文档库 最新最全的文档下载
当前位置:文档库 › 修正版--电位滴定法测定氯离子浓度

修正版--电位滴定法测定氯离子浓度

修正版--电位滴定法测定氯离子浓度
修正版--电位滴定法测定氯离子浓度

电位滴定法测定氯离子浓度

一、实验目的

二、1.学习电位滴定法的基本原理和实验操作。

2. 掌握电位滴定中数据的处理方法

二、实验原理

电位滴定法是在用标准溶液滴定待测离子过程中,用指示电极的电位变化代替指示剂的颜色变化指示滴定终点的到达,是把电位测定与滴定分析互相结合起来的一种测试方法,它虽然没有指示剂确定终点那样方便,但它可以用在浑浊、有色溶液以及找不到合适指示剂的滴定分析中。电位滴定的一个很大用途是可以连续滴定和自动滴定。

进行电位滴定时,在被测溶液中插入一个指示电极和一个参比电极组成一个工作电池。随着滴定剂的加入,被测离子的浓度不断发生变化,因而指示电极的电位相应的发生变化,在化学计量点附近离子浓度发生突跃,引起指示电极电极电位突跃。根据测量工作电池电动势的变化就可以确定终点(本实验采用E-V曲线法,即以滴定剂用量V为横坐标,以E值为纵坐标,绘制E-V曲线。作两条与滴定曲线相切的45o倾斜的直线,等分线与曲线的交点即为滴定终点。滴定反应为:

Ag++Cl-→AgCl↓Ksp=1.8×10-10

化学计量点时,[Ag+]=[Cl-],可由KspAgCl求出Ag+的浓度,由此计算出Ag电极的电位

三、仪器和试剂ZD—2型自动电位滴定仪

Ag电极、双盐桥饱和甘汞电极

容量瓶(100mL)

移液管(25mL、50mL)

烧杯(250mL)、搅拌子与洗瓶等

NaCl标准溶液(0.0500mol/L)

0.05 00moL/L 的AgNO3溶液(待标定

四、实验步骤

1.手动电位滴定(AgNO3溶液浓度的标定)

用移液管准确移取25.00mL标准NaCl溶液于一洁净的250mL烧杯中,加入4mL1:1HNO3溶液,以蒸馏水稀释至100mL左右,放入一个干净搅拌子,将其置于滴定装置的搅拌器平台上,用AgNO3溶液滴定至E值为400mv左右(临近终点时,每加入0.1mLAgNO3,记录一次E值)。2. 自动电位滴定(自来水中氯含量的测定)

准确移取自来水样100mL于250mL烧杯中,在加入4mL1:1的HNO3溶液,放入一只干净的搅拌子,同上法安装好滴定管和电极,依据E—V曲线上所找出的终点电位为自动电位滴定的终点电位,预控点设置为90mv,按下“滴定开始”按钮,在到达终点后,记下所消耗的AgNO3溶液的准确体积。

五、实验数据及处理

1.根据自动电位滴定的数据,绘制电位(E)对滴定体积(V)的滴定曲线,通过E—v曲线确定终点电位和终点体积(由次体积可算出硝酸银溶液的准确浓度)

2.根据滴定终点(自动电位滴定)所消耗的AgNO3溶液体积计算试液中Cl—的质量浓度(mg/L)

水中氯离子含量的测试方法

测定水中氯离子含量的测试方法 1.适用范围* 1.1如下三个测试方法包括了水、污水(仅测试方法C)及盐水中氯离子含量的测定: 部分 测试方法A(汞量滴定法)7~10 测试方法B(硝酸银滴定法)15~21 测试方法C(离子选择电极法)22~29 1.2测试方法A、B和C在应用(practice)D2777-77下有效,仅仅测试方法B在应用D2777-86下也同样有效,详细的信息参照14、21和29部分。 1.3本标准并不意味着罗列了所有的,如果存在,与本标准的使用有关的安全注意事项。本标准的使用者的责任,是采用适当的安全和健康措施并且在使用前确定规章制度上的那些限制措施的适用性。明确的危害声明见26.1.1。 1.4以前的比色法不再继续使用。参照附录X1查看历史信息。 2.参考文献 2.1ASTM标准 D1066蒸汽的取样方法2 D1129与水相关的术语2 D1193试剂水的规范2 D2777D-19水委员会应用方法的精确性及偏差的测定2 D3370管道内取水样的方法2 D4127离子选择电极用术语2 3.专用术语 3.1定义——这些测试方法中使用的术语的定义参照D1129和D4127中的术语。 4.用途及重要性 4.1氯离子是,因此应该被精确的测定。它对高压锅炉系统和不锈钢具有高度危害,所以为防止危害产生监测是必要的。氯分析作为一个工具被广泛的用于评估循环浓度,如在冷却塔的应用。在食品加工工业中使用的处理水和酸洗溶液也需要使用可靠的方法分析氯含量。 5.试剂纯度 5.1在所有的试验中将使用试剂级化学物质。除非另有说明,所有试剂应符合美国化学品协会分析试剂委员会的规范要求。如果能断定其他等级的试剂具有足够高的纯度,使用它不会减少试验的精度,则这种等级的试剂也可以使用。 5.2水的纯度——除非另有说明,关于水的标准应理解为指的是如Specification D1193中由第二类所定义的试剂水。 6.取样 6.1根据标准D1066和标准D3370取样。

电位滴定法测定水中氯离子的含量

电位滴定法测定水中氯离子的含量 1 / 1 电位滴定法测定水中氯离子的含量 一 实验目的:学习电位滴定法的基本原理和操作技术 掌握了解氯离子的测定过程和现象 二 实验原理 利用滴定分析中化学计量点附近的突跃,以一对适当的电极对监测滴定过程中的电位变化,从而确定滴定终点,并由此求得待测组分的含量的方法称为电位滴定法。本实验根据Nerst 方程E = E θ- RT/nF lgC Cl- ,滴定过程中, Cl - + Ag + = AgCl ↓,使得氯离子浓度降低,电位发生改变,接近化学计量点时,氯离子浓度发生突变,电位相应发生突变,而后继续加入滴定剂,溶液电位变化幅度减缓。以突变时滴定剂的消耗体积(mL )来确定滴定终点(AgNO 3标准溶液的体积)。 三 仪器和试剂 酸度计(mv 计),磁力搅拌器,转子。KNO 3甘汞参比电极,银电极,滴定管,烧杯(电解池),0.05mol·L -1NaCl ,0.05mol·L -1AgNO 3,KNO 3固体 四 实验内容和步骤 1 0.05mol·L -1AgNO 3标准溶液的标定 准确移取0.05mol.L -1NaCl 标准溶液10.00mL 于烧杯中,加蒸馏水20mL ,KNO 3固体2g ,搅拌均匀。 开启酸度计,开关调在mv 位置,加入滴定剂,记录溶液电位随滴定剂的体积变化情况。随着AgNO 3标准溶液的滴入,电位读数将不断变化,读数间隔可先大些(1-2mL ),至一定量后,电位读数变化较大,则预示临近终点,此时应逐滴加入AgNO 3标准溶液(0.5-0.2mL ),并记录电位变化,直至继续加入AgNO 3标准溶液后电位变化不再明显为止。做E(mv)-V(mL)曲线,求得终点时所消耗AgNO 3标准溶液的确切体积。 2水中氯离子含量的测定 准确移取水样10.00mL 于烧杯中,加蒸馏水20mL ,KNO 3固体2g ,搅拌均匀。加入滴定剂,记录溶液电位随滴定剂的体积变化情况。同标定的步骤,做E(mv)-V(mL)曲线,求出与水样中氯离子反应至终点所消耗的AgNO 3标准溶液的确切体积。 五数据处理 根据实验数据做E(mv)-V(mL)曲线,从两个图中获得终点所消耗的AgNO 3标准溶液体积,从而根据物质反应平衡公式C Cl-V Cl-=V Ag+C Ag+计算求出水中氯离子的含量(mol·L -1)。 实验过程中的注意事项:1参比电极所装电解液应为饱和KNO 3溶液。 2甘汞电极比银电极略低些,有利于提高灵敏度。 3读数应在相对稳定后再读数,若数据一直变化,可考虑读数时降低转子的转数。 问题:实验中KNO 3的作用? 终点滴定剂体积的确定方法有哪几种?

ASTM水中氯离子含量测定标准方法D 512-04

Designation: D 512-04 Standard Test Methods for Chloride Ion In Water 水中氯离子含量测定标准方法 1.范围 1.1 该测试方法适用普通水、废水(仅测试方法C)和盐水中氯离子的确定。包括以下三种测试方法: 1.2 测试方法A,B,和C在操作方法D 2777-77下有效,仅测试方法B 还需满足操作规程D 2777-86。更多信息参考14,21和29节。 1.3 该标准试验方法没有包含所有的安全问题,即便要,也应联系实际需要。在试验前确定合适的安全、健康守则和决定其规章制度适用的局限性是试验者的责任。对于特需危险说明,见26.1.1。 1.4 先前的比色试验方法已经终止。参考附录X1获取历史信息。 2. 参考文件

3. 术语 3.1 定义-用于这些试验方法的术语定义,参考术语D 1129和D 4127。 4. 意义和作用 4.1 水中氯离子处在管理中,因此必须精确地测量。氯离子对于高压锅炉系统和不锈钢是非常有害的,因此为防止破坏,监测是很重要的。氯离子分析作为一种工具广泛用于估计集中循环,例如应用在冷却塔中。处理水和食品加工工业中的分选液同样需要可靠的氯离子分析方法。 5. 试剂的纯度 5.1 试剂的化学等级在所有试验中适用。除非有其它说明,所有试剂应遵从美国化学界分析性试剂的规范委员会要求,有关规范都可从委员会取得。可能使用其它等级,倘若首先确定试剂纯度高得足以允许使用而不用降低确定的精度。 5.2 水的纯度-除非另有说明,参照水应理解为符合规范D 1193的Ⅰ型试剂水。其它类型的试剂水可能使用,倘若首先能确定水纯度高得足以允许使用而不影响试验方法的精度和偏差。Ⅱ型水在该试验方法中的循环测试时使用。 6. 取样 6.1 按照操作规程D 1066和D 3370的要求采集试样。 TEST METHOD A-MERCURIMETRIC TITRATION 测试方法A-汞液滴定法 7. 范围 7.1 该测试方法能用于确定水中离子,假设干扰可忽略(见小节9)。 7.2 尽管在研究报告中没有明确说明,精度表述是假设使用Ⅱ试剂水。在未经试验的地方确定该测试方法的有效性是分析者的责任。 7.3 该测试方法对于氯离子浓度在8.0-250mg/L的范围有效。 8. 测试方法概要 8.1 将稀释汞滴定液加入一份酸性试样中,该试样为混合二苯偶氮碳酰肼(diphenylcarbazone)-溴苯酚的蓝色指示剂。滴定的最后为蓝-紫罗兰颜色的二苯偶氮碳酰肼(diphenylcarbazone)化合物。 9. 干扰 9.1 通常在水中发现的阴离子和阳离子不会干扰测试。锌、铅、镍、亚铁的

各种氯离子含量测定方法的适用性探讨及新方法的提出

75 各种氯离子含量 测定方法的适用性探讨及新方法的提出 周少玲,张 永 山东电力研究院,山东济南 250002 [摘 要] 介绍了摩尔法测定氯离子含量时产生的误差及计算方法,明确了不同氯离子含量测定 方法的适用性,并提供了硫氰酸汞分光光度法测定电厂炉水中氯离子含量的新方法。 [关 键  词] 电厂;水汽系统;氯离子测定方法;硫氰酸汞分光光度法[中图分类号] O655[文献标识码] A [文章编号] 100223364(2008)0720075203 作者简介: 周少玲(19642),女,1986年毕业于山东大学化学系,现为山东电力研究院高级工程师,从事电厂化学分析及其研究。 E 2mail :zhoushaolingsd @https://www.wendangku.net/doc/a25131857.html, 氯离子含量是电厂水汽控制的1项重要指标。电厂水汽系统中的水质种类较多,如:循环冷却水、原水(包括井水、水库水、自来水、河水、中水等)、反渗透出水、炉水、凝结水、除盐水、给水及各种蒸汽等。对于这些水中氯离子的测定,国家标准及电力行业标准规定了许多测试方法,如:摩尔法、电位滴定法、汞盐滴定法、PCl 电极法、共沉淀富集分光光度法、离子色谱法等等。每种方法都规定了适用范围,即不同的水质氯离子含量不同,则适用的测定方法不同。然而,现场应用存在方法混用的现象,严重影响了测定的精度。本文介绍了摩尔法测定氯离子含量时产生的误差及计算方法,指出了微量氯离子分析操作中应注意的事项,并提供了炉水中氯离子的测定方法。 1 摩尔法测定氯离子时产生的误差 对于电厂原水中氯离子含量的分析,摩尔法得到广泛采用。该方法测定氯离子的范围为(5~100)mg/L 。 1.1 方法原理 水样以铬酸钾为指试剂,在中性或弱碱性条件下,用硝酸银标准溶液进行滴定,出现砖红色铬酸银沉淀时到达指示终点。反应如下: Cl -+Ag + AgCl ↓ (白色)(1)CrO 2-4 +2Ag +Ag 2CrO 4↓ (砖红) (2) 1.2 水样滴定过程 取一定量的水样于250mL 锥形瓶中,添加除盐水至100mL ,在锥形瓶中加入1mL 10%K 2CrO 4指 示剂,用AgNO 3标准溶液滴定。此时,CrO 2-4的浓度 为: C CrO 2 -4 =1×10% 194.19×100 ×1000=5.15×10-3mol/L 。 由于AgCl 的溶解度(1.3×10-5mol/L )小于Ag 2CrO 4的溶解度(6.5×10-5mol/L ),根据分步沉淀 原理,在滴定过程中,AgCl 首先沉淀出来。随着Ag 2NO 3标准溶液的加入,AgCl 沉淀不断生成,溶液中氯 离子浓度越来越小,Ag +浓度相应地越来越大,直至与 CrO 2-4浓度的乘积超过Ag 2CrO 4的溶度积时,便出现 砖红色Ag 2CrO 4沉淀,达到滴定的终点。1.3 误差计算 滴定达到终点时,溶液中有两种沉淀,即AgCl 和

氯离子的测定方法(精)

氯离子的测定方法 氯离子的测定是在 PH5~9条件下测定的。 试剂与材料 : 酚酞指示剂:1%乙醇溶液 铬酸钾指示剂:50g /L水溶液 硝酸:1+300的硝酸溶液 硝酸银标准溶液:C (AgNO 3 =0.0141 mol/L,称取预先干燥并已恒重过的硝酸银 2.3996g 溶于水中,转移至 1L 棕色容量瓶中定容。摇匀,置于暗处(不用标定。 测定步骤:移取 25ml 水样于 250ml 锥形瓶中, 加入 2~3滴酚酞指示剂, 用硝酸调至无色。加入 1ml 铬酸钾指示剂,用硝酸银滴定至橙红,同时做空白试验。 计算公式 : X(mg/L=(V-V O ×C×0.03545÷V 样 ×106 式中:V —滴定时消耗硝酸银标准溶液的体积, ml V —空白试验时消耗硝酸银标准溶液的体积, ml V 样

—水样的体积, ml c —硝酸银标准溶液的浓度, mol/L 0.03545——与 1mlAgNO 3 标准溶液 c (AgNO 3 =1 .000mol/L相当的以克表 示的氯的质量。 钙镁离子的测定方法 1.方法提要 钙离子测定是在 PH12~13时,以钙 -羧酸为指示剂,用 EDTA 与标准滴定溶液测定水样中钙离子含量。滴定 EDTA 与溶液中游离的钙离子反应形成络合物, 溶液颜色变化由紫色变为亮蓝色时即为终点。 镁离子测定是在 PH 为 10时,以铬黑 T 为指示剂用 EDTA 标准滴定溶液测定钙、镁离子合量, 溶液颜色由紫色变为纯蓝色时即为终点, 由钙镁合量中减去钙离子含量即为镁离子含量。 2.试剂与材料 2.1 硫酸:1+1溶液 2.2 过硫酸钾:40g/L溶液,贮存于棕色瓶中(有效期 1个月。 2.3 三乙醇胺:1+2水溶液 2.4 氢氧化钾:200g/L。

使用自动电位滴定仪测定水中氯离子含量

使用自动电位滴定仪测定水中氯离子含量和COD Mn值1.相关标准 《GB/T 13025.5-2012 制盐工业通用试验方法氯离子的测定》 《GB/T 15453-2008 工业循环冷却水和锅炉用水中氯离子的测定》 《GB/T 24890-2010 复混肥料中氯离子含量的测定》 《NY/T 1121.17-2006 土壤检测第17部分:土壤氯离子含量的测定》 《MT/T 201-2008 煤矿水中氯离子的测定》 《ASTM D4458-2009 半咸水、海水和盐水中氯离子的试验方法》 2.测量原理 样品溶液调至中性,用硝酸银标准溶液滴定溶液,通过离子选择性电极的电位突变指示终点。 3.仪器设备 实验仪器:ZDJ-5型自动滴定仪,或其他型号自动电位滴定仪。 实验电极:216-01型银电极+217-01型参比电极(二级参比填充液:饱和硝酸钠溶液)。 其他一般实验室仪器。 4.试剂和溶液 4.10.01mol/L氯化钠标准溶液:称取0.5844克已于600℃灼烧至恒重的氯 化钠基准试剂,溶解于去离子水中,移入1000ml容量瓶中,并用水稀 释至刻度,摇匀。 氯化钠标准溶液的浓度按式(1)计算: (1) 式中: c(NaCl),氯化钠标准溶液的浓度,单位为摩尔每升(mol/L); m,称取氯化钠的质量,单位为克(g) V,配制溶液的体积,单位为升(L) 4.20.01mol/L硝酸银溶液:称取1.70克分析纯的硝酸银,溶解于去离子水 中,移入1000ml容量瓶中,并用水稀释至刻度,摇匀,溶液保存在棕 色瓶中。 5.操作过程 5.1仪器准备,参照ZDJ-5或其他型号自动滴定仪说明书 5.2参数设置(推荐参数) 最小滴定体积:0.02ml。最大滴定体积:0.2ml,预滴定 突跃量:中,80mV。 5.3氯化钠标准溶液的标定:吸取10.00 ml 氯化钠标准溶液,置于150 ml 烧 杯中,使用硝酸银溶液滴定,同时需进行空白实验。

水中氯离子含量测定[1]

标准号:D 512-89 测定水中氯离子含量的测试方法1 1.适用范围* 1.1如下三个测试方法包括了水、污水(仅测试方法C )及盐水中氯离子含量的测定: 部分 测试方法A(汞量滴定法)7~10 测试方法B(硝酸银滴定法)15~21 测试方法C(离子选择电极法)22~29 1.2测试方法A、B和C在应用(practice)D2777-77下有效,仅仅测试方法B在应用D2777-86 下也同样有效,详细的信息参照14、21和29部分。 1.3本标准并不意味着罗列了所有的,如果存在,与本标准的使用有关的安全注意事项。本 标准的使用者的责任,是采用适当的安全和健康措施并且在使用前确定规章制度上的那些限制措施的适用性。明确的危害声明见26.1.1。 1.4以前的比色法不再继续使用。参照附录X1查看历史信息。 2.参考文献 2.1 ASTM标准 D 1066 蒸汽的取样方法2 D 1129 与水相关的术语2 D 1193 试剂水的规范2 D 2777 D-19水委员会应用方法的精确性及偏差的测定2 D 3370 管道内取水样的方法2 D 4127离子选择电极用术语2 3.专用术语 3.1 定义——这些测试方法中使用的术语的定义参照D 1129和D4127中的术语。 4.用途及重要性 4.1 氯离子是,因此应该被精确的测定。它对高压锅炉系统和不锈钢具有高度危害,所以为 防止危害产生监测是必要的。氯分析作为一个工具被广泛的用于评估循环浓度,如在冷却塔的应用。在食品加工工业中使用的处理水和酸洗溶液也需要使用可靠的方法分析氯含量。 5.试剂纯度 5.1在所有的试验中将使用试剂级化学物质。除非另有说明,所有试剂应符合美国化学品协 会分析试剂委员会的规范要求。如果能断定其他等级的试剂具有足够高的纯度,使用它不会减少试验的精度,则这种等级的试剂也可以使用。 5.2 水的纯度——除非另有说明,关于水的标准应理解为指的是如Specification D1193中 由第二类所定义的试剂水。

电位滴定法测定水中氯离子的含量

电位滴定法测定水中氯离子的含量 一实验目的:学习电位滴定法的基本原理和操作技术 掌握了解氯离子的测定过程和现象 二实验原理 利用滴定分析中化学计量点附近的突跃,以一对适当的电极对监测滴定过程中的电位变化,从而确定滴定终点,并由此求得待测组分的含量的方法称为电位滴定法。本实验根据Nerst方程E = Eθ- RT/nF lgC Cl- ,滴定过程中,Cl- + Ag+ = AgCl↓,使得氯离子浓度降低,电位发生改变,接近化学计量点时,氯离子浓度发生突变,电位相应发生突变,而后继续加入滴定剂,溶液电位变化幅度减缓。以突变时滴定剂的消耗体积(mL)来确定滴定终点(AgNO3标准溶液的体积)。 三仪器和试剂 酸度计(mv计),磁力搅拌器,转子。KNO3甘汞参比电极,银电极,滴定管,烧杯(电解池),·L-1NaCl,·L-1AgNO3,KNO3固体 四实验内容和步骤 1 ·L-1AgNO3标准溶液的标定 准确移取标准溶液于烧杯中,加蒸馏水20mL,KNO3固体2g,搅拌均匀。 开启酸度计,开关调在mv位置,加入滴定剂,记录溶液电位随滴定剂的体积变化情况。随着AgNO3标准溶液的滴入,电位读数将不断变化,读数间隔可先大些(1-2mL),至一定量后,电位读数变化较大,则预示临近终点,此时应逐滴加入AgNO3标准溶液(),并记录电位变化,直至继续加入AgNO3标准溶液后电位变化不再明显为止。做E(mv)-V(mL)曲线,求得终点时所消耗AgNO3标准溶液的确切体积。 2水中氯离子含量的测定 准确移取水样于烧杯中,加蒸馏水20mL,KNO3固体2g,搅拌均匀。加入滴定剂,记录溶液电位随滴定剂的体积变化情况。同标定的步骤,做E(mv)-V(mL)曲线,求出与水样中氯离子反应至终点所消耗的AgNO3标准溶液的确切体积。 五数据处理 根据实验数据做E(mv)-V(mL)曲线,从两个图中获得终点所消耗的AgNO3标准溶液体积,从而根据物质反应平衡公式C Cl-V Cl-=V Ag+C Ag+计算求出水中氯离子的

氯离子浓度的测定方法

氯离子浓度的测定方法 内容提要:氯离子是水和废水中最为常见的一种阴离子,过高浓度的氯离子含量会造成饮水苦咸味、土壤盐碱化、管道腐蚀、植物生长困难,并危害人体健康,因此必须控制氯离子的排放浓度。目前国家污水排放标准还未对氯离子的排放标准作出相应要求,仅有部分地方标准对废水中的氯化物作出了相关规定。 氯离子的测定 1、原理 用标准硝酸银AgNO 3 溶液滴定水样,与水样中的氯离子形成氯化银AgCl沉淀, 以铬酸钾为指示剂,当Cl-沉淀完毕后,Ag+与CrO 4 2-形成红色沉淀 2Ag++ CrO 42= Ag 2 CrO 4 ↓(红色) 指示终点的到达。根据AgNO 3 的用量便可算出Cl-的浓度。 2、主要试剂和仪器 (1)AgNO 3标准溶液 C(AgNO 3 )=0.01mol/L (2)K 2CrO 4 溶液 5%水溶液; (3)Cu(NO 3) 2 溶液 2%水溶 3、测定步骤 (1)吸收100.00ml水样于250ml锥形瓶中,加入2滴酚酞指示剂,用0.1m ol/L NaOH和0.1mol/L HNO 3 溶液调节水样的PH值,使酚酞由红色刚变为无色。 再加入5%的K 2CrO 4 溶液1ml,用AgNO 3 标准溶液滴至出现淡红色,记下消耗的Ag NO 3 标准溶液的体积V1(ml)。 (2)用100ml蒸馏水取代水样,按上述相同步骤做空白试验,所消耗的AgNO 3标准溶液的体积V (ml)。 4、计算 水中CL-含量

式中 V1——测试水样时消耗的AgNO 3 体积,ml; V 0——空白试验消耗的AgNO 3 体积,ml; C——AgNO 3 标准溶液的浓度,mol/L; V——水样的体积,ml; 35.46——CL-的摩尔质量,g/mol。

实验三 水中氯离子的测定-沉淀滴定法和电位滴定法

实验三、水中氯离子的测定(沉淀滴定法和电位滴定法) 1.沉淀滴定法 此法依据《水质氯化物的测定硝酸银滴定法》(GB 11896-89) 一、实验目的和要求 学习银量法测定氯含量的原理和方法; 掌握AgNO3标准溶液的配制和标定方法。 二、实验原理 在中性至弱碱性范围内(pH6.5—10.5),以铬酸钾为指示剂,用硝酸银滴定氯化物时,由于氯化银的溶解度小于铬酸银的溶解度,氯离子首先被完全沉淀出来后,然后铬酸盐以铬酸银的形式被沉淀,产生砖红色,指示滴定终点到达。该沉淀滴定的反应如下: Ag++Cl—→AgCl↓ 2Ag++CrO4→Ag2CrO4↓(砖红色) 三、实验仪器和设备 (1)锥形瓶,250mL; (2)滴定管,25mL,棕色; (3)移液管,10mL,25mL,50mL; (4)容量瓶,100mL,1000mL。 四、实验试剂和材料 分析中仅使用分析纯试制及蒸馏水或去离子水。 (1)氯化钠标准溶液,C(NaCl)=0.0141mol/L,相当于500mg/L氯化物含量:将氯化钠(NaCl)置于瓷坩埚内,在105℃下烘干2h。在干燥器中冷却后称取8.2400g,溶于蒸馏水中,在容量瓶中稀释至1000mL。用移液管吸取10.0mL,在容量瓶中准确稀释至100mL。 1.00mL此标准溶液含0.50mg氯化物(C1-)。 (2)硝酸银标准溶液,C(AgNO3)=0.0141mol/L:称取2.3950g于105℃烘半小时的硝酸银(AgNO3),溶于蒸馏水中,在容量瓶中稀释至1000mL,贮于棕色瓶中。 用氯化钠标准溶液(1)标定其浓度:用移液管准确吸取25.00mL氯化钠标准溶液于 250mL或100mL锥形瓶中,加蒸馏水25mL。另取一锥形瓶,量取蒸馏水50mL作空白。各加入1mL铬酸钾溶液(3),在不断的摇动下用硝酸银标准溶液滴定至砖红色沉淀刚刚出现为终点。计算每毫升硝酸银溶液所相当的氯化物量,然后校正其浓度,再作最后标定。1.00mL 此标准溶液相当于0.50mg氯化物(C1—)。 (3)铬酸钾溶液,50g/L:称取5g铬酸钾(K2CrO4)溶于少量蒸馏水中,滴加硝酸银溶液(2)至有红色沉淀生成。摇匀,静置12h,然后过滤并用蒸馏水将滤液稀释至100mL。 (4)高锰酸钾,C(1/5KMnO4)=0.01mol/L。 (5)过氧化氢(H2O2),30%。 (6)硫酸溶液,C(1/2H2SO4)=0.05mol/L。 (7)氢氧化钠溶液,C(NaOH)=0.05mol/L。 (8)乙醇(C6H5OH),95%。

水中氯离子测定方法

测定氯离子的方法 硝酸银滴定法 一、原理 在中性介质中,硝酸银与氯化物生成白色沉淀,当水样中氯离子全部与硝酸银反应后,过量的硝酸银与铬酸钾指示剂反应生成砖红色铬酸银沉淀,反应如下:NaCl + AgNO3 →AgCl ↓+ NaNO3 2 AgNO 3 + K2CrO 4 →Ag2CrO4↓+ KNO3 二、试剂 1、0.05%酚酞乙醇溶液:称取0.05g的酚酞指示剂,用无水乙醇溶解,称重至100g。 2、0.1410 mol/L氯化钠标准溶液:称取4.121g于500~600℃灼烧至恒重之优级纯氯化钠,溶于水,移至500ml容量瓶中,用水稀释至刻度。此溶液每毫升含 5mg氯离子。 3、0.01410 mol/L氯化钠标准溶液:吸取上述0.1410mol/L标准溶液50ml,移入500ml容量瓶中,用水稀释至刻度。此溶液每毫升含0.5mg氯离子。 4、硝酸银标准溶液:称取2.3950g硝酸银,溶于1000ml水中,溶液保存于棕色瓶中。 5、硝酸银标准溶液的标定:吸取0.01410mol/L(即1毫升含0.5mg氯离子)的氯化钠标准溶液10毫升,体积为V1,于磁蒸发皿中,加90ml蒸馏水,加三滴酚酞指示剂,用氢氧化钠调至红色消失,加约1ml10%铬酸钾指示剂,此时溶液呈纯黄色。用待标定的硝酸银溶液滴定至砖红色不再消失,且能辨认的红色(黄中带红)为止,记录消耗体积为V。以相同条件做100ml蒸馏水空白试验,消耗待标定的硝酸银的体积为V0。 浓度计算如下: C= V1×M×1000 V -V0 式中:C-硝酸银标准溶液的浓度,摩尔/升;

V1-氯化钠标准溶液的吸取量,毫升; M-氯化钠基准溶液的浓度,摩尔/升; V-滴基准物硝酸银溶液消耗的体积,毫升; V0-空白试验,硝酸银溶液消耗的体积,毫升。 调整硝酸银浓度使其摩尔浓度正好为0.0141mol/L。此溶液滴定度为1ml硝酸银溶液相当于0.5mg氯离子。 三、仪器 白磁蒸发皿:150ml 棕色滴定管 四、分析步骤 取50~100ml水样于蒸发皿中,加三滴酚酞指示剂,用0.02mol/L氢氧化钠溶液调成微红色,再加0.05mol/L硝酸调整至红色消失,再加入1滴管(约0.5~1ml)10%铬酸钾指示剂,此时溶液呈黄色,用硝酸银标准溶液滴定至所出现的铬酸银红色沉淀不再消失(即溶液呈黄中带红)为终点,以同样方法做空白试验,终点红色要一致。 五、分析结果的计算 水样中氯离子含量为X(毫克/升),按下式计算: X = (V2-V0)×M×35.45×1000 V W 式中:V2—滴定水样时硝酸银标准溶液的消耗量,毫升; V0—空白试验时硝酸银标准溶液的消耗量,毫升; M—硝酸银标准溶液浓度,摩尔/升; V w水样体积,毫升; 35.45—为氯离子摩尔质量,克/摩尔。 六、注意事项: 1、本方法适用于不含季胺盐的循环冷却水和天然水中氯离子的测定,其范围小于100mg/L。

氯离子的测定方法 (2)

氯离子的测定方法 1、适用范围 本方法规定了采用磷酸蒸馏-硝酸汞滴定法测定水泥及其原料中氯的化学分析方法。 本方法适用于水泥及其原料中的氯含量的测定。 2、方法提要 用规定的蒸馏装置在250℃-260℃温度条件下,以过氧化氢和磷酸分解试样,以净化空气做载体,进行蒸馏分离氯离子,用稀硝酸做吸收液,蒸馏10min-15min后,用乙醇吹洗冷凝管及其下端于锥形瓶内,乙醇的加入量占75%(体积分数)以上。在PH3.5左右,以二苯偶氮碳酰肼为指示剂,用硝酸汞标准滴定溶液进行滴定。 3、试剂 3.1硝酸:密度1.39g/cm3-1.41 g/cm3或质量分数65%-68%; 3.2磷酸,密度1.68g/cm3或质量分数≥85%; 3.3乙醇,体积分数95%或无水乙醇; 3.4过氧化氢,质量分数30%; 3.5氢氧化钠溶液[c(NaOH)=0.5mol/L]:将2g氢氧化钠溶于100ml 水中; 3.6硝酸溶液[c(HNO3)=0.5mol/L]:取3ml硝酸,用水稀释至100ml; 3.7氯离子标准溶液 准确称取0.3297g已在105℃-106℃烘2h的氯化钠,溶于少量水中,然后移入1L容量瓶中,用水稀释至标线,摇匀。此溶液1ml 含0.2mg氯离子。吸取上述溶液50ml,注入250ml容量瓶中,用水稀释至标线,摇匀。此溶液1ml含0.04mg氯离子。 3.8硝酸汞标准滴定溶液[c(Hg(NO3)2)=0.001mol/L]

3.8.1硝酸汞标准滴定溶液[c(Hg(NO3)2)=0.001mol/L]的配制 称取0.34g硝酸汞[Hg(NO3)2·1/2H2O],溶于10ml硝酸中,移入1L容量瓶内,用水稀释至标线,摇匀。 3.8.2硝酸汞标准滴定溶液[c(Hg(NO3)2)=0.001mol/L]的标定 用微量滴定管准确加入 5.00ml0.04mg/ml氯离子标准溶液于50ml锥形瓶中,加入20ml乙醇及1-2滴溴酚蓝指示剂,用氢氧化钠溶液调至溶液呈蓝色,然后用硝酸调至溶液刚好变黄,再过量1滴(PH 约3.5),加入10滴二苯偶氮碳酰肼指示剂,用硝酸汞标准滴定溶液滴定至紫红色出现。 同时进行空白试验。使用相同量的试剂,不加入氯离子标准溶液,按照相同的测定步骤进行试验。 硝酸汞标准滴定溶液对氯离子的滴定度,按下式计算: T Cl-=0.04×5.00/(V2-V1)=0.2/(V2-V1) 式中: T Cl---硝酸汞标准滴定溶液对氯离子的滴定度,单位为毫克每毫升(mg/ml); V2—标定时消耗硝酸汞标准滴定溶液的体积,单位为毫升(ml); V1---空白试验消耗硝酸汞标准滴定溶液的体积,单位为毫升(ml); 0.04---氯离子标准溶液的浓度,单位为毫克每毫升(mg/ml); 5.00---加入氯离子标准溶液的体积,单位为毫升(ml)。 3.9硝酸银溶液5g/l:将5g硝酸银溶于1L水中; 3.10溴酚蓝指示剂溶液(1g/L):将0.1g溴酚蓝溶于100ml乙醇(1+4)中; 3.11二苯偶氮碳酰肼溶液(10g/L):将1g 二苯偶氮碳酰肼溶于100ml 乙醇中。

自动电位滴定法测定氯化物含量

自动电位滴定法测定氯化物含量 一、实验目的 1、了解自动电位滴定的原理及实验方法。 2、熟悉和学猩ZD-2型自动电位滴定仪的使用。 二、实验原理 若溶液本身具有很深的颜色,影响指示剂的变色,故一般容量滴定不能进行。虽然可用重量法测定;仍太麻烦。用电位滴定法测定,其方法方便,快速、被确。电位电位法测Cl -,通常采用AgNO 3作滴定剂,以银离子选择性电极作为指示电极,饱和甘汞电极为参比电极,滴定反应为: Ag -十Cl -= Ag C l ↓ 在滴定过程中,随着Cl -的浓度变化E 也在同步变化, 滴定至预定终点时,仪器发出一控制信号,使自动电位滴定仪停止滴定。最后由用去的AgNO 3体积计算出Cl -含量。 终点电位计算: △E = E e.p -E SCE = 0.276V 三、仪器与试剂 ZD-2型自动电位滴定仪 216型银离子选择性电极 232型饱和甘汞电极 AgNO 3标准溶液0.0100mo1/L 未知试样 四、实验步骤 1. 调试仪器,预置滴定终点 调试好仪器后,将终点预置在276mV 。 2. 未知试样测定 取10 mL 未知试样于100 mL 烧杯中,加蒸馏水稀释至50 mL 。平行测定三次。 3. 自来水样测定 取50 mL 自来水于烧杯中,按照上述方法,平行测定三次。 4. 实验后处理 用蒸馏水吹洗电极、毛细管。 五、数据处理 按下述方法计算Cl -含量 10005.35)(3 12???-=-V N V V Cl AgNO 其中:V 1滴定前读数; V 2滴定后读数。 V 为水样体积

五、问题讨论 1、电位滴定与一般容量滴定有何不同? 2、试写出该电池的表达式。 3、分析本实验可能的误差。 4、怎样配制0.0100mo1/L AgNO3标准溶液?

电位滴定法测氯化银的Ksp 备注版

电位滴定法测定AgCl的K sp 一、实验目的 1.掌握电位滴定法测量离子浓度的一般原理; 2.学会用电位滴定法测定难溶盐的溶度积常数。 二、实验原理 当银丝电极插入含有Ag+的溶液时,其电极反应的能斯特响应可表示为: (α代表活度,当溶液浓度很小时可用浓度代替。) 如果与一参比电极组成电池可表示为: (汞活泼性比银大开始时汞会把银离子置换出来所以汞是负极银是正极。Ej表示液体接界电位,一般很小,可以忽略。并且,盐桥是减弱液接电位的有效手段。) 进一步简化为: 式中包括和r(Ag+)常数项。银电极不仅可指示溶液中Ag+的浓度变化,而且也能指示与Ag+反应的阴离子的浓度变化。例如,卤素离子。 本实验利用Cl-与银离子生成沉淀的溶度积K sp非常小,在化学计量点附近发生电位突跃,从而通过测量电池电动势的变化来确定滴定终点。在终点时: 其中X-为Cl-、I-,代入终点时的滴定电池方程: 用该式即可计算出被滴定物质难溶盐的K sp。 通常的电位滴定使用甘汞或AgCl/Ag参比电极,由于它们的盐桥中含有氯离子会渗漏于溶液中,不适合在这个实验中使用,故可选用甘汞双液接硝酸盐盐桥,或硫酸亚汞电极。 注:当盐桥溶液不影响测定的时候选用单盐桥,否则必须选择双盐桥。 外盐桥的作用:(1)防止参比电极内盐桥的物质渗入的待测溶液中干扰测定 (2)防止待测溶液中有害物质进入内盐桥影响其电极电位

三、仪器和药品 仪器:pH/mV计,电磁搅拌器,银电极,双液接饱和甘汞电极,分析天平,容量瓶(250mL,1000mL),烧杯(150mL,250mL) 药品:AgNO3(分析纯,s),KNO3(分析纯,s),KCl(分析纯,s),K2CrO4(分析纯,s),Ba(NO3)2(分析纯,s) 四、实验内容 1.硝酸银标准溶液,0.100mol?L-1 溶解17.00g AgNO3于1000mL去离子水中,将溶液转入棕色试剂瓶中置暗处保存。准确称取1.8638g基准KCl,置于小烧杯中,用去离子水溶解后转入250mL容量瓶中,加水稀释至刻度,摇匀。准确移取25.00mL KCl标准溶液于锥形瓶中,准确移取25.00mL去离子水(加几滴15% K2CrO4和几滴Ba(NO3)2,在不断摇动下,用AgNO3溶液滴定至呈现砖红色即为终点)。根据KCl标准溶液浓度和滴定中所消耗的AgNO3体积(mL),计算AgNO3的浓度。 2.将银电极用蒸馏水冲洗干净,并浸泡在蒸馏水中。烧杯及搅拌磁子都要用清洗干净。 3.根据滴定终点的电动势计算AgCl的K sp。 按图示安装仪器 电位滴定装置 1-银电极;2-双盐桥饱和甘汞电极;3-滴定管;4-滴定池(100mL烧杯);5-搅拌子;6-磁力搅拌器。

氯离子检测方法

氯离子测定方法小结 1、摩尔法 测定范围 适用于天然石、循环冷却水、以软化水为补给水的锅炉炉水中氯离子含量的测定测定范围为5mg/L~150mg/L。 测定原理 以铬酸钾为指示剂在pH为5~的范围内用硝酸银标准滴定溶液滴定。硝酸银与氯化物作用生成白色氯化银沉淀当有过量硝酸银存在时则与铬酸钾指示剂反应生成砖红色铬酸银表示反应达到终点。 方法来源 GB/T15453-2008?工业循环冷却水和锅炉用水中氯离子的测定摩尔法 注意事项 测定终点因人而异误差较大。 2、电位滴定法 测定范围 适用于天然石、循环冷却水、以软化水为补给水的锅炉炉水中氯离子含量的测定测定范围为5mg/L~150mg/L。 测定原理 以双液型饱和甘汞电极为参比电极以银电极为指示电极用硝酸银标准滴定溶液滴定至出现电位突跃点即理论终点即可从消耗的硝酸银标准滴定溶液的体积算出氯离子含量。 方法来源 GB/T?15453-2008?工业循环冷却水和锅炉用水中氯离子的测定电位滴定法 注意事项 需要额外配备电磁搅拌器、电位滴定计、双液型饱和甘汞电极、银电极。溴、碘、硫等离子存在干扰。 3、共沉淀富集分光光度法 测定范围 适用于除盐水、锅炉给水中氯离子含量的测定测定范围为10μg/L~100μg/L。 测定原理 基于磷酸铅沉淀做载体共沉淀富集痕量氯化物经高速离心机分离后以硝酸铁-高氯酸溶液完全溶解沉淀加硫氰酸汞-甲醇溶液显色用分光光度法间接测定水中痕量氯化物。 方法来源 GB/T?15453-2008工业循环冷却水和锅炉用水中氯离子的测定共沉淀富集分光光度法 注意事项 需要额外配备分光光度计460nm波长、30mm吸收池、高速离心机转速5000r/min配有250mL聚乙烯离心管。 4、汞盐滴定法 测定范围 适用于天然水、锅炉水、冷却水中氯离子含量的测定测定范围为1mg/L~100mg/L超过100mg/L时可适当地减少取样体积稀释至100mL后测定。 测定原理 在~的水溶液中氯离子与汞离子反应生成微解离的氯化汞。过量的汞离子与二苯卡巴腙二苯偶氯碳酰

氯离子的测定方法

氯离子的测定方法 氯离子的测定是在PH5~9条件下测定的。 试剂与材料: 酚酞指示剂:1%乙醇溶液 铬酸钾指示剂:50g /L水溶液 硝酸:1+300的硝酸溶液 硝酸银标准溶液:C(AgNO 3 )=0.0141 mol/L,称取预先干燥并已恒重过的硝酸银2.3996g溶于水中,转移至1L棕色容量瓶中定容。摇匀,置于暗处(不用标定)。 测定步骤:移取25ml水样于250ml锥形瓶中,加入2~3滴酚酞指示剂,用硝酸调至无色。加入1ml铬酸钾指示剂,用硝酸银滴定至橙红,同时做空白试验。 计算公式: X(mg/L)=(V-V O )×C×0.03545÷V 样 ×106 式中:V—滴定时消耗硝酸银标准溶液的体积,ml V —空白试验时消耗硝酸银标准溶液的体积,ml V 样 —水样的体积,ml c—硝酸银标准溶液的浓度,mol/L 0.03545——与1mlAgNO 3标准溶液c(AgNO 3 )=1 .000mol/L相当的以克表 示的氯的质量。 钙镁离子的测定方法 1.方法提要 钙离子测定是在PH12~13时,以钙-羧酸为指示剂,用EDTA与标准滴定溶液测定水样中钙离子含量。滴定EDTA与溶液中游离的钙离子反应形成络合物,溶液颜色变化由紫色变为亮蓝色时即为终点。 镁离子测定是在PH为10时,以铬黑T为指示剂用EDTA标准滴定溶液测定钙、镁离子合量,溶液颜色由紫色变为纯蓝色时即为终点,由钙镁合量中减去钙离子含量即为镁离子含量。 2.试剂与材料 2.1 硫酸:1+1溶液 2.2 过硫酸钾:40g/L溶液,贮存于棕色瓶中(有效期1个月)。 2.3 三乙醇胺:1+2水溶液 2.4 氢氧化钾:200g/L。 2.5 钙--羧指示剂:0.2g钙-酸指示剂与100g氯化钾混合研磨均匀,贮存于磨口瓶中。 2.6 乙二胺四乙酸二钠(EDTA)标准滴定溶液:c(EDTA)=0.02mol/L。 2.7 氨—氯化铵缓冲溶液:PH=10,称取54.0g氯化铵,溶于水,加350mL 氨水,稀释至1000mL。 2.8 铬黑T指示液:溶解0.50g铬黑T于85mL三乙醇胺中,再加入15mL 乙醇。或者以铬黑T:氯化钠=1:200的固体研细混匀。

改版电位滴定法测氯离子

文件编号:CPS—JC—002—2011 电位滴定法测定氯离子实施细则 修改日期2011年2月25日 起草人: 修改人: 审核: 批准: 成都市排水有限责任公司监测中心 2011年2月25日起草

电位滴定法测定氯离子 1 方法原理 电位滴定法测定氯化物,是以氯电极为指示电极,双液接甘汞电极为参比电极,用硝酸银标准溶液滴定,用毫伏计测定两电极之间的电位变化,电位变化最大时即为滴定终点,由此可以精确的求出滴定终点电位和终点体积。 本方法的检出限为10-4mol/L Cl-(即3.45mg/L Cl-) 2 仪器与试剂 2-1 仪器 2-1-1 仪器:pH计(在mV档使用) 2-1-2 电极 参比电极:甘汞217型,下端盐桥用过饱和硝酸钾溶液 指示电极:氯电极 2-2 试剂 2-2-1氯化钠标准溶液(NaCl=0.0141mol/L):将基准试剂氯化钠置于坩埚内,在500~600℃加热40~50min。冷却后城区8.2400g溶于蒸馏水中,置1000mL容量瓶中,用水稀释至标线。吸取10.0mL,用水定容至100mL,此溶液每毫升含0.500mg氯化物(Cl-)。 2-2-2硝酸银标准溶液(AgNO3≈0.0141mol/L):称取2.395g硝酸银,溶于蒸馏水并稀释至1000ml,贮存于棕色瓶中。用氯化钠标准溶液标定其准确浓度。 2-2-3硝酸钾溶液(KNO3=2.00mol/L)称取硝酸钾202g溶于水中,用容量瓶定容到1000ml. 2-2-4氯离子活化液:取71ml氯化钠标准溶液和100ml浓度为2.00mol/L硝酸钾溶液于1000ml容量瓶中,定容刻度. 3 电极准备 3-1 氯电极活化 氯电极使用前要进行活化,用10-3mol/l氯离子(氯离子浓度为35.0mg/L)、离子强度为硝酸钾浓度为0.200mol/L,电极表面清洁后浸入氯离子活化液5min以上,即活化完成。(利用该氯离子活化液找出滴定终点毫伏值) 3-2 甘汞电极 217甘汞电极上端用饱和氯化钾溶液,下端用饱和硝酸钾溶液,每次使用前都应更换下端饱和硝酸钾溶液。

氯化物测定方法

氯化物测定方法 氯化物 氯化物(Cl﹣)是水和废水中一种常见的无机阴离子。几乎所有的天然水中都有氯离子存在,它的含量范围变化很大。在河流、湖泊、沼泽地区,氯离子含量一般较低,而在海水、盐湖及某些地下水中,含量可高达数十克/升。在人类的生存活动中,氯化物有很重要的生理作用及工业用途。正因为如此,在生活污水和工业废水中,均含有相当数量的氯离子。 若饮水中氯离子含量达到250mg/L,相应的阳离子为钠时,会感觉到咸味;水中氯化物含量高时,会损害金属管道和构筑物,并防碍植物的生长。 1.方法的选择 有四种通用的方法可供选择;(1)硝酸银滴定法;(2)硝酸汞滴定法;(3)电位滴定法;(4)离子色普法。(1)法和(2)法所需仪器设备简单,在许多方面类似,可以任意选用,适用于较清洁水。(2)法的终点比较易于判断;(3)法适用于带色或浑浊水样;(4)法能同时快速灵敏地测定包括氯化物在内的多种阴离子,具备仪器条件时可以选用。 2. 样品保存 要采集代表性水样,放在干净而化学性质稳定的玻璃瓶或聚乙烯瓶内。存放时不必加入特别的保存剂。 (一)硝酸银滴定法

GB11896--89 概述 1.方法原理 在中性或弱减性溶液中,以铬酸钾为指示剂,用硝酸银滴定氯化物时,由于氯化银的溶解度小于铬酸银的溶解度,氯离子首先被完全沉淀后,铬酸银才以铬酸银形式沉淀出来,产生砖红色,指示氯离子滴定的终点。沉淀滴定反应如下: Ag++Cl﹣→AgCl↓ 2 Ag++CrO42-→Ag2CrO4↓ 铬酸根离子的浓度,与沉淀形成的迟早有关,必须加入足量的指示剂。且由于有稍过量的硝酸银与铬酸钾形成铬酸银沉淀的终点较难判断,所以需要以蒸馏水作空白滴定,以作对照判断(使终点色调一致)。 2.干扰及消除 饮用水中含有的各种物质在通常的数量下不发生干扰。溴化物、碘化物和氰化物均能与氯化物相同的反应。 硫化物、硫代硫酸盐和亚硫酸盐干扰测定,可用过氧化氢处理予以消除。正磷酸盐含量超过25 mg/L时发生干扰:铁含量超过10 mg/L 时使终点模糊,可用对苯二酚还原成亚铁消除干扰;少量有机物的干扰可用高锰酸钾处理消除。

氯离子检测方法.doc

羈氯离子测定方法小结 1、 2、蚈摩尔法 羆测定范围 肂适用于天然石、循环冷却水、以软化水为补给水的锅炉炉水中氯离子含量的测定测定范围为5mg/L~150mg/L 。 羁测定原理 螈以铬酸钾为指示剂在pH 为 5~9.5 的范围内用硝酸银标准滴定溶液滴定。硝酸银与氯化物作用生成白色氯化银沉淀当有过量硝酸银存在时则与铬酸钾指示剂反应生成砖红色铬酸银表示反应达到终点。 肃方法来源 螅 GB/T15453-2008 ?工业循环冷却水和锅炉用水中氯离子的测定摩尔法 螁注意事项 袈测定终点因人而异误差较大。 3、 4、蒅电位滴定法 芃测定范围 蒀适用于天然石、循环冷却水、以软化水为补给水的锅炉炉水中氯离子含量的测定测定范围为5mg/L~150mg/L 。 羈测定原理 袆以双液型饱和甘汞电极为参比电极以银电极为指示电极用硝酸银标准滴定溶液滴定至出现电位突跃点即理论终点即可从消耗 的硝酸银标准滴定溶液的体积算出氯离子含量。 羅方法来源 艿 GB/T ?15453-2008?工业循环冷却水和锅炉用水中氯离子的测定电位滴定法 羈注意事项 芇需要额外配备电磁搅拌器、电位滴定计、双液型饱和甘汞电极、银电极。溴、碘、硫等离子存在干扰。 5、 6、莃共沉淀富集分光光度法 节测定范围 肈适用于除盐水、锅炉给水中氯离子含量的测定测定范围为10μg/L~100μg/L。

莄测定原理 肄基于磷酸铅沉淀做载体共沉淀富集痕量氯化物经高速离心机分离后以硝酸铁-高氯酸溶液完全溶解沉淀加硫氰酸汞-甲醇溶液显色用分光光度法间接测定水中痕量氯化物。 肁方法来源 膈 GB/T ?15453-2008 工业循环冷却水和锅炉用水中氯离子的测定共沉淀富集分光光度法 螄注意事项 薂需要额外配备分光光度计460nm 波长、 30mm 吸收池、高速离心机转速5000r/min 配有 250mL 聚乙烯离心管。 7、 8、衿汞盐滴定法 芈测定范围 膅适用于天然水、锅炉水、冷却水中氯离子含量的测定测定范围为1mg/L~100mg/L 超过 100mg/L 时可适当地减少取样体积稀释 至 100mL 后测定。 芄测定原理 袂在 pH2.3~2.8 的水溶液中氯离子与汞离子反应生成微解离的氯化汞。过量的汞离子与二苯卡巴腙二苯偶氯碳酰肼形成紫色络 合物指示终点可用汞盐滴定水样中氯化物含量。指示剂中加溴酚蓝、二甲苯蓝-FF 混合液作背景色可提高指示剂的灵敏度。铁Ⅲ、 铬酸根、亚硫酸根、联氨等对测定有一定干扰可加适量的对苯二酚或过氧化氢消除干扰。 莈方法来源 薆 GB6905.3-1986 锅炉用水和冷却水分析方法氯化物的测定汞盐滴定法 螂注意事项 蚁水样混浊有较深颜色应过滤或脱色后再取样测定。 9、 10、蒇硫氰酸汞分光光度法 羇测定范围 蒄适用于炉水中氯离子含量的测定测定范围为0mg/L~1.0mg/L 和 1.0mg/L~6.0mg/L 莀测定原理 薇在含氯离子的溶液中氯离子与硫氰酸汞发生反应生成氯化汞并释放出SCN- 在高氯酸介质中Fe3 与 SCN-形成稳定的橘红色的络合物此络合物的呈色强度与氯离子的含量成曲线关系。将吸光度与浓度进行曲线拟合经回归计算得回归方程。并且该直线分成 两段氯离子含量在01.0Cl-mg/L 范围内成一直线关系氯离子含量在 1.06.0?Cl-mg/L 范围内成另一直线关系。 膄方法来源

相关文档
相关文档 最新文档