文档库 最新最全的文档下载
当前位置:文档库 › SAE1006机械性质

SAE1006机械性质

SAE1006机械性质

紧固件机械性能说明

1)紧固件的含义 商品紧固件材料不用材料钢号,而用性能等级表达。 ①碳钢: a) 碳钢螺栓、螺柱和螺钉在GB/《紧固件机械性能螺栓、螺钉和螺柱》中的性能等级的标代号由“·”隔开的两部分数字组成: 第一部分数字(“·”前)表示抗拉强度(σb)的1/100; 第二部分数字(“·”后)表示公称屈服点(σs)或公称规定非比例伸长应力(σ)与公称抗拉强度(σb)比值(屈强比)(σs/σb)的10倍。 这两部分数字的乘积为公称屈服点(σs)或公称规定非比例伸长应力(σ)的10倍。 性能系列为:,,,,,,,,,。 例如:“级”即为公称抗拉强度σb=800MPa,公称屈服点σs=640MPa。 b)螺母在GB/《紧固件机械性能螺母粗牙螺纹》中性能等级的标记,当公称高度大于时,用公称抗拉强度σb的1/100来表示性能等级,性能等级系列为:4,5,6,8,10,12;当公称高度大于或等于且小于时(即扁螺母),用“0”及一个数字标记,其中数字表示用淬硬心棒测出的保证应力的1/100,而“0”表示这种螺母组合件的实际承载能力比数字表示的承载能力低,例如:级即公称保证应力400MPa,实际保证应力380MPa。 c)紧定螺钉在GB/《紧固件机械性能紧定螺钉》中的性能等级标记代号由数字和字母组成,数字部分表示最低维氏硬度值的1/10,字母H表示硬度,性能等级系列为:14H,22H,33H,45H。例如22H即维氏硬度220。 d)平垫圈的性能等级标记代号由数字和字母组成,数字部分表示最低的维氏硬度值,字母HV表示硬度,性能等级系列为:100HV,140HV,200HV,300HV。例如:140HV即维氏硬度140。 ②不锈钢。不锈钢螺栓、螺柱、螺钉和螺母在GB/《紧固件机械性能不锈钢螺栓、螺钉和螺柱》中的性能等级的标记由材料组别和性能等级两部分组成: 第一部分由字母和数字组成在“-”前表示钢的组别,标记由字母和一个数字组成,字母表示钢的类别,数字表示该类钢的化学成分范围。 第二部分数字在“-”之后表示产品的性能等级,其数字为公称抗拉强度(σb)的1/10。 性能系列为:A1-50,A2-50,A3-50,A4-50,A5-50,A1-70,A2-70,A3-70,A4-70,A5-70,A1-80,A2-80,A3-80,A4-80,A5-80,C1-50,C1-70,C1-110,C3-80,C4-70,F1-45,F1-60。 例如:“A4”为00Cr17Ni14Mo2;“A2”为0Cr18Ni9。A2-50与A2-70虽然可以是同样的材料,但通过冷作硬化可使σb改变。

基布物理机械性能的研究

基布物理机械性能的研究 摘要:通过对基布的各种性能测试,如厚度、单位面积质量、撕裂强度、拉伸强度、毛细效应等物理机械性能的测试,以适应合成革对基布强度,韧度等方面的要求和不同基布的物理机械性能。 关键词:基布,撕裂强度,拉伸轻度,毛细效应 1引言 1.1基布的定义与分类 底布又称基布,是重要的组成部分,经聚氨酯等涂层的浸渍或涂覆共同构成了人造革与合成革。基布不仅占人造革与合成革原料中的大部分,而且使用的基布物理机械性能也很大程度影响制品的强度等性质因此选用适度规格和优良的基布,是制的优良制品的先决条件。所以对于基布的品质管理、规格要求和瑕疵的检验,都应该严格执行。按照不同的基布形成过程可以分为以下几类:机织布、针织布、非织造布。 1.2 基布性能与选用 一般情况下,依据基布起毛后经纱受到破换的程度,决定基布物

理机械性能的下降程度。起毛程度越大,基布受到的损伤程度也越大,最终成品的物理机械性能就越低。如果起毛程度越低,起毛长度越短,虽然对基布的破坏程度小,但是涂层和基布不易粘合,成品外观也较差,甚至缺乏弹性和柔软性。如果起毛长度太长,是成品强度降低外,也会造成粘合不良和涂层皱纹程度越大的情况。因此,底布起毛程度必须适度、均匀,才能使成品质量稳定。 基布物理性能测试 1 1 引言 1.1基布的定义与分类 底布又称基布,是重要的组成部分,经聚氨酯等涂层的浸渍或涂覆共同构成了人造革与合成革。基布不仅占人造革与合成革原料中的大部分,而且使用的基布物理机械性能也很大程度影响制品的强度等性质因此选用适度规格和优良的基布,是制的优良制品的先决条件。所以对于基布的品质管理、规格要求和瑕疵的检验,都应该严格执行。按照不同的基布形成过程可以分为以下几类:机织布、针织布、非织造布。 基布类型 机织布 针织布 无纺布 层压织物 平纹织物斜纹织物缎纹织物

紧固件检验规范

出厂检验规范 1、引言 1.1本规范适用于本公司生产的标准紧固件的出厂检验 1.2每个紧固件都应当符合相应标准的全部规定,但这在大量生产中总是部可能的,根据紧固件的功能和应用,将全部符合标准的和不完全符合标准的紧固件截然分开是不必要的,也是不经济的。 2 引用标准 下列规范所包含的条文,通过在本规范中引用而构成为本规范的条文,本规范实施时,所示版本均为有效。所有标准都会被修订,使用本标准的各方应探讨使用下列标准最新版本的可能性。 GB196-81普通螺纹基本尺寸 GB197-81普通螺纹公差与配合 GB3103.1-82紧固件公差螺柱、螺钉和螺母 GB1237-88紧固件的标记方法 GB3098.1-82紧固件机械性能螺栓、螺柱和螺钉 GB3098.6-82紧固件机械性能不锈钢螺栓、螺钉、螺栓和螺母 GB90-85紧固件验收检查标志与包装 GB5779.1-86紧固件表面缺陷——螺栓、螺钉和螺栓——一般要求 3 尺寸检验要求 3.1 AQL的确定 3.1.1六角螺栓: a.本厂公差等级为B级,AQL分别为: 对边宽度、对角尺寸、螺纹通规、螺纹止规均为1.0;头下圆角半径 1.5;其他所有项目2.5. 3.1.3双头螺柱: a.当公差等级为B级,AQL分别为: 对边宽度、对角尺寸、螺纹通规、螺纹止规均为1.0;其他所有项目:2.5. 3.2检查比例(LQ10/AQL)的确定。 按生产者风险不大于5%的抽样方案定LQ10/AQL值为6.2(生产者风险等于5%) 3.3检查项目 3.3.1六角螺栓 a. B级公差等级的主要项目——对边宽度(S),对角尺寸(e),头下圆角半径rmin,螺纹通规,螺纹止规; c. B级公差等级的次要项目——头厚(K),无纹处直径(ds),螺纹长度(b),

《紧固件机械性能 索氏体高强不锈结构钢螺栓、螺钉和螺柱》标准全文及编制说明

ICS 21.010.10 J13 中国机械工业联合会团体标准 T/ CMIF××××—20×× 紧固件机械性能索氏体高强不锈结构钢 螺栓、螺钉和螺柱 Mechanical properties of fasteners Sorbite stainless high-strength structural steel bolts, screws and studs (征求意见稿) 20××-××-××发布20××-××-××实施 ___________________________________________________________________________________________ 中国机械工业联合会发布

目录 前言 (Ⅱ) 1 范围 (1) 2 规范性引用文件 (1) 3 代号 (1) 4 标记制度 (2) 5 化学成分 (2) 6 机械性能 (2) 7 试验方法 (4) 8 标志 (6) 9 表面处理和包装 (8) 附录A(资料性附录)索氏体高强不锈结构钢的特性 (9) 附录B(资料性附录)索氏体高强不锈结构钢物理性能 (10) 附录C(资料性附录)索氏体高强不锈结构钢紧固件性能等级与对应的热处理工艺参数11

前言 本标准按GB/T 1.1—2009给出的规则起草。本标准由中国机械工业联合会提出。 本标准由全国紧固件标准化技术委员会归口。本标准起草单位:

紧固件机械性能索氏体高强不锈结构钢 螺栓、螺钉和螺柱 1范围 本标准规定了由索氏体高强不锈结构钢制造的、在环境温度为10℃~35℃条件下测试时,螺栓、螺钉和螺柱的机械性能。在较高或较低温度下,其性能可能不同。 本标准适用的螺栓、螺钉和螺柱; ──螺纹公称直径d ≤39mm; ──直径和螺距符合GB/T 192、GB/T 193和GB/T 9144普通螺纹; ──任何形状的。 不适用于有特殊性能要求的紧固件,如可焊接性。 注:对超出本部分规定的极限规格(如d >39mm),只要能符合性能等级的要求,则可以使用本部分标记制度。 本标准未规定特殊环境下耐腐蚀和抗氧化性,对高温或零度以下使用的耐腐蚀性、抗氧化性和机械性能,可以由使用者和制造者按每一特殊场合进行协议。有关材料特性的一些信息在附录A和附录B中给出。有关腐蚀和耐腐蚀的定义,见GB/T 10123。 成型加工后的索氏体高强不锈结构钢紧固件是有磁性的(见附录A)。 2 规范性引用文件 下列文件对本文件的应用是必不可少的。凡是注日期的引用文件,仅注日期的版本适用于本文件。凡是不注日期的引用文件,其最新版本(包括所有的修改单)适用于本文件。 GB/T 90.2 紧固件标志与包装 GB/T 90.3 紧固件质量保证体系 GB/T 192 普通螺纹基本牙型 GB/T 193 普通螺纹直径与螺距系列 GB/T 3098.1 紧固件机械性能螺栓、螺钉和螺柱 GB/T 3098.6 紧固件机械性能不锈钢螺栓、螺钉和螺柱 GB/T 4334 金属和合金钢的腐蚀不锈钢晶间腐蚀试验方法 GB/T 5267.4 紧固件表面处理耐腐蚀不锈钢钝化处理 GB/T 9144 普通螺纹优选系列 GB/T 37430-2019 建筑结构用高强不锈钢 T/SSEA 0002—2017 索氏体高强不锈结构钢热轧钢棒 T/SSEA 0003—2017 索氏体高强不锈结构钢热轧盘条 3 代号 A机械加工试件的断后伸长率,% A1断后伸长量,mm A s,公称螺纹公称应力截面积,mm2 b 螺纹长度,mm d螺纹公称直径,mm d2外螺纹基本中径,mm

钢材的物理力学性能和机械性能表

钢材的物理力学性能和机械性能表 钢材的主要机械性能(也叫力学性能)通常是指钢材在标准条件下均匀拉伸.冷弯和冲击等. 单独作用下所显示的各种机械性能。钢材通常有五大主要的机械性能指标:通过一次拉伸试验可得到抗拉强度,伸长率和屈服点三项基本性能; 通过冷弯试验可得到钢材的冷弯性能; 通过冲击韧性试验可得到冲击韧性。 1.屈服点(σs) 钢材或试样在拉伸时,当应力超过弹性极限,即使应力不再增加,而钢材或试样仍继续发生明显的塑性变形,称此现象为屈服,而产生屈服现象时的最小应力值即为屈服点。 设Ps为屈服点s处的外力,Fo为试样断面积,则屈服点σs =Ps/Fo(MPa),MPa称为兆帕等于N(牛顿)/mm2,(MPa=106Pa,Pa:帕斯卡=N/m2) 2.屈服强度(σ0.2) 有的金属材料的屈服点极不明显,在测量上有困难,因此为了衡量材料的屈服特性,规定产生永久残余塑性变形等于一定值(一般为原长度的0.2%)时的应力,称为条件屈服强度或简称屈服强度σ0.2 。 3.抗拉强度(σb) 材料在拉伸过程中,从开始到发生断裂时所达到的最大应力值。它表示钢材抵抗断裂的能力大小。与抗拉强度相应的还有抗压强度、抗弯强度等。 设Pb为材料被拉断前达到的最大拉力,Fo为试样截面面积,则抗拉强度σb= Pb/Fo (MPa)。

4.伸长率(δs) 材料在拉断后,其塑性伸长的长度与原试样长度的百分比叫伸长率或延伸率。 5.屈强比(σs/σb) 钢材的屈服点(屈服强度)与抗拉强度的比值,称为屈强比。屈强比越大,结构零件的可靠性越高,一般碳素钢屈强比为0.6-0.65,低合金结构钢为 0.65-0.75合金结构钢为0.84-0.86。 6.硬度 硬度表示材料抵抗硬物体压入其表面的能力。它是金属材料的重要性能指标之一。一般硬度越高,耐磨性越好。常用的硬度指标有布氏硬度、洛氏硬度和维氏硬度。 ⑴布氏硬度(HB) 以一定的载荷(一般3000kg)把一定大小(直径一般为10mm)的淬硬钢球压入材料表面,保持一段时间,去载后,负荷与其压痕面积之比值,即为布氏硬度值(HB),单位为公斤力/mm2 (N/mm2)。 ⑵洛氏硬度(HR) 当HB>450或者试样过小时,不能采用布氏硬度试验而改用洛氏硬度计量。它是用一个顶角120°的金刚石圆锥体或直径为1.59、3.18mm的钢球,在一定载荷下压入被测材料表面,由压痕的深度求出材料的硬度。根据试验材料硬度的不同,分三种不同的标度来表示: HRA:是采用60kg载荷和钻石锥压入器求得的硬度,用于硬度极高的材料(如硬质合金等)。 HRB:是采用100kg载荷和直径1.58mm淬硬的钢球,求得的硬度,用于硬度较低的材料(如退火钢、铸铁等)。 HRC:是采用150kg载荷和钻石锥压入器求得的硬度,用于硬度很高的材

紧固件机械性能 不锈钢自攻螺钉(标准状态:现行)

I C S21.060.10 J13 中华人民共和国国家标准 G B/T3098.21 2014 代替G B/T3098.21 2008 紧固件机械性能不锈钢自攻螺钉 M e c h a n i c a l p r o p e r t i e s o f f a s t e n e r s S t a i n l e s s s t e e l t a p p i n g s c r e w s (I S O3506-4:2009,M e c h a n i c a l p r o p e r t i e s o f c o r r o s i o n-r e s i s t a n t s t a i n l e s s s t e e l f a s t e n e r s P a r t4:T a p p i n g s c r e w s,MO D) 2014-06-24发布2015-03-01实施 中华人民共和国国家质量监督检验检疫总局 中国国家标准化管理委员会发布

中华人民共和国 国家标准 紧固件机械性能不锈钢自攻螺钉 G B/T3098.21 2014 * 中国标准出版社出版发行 北京市朝阳区和平里西街甲2号(100029)北京市西城区三里河北街16号(100045)网址:w w w.s p c.o r g.c n 服务热线:400-168-0010 2014年7月第一版 * 书号:155066四1-49327 版权专有侵权必究

G B/T3098.21 2014 前言 G B/T3098‘紧固件机械性能“包括以下部分: G B/T3098.1紧固件机械性能螺栓二螺钉和螺柱; G B/T3098.2紧固件机械性能螺母粗牙螺纹; G B/T3098.3紧固件机械性能紧定螺钉; G B/T3098.4紧固件机械性能螺母细牙螺纹; G B/T3098.5紧固件机械性能自攻螺钉; G B/T3098.6紧固件机械性能不锈钢螺栓二螺钉和螺柱; G B/T3098.7紧固件机械性能自挤螺钉; G B/T3098.8紧固件机械性能 -200?~+700?使用的螺栓连接零件; G B/T3098.9紧固件机械性能有效力矩型钢锁紧螺母; G B/T3098.10紧固件机械性能有色金属制造的螺栓二螺钉二螺柱和螺母; G B/T3098.11紧固件机械性能自钻自攻螺钉; G B/T3098.12紧固件机械性能螺母锥形保证载荷试验; G B/T3098.13紧固件机械性能螺栓与螺钉的扭矩试验和破坏扭矩公称直径1~10m m; G B/T3098.14紧固件机械性能螺母扩孔试验; G B/T3098.15紧固件机械性能不锈钢螺母; G B/T3098.16紧固件机械性能不锈钢紧定螺钉; G B/T3098.17紧固件机械性能检查氢脆用预载荷试验平行支承面法; G B/T3098.18紧固件机械性能盲铆钉试验方法; G B/T3098.19紧固件机械性能抽芯铆钉; G B/T3098.20紧固件机械性能蝶形螺母保证扭矩; G B/T3098.21紧固件机械性能不锈钢自攻螺钉; G B/T3098.22紧固件机械性能超细晶非调质钢螺栓二螺钉和螺柱三 本部分是G B/T3098的第21部分三 本部分按照G B/T1.1 2009给出的规则起草三 本部分代替G B/T3098.21 2008‘紧固件机械性能不锈钢自攻螺钉“三 本部分与G B/T3098.21 2008相比主要变化如下: 在环境温度为15?~25? ,改为 在环境温度为10?~35? (见第1章,2008版 第1章); 以 硬度等级 代替 性能等级 (见第1章,2008年版的第1章); 新增 自攻螺钉按G B/T5267.4钝化处理,可增加标记 P (见图1); 调整了包装标识要求,新增 标志或标签应包括制造者和/或经销者商标(或识别标志) 和 按 G B/T90.3规定的生产批号 (见3.2.4); 调整了表面精饰要求,新增 按特殊定单制造的自攻螺钉,应有附加标志,并且既适用于自攻螺 钉,也适用于标签三但从仓库发送的自攻螺钉,该附加标志仅适用于标签三 (见3.3); 新增 注:表2给出的化学成分与G B/T3098.6 2014表1相应组别的化学成分是一致的三 (见第4章)三 本部分修改采用I S O3506-4:2009‘耐腐蚀不锈钢紧固件机械性能第4部分:自攻螺钉“(英文 Ⅰ

机械特性分析

机械特性指的是动力力矩(或者动力)与速度的关系; 如果阻力矩增大,这时动力力矩也随之增大,速度却不减小,保持恒速,就是机械硬特性;我们常用的异步电机,是机械硬特性,俗称恒速电机,机械特性曲线是一条水平下降的直线; 如果阻力矩增大,这时动力力矩也随之增大,速度也随之减小,不能保持恒速,就是机械软特性;电机的机械软特性,原理就是大家常说的恒功率调速,电机的输出功率一定时,既:功率=转矩×转速,出力小时,速度会增大,出力大时,速度会减小; 举例说: 1)大家自驾车在高速公路上,如果遇到上坡路时,会减速,平路时会加速; 2)又例如坐火车时,大家发现火车爬坡时,也会减速以增大爬坡时需要的大的牵引力; 3)又例如,大家使用的手电钻,空开时,听到转速很高,重载钻时速度一下就降下来,因为他要使劲克服阻力; 不管是直流还是交流调速系统,“电流闭环”调速时,机械特性为软特性! 不管是直流还是交流调速系统,“速度闭环”调速时,机械特性为硬特性! 加工机械,有时需要机械硬特性,有时需要软特性;钻,就需要机械软特性,机械硬特性就折钻头;切削,就需要机械硬特性,恒速,不留痕。

伺服电流闭环控制时,其机械特性为软特性:1)负载增大时,电流要增大,这时速度会减小,保持电流不变;2)负载减小时,电流要减小,这时速度会增大,保持电流不变; 伺服速度闭环控制时,其机械特性为硬特性:1)负载增大时,这时速度要减小,增大力矩,保持速度不变;2)负载减小时,这时速度会增大,减小力矩,保持速度不变;异步电机的机械特性是硬特性,如果变频器调速控制异步电机时,电流闭环控制时,机械特性是软特性。1)“电流闭环”,就是电流恒定;2)当负载增大时,就是阻力矩增大时,转子转速要降低,转差要增大,电流要增大,频率调节器调节输出频率下降,即转差不变,电流不变,转速降低;3)当负载减小时,就是阻力矩减小时,转子转速要升高,转差要减小,电流要减小,频率调节器调节输出频率上升,即转差不变,电流不变,转速升高; 普通电机的特性是软特性,负载轻时转速高,转速能高到那里去?是有限的,不是无限的!对于机械硬特性的异步电机,速度几乎是恒速的,空载转速也不会高! 用变频器的“电流闭环控制”可以获得机械软特性; 用变频器的弱磁调速,既恒功率调速,不是机械软特性,是负载的性质:1)例如风机、水泵,转速高时,转矩是增加的,不适宜变频弱磁调速,这就说明变频器的弱磁调速,不是机械软特性的概念;2)如果负载的性质是,转速高,转矩小,成反比,那么这个负载才可以进入变频弱磁调速,否则是不允许的!

初中物理性质及定理物态与热能

初中物理性质及定理物态与热能 初中物理物态变化知识点:凝固知识点 凝固定义:物质从液态变成固态的过程,需要放热。 1、凝固现象:①“滴水成冰”②“铜水”浇入模子铸成铜件 2、凝固规律: ①晶体在凝固过程中,要不断地放热,但温度保持在熔点不变。 ②非晶体在凝固过程中,要不断地放热,且温度不断降低。 3、晶体凝固必要条件: 温度达到凝固点、不断放热。 4、凝固放热: ①北方冬天的菜窖里,通常要放几桶水。(利用水凝固时放热,防止菜冻坏) ②炼钢厂,“钢水”冷却变成钢,车间人员很易中暑。(钢水凝固放出大量的热) 5、同一晶体的熔点和凝固点相同; 注意:1、物质熔化和凝固所用时间不一定相同,这与具体条件有关; 2、热量只能从温度高的物体传给温度低的物体,发生热传递的条件是:物体之间存在温度差; 初中物理物态变化知识点:熔化知识点 熔化定义:物质从固态变成液态的过程需要吸热。 1、熔化现象:①春天“冰雪消融”②炼钢炉中将铁化成“铁水” 2、熔化规律: ①晶体在熔化过程中,要不断地吸热,但温度保持在熔点不变。 ②非晶体在熔化过程中,要不断地吸热,且温度不断升高。 3、晶体熔化必要条件: 温度达到熔点、不断吸热。 4、有关晶体熔点(凝固点)知识:

①萘的熔点为80.5℃。当温度为790℃时,萘为固态。当温度为81℃时, 萘为液态。当温度为80.50℃时,萘是固态、液态或固、液共存状态都有可能。 ②下过雪后,为了加快雪熔化,常用洒水车在路上洒盐水。(降低雪的熔点) ③在北方,冬天温度常低于-39℃,因此测气温采用酒精温度计而不用水银温度计。(水银凝固点是-39℃,在北方冬天气温常低于-39℃,此时水银已凝固;而酒精的凝固点是-117℃,此时保持液态,所以用酒精温度计) 5、熔化吸热的事例: ①夏天,在饭菜的上面放冰块可防止饭菜变馊。(冰熔化吸热,冷空气下沉) ②化雪的天气有时比下雪时还冷。(雪熔化吸热) ③鲜鱼保鲜,用0℃的冰比0℃的水效果好。(冰熔化吸热) ④“温室效应”使极地冰川吸热熔化,引起海平面上升。 6、晶体和非晶体的区分标准是:晶体有固定熔点(熔化时温度不变继续吸热),而非晶体没有固定的熔点(熔化时温度升高,继续吸热)。 常见的晶体有:冰、食盐、萘、各种金属、海波、石英等 常见的非晶体有:松香、玻璃、蜡、沥青等 初中物理物态变化知识点:凝华 凝华定义:物质从气态变成固态的过程,需要放热。 凝华现象: ①霜和雪的形成(水蒸气遇冷凝华而成) ②冬天看到树上的“雾凇” ③冬天,外界温度极低,窗户内侧可看见“冰花”(室内水蒸气凝华) 初中物理物态变化知识点:升华 升华定义:物质从固态变成气态的过程,需要吸热。 升华现象: ①加热碘,可以看到有紫红色的碘蒸气出现。

钢铁的物理力学性能和机械性能表

钢铁的物理力学性能和机械性能表 钢材的主要机械性能(也叫力学性能)通常是指钢材在标准条件下均匀拉伸.冷弯和冲击等. 单独作用下所显示的各种机械性能。钢材通常有五大主要的机械性能指标:通过一次拉伸试验可得到抗拉强度,伸长率和屈服点三项基本性能; 通过冷弯试验可得到钢材的冷弯性能; 通过冲击韧性试验可得到冲击韧性。 1.屈服点(σs) 钢材或试样在拉伸时,当应力超过弹性极限,即使应力不再增加,而钢材或试样仍继续发生明显的塑性变形,称此现象为屈服,而产生屈服现象时的最小应力值即为屈服点。 设Ps为屈服点s处的外力,Fo为试样断面积,则屈服点σs =Ps/Fo(MPa),MPa称为兆帕等于N(牛顿)/mm2,(MPa=106Pa,Pa:帕斯卡=N/m2) 2.屈服强度(σ0.2) 有的金属材料的屈服点极不明显,在测量上有困难,因此为了衡量材料的屈服特性,规定产生永久残余塑性变形等于一定值(一般为原长度的0.2%)时的应力,称为条件屈服强度或简称屈服强度σ0.2 。 3.抗拉强度(σb) 材料在拉伸过程中,从开始到发生断裂时所达到的最大应力值。它表示钢材抵抗断裂的能力大小。与抗拉强度相应的还有抗压强度、抗弯强度等。 设Pb为材料被拉断前达到的最大拉力,Fo为试样截面面积,则抗拉强度σ b= Pb/Fo (MPa)。 4.伸长率(δs) 材料在拉断后,其塑性伸长的长度与原试样长度的百分比叫伸长率或延伸率。 5.屈强比(σs/σb) 钢材的屈服点(屈服强度)与抗拉强度的比值,称为屈强比。屈强比越大,结构零件的可靠性越高,一般碳素钢屈强比为0.6-0.65,低合金结构钢为 0.65-0.75合金结构钢为0.84-0.86。 6.硬度 硬度表示材料抵抗硬物体压入其表面的能力。它是金属材料的重要性能指标之一。一般硬度越高,耐磨性越好。常用的硬度指标有布氏硬度、洛氏硬度和维氏硬度。 ⑴布氏硬度(HB) 以一定的载荷(一般3000kg)把一定大小(直径一般为10mm)的淬硬钢球压入材料表面,保持一段时间,去载后,负荷与其压痕面积之比值,即为布氏硬度值(HB),单位为公斤力/mm2 (N/mm2)。

6005铝合金材料力学性能研究

6005铝合金材料力学性能研究 采用万能材料试验机,对典型车用的6005铝合金材料进行准静态拉伸试验。输出载荷-变形量关系,获得应力-应变曲线,进而分析材料的弹性模量、极限强度、极限应变、屈服强度和延展率等力学性能。 标签:6005铝材;准静态拉伸;应力-应变曲线;力学性能 1 概述 车辆用6005铝合金属于Al-Mg-Si系中等强度铝合金。由于其优良的挤压成形性、耐腐蚀性和良好的焊接性,在国外被广泛用于高速列车、地铁列车、双层列车和客货汽车车体所需的薄壁、中空的大型铝合金壁板型材以及其它工业用结构型材。在我国,铝合金大型材已研制成功并投入生產,随着我国交通运输业的发展,6005铝合金在高速、轻型铝合金列车和地铁列车以及轻型客货汽车上的应用必将越来越多[1-3]。 6005具有较高的工艺性能。万普华等人对6005铝合金试样进行了水淬和水淬并深冷处理,来观察金相组织、抗拉强度等对6005铝合金力学性能的影响[4]。张健等人利用热塑性试验研究了6005A铝合金的热裂纹敏感性[5],张大新等人将6005铝合金铸态试样和挤压制品试样在不同温度固溶加热后淬火处理,制备金相组织,用混合酸溶液侵蚀后在金相显微镜下观察金相组织[6]。 文章主要就6005铝合金材料的力学性能性能通过万能材料试验机开展了系统的实验研究。测定试件在准静态拉伸时,材料的应力应变曲线;提取加载曲线中的屈服点、强度极限;同时,测量实验前后试件实验段(即试件的标距段)的长度变化,計算断裂伸长率和断面收缩率。 2 准静态拉伸试验 2.1 试件及仪器 运用Instron 5969标准电子万能拉伸试验机对6005铝材进行了准静态拉伸试验。试件参照GB/T228.1-2010《金属材料拉伸试验第一部分:室温试验方法》[7]制作。板状试件的尺寸示意图如图1所示。本试验采用比例试件,形状为板状,其厚度为4mm,平行长度为55mm,总长度128 mm。 2.2 试验结果 将试验试件在室温(10~35℃)环境下,试验试件及试验用夹头安装在试验机上,试件轴线应与力的作用线重合,将引伸计连接在试件上。试验机匀速进行拉伸,加载速率为10mm/min,测试试件在拉伸过程中的载荷-变形量的关系。针对横向切取和纵向切取材料,分别进行五次试验。试验过程如图2所示。

第四章:土壤物理性质

第四章土壤物理性质 主要教学目标:本章将要求学生掌握土壤物理性质如土壤质地、土壤结构以及土壤孔隙等内容。并在学习的基础上掌握改良不太适宜林业生产的某些土壤物理性质的一些方法。如客土、土壤耕作、施用化学肥料和土壤结构改良剂等。 第一节土壤质地 一、几个概念 1、单粒:相对稳定的土壤矿物的基本颗粒,不包括有机质单粒; 2、复粒(团聚体):由若干单粒团聚而成的次生颗粒为复粒或团聚体。 3、粒级:按一定的直径范围,将土划分为若干组。 土壤中单粒的直径是一个连续的变量,只是为了测定和划分的方便,进行了人为分组。土壤中颗粒的大小不同,成分和性质各异;根据土粒的特性并按其粒径大小划分为若干组,使同一组土粒的成分和性质基本一致,组间则的差异较明显。 4、土壤的机械组成:又叫土壤的颗粒组成,土壤中各种粒级所占的重量百分比。 5、土壤质地:将土壤的颗粒组成区分为几种不同的组合,并给每个组合一定的名称,这种分类命名称为土壤质地。如:砂土、砂壤土、轻壤土、中壤土、重壤土、粘土等 二、粒级划分标准: 我国土粒分级主要有2个 1、前苏联卡庆斯基制土粒分级(简明系统) 将0.01mm作为划分的界限,直径>0.01mm的颗粒,称为物理性砂粒;而<0.01mm的颗粒,称为物理性粘粒。 2、现在我国常用的分级标准是: 这个标准是1995年制定的。 共8级: 2~1mm极粗砂;1~0.5mm粗砂;0.5~0.25mm中砂;0.25~0.10mm细砂;0.10~ 0.05mm极细砂;0.05~0.02mm粗粉粒;0.02~0.002mm细粉粒;小于0.002mm粘粒 三、各粒级组的性质 石砾:主要成分是各种岩屑 砂粒:主要成分为原生矿物如石英。比表面积小,养分少,保水保肥性差,通透性强。 粘粒:主要成分是粘土矿物。比表面积大,养分含量高,保肥保水能力强,但通透性差。粉粒:性质介于砂粒和粘粒之间。 四、土壤质地分类 1、国际三级制,根据砂粒(2—0.02mm)、粉砂粒(0.02mm—0.002mm)和粘粒(<0.002mm)的含量确定,用三角坐标图。 2、简明系统二级制,根据物理性粘粒的数量确定。考虑到土壤条件对物理性质的影响,对不同土类定下不同的质地分类标准。在我国较常用。 3、我国土壤质地分类系统: 结合我国土壤的特点,在农业生产中主要采用前苏联的卡庆斯基的质地分类。对石砾含量较高的土壤制定了石砾性土壤质地分类标准。将砾质土壤分为无砾质、少砾质和多砾质三级,可在土壤质地前冠以少砾质或多砾质的名称。 五、土壤质地与土壤肥力性状关系 从两个方面来论述 1、土壤质地与土壤营养条件的关系 肥力性状砂土壤土粘土 保持养分能力小中等大 供给养分能力小中等大

紧固件机械性能常用术语介绍

紧固件机械性能常用术语 扭矩( Torque ) 扭矩是一种产生旋转的力量. 下面是一些最普通的扭矩的事例: 1.给表上弦2. 旋开瓶盖3. 旋转门把手4. 拧入螺丝. 扭矩在大多数的应用场合都需要着重考虑. 下面四种扭矩有着些微小的差别. 1.驱动扭矩( Driving Torque ) 2.锁紧扭矩( Seating Torque ) 3.松动扭矩( Break away Torque ) 4.预置扭矩( Prevailing Torque ) 所有这些扭矩在实际应用中都会遇到, 但不同的使用状况其重 要性不相同. 1.驱动扭矩—使机件组合在一起必须的施予之旋转力量. 2.锁紧扭矩—使机件组合达到预先设定的松紧程度所需要的力量. 3.松动扭矩—使组合在一起的机件分离所必需要的施予之旋转力量. 4.预置扭矩—在紧固件上设置的一种特性, 使紧固件在一锁入配 合螺纹工件即因磨擦力产生阻力以达成防松的目的, 克服该磨擦力矩所需要的驱动旋转力矩即称为预置扭矩. 驱动力矩: 驱动扭矩在螺丝切削, 螺丝滚制和自锁机件应用中是主要考虑的问题. 作为旋转机件必须的最大力, 要求是必须的. 过高的驱动扭矩会使旋转失效和旋转失败, 所有这些将增加紧固件的成本, 所以尽可能地降低驱动扭矩是十分必要的. 这需求就引导出另一个工程要求”驱动-拉脱比”. 它是驱动紧固件需要的扭矩值与抗脱或破坏所配合的内螺纹所需扭矩值的关系, 此值范围越大, 越有利于减少装配不良, 重复装配和降低相应的成本, 紧固件便越适用. 对于螺纹滚制自攻螺丝而言, 其要求的驱动-拉脱比( Drive to Strip Ratio )为1 : 3, 即有一个单位的驱动扭矩, 就需要有三个单位的抗拉脱强度的配合螺纹强度.

10 紧固件机械性能检测标准对照

检测项检测方法 ISO898.1适用于:ds>d2或ds≈d2,L2≥2.5d,Lt≥2.0d(钢结构螺栓L<2d),头部强度高于螺纹和光杆部 分强度。试验时夹具外未旋合螺纹长度≥1.0d(钢结构螺栓L<1.0d)。 斜垫角度:1),10°斜垫,粗杆长度Ls≥2d,d≤M20,性能等级10.9级及以下;2),6°斜垫,粗杆长度Ls≥2d,d>M20,性能等级10.9级及以下;或粗杆长度Ls≥2d,d≤M20,性能等级12.9级;或粗杆长度 Ls<2d,d≤M20,性能等级10.9级及以下;3),4°斜垫,粗杆长度Ls≥2d,d>M20,性能等级12.9级;或 粗杆长度Ls<2d,d>M20,性能等级10.9级及以下;或粗杆长度Ls<2d,12.9级。 斜垫硬度:45HRC min。斜垫孔径:d≤3.5,+0.4;d≤5,+0.5;d≤7,+0.6;d≤10,+1;d≤16, +1.5;d≤24,+2;d≤39,+3。 斜垫孔深最薄处厚度:≥0.5d;斜垫孔周圆弧半径:d≤6,0.7;d≤12,0.8;d≤20,1.3;d≤39,1.6 ASTM F606 3.5条款:经过超过屈服点拉伸试验的样品不能用于楔负载试验;纽扣头内六角、沉头内六角 等头部强度低于螺纹和光杆部分强度的产品不做楔负载试验;断裂不得产生在头-杆过渡圆弧。 斜垫角度:1),英寸螺纹:螺纹尾接近头下1D的螺栓,直径1/4~3/4":6°;直径>3/4":4°;螺柱、法兰面螺栓,直径1/4~1":6°;直径>1":4°;其它螺栓,直径1/4~1":10°;直径>1":6°。 2),公制螺纹:螺纹尾接近头下1D的螺栓,直径M5~M20:6°;直径>M20:4°;螺柱、法兰面螺栓,直径M5~M24":6°;直径>M24:4°;其它螺栓,直径M5~M24:10°;直径>M24:6° 斜垫孔径及孔口倒圆半径:1),英寸螺纹:1?4–1?2: 0.03, 0.03;9?16–3?4: 0.05, 0.06;7?8-1: 0.06, 0.06;1 1?8-1 1?4: 0.06, 0.125;1 3?8-1 1?2: 0.094, 0.125;1 3?4–2: 0.094, 0.225;2 1?4–3: 0.125, 0.256。 2),米制螺纹:M5-M6: 0.5, 0.7;>M6–M12: 0.8, 0.8;>M12–M20: 1.6, 1.3;>M20–M36: 3.2, 1.6;>M36: 3.2, 3.2 ASTM A370 A3.2.1.5,A3.2.1.6条款:斜垫孔径及孔口倒圆半径:1?4~1?2:0.030 (0.76),0.030 (0.76);9?16~3?4:0.050 (1.3),0.060 (1.5);7?8~1:0.063 (1.5),0.060 (1.5);11?8~11?4: 0.063 (1.5),0.125 (3.2);13?8~11?2:0.094 (2.4),0.125 (3.2) ISO898 适用于:ds>=d2或ds≈d2;L>=2.5d;Lt>=2d(钢结构螺栓Lt<2d);螺柱总长>=3d;头部强度高于 螺纹和光杆部分强度 试验时夹具之间未旋合螺纹长度≥1.0d(钢结构螺栓夹具之间未旋合螺纹长度<1.0d);ds>d2的产品,断裂应出现在未旋合螺纹;ds≈d2,断裂应出现在未旋合螺纹或无螺纹杆部;加载速度:夹头自动移动速度<=25mm/分钟。 ASTM F606 3.4条款:夹具之间至少保留6牙(普通紧固件)或4牙(钢结构紧固件)螺纹;如未做规定, 断裂应出现在未旋合螺纹;加载速度:夹头自由移动速度不超过每分钟1.0"(或25mm) ASTM A370 A3.2.1.4条款:夹具之间至少保留6牙(普通紧固件)或4牙(钢结构紧固件)螺纹;如未做规定,断裂不得出现在头杆结合部位;加载速度:1/2屈服强度开始直到屈服点,夹头自由移动速度每分钟 1/160~1/16"(0.16~1.6mm),超过屈服点以后加载速度可以调整到不超过每分钟 1/20~1/2"(1.25~12.5mm);或者1/2屈服强度开始直到屈服点,加载速度每分钟10~100Ksi(70~690MPa) ISO898适用于:检测全尺寸断后伸长量;全尺寸0.0048d应变下的应力。ds>d或ds≈d;L>=2.7d; Lt>=2.2d;螺柱总长>=3.2d;头部强度或螺柱旋入端强度高于螺纹和光杆部分强度。试验时夹具之间未旋合螺纹长度=1.2d。加载速度:夹头自动移动速度,屈服点以下<=10mm/分钟,屈服点以上<=25mm/分钟。 ASTM F606 3.7条款:全尺寸拉伸断后伸长量。夹具之间至少保留6牙(普通紧固件)或4牙(钢结构紧固 件)螺纹;如未做规定,断裂应出现在未旋合螺纹; ASTM A370未规定全尺寸断后伸长量检测. 9.4 拉伸试验ISO898.1适用于:ds>d2或ds≈d2,L2≥2.5d,Lt≥2.0d,头部承载能力低于螺纹部分;试验时夹具间未旋合螺纹长度≥1.0d。夹头自由移动速度不超过每分钟25mm。 ASTM F606和ASTM A370未单独规定头部弱的外螺纹紧固件的轴向拉伸试验 9.5 拉伸试验ISO898.1适用于:ds=3ds,Lt>=1d的减径杆产品的轴向拉伸试验。加载速度:夹头自由移动速度不超过每分钟25mm。强度按照杆部直径计算。 ASTM F606和ASTM A370未单独规定减径杆螺栓的轴向拉伸试验 9.1 楔负载试验 9.2 轴向拉伸试验9.3 轴向拉伸试验

增材制造适用材料及产品机械性能研究

增材制造适用材料及产品机械性能研究 发表时间:2019-11-26T11:18:57.440Z 来源:《中国西部科技》2019年第21期作者:刘鑫[导读] 随着我国的经济在快速的发展,社会在不断的进步,对增材制造技术原理和特点进行了介绍,从非金属和金属两方面对增材制造适用材料及其产品机械性能进行了研究,并分析了增材制造产品机械性能变化原因,同时提出了改进机械性能的方法。 刘鑫 深圳奥郎格环保有限公司 摘要:随着我国的经济在快速的发展,社会在不断的进步,对增材制造技术原理和特点进行了介绍,从非金属和金属两方面对增材制造适用材料及其产品机械性能进行了研究,并分析了增材制造产品机械性能变化原因,同时提出了改进机械性能的方法。 关键词:增材制造;材料;产品;性能 引言 超材料(metamaterial)是一类新型的人工合成的、具有特定物理性质的材料,通常是由周期性或非周期性的人工微结构排列而成,具有天然材料所不具备的奇特物理性质。隐身超材料主要分为两类:一类是电磁波隐身超材料,另一类是声波隐身超材料。电磁波隐身超材料通过吸收电磁波并将其转化成其他形式的能量耗散掉,可实现目标对电磁波的吸波隐身;通过控制电磁波绕过目标物体而不产生散射,可实现目标对电磁波的透波隐身。声波隐身超材料通过材料和结构设计引导声波/弹性波按照预设方式传播,是声波/弹性波等领域设计的基矗与传统已知材料性质分布求波传播轨迹不同,电磁/声学隐身功能调控是已知波传播的轨迹而反求所需要的材料和结构形式。隐身超材料通过微结构设计来实现隐身功能,在航空航天等领域具有潜在的应用价值:一方面通过结构设计达到隐身效果,从而实现反侦察的功能;另一方面,微结构属于多孔结构,可实现飞行器的轻量化设计。 1增材制造技术原理 起源于20世纪90年代的增材制造技术,被美国材料与试验协会(ASTM)定义为,基于计算机辅助设计的模型数据,通过分层叠加材料的方式来制造产品的技术。增材制造技术具有仿真性强、效率高、成本低、操作简单等优点,涉及三维建模、测量、接口软件、数控、精密机械、激光、材料等多种学科。增材制造的过程如图1所示。随着增材制造可用材料及工艺的不断深入研究,呈现出多种成熟且得到广泛应用的增材制造技术,常见的有直接金属激光烧结(DMLS)技术、电子束熔融(EBM)技术、激光选区熔化(SLM)技术、选择性激光烧结(SLS)技术、激光立体成型(LSF)技术、电子束自由制造(EBF3)技术、熔融沉积成型(FDM)技术、光固化立体成型(SLA)技术、分层实体制造(LOM)技术等。各种常见增材制造技术的成型原理。 2增材制造技术适用材料及产品机械性能 2.1后处理技术 金属增材制造材料在特殊的条件下进行快速制造经常致材料内部存在微孔洞和较大的残余应力,同时,熔化道和熔池的存在,使所制备的材料同样存在明显的中尺度结构,这使得所制备出的材料的性能存在明显的各向异性。工艺参数的优化过程较为复杂,需要进行大量的试验摸索,也仅有少量材料体系得到了证实,因此,科研工作者通过选择相对较优参数制备所需材料后,会采用传统的后处理技术对所制备材料进行去应力和均匀化处理,以提高材料的性能。其中,后处理技术除了金属热处理领域传统的淬火、回火、退火、正火外,还包括热等静压(HIP)处理、表面热处理以及化学热处理等。传统热处理改性技术在各材料体系中都较成熟,也为增材制造材料的改性提供了一定的理论依据。因此,在金属增材制造领域,通常采用"工艺参数优化+后处理改性"技术来改善材料组织和性能。 2.2 隐身超材料的制备工艺 用于电磁隐身的超材料根据材料的构成可分为谐振型与非谐振型超材料(包括金属非谐振型与全介质超材料)。金属谐振型与金属非谐振型超材料都是由金属与介质构成,只是二者工作的频率不同。用于声学隐身的超材料主要分为惯性声隐身和五模声隐身两种。惯性声隐身超材料具有各向异性的体密度与各向同性的弹性模量,由于极点的存在难以实现三维惯性声隐身,五模声隐身超材料具有各向同性的体密度和各向异性的弹性模量,无论是理论上还是实际应用上都能够实现宽频、全角度、轻质的要求,因而五模声隐身超材料具有更为广泛的应用前景。现有制造隐身超材料的传统工艺方法有印刷电路板法、刻蚀法、机械加工法。印刷电路板法可用于制备金属谐振型与金属非谐振型隐身超材料,如东南大学的崔铁军课题组制造的电磁黑洞中的非谐振型超材料外壳与谐振型超材料内核都是采用电路板雕刻机制造而成,但印刷电路板的方法中刻蚀铜液对环境会造成污染,且大多只能制造二维平面超材料,限制了超材料在三维空间中的应用。刻蚀法包括光刻蚀,电子束刻蚀等,光刻蚀工艺是将光敏高分子制成一定图形的抗蚀性膜,再用化学或电化学方法进行腐蚀或电镀的加工工艺。如Landy等制造的具有极化不敏感特性的中心对称超材料吸波体,就是采用了标准负片光刻技术制造而成。电子束刻蚀指的是在计算机控制下,按照加工要求的图形,利用聚焦后的电子束对基片上的抗蚀剂进行曝光,在抗蚀剂中产生具有不同溶解性能的区域,根据不同区域的溶解特性,利用具有选择性的显影剂进行显影,溶解性强的抗蚀剂部分被去除,溶解性差或不溶的部分保留下来,从而得到所需要的抗蚀剂图形,如Wang等制造的宽频吸波超材料则是采用电子束刻蚀加工而成;但是刻蚀技术的成本较高,且不适合大尺寸超材料的制造,限制了超材料的广泛应用。 2.3非金属材料 为了改进增材制造产品的质量及机械性能,许多研究者对成型过程及材料进行了研究,以期促进增材制造产品机械性能的改进。比如,在ABS塑料中加入填充材料,或对该材料进行共混改性,以提高产品的力学性能。将含有10%气相生长碳纤维增强的ABS塑料作为增材制造中的耗材,其产品的拉伸强度和拉伸弹性模量比普通ABS塑料有较大提高。通过优化连续本体法制备了具有成本低、热稳定性好、抗冲击性能好等优点的新型ABS塑料。通过材料熔融共混的方式也能改善增材制造成型件的机械性能。将不同苯乙烯类嵌段共聚物与ABS 塑料进行熔融共混,获得适合增材制造的新ABS功能材料,结果表明,低频下熔体强度升高。ABS塑料中加入苯乙烯-丁二烯-苯乙烯嵌段共聚物、苯乙烯-乙烯-丁烯-苯乙烯嵌段共聚物,可以使ABS塑料韧性提高。另外,成型件的强度及刚度会随填充率的增大而提高,并且同心线填充的试件,其抗拉强度和断裂伸长率最大。对于刚度而言,直线填充件的刚度优于同心线和格子形填充件的刚度。采用FDM技术研究填充密度对成型件机械性能的影响,结果表明随着填充密度的增大,成型件的弯曲强度和冲击强度随之提高。聚碳酸酯(PC)丝材的力学强度高于ABS塑料,可利用PC丝材与其它树脂共混的方法来提高材料的性价比。

相关文档