文档库 最新最全的文档下载
当前位置:文档库 › 基于神经网络的增强型自适应滑模控制策略研究

基于神经网络的增强型自适应滑模控制策略研究

基于神经网络的增强型自适应滑模控制策略研究
基于神经网络的增强型自适应滑模控制策略研究

9.7 机器人神经网络自适应控制

声明:应部分读者的要求,本书第9章增加“机器人神经网络自适应控制”一节,图序、公式序顺延。 9.7 机器人神经网络自适应控制 机器人学科是一门迅速发展的综合性前沿学科,受到工业界和学术界的高度重视。机器人的核心是机器人控制系统,从控制工程的角度来看,机器人是一个非线性和不确定性系统,机器人智能控制是近年来机器人控制领域研究的前沿课题,已取得了相当丰富的成果。 机器人轨迹跟踪控制系统的主要目的是通过给定各关节的驱动力矩,使得机器人的位置、速度等状态变量跟踪给定的理想轨迹。与一般的机械系统一样,当机器人的结构及其机械参数确定后,其动态特性将由动力学方程即数学模型来描述。因此,可以采用自动控制理论所提供的设计方法,采用基于数学模型的方法设计机器人控制器。但是在实际工程中,由于机器人是一个非线性和不确定性系统,很难得到机器人精确的数学模型。 采用神经网络,可实现对机器人动力学方程中未知部分的精确逼近,从而实现无需建模的控制。本节讨论如何利用神经网络控制和李雅普诺夫(Lyapunov )方法设计机器人轨迹跟踪控制的问题,以及如何分析控制系统的稳定性和收敛性。 9.7.1 机器人动力学模型及其结构特性 n 关节机械手动态方程可表示为: ()()()(),d ++++=M q q V q q q G q F q ττ (9.30) 其中,n R ∈q 为关节转动角度向量,()M q 为n n ?维正定惯性矩阵,(),V q q 为n n ?维向心哥氏力矩,()G q 为1?n 维惯性矩阵,()F q 为1?n 维摩擦力,d τ为未知有界的外加干扰,n R ∈τ为各个关节运动的转矩向量,即控制输入。 机器人动力学系统具有如下动力学特性: 特性1:惯量矩阵M(q)是对称正定阵且有界; 特性2:矩阵(),V q q 有界; 特性3:()()2,-M q C q q 是一个斜对称矩阵,即对任意向量ξ,有 ()()()2,0T -=ξ M q C q q ξ (9.31)

人工智能与神经网络课程论文

1. 引言 (2) 2. 在农业生产管理与决策中的应用 (2) 2.1. 在农业机械化中的应用 (2) 2.2. 在智能农业专家系统中的应用 (3) 3. 在预测和估产中的应用 (3) 3.1. 在农作物虫情预测中的应用 (3) 3.2. 在作物水分和营养胁迫诊断及产量估测中的应用 (4) 4. 在分类鉴别与图像处理中的应用 (5) 5. 结束语 (5)

BP 神经网络的研究与应用 摘要: 本文概述了BP 神经网络在农机总动力预测、农业专家系统信息决策、虫情测报、农作物水分和养分胁迫、土壤墒情、变量施肥、分类鉴别和图像处理等领域的应用情况,总结了人工神经网络模型的优点,指出其在精准农业和智能农业中的重要理论技术支撑作用。 关键词: BP神经网络; 农业工程; 农业专家系统; 变量施肥; 土壤墒情 Research and Application of BP Neural Network Abstract: Application of BP neural network in prediction of total power in agriculture machinery,information decision-making by agricultural experts system,pest forecast,crops to water stress and nutrient stress,soil moisture condition,variable rate fertilization,identification and image processing were overviewed.Characteristics of artificial neural network model were summed.Supporting role for important theory and technology in precision agriculture and intelligent agriculture were pointed. Key words: BP neural network,Agricultural engineering,Agricultural experts system,Variable rate fertilization,Soil moisture condition

神经网络滑模控制在并联机器人中的应用

历矿驱够删,儆持电棚2伽年第8期?…己釜<://蜗甜d砻々∥—q‘■多}—l,…一…………………………一…….-_……………………………………-……………………..神经网络滑模控制在并联机器人中的应用 王磊,高国琴,蔡纪鹤 (江苏大学,江苏镇江212013) 摘要:首先用滑模控制策略对被控对象进行控制仿真,在分析结果后,结合神经网络滑模控制方法,充分利用神经网络滑模控制的学习能力强,自适应辨识能力强,可以无穷逼近任意函数的优点。仿真结果表明,神经网络滑 模控制方法的跟踪效果好,系统误差小,可以满足机器人控制的要求,能够解决机器人的轨迹跟踪问题,仿真实验证 实了该控制策略的正确性和有效性。 关键词:并联机器人;滑模控制;神经网络;仿真;控制策略 中图分类号:11P273+.3文献标识码:A文章编号:l004—7018(2∞8)08一∞32一04 TheApplicationofVariableStructureBasedOnNeuralNetworkintheControlofParalletRobot 黝^B如i,GADG“o—qin,CA,^一^e (JiangsuUniversity,Zhenjiang212013,China) Abstract:Firstly,bytheuse0ftheslidingcontmIstrategytosimulatetheobject,afteranalysingtheresults,combjningtheneuraJnetworkslidingcontrolmethod,makingfulluseoft|leleamingabilityoftheneuralnetworks“dingcontmlandthe abiIityofadaPtiveidenti6calion,anditalsocanapproxjmafeanyfunctioninfiniteadvantage8.ThesimuIa“onresuJtsshowed thattheneumlnetworkcontmlmethodoftrac“ngslidingtook900deffbct,thesys£eme舯rw{lssmall,sa“s6ngtherequire—mentsofrobotcontml,solvjngtheproblemofmbottracking.Thesimulationexpedmentsconn肿edthecorrectnessofthecon- trolstralegyandef亿ciiveness. Keywords:pa试lelrobot;slidingcontrol;neuralnetwork;simulation;contmlstrategy O引言1支路模型 并联机器人具有高精度、刚度大、承载力强、运动惯量小、位置误差不积累等特点,与串联机器人呈互补关系,成为机器人研究领域的热点。 本文力图研究一种控制策略,来满足并联机构的高速度、高精度的控制要求。并联机器人本身是一个高度非线性系统,运动过程中存在着很大的干扰因素,常规的控制策略已经很难满足控制要求。变结构控制系统在机器人、航空航天和工业领域中有着大量的应用研究,因为机器人动力学一般是非线性动力学,同时存在多种不可预见的外部干扰,所以机器人控制是近年来变结构控制系统理论的主要应用环境之一。但是抖振问题一直是变结构控制的热点,消除抖振的方法有很多,本文先用趋近率方法对支路进行仿真,然后用滑模控制等效控制对系统仿真,由于滑模控制的抖振大小主要是由其控制器的切换增益决定的,最后提出的一种新型的解决抖振控制方法,采用神经网络对切换项的增益进行调节,从而从根本上降低了滑模控制的抖振。 收稿日期:2008一03—03 基金项目:国家自然科学基金资助项目(50375067) 江苏省教育厅资助项日(03KJD510072) 32 本文研究的并联机器人是二自由度驱动冗余并联机器人Mj,其中有三个驱动部分,每个驱动侧包括一个松下MINASA系列AC伺服电机和减速装置。上位机通过固高控制 卡GT一400一SV来控制 三个电机,这种机构的驱 动元减少,结构紧凑,具有 广泛的实用价值和研究价 值,在工业中具有广泛的图l二自由度冗余 应用。如图1所示。并联机器人结构图 2交流伺服驱动支路模型 本文中的控制电机是松下交流伺服电机.根据有关文献h81可知,电流控制的三相星型连接的无刷交流伺服电机的输出转矩可以表示为: 丁(s)=[(厶砗m—Ki一)K一∞K1z氘÷Ktp (1)式中:K。。为电流信号前置放大系数88,Ki为电流环反馈系数2.2,配为电流调节器放大系数6,L。、尺,为三相绕组的电感和电阻,分别为9.9mH、3.7Q,,。  万方数据

神经网络自适应控制

神经网络自适应控制 学院:电气工程与自动化学院 专业:控制科学与工程 姓名:兰利亚 学号: 1430041009 日期: 2015年6月25日

神经网络间接自适应控制 摘要:自适应模糊控制系统对参数变化和环境变化不敏感,能用于非线性和多变 量复杂对象,不仅收敛速度快,鲁棒性好,而且可以在运行中不断修正自己的控制 规则来改善控制性能,因而受到广泛重视。间接自适应控制是通过在线辨识的到 控制对象的模型。神经网络作为自适应控制器,具有逼近任意函数的能力。 关键词:神经网络间接自适应控制系统辨识 一、引言 自适应控制系统必须完成测量性能函数、辨识对象的动态模型、决定控制 器如何修改以及如何改变控制器的可调参数等功能。自适应控制有两种形式: 一种是直接自适应控制,另一种是间接自适应控制。直接自适应控制是根据实 际系统性能与理想性能之间的偏差,通过一定的方法来直接调整控制器的参 数。 二、间接自适应系统分析与建模 2.1系统的分析 系统过程动态方程:y(k+1)= -0.8y(k)/(1+y2(k))+u(k),参考系统模型 由三阶差分方程描述: ym(k+1)=0.8ym(k)+1.2ym(k-1)+0.2ym(k-2)+r(k) 式中,r(k)是一个有界的参考输入。如果输出误差ec(k)定义为 ec(k)=y(k)-ym(k),则控制的目的就是确定一个有界的控制输入u(k),当k趋于 正无穷时,ec(k)=0.那么在k阶段,u(k)可以从y(k)和它的过去值中计算得 到: u(k)=0.8y(k)/(1+y2(k))+0.8y(k)+1.2y(k-1)+0.2y(k-2)+r(k) (1) 于是所造成的误差方程为: ec(k+1)=0.8ec(k)+1.2ec(k-1)+0.2ec(k-2) (2) 因为参考模型是渐进稳定的,所以对任意的初始条件,它服从当k趋于无穷, ec(k)=0。在任何时刻k,用神经元网络N2计算过程的输入控制,即 u(k)=-N[y(k)]+0.8y(k)+1.2y(k-1)+0.2y(k-2)+r(k) (3) 由此产生非线性差分方程:y(k+1)=-0.8y(k)/(1+y2(k))+N[y(k)] +0.8y(k)+ 1.2y(k-1)+0.2y(k-2)+r(k) (4) 故设计的要点是设计一个神经网络来逼近0.8y(k)/(1+y2(k))。 2.2系统的建模设计过程 第一步,用BP神经网络逼近,神经网络的结构包含三层:输入层、隐含层 和输出层。BP网络的训练过程如下:正向传播是输入信号从输入层经隐层传向 输出层,若输出层得到了期望的输出,则学习算法结束;否则,转至反向传 播。 第二步,输入测试样本,对神经网络的逼近程度进行测试,将测试后的期

基于动态滑模控制的移动机器人路径跟踪

第32卷第1期 2009年1月 合肥工业大学学报 (自然科学版) J OU RNAL OF H EFEI UN IV ERSIT Y OF TECHNOLO GY Vol.32No.1  J an.2009  收稿日期:2008204221;修改日期:2008206202 基金项目;先进数控技术江苏省高校重点建设实验室基金资助项目(KX J 07127)作者简介:徐玉华(1985-),男,江西乐平人,合肥工业大学博士生; 张崇巍(1945-),男,安徽巢湖人,合肥工业大学教授,博士生导师. 基于动态滑模控制的移动机器人路径跟踪 徐玉华1, 张崇巍1, 鲍 伟1, 傅 瑶1, 汪木兰2 (1.合肥工业大学电气与自动化工程学院,安徽合肥 230009;2.南京工程学院先进数控技术江苏省高校重点实验室,江苏南京 211167) 摘 要:文章研究了室内环境下基于彩色视觉的移动机器人路径跟踪问题,利用颜色信息提取路径,简化了图像的特征提取;拟合路径参数时引入RANSAC 方法,以提高算法的可靠性;在移动机器人非线性运动学模型的基础上,设计了一阶动态滑模控制器,并通过仿真验证了控制器的有效性。关键词:移动机器人;视觉导航;路径跟踪;动态滑模 中图分类号:TP24 文献标识码:A 文章编号:100325060(2009)0120028204 Mobile robot ’s path following based on dynamic sliding mode control XU Yu 2hua 1, ZHAN G Chong 2wei 1, BAO Wei 1, FU Yao 1, WAN G Mu 2lan 2 (1.School of Electric Engineering and Automation ,Hefei University of Technology ,Hefei 230009,China ;2.Jiangsu Province College Key Laboratory of Advanced Numerical Control Technology ,Nanjing Institute of Technology ,Nanjing 211167,China ) Abstract :In t his paper ,mobile ro bot ’s pat h following in indoor environment based on color vision is st udied.Firstly ,t he image feat ures are extracted by color information so t hat t he real 2time perform 2ance of t he algorit hm is imp roved.To enhance t he ro bust ness of pat h parameter fitting ,a least square met hod based on RANSAC is adopted.Then ,a first 2order dynamic sliding mode cont roller is designed based on t he nonlinear vision 2guided robot ’s kinematics.The simulation proves t he validity of t he con 2t roller. K ey w ords :mobile robot ;visual navigation ;pat h following ;dynamic sliding mode 轮式移动机器人亦称自动引导车(A GV ),有着广泛的应用价值[1]。近年来,随着计算机技术和图像处理技术的发展,移动机器人视觉导航技术成为研究的热点[2]。视觉引导的路径跟踪是视觉导航技术之一。文献[3]基于移动机器人线性化的运动学模型,运用线性二次型最优控制理论设计最优控制器。该控制器对于较小角度的转向控制有一定的优越性,但没有讨论在较大偏差情况下的控制问题。文献[4]提出了一种模仿人工预瞄驾驶行为的移动机器人路径跟踪的模糊控制方法。而在实际应用中,模糊规则难以制定。文献[5]针对全局视觉条件下的轮式移动机器人路径跟踪问题,将基于图像的视觉伺服控制方法引 入到运动控制中,提出一种基于消除图像特征误差的跟踪控制方法。但该方法只适用于小规模环境条件下的使用。 针对以上存在的问题,本文采用价格低廉的车载彩色CCD 相机获取预先铺设引导线的路面实时图像,利用颜色信息提取路径。拟合路径参数时引入了RANSAC 方法,提高了参数拟合的鲁棒性。在移动机器人非线性运动学模型基础之上,设计了一阶动态滑模控制器(Dynamic Sliding Mode Cont roller ,简称DSMC ),在存在较大偏差的情况下也能达到良好的跟踪效果。滑模变结构控制对满足匹配条件的外界干扰和参数变化具有不变性,是一种适用于非线性系统的鲁棒控制方

MATLAB和神经网络自适应控制

自动控制理的研究离不开人类社会的发展。电子计算机的迅速发展、计算和信息处理的水平提高不断地促使着自动控制理论向更复杂的方向发展。自适应控制的提出是针对系统的非线性、不确定性、复杂性。它的研究主要目标不再是被控对象而是控制系统本身。自上世纪年代初神经网络控制系统,提出了基于理论和应用方面都有了新的突破。 MATLAB简介 MATLAB是美国MathWorks公司开发的用于教育、工程与科学计算的软件产品,它向用户提供从概念设计、数据分析、算法开发、建模仿真到实时实现的理想集成环境,是国际控制界公认的标准计算软件。经过十多年的不断地完善和扩充,MATLAB已经拥有了数十个工具箱和功能模块,可以实现数值分析、优化、统计偏微分方程数值解、自动控制、信号处理、图像处理、声音处理、系统建模等诸多领域的计算和图形显示功能。 MATLAB提供了一种用于编程的高级语言——M语言。M语言是一种面向科学与工程计算的高级语言,其最大的特点是简单和直接。它允许用数学形式的语言编写程序,MATLAB的程序文件和脚本文件通常保存为后缀为“.m”的文件,可以称之为M文件。MATLAB是一种基于不限维数组数据类型的内部交互系统,它既能够进行矩阵和向量计算,也能够采用特定的方法在标量语言中编写程序。它采用一些常用的数学符号来表示问题及其解决方案,将计算、可视化和编程等功能集成于一个简单、易用的开发环境中,为用户工作平台的管理和数据的输入/输出提供了便利的方法,同时还提供了M文件的扩展和管理工具。 神经网络自适应控制 人工神经网络ANN( Ar tif icial Neur al Netw ork) 简称神经网络,是在现代神经学的基础上提出来的,是对人脑或自然神经网络基本特征的抽象和模拟。神经网络很早之前就被证明出来有逼近任意连续有界非线性函数的特殊能力。因此它有很多优点,比如强鲁棒性、容错性、强自适应能力强等。复杂的系统控制提供了一条全新的思路和选择。神经网络控制系统的结构形式有很多种,本文着重介绍神经网络自适应控制方法。一般包括补偿器和自适应处理单元。自适应控制系统的本质是一个非线性随机控制系统,很难为其找到合适的数学模型。为了充分发挥出自适应控制系统的优越性能,提高控制系统的鲁实时性、容错性、鲁棒性以及控制系统参数的自适应能力,能更有效地实现对一些非线性复杂过程系统的

无刷直流电机的滑模控制器的设计与仿真

无刷直流电机的滑模控制器的设计与仿真 摘要 舵伺服系统在航空航天领域,有着广泛应用和重要的研究价值。应用无刷直流电机作为舵系统执行器,可以增大系统输出转矩,实现系统小型化。本文基于无刷直流电机执行器,利用 DSP 与 FPGA 结合的核心处理单元,应用滑模变结构控制策略,实现舵机系统伺服,提高舵系统抗扰性和信号响应的快速性;并在系统中加入滑模观测器,实现对于系统内部状态量的观测,为实现无位置传感器控制提供条件本文应用无刷直流电机作为舵系统执行器,通过分析和设计滑模变结构控制算法,实现舵系统位置伺服控制,利用滑模变结构控制策略的特性,提高系统对于扰动和内部参数摄动的鲁棒性,与基于传统控制策略的伺服机构相比,系统的抗扰性得到了提高。并在系统中引入滑模观测器,利用电流、电压传感器采样相电流和相电压作为该观测器的给定量,观测出电机的速度,转子运动换相位置信号和三相反电动势波形,从而实现电机的无位置传感器控制。 本文通过分析舵伺服机构的主要结构和工作原理,根据实际系统技术要求,设计出基于电动伺服系统的数字控制器。利用 DSP 强大的数据处理能力和 FPGA 并行运算能力,实现设计的控制算法,提高舵系统的性能。通过 MATLAB 中 Simulink 环境下构建理想系统模型,应用滑模控制算法,进行模型仿真。通过系统仿真分析,设计出满足离散系统的滑模控制器参数。通过 DSP 与 FPGA 结合的核心处理单元实现滑模变结构控制算法,应用于舵伺服系统中[1]。最后,通过完成整体硬件与软件平台设计,实现对舵伺服系统的控制。通过仿真和实验结果分析,验证了滑模控制具有强鲁棒性和抗扰性,满足舵系统对于快速性和抗扰性的技术要求,提高了系统 整体控制性能。 关键字:滑模控制;滑模观测器;无刷直流电机;舵伺服系统;DSP+FPGA

神经网络在人工智能中的应用

神经网络在人工智能中的应用 摘要:人工智能的定义可以分为两部分,即“人工”和“智能”。“人工”比较好理解,争议性也不大。有时我们会要考虑什么是人力所能及制造的,或者人自身的智能程度有没有高到可以创造人工智能的地步,等等。但总的来说,“人工系统”就是通常意义下的人工系统。关键词:人工智能,神经网络 一、人工智能 “人工智能”一词最初是在1956 年Dartmouth学会上提出的。从那以后,研究者们发展了众多理论和原理,人工智能的概念也随之扩展。人工智能是一门极富挑战性的科学,从事这项工作的人必须懂得计算机知识,心理学和哲学。人工智能是包括十分广泛的科学,它由不同的领域组成,如机器学习,计算机视觉等等,总的说来,人工智能研究的一个主要目标是使机器能够胜任一些通常需要人类智能才能完成的复杂工作。但不同的时代、不同的人对这种“复杂工作”的理解是不同的。例如繁重的科学和工程计算本来是要人脑来承担的,现在计算机不但能完成这种计算, 而且能够比人脑做得更快、更准确,因之当代人已不再把这种计算看作是“需要人类智能才能完成的复杂任务”, 可见复杂工作的定义是随着时代的发展和技术的进步而变化的, 人工智能这门科学的具体目标也自然随着时代的变化而发展。它一方面不断获得新的进展,一方面又转向更有意义、更加困难的目标。 二、神经网络

神经网络是:思维学普遍认为,人类大脑的思维分为抽象(逻辑)思维、形象(直观)思维和灵感(顿悟)思维三种基本方式。 逻辑性的思维是指根据逻辑规则进行推理的过程;它先将信息化成概念,并用符号表示,然后,根据符号运算按串行模式进行逻辑推理;这一过程可以写成串行的指令,让计算机执行。然而,直观性的思维是将分布式存储的信息综合起来,结果是忽然间产生想法或解决问题的办法。这种思维方式的根本之点在于以下两点:1.信息是通过神经元上的兴奋模式分布储在网络上;2.信息处理是通过神经元之间同时相互作用的动态过程来完成的。 人工神经网络就是模拟人思维的第二种方式。这是一个非线性动力学系统,其特色在于信息的分布式存储和并行协同处理。虽然单个神经元的结构极其简单,功能有限,但大量神经元构成的网络系统所能实现的行为却是极其丰富多彩的。 人工神经网络是由大量的简单基本元件——神经元相互联接而成的自适应非线性动态系统。每个神经元的结构和功能比较简单,但大量神经元组合产生的系统行为却非常复杂。 人工神经网络反映了人脑功能的若干基本特性,但并非生物系统的逼真描述,只是某种模仿、简化和抽象。 与数字计算机比较,人工神经网络在构成原理和功能特点等方面更加接近人脑,它不是按给定的程序一步一步地执行运算,而是能够自身适应环境、总结规律、完成某种运算、识别或过程控制。三.神经网络在人工智能中的应用专家系统

探讨如何做好塔式起重机的神经网络滑模防摆控制

探讨如何做好塔式起重机的神经网络滑模防摆控制 发表时间:2015-09-15T10:41:29.140Z 来源:《工程建设标准化》2015年5月总第198期供稿作者:邓海[导读] 广东省建筑机械厂有限公司,广东,广州塔式起重机在施工过程中,存在负载摆动的情况。 邓海 (广东省建筑机械厂有限公司,广东,广州,510000)【摘要】塔式起重机在施工过程中,存在负载摆动的情况。本文首先对起重机的动力学模型进行了分析,并提出了基于神经网络的滑膜防摆控制方法。使用此方法不仅可以降低滑膜控制系统的振动频率,而且可以使系统性能得以提升,使系统的控制品质得以改善。仿真效果具有可行性和有效性。 【关键词】塔式起重机;神经网络;滑膜防摆;控制 1 塔机系统结构 通常情况下,塔机结构主要由工作机构、金属结构、电气系系统构成。在工作过程中,塔机会利用变幅、起升、回转电机等方法来达到搬运物料的目的。[1]简化模型图如图1 所示。 (1)变幅结构。变幅结构主要由电机、变幅小车、制动器和减速器构成。在工作的过程中,塔机主要通过平移小车来对负载的水平位置进行调整。 (2)起升结构。塔机的起升结构主要由钢丝绳、卷筒、电机和吊钩构成,主要是为了达到负载上下垂直运动的目的。由于塔机在工作过程中,会将重物移动到指定的位置,因此,起升机构是塔机系统中工作次数最多的一个组成结构。 (3)回转结构主要由回转电机、减速器、限位器、液力耦合器等组成,塔机在工作过程中,会将塔身作为中轴,利用回转电机实现塔机在水面的转动。达到三维作业的目的。 2 塔式起重机摆动的影响因素 由于塔机系统相对复杂,除了一些组成元件有非线性因素存在以外,还会受到风力、导轨摩擦等因素的影响。为了进一步分析影响因素,本文做如下假设:(1)吊绳有足够的刚度,负载时可以不考虑长度的变化;(2)可以忽略吊绳质量相对负载质量;(3)负载只做和水平面垂直的平面运动,在进行数学模型的建立时,需要将负载和吊具看成一个没有体积的质点[2]。(4)设小车的驱动力为F,忽略电机传动机、减速器等机构的非线性影响。(5)忽略风机和空气阻力的影响。经过研究,塔机系统的摆动主要受到悬绳的起升力、小车的驱动力、轨道和小车摩擦力的影响。 3 设计塔式起重机模防摆控制器 对于控制系统来说,滑膜控制对参数摄动和外部干扰具有不变性。由于塔式起重机系统是一个多变量、相对复杂的耦合非线性系统,在对物体进行吊运的过程中,会影响摆角防摆控制和定位控制。由于使用现代控制理论和经典理论的方法控制效果并不理想,所以文中使用神经网络滑膜控制器来控制塔式起重机的负载摆角和臂架小车的位置进行定位,并对其进行防摆控制。 目前,使用比较广泛的模型为BP 多层前馈网络,这种学习算法学习速度比较慢、计算量比较大。而径向基函数网络属于三层前馈型的网络(RBF 网络),使用径向函数作为隐层单元的函数,将输间的权值固定为1,只有输出单元和隐层单元之间的权值可以调节。RBF 网络除了计算速度快、计算量小外,还具有不错的推广应用能力,这种网络结构属于局部逼近网络,可以通过任意的精度区接近任意一个连续的函数。本文设计使用四个神经网络逼近网络。

2019人工智能与健康试题及答案

2019人工智能与健康试题及答案 一、单项选择题 1.()是集机械、电子、控制、计算机、传感器、人工智能等多学科先进技术于一体的现代制造业重要的自动化装备。 D.工业机器人 2.()是利用计算机将一种自然语言(源语言)转换为另一种自然语言(目标语言)的过程。 B.机器翻译 3.()是人工智能的核心,是使计算机具有智能的主要方法,其应用遍及人工智能的各个领域。 B.机器学习 4.()是人以自然语言同计算机进行交互的综合性技术,结合了语言学、心理学、工程、计算机技术等领域的知识。 A.语音交互 5.()是通过建立人工神经网络,用层次化机制来表示客观世界,并解释所获取的知识,例如图像、声音和文本。 A.深度学习 6.()是研究用计算机系统解释图,像实现类似人类视觉系统理解外部世界的一种技术,所讨论的问题是为了完成某一任务需要从图像中获取哪些信息,以及如何利用这些信息获得必要的解释。 B.图像理解 7.()是一个具有大量的专门知识与经验的程序系统,它应用人工智能技术和计算机技术,根据某领域一个或多个专家提供的知识和经验,进行推理和判断,模拟人类专家的决策过程,以便解决那些需要人类专家处理的复杂问题。 A.专家系统 8.()是一种处理时序数据的神经网络,常用于语音识别、机器翻译等领域。 C.循环神经网络 9.()是一种基于树结构进行决策的算法。 B.决策树 10.()是用电脑对文本集按照一定的标准进行自动分类标记。

C.文本分类 11.()是指能够按照人的要求,在某一个领域完成一项工作或者一类工作的人工智能。 C.弱人工智能 12.()是指能够自己找出问题、思考问题、解决问题的人工智能。 B.强人工智能 13.()是指在各个领域都比人类要强的人工智能。 A.超人工智能 14.()是指直接通过肢体动作与周边数字设备和环境进行交互。 A.体感交互 15.()是自然语言处理的重要应用,也可以说是最基础的应用。 C.文本分类 16.()宣布启动了“先进制造伙伴计划”“人类连接组计划”“创新神经技术脑研究计划”。 C.美国 17.()中共中央政治局就人工智能发展现状和趋势举行第九次集体学习。 B.2018年10月31日 18.《“健康中国2030”规划纲要》中提到,健康是经济社会发展的() B.基础条件 19.《“健康中国2030”规划纲要》中提到,全民健康是建设健康中国的() D.根本目的 20.1997年,Hochreiter&Schmidhuber提出()。 D.长短期记忆模型 21.2005年,美国一份癌症统计报告表明:在所有死亡原因中,癌症占() A.1/4 22.2012年,Hinton教授小组在ImageNet竞赛中夺冠,降低了几乎()的错误率。 B.50% 23.2017年,卡内基梅隆大学开发的一个人工智能程序在()大赛上战胜了四位人类玩家,这在人工智能发展史上具有里程碑式的意义。 C.德州扑克 24.50年前,人工智能之父们说服了每一个人:“()是智能的钥匙。” B.逻辑 25.癌症的治疗分为手术、放疗、化疗。据WTO统计,有()的肿瘤患者需要接受放疗。

机械臂神经网络自适应控制

机械臂神经网络自适应控制 一.前言 由于经典控制方法和现代控制方法在控制机器人这种复杂系统时所表现的种种不足,近年来,越来越多的学者开始将智能控制方法引入机器人控制,实现机器人控制的智能化。主要的控制方法有:模糊控制Fc,神经网络控制NNc,专家控制Ec等等。对于复杂的环境和复杂的任务,如何将人工智能技术中较少依赖模型的求解方法与常规的控制方法来结合,正是智能控制所要解决的问题。因此,智能控制系统必须具有模拟人类学习和自适应、自组织的能力。现代智能控制技术的进步,为机器人技术的发展尤其是智能机器人技术的研究与发展提供了可能。神经网络的研究已经有30多年的历史,它是介于符号推理与数值计算之间的一种数学工具,具有很好的学习能力和适应能力,适合于用作智能控制的工具,所以神经网络控制是智能控制的一个重要方面。由于神经网络在许多方面试图模拟人脑的功能。因此神经网络控制并不依赖精确的数学模型,并且神经网络对信息的并行处理能力和快速性,适于机器人的实时控制。神经网络的本质非线性特性为机器人的非线性控制带来了希望。神经网络可通过训练获得学习能力,能够解决那些用数学模型或规则描述难以处理或无法处理的控制过程。同时神经网络还具有很强的自适应能力和信息综合能力,因而能同时处理大量的不同类型的控制输人,解决输入信息之间的互补性和冗余性问题,实现信息融合处理。这就特别适用于像机器人这样具有复杂的不确定性系统、大系统和多变量高度非线性系统的控制。近年来,神经网络在机器人控制中得到了广泛的应用。 二、机械臂系统设计 机械臂是一个多输人多输出、强耦合的复杂机电系统,要对其实现精确的控制比较困难。为此,先不考虑机械臂的动态控制,只对其进行运动控制,使其能够准确的跟踪给定的轨迹曲线。其基本的控制结构,如图1所示。 (一)机械臂的模型设计 本文针对两关节机械臂进行设计,两关节机械臂的控制图如下 n一连杆平面机械臂的动力学模型如下式: (2-1)其中分别代表各关节的角度位置、角速度以及角加速度; 为惯性矩阵;为向心矩阵;为重力向量;代表控制输入向 量。

滑模变结构控制理论及其算法研究与进展_刘金琨

第24卷第3期2007年6月 控制理论与应用 Control Theory&Applications V ol.24No.3 Jun.2007滑模变结构控制理论及其算法研究与进展 刘金琨1,孙富春2 (1.北京航空航天大学自动化与电气工程学院,北京100083;2.清华大学智能技术与系统国家重点实验室,北京100084) 摘要:针对近年来滑模变结构控制的发展状况,将滑模变结构控制分为18个研究方向,即滑模控制的消除抖振问题、准滑动模态控制、基于趋近律的滑模控制、离散系统滑模控制、自适应滑模控制、非匹配不确定性系统滑模控制、时滞系统滑模控制、非线性系统滑模控制、Terminal滑模控制、全鲁棒滑模控制、滑模观测器、神经网络滑模控制、模糊滑模控制、动态滑模控制、积分滑模控制和随机系统的滑模控制等.对每个方向的研究状况进行了分析和说明.最后对滑模控制的未来发展作了几点展望. 关键词:滑模控制;鲁棒控制;抖振 中图分类号:TP273文献标识码:A Research and development on theory and algorithms of sliding mode control LIU Jin-kun1,SUN Fu-chun2 (1.School of Automation Science&Electrical Engineering,Beijing University of Aeronautics and Astronautics,Beijing100083,China; 2.State Key Laboratory of Intelligent Technology and Systems,Tsinghua University,Beijing100084,China) Abstract:According to the development of sliding mode control(SMC)in recent years,the SMC domain is character-ized by eighteen directions.These directions are chattering free of SMC,quasi SMC,trending law SMC,discrete SMC, adaptive SMC,SMC for mismatched uncertain systems,SMC for nonlinear systems,time-delay SMC,terminal SMC, global robust SMC,sliding mode observer,neural SMC,fuzzy SMC,dynamic SMC,integral SMC and SMC for stochastic systems,etc.The evolution of each direction is introduced and analyzed.Finally,further research directions are discussed in detail. Key words:sliding mode control;robust control;chattering 文章编号:1000?8152(2007)03?0407?12 1引言(Introduction) 滑模变结构控制本质上是一类特殊的非线性控制,其非线性表现为控制的不连续性,这种控制策略与其它控制的不同之处在于系统的“结构”并不固定,而是可以在动态过程中根据系统当前的状态(如偏差及其各阶导数等)有目的地不断变化,迫使系统按照预定“滑动模态”的状态轨迹运动.由于滑动模态可以进行设计且与对象参数及扰动无关,这就使得变结构控制具有快速响应、对参数变化及扰动不灵敏、无需系统在线辩识,物理实现简单等优点.该方法的缺点在于当状态轨迹到达滑模面后,难于严格地沿着滑模面向着平衡点滑动,而是在滑模面两侧来回穿越,从而产生颤动. 滑模变结构控制出现于20世纪50年代,经历了50余年的发展,已形成了一个相对独立的研究分支,成为自动控制系统的一种一般的设计方法.以滑模为基础的变结构控制系统理论经历了3个发展阶段.第1阶段为以误差及其导数为状态变量研究单输入单输出线性对象的变结构控制;20世纪60年代末开始了变结构控制理论研究的第2阶段,研究的对象扩大到多输入多输出系统和非线性系统;进入80年代以来,随着计算机、大功率电子切换器件、机器人及电机等技术的迅速发展,变结构控制的理论和应用研究开始进入了一个新的阶段,所研究的对象已涉及到离散系统、分布参数系统、滞后系统、非线性大系统及非完整力学系统等众多复杂系统,同时,自适应控制、神经网络、模糊控制及遗传算法等先进方法也被应用于滑模变结构控制系统的设计中. 2滑模变结构控制理论研究进展(Develop-ment for SMC) 2.1消除滑模变结构控制抖振的方法研 究(Research on chattering elimination of SMC) 2.1.1滑模变结构控制的抖振问题(Problems of SMC chattering) 从理论角度,在一定意义上,由于滑动模态可以 收稿日期:2005?10?19;收修改稿日期:2006?02?23. 基金项目:国家自然科学基金资助项目(60474025,90405017).

毕业设计论文-切换系统滑模控制设计

毕业设计 学生姓名: Zang Wenbo 学号: 090803207 学院:电气工程学院 专业:测控技术与仪器 题目:切换系统滑模控制设计 指导教师: 评阅教师: 2013年6月

河北科技大学毕业设计成绩评定表 姓名学号成绩 专业测控技术与仪器 题目切换系统滑模控制设计 指 导 教 师 评 语 及 成 绩指导教师: 年月日评 阅 教 师 评 语 及成绩评阅教师: 年月日 答辩小组评语 及成绩答辩小组组长: 年月日 答辩委员 会意见学院答辩委员会主任: 年月日 注:该表一式两份,一份归档,一份装入学生毕业设计说明书中。

毕业设计中文摘要 切换系统是按某种切换规则在各子系统之间切换的混杂系统,是混杂系统理论与应用研究中非常活跃的一个分支。切换系统滑模控制问题是现代非线性系统控制中的一个重要课题,在过去的几十年中得到了广泛的关注,而且已被成功用于大量实际系统。这种控制策略与其他控制的不同之处在于系统的结构并不固定。它可以在动态过程中,根据系统当前的实时状态来对其进行控制,从而达到预定的控制目的。具有响应速度快,对参数摄动不敏感、鲁棒性能好等优点。许多实际系统本身具有切换的特性,例如含有继电、饱和、滞环等环节的被控对象以及工业上常见的多液罐系统。此类系统适宜用切换系统来进行建模分析,并设计相应的切换控制器来对其进行控制。 本论文通过对切换系统滑模控制的基本理论知识及/ Matlab Simulink软件的学习,主要分为四章:第一章介绍了切换系统滑模控制的基本的发展过程;第二章介绍了基本的切换系统滑模控制的相关理论;第三章介绍了如何对切换系统进行观测器的设计,并给出了用/ Matlab Simulink软件进行的具体实例仿真;第四章介绍了如何对简单的切换系统进行滑模控制设计,同时也给出了用/ Matlab Simulink软件进行的具体实例仿真,得到仿真曲线,验证控制器的控制性能,完成了对切换系统的控制器的设计。 关键词切换系统滑膜控制

人工智能之人工神经网络(PDF 23页)

1 第八章人工神经网络吉林大学地面机械仿生技术教育部重点实验室 张锐

2 8.1 神经网络的基本概念及组成特性 8.1.1 生物神经元的结构与功能特性 从广义上讲,神经网络通常包括生物神经网络与人工神经网络两个方面。生物神经网络是指由动物的中枢神经系统及周围神经系统所构成的错综复杂的神经网络,它负责对动物肌体各种活动的管理,其中最重要的是脑神经系统。 人工神经网络是指模拟人脑神经系统的结构和功能,运用大量的软、硬件处理单元,经广泛并行互连,由人工方式建立起来的网络系统。 生物神经元就通常说的神经细胞,是构成生 物神经系统的最基本单元,简称神经元。 神经元主要由三个部分构成,包括细胞体、 轴突和树突,其基本结构如图所示。 1. 生物神经元的结构 生物神经元结构 吉林大学地面机械仿生技术教育部重点实验室 张锐

3 从生物控制论的观点来看,作为控制和信息处理基本单元的神经元,具有下列一些功能与特性。 2. 神经元的功能特性 (1)时空整合功能 神经元对于不同时间通过同一突触传入的信息,具有时间整合功能;对于同一时间通过不同突触传入的信息,具有空间整合功能。两种功能相互结合,使生物神经元具有时空整合的输入信息处理功能。 (2)神经元的动态极化性 尽管不同的神经元在形状及功能上都有明显的不同,但大多数神经元都是以预知的确定方向进行信息流动的。 (3)兴奋与抑制状态 神经元具有两种常规工作状态,即兴奋状态与抑制状态。 (4)结构的可塑性 突触传递信息的特性是可变的,随着神经冲动传递方式的变化,其传递作用可强可弱,所以神经元之间的连接是柔性的,这称为结构的可塑性。 吉林大学地面机械仿生技术教育部重点实验室 张锐

一种递归模糊神经网络自适应控制方法

一种递归模糊神经网络自适应控制方法 毛六平,王耀南,孙 炜,戴瑜兴 (湖南大学电气与信息工程学院,湖南长沙410082) 摘 要: 构造了一种递归模糊神经网络(RFNN ),该RFNN 利用递归神经网络实现模糊推理,并通过在网络的第 一层添加了反馈连接,使网络具有了动态信息处理能力.基于所设计的RFNN ,提出了一种自适应控制方案,在该控制方案中,采用了两个RFNN 分别用于对被控对象进行辨识和控制.将所提出的自适应控制方案应用于交流伺服系统,并给出了仿真实验结果,验证了所提方法的有效性. 关键词: 递归模糊神经网络;自适应控制;交流伺服中图分类号: TP183 文献标识码: A 文章编号: 037222112(2006)1222285203 An Adaptive Control Using Recurrent Fuzzy Neural Network M AO Liu 2ping ,W ANG Y ao 2nan ,S UN Wei ,DAI Y u 2xin (College o f Electrical and Information Engineering ,Hunan University ,Changsha ,Hunan 410082,China ) Abstract : A kind of recurrent fuzzy neural network (RFNN )is constructed ,in which ,recurrent neural network is used to re 2alize fuzzy inference temporal relations are embedded in the network by adding feedback connections on the first layer of the network.On the basis of the proposed RFNN ,an adaptive control scheme is proposed ,in which ,two proposed RFNNs are used to i 2dentify and control plant respectively.Simulation experiments are made by applying proposed adaptive control scheme on AC servo control problem to confirm its effectiveness. K ey words : recurrent fuzzy neural network ;adaptive control ;AC servo 1 引言 近年来,人们开始越来越多地将神经网络用于辨识和控 制动态系统[1~3].神经网络在信号的传播方向上,可以分为前馈神经网络和递归神经网络.前馈神经网络能够以任意精度逼近任意的连续函数,但是前馈神经网络是一个静态的映射,它不能反映动态的映射.尽管这个问题可以通过增加延时环节来解决,但是那样会使前馈神经网络增加大量的神经元来代表时域的动态响应.而且,由于前馈神经网络的权值修正与网络的内部信息无关,使得网络对函数的逼近效果过分依赖于训练数据的好坏.而另一方面,递归神经网络[4~7]能够很好地反映动态映射关系,并且能够存储网络的内部信息用于训练网络的权值.递归神经网络有一个内部的反馈环,它能够捕获系统的动态响应而不必在外部添加延时反馈环节.由于递归神经网络能够反映动态映射关系,它在处理参数漂移、强干扰、非线性、不确定性等问题时表现出了优异的性能.然而递归神经网络也有它的缺陷,和前馈神经网络一样,它的知识表达能力也很差,并且缺乏有效的构造方法来选择网络结构和确定神经元的参数. 递归模糊神经网络(RFNN )[8,9]是一种改进的递归神经网络,它利用递归网络来实现模糊推理,从而同时具有递归神经网络和模糊逻辑的优点.它不仅可以很好地反映动态映射关系,还具有定性知识表达的能力,可以用人类专家的语言控制规则来训练网络,并且使网络的内部知识具有明确的物理意 义,从而可以很容易地确定网络的结构和神经元的参数. 本文构造了一种RFNN ,在所设计的网络中,通过在网络的第一层加入反馈连接来存储暂态信息.基于该RFNN ,本文还提出了一种自适应控制方法,在该控制方法中,两个RFNN 被分别用于对被控对象进行辨识和控制.为了验证所提方法的有效性,本文将所提控制方法用于交流伺服系统的控制,并给出了仿真实验结果. 2 RFNN 的结构 所提RFNN 的结构如图1所示,网络包含n 个输入节点,对每个输入定义了m 个语言词集节点,另外有l 条控制规则 节点和p 个输出节点.用u (k )i 、O (k ) i 分别代表第k 层的第i 个节点的输入和输出,则网络内部的信号传递过程和各层之间的输入输出关系可以描述如下: 第一层:这一层的节点将输入变量引入网络.与以往国内外的研究不同,本文将反馈连接加入这一层中.第一层的输入输出关系可以描述为:O (1)i (k )=u (1)i (k )=x (1)i (k )+w (1)i (k )?O (1)i (k -1), i =1,…,n (1) 之所以将反馈连接加入这一层,是因为在以往的模糊神经网络控制器中,控制器往往是根据系统的误差及其对时间的导数来决定控制的行为,在第一层中加入暂态反馈环,则只需要以系统的误差作为网络的输入就可以反映这种关系,这样做不仅可以简化网络的结构,而且具有明显的物理意义,使 收稿日期:2005207201;修回日期:2006206218 基金项目:国家自然科学基金项目(N o.60075008);湖南省自然科学基金(N o.06JJ50121)   第12期2006年12月 电 子 学 报 ACT A E LECTRONICA SINICA V ol.34 N o.12 Dec. 2006

相关文档