实验的需要,主要表现为缺乏大功率的信号发生器和灵敏的信号接收器,因此早期的研究并没有取得实质性的进展。到了20世纪30 年代,高频率的超外差接受器和半导体混频器的出现为微波技术的进一步发展提供了条件,使得微波技术的发展取得的一定的进步。 在第二次世界大战期间,由于迫切需要能够对敌机及舰船进行探测定位的高分辨率雷达,大大促进了微波技术的发展。第二次世界大战后,微波技术进一步迅速发展,不仅系统研究了微波技术的传输理论,而且向着多方面的应用发展,并且一直在不断地完善。我国开始研究和利用微波技术是在20世纪70年代初期,首先是在连续微波磁控管的研制方面取得重大进展,特别是大功率磁控管的研制成功,为微波技术的应用提供了先决条件。20世纪80年代,我国开始生产微波炉,到目前为止,已经发展有家用微波炉、工业微波炉等系列产品,产品质量接近或达到世界先进水平。随着科学技术的迅猛发展,微波技术的研究向着更高频段──毫米波段和亚毫米波段发展。 3.微波技术发展现状和未来趋势 进入21 世纪,微波技术继续在广播、有线电视、电话和无线通信领域发挥着巨大的作用,在其他领域如计算机网络等应用中也崭露头角。在广播电视方面,截至2005 年,我国共有中波、短波、调频广播和电视发射台、转播台共计6.57

先进制造技术的现状和发展趋势

先进制造技术的现状和发展趋势xxxx xxx xxxxxxxxx 先进制造技术不仅是衡量一个国家科技进展水平的重要标志,也是国际间科技竞争的重点。我国正处于工业化经济进展的关键时期,制造技术是我们的薄弱环节。只有跟上进展先进制造技术的世界潮流,将其放在战略优先地位,并以足够的力度予以实施,,进一步推进国企改革,推动建立强大的企业集团。推进技术创新,推动大型企业尽快建立技术开发中心,广泛吸引人才,在重大技术创新项目中实行产学研结合,才能尽快缩小同发达国家的差距,才能在猛烈的市场竞争中立于不败之地。本文将详细介绍先进制造技术的含义、特点以及在我国的进展状况和进展趋势。 1 先进制造技术的含义和特点 1.1 含义 先进制造技术(AMT)是以人为主体,以运算机技术为支柱,以提升综合效益为目的,是传统制造业持续地吸取机械、信息、材料、能源、环保等高新技术及现代系统治理技术等方面最新的成果,并将其综合应用于产品开发与设计、制造、检测、治理及售后服务的制造全过程,实现优质、高效、低耗、清洁、灵敏制造,并取得理想技术经济成效的前沿制造技术的总称。 1.2 先进制造技术的特点 1)是面向工业应用的技术先进制造技术并不限于制造过程本身,它涉及到产品从市场调研、产品开发及工艺设计、生产预备、加工制造、售后服务等产品寿命周期的所有内容,并将它们结合成一个有机的整体。 2)是驾驭生产过程的系统工程先进制造技术专门强调运算机技术、信息技术、传感技术、自动化技术、新材料技术和现代系统治理技术在产品设计、制造和生产组织治理、销售及售后服务等方面的应用。它要持续吸取各种高新技术成果与传统制造技术相结合,使制造技术成为能驾驭生产过程的物质流、能量流和信息流的系统工程。 3)是面向全球竞争的技术随着全球市场的形成,使得市场竞争变得越来越猛烈,先进制造技术正是为适应这种猛烈的市场竞争而显现的。因

微波烧结技术

微波设备烧结技术的进展及未来展望 地点:微朗科技微波实验室 单位:株洲市微朗科技有限公司 时间:2013-01-10 声明:本研究成果归株洲市微朗科技有限公司所有,仿冒必究. 材料的微波烧结开始于20世纪60年代中期,W.R.Tinga首先提出了陶瓷材料的微波烧结技术;到20世纪70年代中期,法国的J.C.Badot和A.J.Berteand开始对微波烧结技术进行系统研究。20世纪80年代以后,各种高性能的陶瓷和金属材料得到了广泛应用,相应的制备技术也成了人们关注的焦点,微波烧结以其特有的节能、省时的优点,得到了美国、日本、加拿大、英国、德国等发达国家的政府、工业界、学术界的广泛重视,我国也于1988年将其纳入“863”计划。在此期间,主要探索和研究了微波理论、微波烧结装置系统优化设计和材料烧结工艺、材料介电参数测试,材料与微波交互作用机制以及电磁场和温度场计算机数值模拟等,烧结了许多不同类型的材料。20世纪90年代后期,微波烧结已进入产业化阶段,美国、加拿大、德国等发达国家开始小批量生产陶瓷产品。其中,美国已具有生产微波连续烧结设备的能力。 1、微波烧结的技术原理 微波烧结是利用微波加热来对材料进行烧结。它同传统的加热方式不同。传统的加热是依靠发热体将热能通过对流、传导或辐射方式传递至被加热物而使其达到某一温度,热量

从外向内传递,烧结时间长,也很能得到细晶。而微波烧结则是利用微波具有的特殊波段与材料的基本细微结构耦合而产生热量,材料的介质损耗使其材料整体加热至烧结温度而实现致密化的方法。 1.1 材料中的电磁能量耗散 材料对微波的吸收是通过与微波电场或磁场耦合,将微波能转化热能来实现的。黄向东等利用麦克斯韦电磁理论,分析了微波与物质的相互作用机理,指出介质对微波的吸收源于介质对微波的电导损耗和极化损耗,且高温下电导损耗将占主要地位。在导电材料中,电磁能量损耗以电导损耗为主。而在介电材料(如陶瓷)中,由于大量的空间电荷能形成的电偶极子产生取向极化,且相界面堆积的电荷产生界面极化,在交变电场中,其极化响应会明显落后于迅速变化的外电场,导致极化弛豫。此过程中微观粒子之间的能量交换,在宏观上就表现为能量损耗。 1.2 微波促进材料烧结的机制 研究结果表明,微波辐射会促进致密化,促进晶粒生长,加快化学反应等效应。因为在烧结中,微波不仅仅只是作为一种加热能源,微波烧结本身也是一种活化烧结过程。M. A.Janny等首先对微波促进结构的现象进行了分析,测定了高纯Al2O3烧结过程中的表观活化能Ea,发现微波烧结中Ea仅为170kj/mol,而在常规电阻加热烧结中Ea=575kj/mo l,由此可推测微波促进了原子的扩散。M.A.Janny等进一步用18O示踪法测量了Al2O3单晶的扩散过程,也证明微波加热条件下扩散系数高于常规加热时的扩散系数。S.A.Freem an等的实验结果表明,微波场具有增强离子电导的效应。认为高频电场能促进晶粒表层带电空位的迁移,从而使晶粒产生类似于扩散蠕动的塑性变形,从而促进了烧结的进行。Birnboin等分析了微波场在2个相互接触的介电球颗粒间的分布,发现在烧结颈形成区域,电场被聚焦,颈区域内电场强度大约是所加外场的10倍,而颈区空隙中的场强则是外场的

微波通信技术研究

中心议题: 微波简介 微波通信系统 微波发射机 解决方案: 提高QAM调制级数及严格限带 网格编码调制及维特比检测技术 自适应时域均衡技术 多载波并联传输 作为传输介质,微波有着其他通信方式无法比拟的优点。微波中继通信系统以及现有的微波宽带通信系统是已经商用的系统。从通信系统使用的信道传输频率来看,属于微波通信系统的有卫星通信系统、地面微波中继通信系统、本地多点分配接入系统(LMDS)等系统。这些微波通信系统基本上具有相同的发射机结构,本文将探讨通用的微波发射机技术。 微波简介 微波是指频率在300MHz~300GHz的电磁波,对应波长为1m~1km,传播速度与光速相同。目前工业微波设备所采用的微波频率为2450MHz和915MHz两种。在工业微波设备中,微波的特性主要表现为吸收性、穿透性和反射性。微波能够被极性分子的介质所吸收,并将微波能转化为热能,即微波对极性分子具有热效应。 当对介质施加频率达2450MHz的微波电场时,电场方向每秒钟变换24.5亿次,极性分子也会随之摆动24.5亿次。这种分子的摆动受到分子问作用力的干扰和阻碍而产生热能,形成宏观的微波加热,介质的温度也随之升高。水是典型的极性分子,所以微波可以用来对含水物料进行干燥。微生物的细胞也是由极性分子构成的。微波对微生物不仅具有热效应,而且具有生物效应,使微生物的细胞失去生物活性而死亡。所以,微波可以杀灭食品、药品或其他物料中的细菌、虫及虫卵。微波可以穿透绝缘材料(如陶瓷、玻璃、纸张、塑料等),遇到金属则会被反射。 微波的主要特性有以下几点。 ①微波能穿透高空电离层,这一特点为天文观测增加了一个“窗口”,使得射电天文学研究成为可能。同时,微波能穿透电离层这一特点又可被用来进行卫星通信和宇航通信。但另一方面,也正是由于微波不能为电离层所反射,所以利用微波的地面通信只限于天线的视距范围之内,远距离微波通信需用中继站接力。 ②微波的波长比一般宏观物体如建筑物、船舰、飞机、导弹等的尺寸短得多,因此当微波波束照射到这些物体上时将产生显著的反射。一般地说,电磁波的波长越短,其传播特性就越接近于光波。微波的波长短这一特点,对于雷达、导航和通信等应用都是很重要的。此

微波原理与技术论文

摘要:微波技术的理论基础是经典的电磁场理论,其目标是解决微波应用工程中的实际问题。微波是一门理论与实践密切结合的一门知识,微波技术理论的出发点是麦克斯维方程组,通过解决微波在传输、处理过程中的遵循的原理,逐渐使微波技术发展成为一门很完整的学科,并在工程上有日新月异的应用。在加热技术上形成一种全新的观念,在通信方面给信息领域带来一场空前的革命。关键词:微波技术;微波加热;通信;电磁波;天线 Abstract The theoretical basis of microwave technique is the classical electromagnetic theory, the goal is to solve the practical problems in microwave engineering. Microwave is a knowledge of a close combination of theory and practice, the theoretical starting point of microwave technology is the Max equations, solved by microwave in transmission, processing process follow the principle, the development of microwave technology has become a very complete discipline, and change rapidly used in engineering. The formation of a new idea in the heating technology in communication, to the information industry brought an unprecedented revolution. 1.引言 随着科学技术的迅速发展和生产工艺的不断改进,微波技术已在许多工业生产领域得到应用。在国内,微波技术已应用于玻璃纤维、化工产品、保温材料、木材等的干燥,食品、医疗的灭菌、干燥和焙烤。并在医疗、环保、农业等领域也有所应用。微波技术的应用,提高了生产效率和产品质量,降低了能耗和环境污染,减轻了人的劳动强度,提高了生产效益。在国际上,许多工业发达国家都对微波的工业应用非常重视,把微波技术作为改进生产工艺和提高产品质量的重要手段。 2.微波的特性 一是似光性。微波波长非常小,当微波照射到某些物体上时,将产生显著的反射和折射,就和光线的反、折射一样。同时微波传播的特性也和几何光学相似,能像光线一样地直线传播和容易集中,即具有似光性。这样利用微波就可以获得方向性好、体积小的天线设备,用于接收地面上或宇宙空间中各种物体反射回来的微弱信号,从而确定该物体的方位和距离,这就是雷达导航技术的基础。 二是穿透性。微波照射于介质物体时,能深入该物体内部的特性称为穿透性。例如微波是射频波谱中惟一能穿透电离层的电磁波(光波除外)。因而成为人类外层空间的“宇宙窗口”;微波能穿透生物体,成为医学透热疗法的重要手段;

我国的先进制造技术研究现状及发展趋势

中国先进制造技术的发展趋势 随着科学技术的进步以及新的管理思想、管理模式和生产模式的引进,近年来,先进制造技术在机械加工领域中的应用越来越广泛,越来越深入。机械制造技术是研究产品设计、生产、加工制造、销售使用、维修服务乃至回收再生的整个过程的工程学科,是以提高质量、效益、竞争力为目标,包含物质流、信息流和能量流的完整的系统工程。改革开放以来,随着科学技术的飞速发展和市场竞争日益激烈,越来越多的制造企业开始将大量的人力、财力和物力投入到先进的制造技术和先进的制造模式的研究和实施策略之中,我国制造科学技术有日新月异的变化和发展,但与先进的国家相比仍有一定差距,为了迎接新的挑战,必须认清制造技术的发展趋势,缩短与先进国家的差距,使我国的产品上质量、上效率、上品种和上水平,以增强市场竞争力,因此,对制造技术及制造模式的研究和实施是摆在我们面前刻不容缓的重要任务,以实现我国机械制造业跨入世界先进行列。 一先进制造技术概述 (1)先进制造技术的体系结构及分类 先进制造技术是系统的工程技术,可以划分为三个层次和四个大类。 三个层次:一是优质、高效、低耗、清洁的基础制造技术。这一层次的技术是先进制造技术的核心,主要由生产中大量采用的铸造、锻压、焊接、热处理、表面保护、机械加工等基础工艺优化而成。二是新型的制造单元技术。这是制造技术与高技术结合而成的崭新制造技术。如制造业自动化单元技术、极限加工技术、质量与可靠性技术、新材料成型与加工技术、激光与高密度能源加工技术、清洁生产技术等。三是先进制造的集成技术。这是运用信息技术和系统管理技术,对上述两个层次进行技术集成的结果,系统驾驭生产过程中的物质流、能量流和信息流。如成组技术(CT)、系统集成技术(SIT)、独立制造岛(AMI)、计算机集成制造系统(CIMS)等。 四个大类:一是现代设计技术,是根据产品功能要求,应用现代技术和科学知识,制定方案并使方案付诸实施的技术。它是门多学科、多专业相互交叉的综合性很强的基础技术。现代设计技术主要包括:现代设计方法,设计自动化技术,工业设计技术等;二是先进制造工艺技术,主要包括精密和超精密加工技术、精密成型技术、特种加工技术、表而改性、制模和涂层技术;三是制造自动化技术,其中包括数控技术、工业机器人技术、柔性制造技术、计算机集成制造技术、传感技术、自动检测及信号识别技术和过程设备工况监测与控制技术等;四是系统管理技术,包括工程管理、质量管理、管理信息系统等,以及现代制造模式(如精益生产、CIMS、敏捷制造、智能制造等)、集成化的管理技术、企业组织结构与虚拟公司等生产组织方法。 (2)先进制造技术的特点 先进性:作为先进技术的基础——制造技术,必须是经过优化的先进工艺。因此,先进制造技术的核心和基础必须是优质、高效、低耗、清洁的工艺。它从传统工艺发展起来,并与新技术实现了局部或系统集成。 通用性:先进制造技术不是单独分割在制造过程的某一环节,它覆盖了产品设计、生产设备、加工制造、维修服务、甚至回收再生的整个过程。 系统性:随着微电子、信息技术的引入,先进制造技术能驾驭信息生成、采集、传递、反馈、调整的信息流动过程。先进制造技术能驾驭生产过程的物质流、能源流和信息流的系统工程。 集成性:先进制造技术由于专业、学科间的不断渗透、交叉、融合,界限逐渐淡化甚至

微波真空干燥全解

现代食品加工技术微波真空干燥技术 汤凤霞

微波真空干燥技术 一、微波真空干燥原理 二、微波真空干燥的特点 三、几个重要因素对微波真空干燥效果 的影响 四、微波真空干燥在农产品加工中的应 用 五、展望

一、微波真空干燥原理 ●微波是频率在300兆赫的电磁波。 ●被加热介质物料中的水分子是极性分子。它在快速变化的高频电磁场作用下,其极性取向将随着外电场的变化而变化,造成分子的运动和相互摩擦效应。 ●此时微波场的场能转化为介质内的热能,使物料温度升高,产生热化和膨化等一系列物化过程而达到微波加热干燥的目的。

●微波加热主要特点 加热迅速 微波加热与传统加热方式完全不同。它是使被加热物料本身成为发热体,不需要热传导的过程。因此,尽管是热传导性较差的物料,也可以在极短的时间内达到加热温度。 ●加热均匀 无论物体各部位形状如何,微波加热均可使物体表里同时均匀渗透电磁波而产生热能。所以加热均匀性好,不会出现外焦内生的现象。

●节能高效 由于含有水分的物质容易吸收微波而发热,因此除少量的传输损耗外,几乎无其它损耗。故热效率高、节能。它比红外加热节能1/3以上。 ● 工艺先进 只要控制微波功率即可实现立即加热和终止。应用人机界面和PLC可进行加热过程和加热.工艺规范的可编程自动化控制。 ● 安全无害 由于微波能是控制在金属制成的加热室内和波导管中工作,所以微波泄漏极少,没有放射线危害及有害气体排放,不产生余热和粉尘污染,既不污染食物,也不污染环境。

● ●脱水农产品具有方便、健康、毋须冷藏、保藏运输费用低等优点,在世界各地有着广阔的市场前景。 ●目前传统的热风干燥已不能满足消费者追求品质一流的要求 ●真空冷冻干燥的产品品质优良,但存在的问题: ●干燥时间长,设备投资大,生产成本高

微波通信技术

WEIBO TONGXIN JISHU 微波通信技术(microwave communication techniques) 微波通信是指利用波长为1米~0.1毫米(频率为0.3~3000吉赫)的无线电波进行的通信。包括微波视距接力通信、卫星通信、散射通信、一点多址通信、毫米波通信及波导通信等。 微波通信特点是:频率范围宽,通信容量大,传播相对较稳定,通信质量高,采用高增益天线时可实现强方向性通信,抗干扰能力强,可实施点对点、一点对多点或广播等形式的通信联络。它是现代通信网的主要传输方式之一,也是空间通信的主要方式。微波通信在军事战略通信和战术中占有显著的地位。 微波按照波长可分为分米波、厘米波、毫米波和丝米波,其中部分波段用一些常用代号来表示(见表)。 L以下频段适用于移动通信。S至Ku波段适用于以地球表面为基地的通信,其中,C波段的应用最为普遍。60GHz的电

波在大气中衰减较大,适用于近距离的保密通信。94GHz的电波在大气中衰减很小,适合地球站与空间站之间的远距离通信。 系统组成及工作原理微波通信系统由发信机、收信机、多路复用设备、用户设备和天馈线等组成(见图1)。其中发信机由调制器、上变频器、高功率放大器组成;收信机由低噪声放大器、下变频器、解调器组成;天馈线设备由馈线、双工器及天线组成。 图1微波通信系统组成

其工作原理是:用户设备把各种要传输的信息变换成基带信号或把基带信号变换成原信息。多路复用设备可使多个用户的信号共用一个传输信道。调制器把基带信号调制到中频(频率一般为数十至数百兆赫)上,也可直接调制到射频上。解调器的功能与调制器相反。上、下变频器实现中频信号与微波信号之间的频率变换。高功率放大器把发射信号提高到足够的电平,以满足在信道中传输的需要。百瓦以下的设备中,功率放大器采用固态微波功放;当射频输出电平在百瓦以上直至数十千瓦时,通常采用行波管或速调管放大器。低噪声放大器用于提高接收机的灵敏度,主要采用微波低噪声场效应管放大器。天馈线设备是传输和辐射(或接收)射频电磁波的装置。微波通信天线一般为强方向性、高效率、高增益的反射面天线,常用的有抛物面天线、卡塞格伦天线等。馈线主要采用波导或同轴电缆。传播媒介为视距空间、人造中继转发设施(如人造卫星)或大气层中特定的气象体(如湍流团)。除了与主信号流程有关的各部分外,在系统中还有其它一些部件和辅助电路,如:勤务、监(遥)控、自检、人-机对话和自动化操作等功能。军用微波系统还具有独立加密、专用抗干扰模块等。 发展及应用微波通信技术的发展经历了一个从模拟到数字的过程。模拟微波通信主要是在早期用于传输多路载波电话、载波电报及电视等,其调制方式一般为调频。数字微波通信主要用于传输多路数字电话、高速数据、可视电话及数字电

电磁场与微波技术

电磁场与微波技术 080904 (一级学科:电子科学与技术) 本学科是电子科学与技术一级学科下属的二级学科,是1990年由国务院学位办批准的博士学位授予点,同时承担接收博士后研究人员的任务,2003年被批准为国防科工委委级重点学科点。本学科专业内容涉及电磁场理论、微波毫米波技术及其应用,主要领域包括电磁波的产生、传播、辐射、散射的理论和技术,微波和毫米波电路系统的理论、分析、仿真、设计及应用,以及环境电磁学、光电子学、电磁兼容等交叉学科内容。多年来在多种军事和国民经济应用的推动下,本学科在天线理论与技术、电磁散射与逆散射、电磁隐身技术、微波毫米波理论与技术、光电子技术、电磁兼容、计算电磁学与电磁仿真技术、微波毫米波系统工程与集成应用等方面的研究形成了鲜明的特色,取得了显著成果。其主要研究方向有: 1.计算电磁学及其应用:设计、研究、开发高精度、高效率电磁计算算法;研究高效精确电磁计算算法在目标特性、微波成像及遥感、电磁环境预测、天线分析和设计等方面的应用。 2.微波/毫米波电路设计理论与技术:研究有源元器件与电路模型、与微电子、微机械工艺相关的材料器件等模型的建立及参数提取;研究低相噪频率源技术,微波/毫米波单片集成电路设计,基于微机械(MEMS)的微波/毫米波开关、移相器和滤波器设计。 3.电磁波与物质的相互作用:研究电磁散射和逆散射算法,军事装备目标特性测试技术,隐身目标测试技术,目标散射中心三维成像技术;研究轻质、宽频、自适应智能隐身材料。 4.微波/毫米波系统理论与集成应用技术:设计、研究、开发特殊环境下的微波/毫米波系统;研究微波/毫米波测试技术;研究天线设计理论与技术。 一、培养目标 掌握坚实的电磁场与微波技术以及相应学科的基础理论,具有系统的专门知识,熟练应用计算机,掌握相应的实验技术,掌握一门外国语,学风端正,具备独立从事科学研究工作和独立担负专门技术工作的能力,能胜任科研、生产单位和高等院校的研究、开发、教学或管理等工作。 二、课程设置

食品的微波干燥技术

食品的微波干燥技术 (一)微波干燥特点和机制 食品物料因储存、运输或其他目的常需要干燥脱水。微波干燥方法可分为常压微波干燥、微波真空干燥和微波冷冻干燥。微波干燥的特点主要有以下几个方面: 1.由内向外干燥微波干燥过程中首先在物料内层形成干燥层,然后由里层向外扩展,这主要是因为微波能透人物料内部被吸收,其微波能量瞬时转为热能,使物料整体升温(包括里层物料及其所含有的水分温度)。此时,里层水蒸气压力骤升,驱动水蒸气向物料表层排出。因此,物料里层首先出现干燥层,并逐渐向外层扩展。而一般干燥方法是食品外部首先受热,食品表面先干燥,然后是次外层受热、干燥。微波加热是内部加热,物品的最内层首先干燥,最内层水分蒸发迁移至次内层或次内层的外层,这样就使得外层的水分越来越多,所以随着干燥过程的进行,其外层的传热系数不仅没有下降,反而有所提高。因此在微波干燥过程中,水分由内层向外层的迁移速度很快,即干燥速度比一般的干燥速度快很多。 2.脱水后期干燥在低含水量(小于5%)的物料干燥过程中,微波干燥较常规干燥方法效率高。微波干燥尤其适用于一般干燥脱水的后期干燥处理。 3.微波干燥节能采用微波加热技术对物料加热时,物料吸收微波能的量远大于微波加热区设备部件(箱体)对微波能的吸收。因此,物料温升远大于箱体,即意味着微波加热设备能量利用率远大于常规加热设备。 (二)微波真空干燥技术及应用 微波真空干燥技术是以微波加热为加热方式的真空干燥。对于一些热敏性材料,宜在低温下干燥,采用微波真空干燥不仅可以降低干燥温度,而且还可大大缩短干燥时间,有利于产品质量的进一步提高。微波真空干燥主要用于对果汁、谷物和种子的干燥。草莓、木莓采用微波真空干燥时,其维生素C的保存率高于90%;对于果汁中的挥发性风味物质的保存情况,微波真空干燥的效果好于喷雾干燥和冷冻干燥,因为喷雾干燥温度较高,而冷冻干燥时问较长。 微波真空干燥技术除了用于浓缩果汁以外,还可以对蔬菜、水果进行低温干

先进制造技术的现状和发展趋势

先进制造技术的现状和发展趋势 xxxx xxx xxxxxxxxx 先进制造技术不仅是衡量一个国家科技进展水平的重要标志,也是国际间科技竞争的重点。我国正处于工业化经济进展的关键时期,制造技术是我们的薄弱环节。只有跟上进展先进制造技术的世界潮流,将其放在战略优先地位,并以足够的力度予以实施,,进一步推进国企改革,推动建立强大的企业集团。推进技术创新,推动大型企业尽快建立技术开发中心,广泛吸引人才,在重大技术创新项目中实行产学研结合,才能尽快缩小同发达国家的差距,才能在猛烈的市场竞争中立于不败之地。本文将详细介绍先进制造技术的含义、特点以及在我国的进展状况和进展趋势。 1 先进制造技术的含义和特点 1.1 含义 先进制造技术(AMT)是以人为主体,以运算机技术为支柱,以提高综合效益为目的,是传统制造业不断地吸取机械、信息、材料、能源、环保等高新技术及现代系统治理技术等方面最新的成果,并将其综合应用于产品开发与设计、制造、检测、治理及售后服务的制造全过程,实现优质、高效、低耗、清洁、灵敏制造,并取得理想技术经济成效的前沿制造技术的总称。 1.2 先进制造技术的特点 1)是面向工业应用的技术先进制造技术并不限于制造过程本身,它涉及到产品从市场调研、产品开发及工艺设计、生产预备、加工制造、售后服务等产品寿命周期的所有内容,并将它们结合成一个有机的整体。 2)是驾驭生产过程的系统工程先进制造技术专门强调运算机技术、信息技术、传感技术、自动化技术、新材料技术和现代系统治理技术在产品设计、制造和生产组织治理、销售及售后服务等方面的应用。它要不断吸取各种高新技术成果与传统制造技术相结合,使制造技术成为能驾驭生产过程的物质流、能量流和信息流的系统工程。 3)是面向全球竞争的技术随着全球市场的形成,使得市场竞争变得越来越猛烈,先进制造技术正是为适应这种猛烈的市场竞争而显现的。因此,一个国家的先进制造技术,它的主体应该具有世界先进水平,应能支持该国制造业在全球市场的竞争力 2 先进制造技术的组成 先进制造技术是为了适应时代要求提高竞争能力,对制造技术不断优化和推陈出新而形

微波真空干燥设备的七大优点

国外发达国家在八十年代时已开始进行工业化微波真空干燥设备开发,并在实际应用中取得良好的效果。法国国际微波公司用微波真空干燥设备加工无籽葡萄干,将传统工艺65℃、24小时热风烘干变为50℃、5小时微波真空干燥,产品质量和产量都大大提高。在国内率先开始研发微波真空设备,通过几年的努力,完成工业化10KW微波真空干燥设备研制。为制药工程、生物工程、化工工程、材料工程以及农副产品深加工提供了一种新型、高效的干燥设备。 如下是微波真空干燥设备干燥的几大优点: 1、高效常规的真空干燥设备都采用蒸汽进行加热,需要从里到外进行加热,加热速度慢需要耗费大量的煤,而微波真空干燥设备采用的是电磁波加热,无需传热媒介,直接加热到物体内部,升温速度快,1千瓦的微波能在3-5分钟内将常温下的水加热到100℃,避免了上述缺点,所以速度快、效率高、干燥周期大大缩短,能耗降低。与常规干燥技术相比可提高工效四倍以上。 2、加热均匀由于微波加热,是从内到外对物料进行同时加热,物料的内外温差很小,不会产生常规加热中出现的内外加热不一致的状况,从而产生膨化的效果,利于粉碎,使干燥质量大大提高。 3、易控,便于连续生产及实现自动化,由于微波功率可快速调整及无惯性的特点,易于即时控制,可以在40℃-100℃之间任意调节温度。 4、备体积小,安装维修方便,不用占太大的场地。 5、微波真空干燥设备质量好,微波真空干燥设备在延长食品的保质期、保存食品原有的风味和营养成分、保留原料的生理活性、增强保健食品的功能性、提高农产品的附加值等方面。与常规方法相比,所加工的产品质量有较大幅度的提高。 6、微波真空干燥设备微波具有消毒、杀菌的功效,产品安全卫生。保质期长。 7、微波真空干燥设备经济效益显著。传统的干燥所需的时间很长、速度很慢、能耗大、加工费用高。采用微波加热,可以节约大量的能源、提高加热和干燥的速度。这是因为微波具有穿透性,在对物体加热时,不需要任何传媒,且可对物料内外同时加热。根据国内外资料显示,采用微波设备对物料加热,其速度和效能是常规加热方法的4~20倍。 从以上介绍的特点中,节能、降耗、提高产品质量、安全卫生、设备投资成本低等诸方面即可看出其经济效益和社会效益的显著。目前新型工业化微波真空干燥设备从2KW-100KW微波真空干燥设备已形成系列产品。这将为我国国民经济诸多领域及科研部门提供一种现代化的高新技术干燥设备。

陶瓷材料的微波烧结特性及应用

第24卷 第5期 2002年5月武 汉 理 工 大 学 学 报JOURNAL OF W UHAN UN I VERSI T Y OF TECHNOLOG Y V o l .24 N o.5 M ay .2002文章编号:167124431(2002)0520043204 陶瓷材料的微波烧结特性及应用3 王 念 周 健(武汉理工大学)  摘 要: 介绍了微波烧结陶瓷材料的应用历史、基本原理,分析了陶瓷材料的微波烧结特性和微波烧结在氧化物陶瓷、非氧化物陶瓷及透明陶瓷方面的应用,指出了应用中存在的一些亟待解决的问题,展望了微波烧结陶瓷材料的应用前景。 关键词: 微波加热; 微波烧结; 陶瓷材料 中图分类号: TQ 17012文献标识码: A 收稿日期:2001212208. 作者简介:王 念(19772),男,硕士生;武汉,武汉理工大学材料复合新技术国家重点实验室(430070).3武汉市晨光计划(20005004034)1 微波是一种电磁波,它遵循光的有关定律,可以被物质传递、吸收或反射,同时还能透过各种气体,很方便地实现在各种气氛保护下的微波加热及有气相参与的合成反应[1]。材料在微波场中可简要地分为下列三种类型[2]:(1)微波透明型材料:主要是低损耗绝缘体,如大多数高分子材料及部分非金属材料,可使微波部分反射及部分穿透,很少吸收微波。这类材料可以长期处于微波场中而不发热,可用作加热腔体内的透波材料。(2)全反射微波材料:主要是导电性能良好的金属材料,这些材料对微波的反射系数接近于1,仅极少数 入射的微波能量能透入,可用作微波加热设备中的波导、微波腔体、搅拌器等。 (3)微波吸收型材料:主要是一些介于金属与绝缘体之间的电介质材料,包括纺织纤维材料、纸张、木材、陶瓷、水、石蜡等。 微波加热技术早在20世纪40年代末期就已产生,50年代美国的V on H i ppel 在材料介质特性方面的开创性研究为微波加热的应用奠定了基础[3]。微波烧结就是利用微波加热原理来对材料进行的烧结。作为一种新型的陶瓷加工技术,微波烧结的应用时间并不长。加拿大的W .R .T inga 等人在60年代末期最早尝试了用微波加热及烧结陶瓷材料,并获得了初步成功[2]。进入80年代以后,人们对微波烧结技术进行了广泛而深 入的研究,并成功的制备出了A l 2O 3、B 4C 、Y 2O 32Zr O 2、Si O 2、T i O 2、ZnO 等陶瓷材料[3]。 1 微波烧结陶瓷材料的基本原理 1.1 微波烧结的微观机理 陶瓷材料在微波电磁场的作用下,会产生如电子极化、原子极化、偶极子转向极化和界面极化等介质极化[4],参加极化的微观粒子种类不同,建立或消除极化的时间周期也不一样。由于微波电磁场的频率很高,使材料内部的介质极化过程无法跟随外电场的变化,极化强度矢量P 会滞后于电场强度矢量E 一个角度,导致与电场同相的电流产生,这就构成了材料内部的耗散。在微波波段,主要是偶极子转向极化和界面极化产生的吸收电流构成材料的功率耗散。 微波烧结的成功与否,关键取决于材料自身的特性,如介电性能、磁性能以及导电性能等。当微波穿透和传播到介电材料中时,内部电磁场使电子、离子等产生运动,而弹性惯性和摩擦力使这些运动受到阻碍,从而引起了损耗,这就产生了体加热[5]。从满足微波烧结的角度出发,陶瓷材料应具有的最重要特性是损耗正切 tg ?[6],它表征了材料将所吸收的微波能转化为热能的能力;同时为达到材料与微波的最佳耦合状态,一个 适中的相对介电常数Ε 和较高的介电损耗因子Ε 是必须的,因为Ε 表征了微波通过材料的能力,而Ε 则表

数字微波通信技术的发展及应用

数字微波通信技术的发展及应用 发表时间:2018-12-17T17:13:38.747Z 来源:《基层建设》2018年第31期作者:牛同江[导读] 摘要:数字微波通信技术是在时分复用技术的基础上发展而来的一种新技术,不仅可以传输电话信号,还可以传输数据信号及图像信号,所以在十分广泛的领域都得到了应用,特别是在科学技术日新月异的当今时代,数字微波通信技术大的发展前景十分广阔,应用范围也越来越广泛。 甘肃省新闻出版广电局无线传输中心711台甘肃兰州 730000 摘要:数字微波通信技术是在时分复用技术的基础上发展而来的一种新技术,不仅可以传输电话信号,还可以传输数据信号及图像信号,所以在十分广泛的领域都得到了应用,特别是在科学技术日新月异的当今时代,数字微波通信技术大的发展前景十分广阔,应用范围也越来越广泛。可见,对数字微波通信技术的发展及应用进行研究具有十分重要的现实意义,本文主要对此进行探究。 关键词:数字微波通信技术;发展;应用微波是当今时代应用范围十分广阔的一种通信传输方式,数字微波通信技术就是利用微波来传输数字信息的一种方式,同时还能够利用电波空间传输各种信息甚至是对相互之间没有任何关联的信息进行传输,而且还能够在此基础上再生中继,不得不说这是一种发展十分迅速的一种通信方式,本文主要对数字微波通信技术的发展及应用进行研究,希望能够有效促进数字微波通信技术的不断发展。 1 数字微波通信技术的特点 数字微波通信技术之所以发展迅速且应用范围十分广泛是因为其具有其独特的优势。数字微波通信技术的特点及其具体表现详见下表: 表1 数字微波通信技术的特点及其具体表现 2 数字微波通信技术的发展 微波通信技术是微波频段借助于地面视距进行信息传播的一种无线通信技术,已经出现了近几十年的时间。在出现初期阶段,微波通信系统通常是模拟制式的,它与当时的同轴电缆载波传输系统相同都是通信网长途传输干线的重要传输方式。具体而言,我国各个城市之间的电视节目是通过微波来进行传输的。20世纪70年代初期随着科学技术的进步,人们开发出了几十兆比特每秒容量的数字微波通信系统,可以说这个阶段是通信技术自模拟阶段向数字阶段转变的关键时期。20世纪80年代末期,同步数字系列在传输系统中已经变得十分常见,可以说已经被普遍应用,数字微波通信系统的容量也随之不断增大。当前,我们已经进入了科学技术日新月异的新时代,数字微波通信技术与光纤、卫星一起被看作现代通信技术的重中之重。 当今时代,数字微波通信技术不仅在传统传输领域内得到了关注,更在固定宽带接入领域得到了众多专家学者的高度重视,可见数字微波通信技术发展态势良好,发展前景十分广阔。 3 数字微波通信技术的主要发展方向 3.1 实现正交幅度调制级数的提升以及严格限带 要有效提升数字微波通信技术的频谱利用率一般需要应用到多电平正交幅度调制技术,当前阶段,通常要应用到256与512正交幅度调制,未来还会应用到1024和2048正交幅度调制。此外,对于信号滤波器的设计要求也会变得越来越严格,必须要确保其余弦滚降系数可以维持在一定范围内。

微波技术的当前应用浅析

2012—2013学年上学期微波工程 期中论文 微波技术的当前应用浅析 学生姓名:邓兴盛 学号: 10908030101 课程名称: 微波工程 指导教师:何俊 专业班级:电子信息工程 完成时间: 2012年5月20日

微波技术的当前应用浅析 【摘要】微波技术早在二战结束不久就已经在工业上得到应用,但真正得到重视确实在上世纪七八十年代,经过了多年的发展已逐步形成了一系列的交叉技术,在不同的领域都发挥着其独有的优势和特殊作用,本文就目前世界上微波技术在不同领域的应用及其前景做一简单的分析,并就微波技术在应用中的一些需要我们共同关注的问题试图做一些思考。 【关键词】微波技术,应用价值,影响思考 【正文】1864年,英国科学家麦克斯韦在总结前人研究电磁现象的基础上,建立了完整的电磁波理论。他断定电磁波的存在,推导出电磁波与光具有同样的传播速度。1887年德国物理学家赫兹用实验证实了电磁波的存在。之后,1898年,马可尼又进行了许多实验,不仅证明光是一种电磁波,而且发现了更多形式的电磁波,它们的本质完全相同,只是波长和频率有很大的差别。至此,随着人们对电磁波概念的认知,开始不断地认识到了电磁波在实际生活中的应用价值。 一个典型的例子,1936年4月美国科学家South Worth用直径为12.5cm 青铜管将9cm的电磁波传输了260m远,从而它证实了麦克斯韦的另一个预言──电磁波可以在空心的金属管中传输,因此在第二次世界大战中微波技术的应用就成了一个热门的课题。战争的需要,促进了微波技术的发展,而电磁波在波导中传输的成功,又提供了一个有效的能量传输设备,微波电真空振荡器及微波器件的发展十分迅速。在1943年终于制造出了第一台微波雷达,工作波长在10cm。在第二次世界大战期间,由于迫切需要能够对敌机及舰船进行探测定位的高分辨率雷达,大大促进了微波技术的发展。 一、微波的存在 微波是指波长在1mm~1000mm、频率在300MHz~300GHz范围之间的电磁波,因为它的波长与长波、中波与短波相比来说,要“微小”得多,所以它也就得名为“微波”了。 微波有着不同于其他波段的重要特点,它自被人类发现以来,就不断地得到发展和应用。19世纪末,人们已经知道了超高频的许多特性,赫兹用火花振荡得到了微波信号,并对其进行了研究。但赫兹本人并没有想到将这种电磁波用于通信,他的实验仅证实了麦克斯韦的一个预言──电磁波的存在。

微波冷冻干燥技术的简要介绍

微波冷冻干燥技术的简要介绍 彭晨1,李楚鑫2 (1应化1402,2014310200230,952796045@https://www.wendangku.net/doc/a214642500.html,;2应化1402,2014310200229, 1174218328@https://www.wendangku.net/doc/a214642500.html,) 摘要:随着技术的发展,干燥技术也有了较大的发展,不仅仅局限于传统的干燥方式,而是将一些融入一些手段,从而提高干燥效率。近年来,微波冷冻干燥技术方面较为热门。也是由于微波冷冻干燥技术的发展,为食品产业生产带来了广阔的发展空间。 关键词:微波冷冻干燥技术;原理;特点;食品加工 1.引言 在干燥技术中,真空冷冻干燥技术能够较好地保留物料中的有效成分,但是由于冷冻干燥装置采用的是传统加热方式,冷冻干燥也具有干燥速率低、时间长、能耗高等缺点。微波冷冻干燥是将高效的微波辐射加热技术和真空冷冻干燥技术相结合的极具应用价值的一项新技术[1]。微波加热是利用介电加热原理,具有加热迅速、均匀、节能高效、加热质量高、营养破坏少等特点.随着食品产业的发展,食品干燥技术显得尤其重要,特别是利用更新更先进的手段,能够提高其生产效率。而常用的干燥技术因为各种局限已经不能满足产业高效的需求,因此,微波冷冻干燥技术就得到了较大的发展。以下主要就其原理、工艺技术特点和其应用效果等三方面作主要陈述。 2. 常用的干燥技术 干燥技术发展到今天,常用的几种技术主要有加热干燥、真空干燥、喷雾干燥、冻结干燥、微波冷冻干燥等主要干燥技术,而微波冷冻干燥技术结合之前的冷冻干燥技术的各项优点将微波作为热源,从而提高效率、降低能耗。 3. 微波冷冻干燥技术的基本原理 微波是一种电磁波,可以产生高频电磁场,介质材料中的极性分子在电磁场中随着电磁场的频率不断改变极性取向,使分子来回振动,产生摩擦热。由于湿物料中液态水介质耗损较大,便可大量吸收微波能并且能够转变成热能,从而使得物料的温度逐渐升高,并且微波加热能使物体均匀受热[2].并且微波加热升温快,具有非热效应。冷冻干燥装置主要包括制冷系统、真空系统、捕水系统、以及加热系统。普通加热方式总是要靠内外温度梯度来传热,因此表面温度高于内部温度,而这样的传热方式传热速度会很慢,所以微波冷冻干燥技术就是利用将微波应用到加热系统中,从提高加热速率。

先进制造技术的现状和发展趋势

先进制造技术的现状和发展趋势

摘要近年来, 制造业出现了世界范围的研究并采用“先进制造技术”的浪潮,先进制造技术已成为当代国际间的科技竞争的重点。本文论述了先进制造技术的发展现状与发展趋势,指出:信息化、精密化、集成化、柔性化、动态化、虚拟化、智能化、绿色化将是未来制造技术的必然发展方向。 1.先进制造技术简介 1.1先进制造技术的定义 先进制造技术AMT(advanced manufacturing technology)是制造业不断吸收机械、电子、信息(计算机与通信、控制理论、人工智能等)、能源及现代系统管理等方面的成果,并将其综合应用于产品设计、制造、检测、管理、销售、使用、服务乃至回收的全过程,以实现优质、高效、低耗、清洁和灵活生产,提高对动态多变的产品市场的适应能力和竞争能力的制造技术的总称。它集成了现代科学技术和工业创新的成果,充分利用了信息技术,使制造技术提高到新的高度。先进制造技术是不断利用新技术逐步发展和完善的技术,因而它具有动态性和相对性。先进制造技术以提高企业竞争能力为目标,应用于产品的设计、加工制造、使用维修、甚至回收再生的整个制造过程,强调优质、高效、清洁、灵活生产,体现了环境保护与可持续发展和制造的柔性化。 1.2 先进制造技术的内涵和技术构成 先进制造技术的技术构成可以分为以提高生产效率和快速响应市场需求为 目的的技术构成和以满足特种需求为目的的技术构成。 以提高生产效率和快速响应市场需求为目的的技术构成强调制造系统与制 造过程的柔性化、集成化和智能化。包括: (1) 系统理论与技术(着重制造系统组织优化与运行优化,以提高制造系统的整体柔性与效率) 。 (2) 制造过程的单元技术(着重制造过程的优化,以提高单元的效率与精 度) 。系统理论与技术涉及范围包括:CIMS、敏捷制造、精益生产、智能制造等。制造过程单元技术涉及的范围包括:设计理论与方法、并行工程、系统优化、运行、控制、管理、决策与自组织技术、虚拟制造技术、制造过程智能检测、信息处理、状态检测、补偿与控制、制造设备的自诊断与自修复、智能机器人技术、

相关文档
相关文档 最新文档