文档库 最新最全的文档下载
当前位置:文档库 › 关于效用函数最值的解法

关于效用函数最值的解法

关于效用函数最值的解法
关于效用函数最值的解法

关于效用函数最值的解法

【09年真题】假定某居民具有期望效用函数,其效用函数为U(w)=㏑W,他有机会参与掷投硬币,头面朝上的概论为π。如果他下注X元,若头面朝上,他会拥有W+X;反之,若背面朝上,他则拥有W-X。

(1)请解出居民作为π的函数的最优赌注X的量。

(2)当π=0.5时,什么是他的关于X的最优选择?为什么会有这个结果?

说明:这道题结合了不确定条件下的选择和效用函数两章的知识点

重点还是在考查效用函数最值问题的解法

应属于高级微观的知识(有点偏,有点超纲了)

在厦大研究生阶段高级微观教程中,还会更加深入的学习

这道题也是以前厦大经院研究生高级微观期末考的考题

但各位同学以现在所掌握的微观和微积分数学知识,还是可以解得出来的

第一步:列出效用函数的表达式

U(w)=π㏑(W+X)+(1-π) ㏑(W-X)

第二步:效用最大化函数为MAX U(W)=MAX [π㏑(W+X)+(1-π) ㏑(W-X)]

第三步:通过数学方法求实现最大化效用的X值(不是W值)

此步骤需注意,到底题目哪些变量是已知的,哪个变量是要求出的。如果搞混了,则答案完全错了!!!!此题目中π和W都是已知的定值,只有X是未知变量。

利用一阶导:(相当于微积分中的求极值点,经济学中的极值点肯定也会是效用函数的最大值点,所以无需详细讨论)

U’ (W)= π/(W+X)+(π-1)/(W-X)=0

得出使得效用U实现最大化的X值:X=(2π-1)W

当π=0.5时,X=0,即下注0元时,效用是最优的。所以赌与不赌效用一样。

-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- 如果变量是双变量的,解法也类似。利用微积分知识和效用函数基本知识

【教材第3章课后第10题】(略有改动)

通过消费食物F和衣服C,某人获得效用函数由U=FC表示。

假设食物1单位要花1美元,衣服1单位要花3美元。某人有12美元可用于食物和衣服。哪种食物和衣服是效用最大化的选择?

第一步:列出效用函数的表达式

效用函数U=FC

约束条件:F+3C=12

注意:此时有F和C之间的关系式来约束(即预算约束线),且F和C 都是未知的,通过变量F和C来实现最大化的效用。

第二步:欲求最大化U,即MAX U,

第三步:通过数学方法求实现最大化效用的F和C值

本题的未知量是F和C ,所以是双变量的求效用最大化的题

利用拉格朗日乘数法:

L=FC-λ(F+3C-12)=0

最优解F、C满足一阶条件:

C-λ=0

F-3λ=0

F+3C-12=0

联立方程解得:C=2;F=6

即当C=2,F=6时,可实现最大化效用U=12

2016年高中数学多元函数求最值问题专题

多元函数求最值问题 一.【问题背景】 多元函数是高等数学中的重要概念之一,但随着新课程的改革,高中数学与大学数学知识的衔接,多元函数的值域与最值及其衍生问题在高考试题中频频出现,因其技巧性强、难度大、方法多、灵活多变而具有挑战性,成为最值求解中的难点和热点。同时,多元函数最值问题中蕴含着丰富的数学思想和方法,而且有利于培养学生联想、化归的解题能力。因此,怎样求多元函数的最值,是师生们非常关注和必须解决的问题,也是高考考生们必须具备的解题技能。 二.【常见的方法】 导数法、消元法、均值不等式法(“1”代换)、换元法(整体换元 三角换元)、数形结合法、柯西不等式法、向量法等 主要思想方法:数形结合、化归思想等 三.【范例】 例1:已知实数,x y 满足0x y >>,且2x y +≤,则21 3x y x y ++-的最小值为 。 方法一 因为422x y +≥,所以 ( )2121 4( )()[(3)()]3323333x y x y x y x y x y x y x y x y x y x y ++++-+-+--+=+ + +-+≥≥ 当且仅当1,3x y ==-取等号,故 213x y x y ++- 的最小值34 + 【评注】这是一个二元函数的最值问题,通常有两个途径,一是通过消元,转化为一元函数, 再用单调性或基本不等式求解,二是直接用基本不等式,因已知条件中既有和的形式,又有积的形式,不能一步到位求出最值,考虑用基本不等式放缩后,再通过不等式的途径进行。 方法二 利用不等式()2 22a b a b p q p q +++≥ ,引证: 记向量x y == ,因为() 222x y x y ?? ≤ 所以 ()2 2 2 a b a b p q p q +++≥ ,则 ) () 2 12132x y x y x y ++-+ ≥ 【评注】在求有些多元函数的最值时,恰当构造向量模型,利用向量数量积的性质,常可使 复杂问题变得简单明了,使繁琐的解题显得巧妙自然。 方法三 因为 0,2x y x y >>+≤,所以 01y << 又因为 ()() 2121332222211y x y x y y y y y -++=+-+-+-≥

求二次函数解析式的几种基本解法

求二次函数解析式的几种基本解法 奉贤区新寺学校胡纪英 二次函数是初中数学中的重要内容,也蕴涵着一种重要的数学思想方法。它是在一次函数、反比例函数的基础上,进一步由数、式、方程(二次方程)到二次函数,贯穿了初中代数。纵观近几年的中考试卷可以发现,二次函数始终是中考命题中的重点与热点,一方面是考查二次函数中学生对基础知识的掌握程度,另一方面以其新颖独特的综合试题引导学生探究和创新。在此我就以二次函数中求解析式这一小块内容提供几种常见的基本解法,方便同学们在学习中进行参考: 一、若已知二次函数图象上的三个点的坐标或是x、y的对应数值时,可选用y=ax2+bx+c(a≠0)求解。我们称y=ax2+bx+c(a≠0)为一般式(三点式)。 例:二次函数图象经过A(1,3)、B(-1,5)、C(2,-1)三点,求此二次函数的解析式。 说明:因为坐标满足函数解析式的点一定在函数的图象上,反之函数图象上的点的坐标一定满足函数解析式。所以将已知三点的坐标分别代入y=ax2+bx+c (a≠0)构成三元一次方程组,解方程组得a、b、c的值,即可求二次函数解析式。 二、若已知二次函数的顶点坐标或对称轴或最值时,可选用y=a(x+m)2+k (a≠0)求解。我们称y=a(x+m)2+k (a≠0)为顶点式(配方式)。 例:若二次函数图像的顶点坐标为(-2,3),且过点(-3,5),求此二次函数的解析式。 说明:由于顶点式中要确定a、m、k的值,而已知顶点坐标即已知了-m、k的值。用顶点式只要确定a的值就可以求二次函数解析式。若已知这两点的坐标用一般式来解是不能确定a、b、c的值的,不妨让学生尝试一下加深印象。 三、若已知二次函数与X轴的交点坐标是A(x1,0) 、B(x2,0)时, 可选用y=a(x-x1)(x- x2 ) (a≠0)求解。我们称y=a(x-x1)(x- x2 ) (a≠0)为双根式(交点式)。 例:已知一个二次函数的图象经过点A(-1,0)、B(3,0)和C(0,-3)三点,求此二次函数的解析式。 说明:很多同学看到此例会想到使用一般式来解,将已知三点的坐标分别代入去求a、b、c的值来求此二次函数的解析式。往往忽略A、B两点的坐标就是二次函数图象与x轴的交点坐标,而用双根式来求解就相对比较简单容易。 四、若已知二次函数在X轴上截得的线段长为d时,可选用 或 例:抛物线y=2x2-mx-6在X轴截锝线段长为4,求此二次函数的解析式。 说明:对于此例主要让学生明白这两种二次函数解析式中线段长d的推导过程,记住公式套进去就行了。注意相互之间不要混淆。 总之,要求一个二次函数的解析式,可以根据不同的已知条件选择恰当的解题方法,使计算过程简单化,达到迅速解题的目的。当然,也只有在平时的练习中对基本解法的适用情况做到心中有数,才能在具体的问题中结合图形及二次函数的相关性质择优选取适当的解法,提高解题能力。

函数方程的几种解法

解函数方程的几种方法 李素真 摘要:本文通过给出求解函数方程的基本方法,来介绍函数方程,探索通过构造函数方程求解其它问题的方法,以获得新的解题思路。 关键词:函数方程;换元法;待定系数法;解方程组法;参数法 含有未知函数的等式叫做函数方程,能使函数方程成立的函数叫做函数方程的解,求函数方程的解或证明函数方程有无解的过程叫解函数方程。 函数方程的解法有换元法(或代换法)、待定系数法、解方程组法、参数法。 1.换元法 换元法是将函数的“自变量”或某个关系式代之以一个新的变量(中间变量),然后找出函数对中间变量的关系,从而求出函数的表达式。 例1 已知x x f x sin )2(+=,求)(x f 。 解:令u x =2 )(0>u ,则u x log 2=,于是可得,)log sin()log ()(222 u u u f += )(0>u ,以x 代替u ,得)log sin(log 2 )(22u x x f += )0(>x 。 例2 已知x x x x f 212ln )1(+=+ )0(>x ,求)(x f 。 解:令t x x =+1,则11-=t x )1(>t ,于是12ln 112111 2 ln )(+=-+-=t t t t f , 即1 2ln )(+=x x f 。 例3 已知x x f 2cos )cos 1(=+,求)(x f 。 解:原式可以化为 1cos 22cos )cos 1(2+==+x x x f ,令t x =+cos 1,]2,0[∈t ,则换元后有1)1(2)(2 --=x t f ]2,0[∈x 。 2.待定系数法

待定系数法适用于所求函数是多项式的情形。当我们知道了函数解析式的类型及函数的某些特征,用待定系数法来解函数方程较为简单。一般首先确定多项式的次数,写出它的一般表达式,然后由已知条件,根据多项式相等的条件确定待定系数。 例4 已知)(x f 为多项式函数,且422)1()1(2+-=-++x x x f x f ,求)(x f 。 解:由于)1(+x f 与)1(-x f 不改变)(x f 的次数,而它们的和是2次的,所以)(x f 为二次函数,故可设c bx x a x f ++=2)(,从而有 由已知条件得 422)(22222+-=+++x x c a bx x a 根据两个多项式相等的条件得 22=a ,22-=b ,4)(2=+c a ,由此得1=a ,1-=b ,1=c ,故有1)(2+-=x x x f 。 例5 已知)(x f 是x 的二次函数,且x x x f f 242)]([-=,求)(x f 。 解:因为c 是x 的二次函数,故可设c bx x a x f ++=2)(,由此,c c bx x a b c bx x a a c x bf x f a x f f ++++++=++=)()()()()]([2222 将上式化简并代入x x x f f 242)]([-=,得x x c bc c a x b abc x ab c a b a x b a x a 2)()2()2(24222223243-=+++++++++ 比较对应项的系数有 ?????????=++=+-=++==0 0222021222223c bc c a b abc ab c a b a b a a ,解之得?????-===101c b a ,故1)(2-=x x f 。 3.解方程组法 此方法是将函数方程的变量或关系式进行适当的变量代换,得到新的函数方程,然后与原方程联立,解方程组,即可求出所求的函数。

解函数方程的几种方法

绪论 在数学研究的许多领域中如代数学、几何学、概率论等都涉及函数方程问题,在计算机科学中迭代理论和方法也涉及函数方程问题,在航空技术、遥感技术、经济学理论、心理学理论等诸多方面也提出了许多函数方程模型.函数方程因此一直受到广泛关注,是当今数学研究的一个十分重要的课题.由于函数方程形式多样,涉及面广,难度大,需要大量的数学基础知识.尤其是在中学数学教学中,函数方程是最基本、最易出现的问题,也是历年高考的重点.在中学教学和国外数学竞赛中,经常遇到函数方程问题.这类题目一般是求解某一给定的函数方程,而数学上尚无一般方法可循.当然,较大一部分中学生在遇到这类问题时,常常没有比较清晰的解题思路.本文就着重以函数与方程的性质来讨论函数方程在中学数学中的应用,及解决问题的途径,并通过实际问题的求解过程来阐述. 首先,我们会给出函数方程的相关概念包括函数方程的定义、函数方程的解以及解函数方程. 其次,利用函数与方程的基本性质,就中学数学中常出现的方法进行归纳并结合相应的例题解析.当然由于中学数学中考查点的不同,我们的讨论也有所侧重.对常见的方法包括换元法(代换法)、赋值法、迭代周期法(递推法)、待定系数法等均会加重笔墨,尤其会给出一些较为典型的例题分析以及巧解的方法,而对于不常用的方法本文也会提到,以让读者了解到比较前全面的函数方程问题的解题策略. 最后,就种种方法进行总结归纳.“法无定法”,关键在于人们对问题的观察、分析,进而选择最优的方法来解决问题.很多情况下,由于解决的途径并不唯一,所以在解决问题的时候一般采用多种方法同步求解,以达到简化求解过程的目的. 1函数方程的一些相关概念 1.1函数方程的定义 含有未知函数的等式叫做函数方程.如()() f x f x -=, =-,()() f x f x +=等,其中() f x即是未知函数. f x f x (1)() 1.2函数方程的解 设某一函数() f x对自变量在其定义域的所有值均满足某已知方程,那么把 f x就叫做函数方程的f x就叫做已知函数方程的解.即能使函数方程成立的() () 解.函数方程的解可能是一个函数,也可能是若干个函数或无穷多个函数或无解.如偶函数、奇函数、()1 =-分别是上述各方程的解. f x x 1.3解函数方程 求函数方程的解或证明函数方程无解的过程就称为解函数方程.即指的是在不给出具体函数形式,只给出函数的一些性质和一些关系式而要确定这个函数,

二元函数的极值与最值

二元函数的极值与最值 二元函数的极值与最值问题已成为近年考研的重点,现对二元函数的极值与最值的求法总结如下: 1.二元函数的无条件极值 (1) 二元函数的极值一定在驻点和不可导点取得。对于不可导点,难以判断是否是极值点;对于驻点可用极值的充分条件判定。 (2)二元函数取得极值的必要条件: 设),(y x f z =在点),(00y x 处可微分且在点),(00y x 处有极值,则0),('00=y x f x ,0),('00=y x f y ,即),(00y x 是驻点。 (3) 二元函数取得极值的充分条件:设),(y x f z =在),(00y x 的某个领域内有连续上二阶偏导数,且=),('00y x f x 0),('00=y x f y ,令A y x f xx =),('00, B y x f xy =),('00,C y x f yy =),('00,则 当02<-AC B 且 A<0时,f ),(00y x 为极大值; 当02<-AC B 且A>0,f ),(00y x 为极小值; 02 >-AC B 时,),(00y x 不是极值点。 注意: 当B 2-AC = 0时,函数z = f (x , y )在点),(00y x 可能有极值,也可能没有极值,需另行讨论 例1 求函数z = x 3 + y 2 -2xy 的极值. 【分析】可能极值点是两个一阶偏导数为零的点,先求出一阶偏导,再令其为零确定极值点即可,然后用二阶偏导确定是极大值还是极小值,并求出相应的极值. 【解】先求函数的一、二阶偏导数: y x x z 232 -=??, x y y z 22-=??. x x z 62 2 =??, 22 -=???y x z , 2 2 2 =??y z . 再求函数的驻点.令x z ??= 0,y z ??= 0,得方程组???=-=-. 022,0232x y y x 求得驻点(0,0)、),(3 2 32. 利用定理2对驻点进行讨论:

二次函数典型题解题技巧

二次函数典型题解题技巧

————————————————————————————————作者:————————————————————————————————日期:

二次函数典型题解题技巧 (一)有关角 1、已知抛物线2y ax bx c =++的图象与x 轴交于A 、B 两点(点A 在点B 的左边),与y 轴 交于点(0C ,3),过点C 作x 轴的平行线与抛物线交于点D ,抛物线的顶点为M ,直线5y x =+经过D 、M 两点. (1) 求此抛物线的解析式; (2)连接AM 、AC 、BC ,试比较MAB ∠和ACB ∠的大小,并说明你的理由. 思路点拨:对于第(1)问,需要注意的是CD 和x 轴平行(过点C 作x 轴的平行线与抛物线交于点D ) 对于第(2)问,比较角的大小 a 、 如果是特殊角,也就是我们能分别计算出这两个角的大小,那么他们之间的大小关系就清楚了 b 、 如果这两个角可以转化成某个三角形的一个外角和一个不相邻的内角,那么大小关系就确定了 c 、 如果稍难一点,这两个角转化成某个三角形的两个内角,根据大边对大角来判断角的大小 d 、 除了上述情况外,那只有可能两个角相等,那么证明角相等的方法我们学过什么呢,全等三角形、相似三角形和简单三角函数,从这个题来看,很明显没有全等三角形,剩下的就是相似三角形和简单三角函数了,其实简单三角函数证明角相等和相似三角形证明角相等的本质是一样的,都是对应边的比相等 e 、 可能还有人会问,这么想我不习惯,太复杂了,那么我再说一个最简单的方法,如何快速的找出题目的结论问题,在本题中,需要用到的点只有M 、C、A、B 这四个点,而这四个点的坐标是很容易求出来的,那么请你把这四个点规范的在直角坐标系内标出来,再用量角器去量这两个角大大小,你就能得出结论了,得出结论以后你再看d 这一条 解:(1)∵CD ∥x 轴且点C(0,3), ∴设点D 的坐标为(x ,3) . ∵直线y = x+5经过D 点, ∴3= x+5.∴x=-2. 即点D(-2,3) . 根据抛物线的对称性,设顶点的坐标为M (-1,y ), 又∵直线y= x+5经过M 点, ∴y =-1+5,y =4.即M(-1,4). ∴设抛物线的解析式为 2(1)4y a x =++. ∵点C (0,3)在抛物线上,∴a=-1. 即抛物线的解析式为 223y x x =--+.…………3分 (2)作BP ⊥AC 于点P,MN⊥AB 于点N. 由(1)中抛物线 223y x x =--+可得 点A(-3,0),B(1,0), ∴AB=4,AO =C O=3,A C=32. ∴∠PAB =45°. ∵∠ABP=45°,∴P A=PB=22. ∴P C=A C-PA =2. 在Rt△BPC 中,tan ∠BCP=PB PC =2.

函数方程的几种解法 (1)

解函数方程的几种方法 李素真 摘要:本文通过给出求解函数方程的基本方法,来介绍函数方程,探索通过构造函数方程求解其它问题的方法,以获得新的解题思路。 关键词:函数方程;换元法;待定系数法;解方程组法;参数法 含有未知函数的等式叫做函数方程,能使函数方程成立的函数叫做函数方程的解,求函数方程的解或证明函数方程有无解的过程叫解函数方程。 函数方程的解法有换元法(或代换法)、待定系数法、解方程组法、参数法。 1.换元法 换元法是将函数的“自变量”或某个关系式代之以一个新的变量(中间变量),然后找出函数对中间变量的关系,从而求出函数的表达式。 例1 已知x x f x sin )2(+=,求)(x f 。 解:令u x =2)(0>u ,则u x log 2=,于是可得,)log sin()log ()(222 u u u f += )(0>u ,以x 代替u ,得)log sin(log 2 )(22u x x f +=)0(>x 。 例2 已知x x x x f 212ln )1(+=+)0(>x ,求)(x f 。 解:令t x x =+1,则11-=t x )1(>t ,于是12ln 112111 2 ln )(+=-+-=t t t t f , 即1 2ln )(+=x x f 。 例3 已知x x f 2cos )cos 1(=+,求)(x f 。 解:原式可以化为 1cos 22cos )cos 1(2+==+x x x f ,令t x =+cos 1,]2,0[∈t ,则换元后有1)1(2)(2 --=x t f ]2,0[∈x 。 2.待定系数法

待定系数法适用于所求函数是多项式的情形。当我们知道了函数解析式的类型及函数的某些特征,用待定系数法来解函数方程较为简单。一般首先确定多项式的次数,写出它的一般表达式,然后由已知条件,根据多项式相等的条件确定待定系数。 例4 已知)(x f 为多项式函数,且422)1()1(2+-=-++x x x f x f ,求)(x f 。 解:由于)1(+x f 与)1(-x f 不改变)(x f 的次数,而它们的和是2次的,所以)(x f 为二次函数,故可设c bx x a x f ++=2)(,从而有 由已知条件得 422)(22222+-=+++x x c a bx x a 根据两个多项式相等的条件得 22=a ,22-=b ,4)(2=+c a ,由此得1=a ,1-=b ,1=c ,故有1)(2+-=x x x f 。 例5 已知)(x f 是x 的二次函数,且x x x f f 242)]([-=,求)(x f 。 解:因为c 是x 的二次函数,故可设c bx x a x f ++=2)(,由此,c c bx x a b c bx x a a c x bf x f a x f f ++++++=++=)()()()()]([2222 将上式化简并代入x x x f f 242)]([-=,得x x c bc c a x b abc x ab c a b a x b a x a 2)()2()2(24222223243-=+++++++++ 比较对应项的系数有 ?????????=++=+-=++==0 0222021222223c bc c a b abc ab c a b a b a a ,解之得?????-===101c b a ,故1)(2-=x x f 。 3.解方程组法 此方法是将函数方程的变量或关系式进行适当的变量代换,得到新的函数方程,然后与原方程联立,解方程组,即可求出所求的函数。

“图解法解二元函数的最值问题”

“图解法解二元函数的最值问题” 教学课例 昌平区第一中学 回春荣

“图解法解二元函数的最值问题”教学课例 一、设计意图: 在新课程背景下的教学中,课堂上我们应是以“问”的方式来启发学生深思,以“变”的方式诱导学生灵活善变,使整堂课有张有弛,真正突出了学生是教学活动的主体的原则。本节内容是在学习了不等式、直线的方程的基础上,利用不等式和直线的方程有关知识展开的,它是对二元函数的深化和再认识、再理解,是直线、圆和不等式的综合运用,同时它又对理解下一章“圆锥曲线”的相关内容有着很好的帮助作用,所以这一部分内容起到了一个巩固旧知识,熟练方法,理解新知识的承上启下的作用。图解法在解决函数求最值的问题上有着广泛的应用,这节课为学生提供了广阔的思维空间,对培养学生自主探索、合作研究、主动发现问题、分析问题,创造性地解决问题的能力有着丰富的素材。教学上通过设置问题情境、多媒体展示,学生动手操作,使学生在“做中学”,学生在实际操作中,既发展了学生的个性潜能,又培养了他们的合作精神。 二、本课教学目标 1、知识与技能:通过识图、画图,学会解决有约束条件的二元函数最值问题的处理方法——图解法。 2、过程与方法:经历约束条件为二元一次不等式组,目标函数为具有截距、斜率、距离等几何意义的二元函数的最值问题的探究过程,提炼出解决这类问题的方法——以图定位,以算定量。 3、情感态度与价值观:通过对有约束条件的二元函数的最值问题的探究,培养学生科学严谨的治学态度,勇于探索、敢于创新的学习精神,同时感受合作交流的快乐。 三、教学过程与教学资源设计 (一)、教学内容:图解法解二元函数的最值问题 (二)、教学设计流程图:

函数方程的几种方法 (1)

函数方程 三、求解函数方程的几种方法: 函数方程的变化多,求解技巧性很强,往往涉及不同领域的数学知识,特别是附加了条件的函数,更是五花八门,各有巧妙。在高数数学各级竞赛中,都有可能会遇到函数方程的问题,在这里我们介绍几种典型的求解函数的方法。 一.代换法 1.解函数方程:x x x f x f +=-+1)1 ( )( (1) 解:令1,0,1≠-=y y y x ;则x y -=11 ,将此代入(1)可得: y y y f y y f 1 2)11()1(-=-+- 或x x x f x x f 12)11()1(-=-+-。(2) 此时(1)及(2)并无法解出)(x f ;所以我们再令1,0,11≠-=z z x ;则x x z 1-= ,将此代入(1)式则可得z z z f z f --=+-12)()11(,即x x x f x f --= +-12)()11(。(3) 将(1),(2)及(3)联立,则可得到一个以)1 (),11(),(x x f x f x f --为独立变数的三元一次方程组;我们利用消去法来解此问题. (1)+(3)-(2)可得: x x x x x x f 1212)1()(2-- --++=)1(21)(23---=?x x x x x f 。 经检验是原函数方程的解. 2.(2007越南数学奥林匹克)设b 是一个正实数,试求所有函数R R f →:,使 得 )3(3)()(1)(1)(y y f b x y f b b b x f y x f y y -+?=+-+-+对任意实数x 、y 均成立。 解:将原方程变形为:1 )(3))(()(-++?+=++y f b x y x y b x f b y x f , (x , )R y ∈① 令x b x f x g +=)()(,则①等价于1)(3)()(-?=+y g x g y x g ,(x , )R y ∈② 在②中令0=y 得1)0(3)()(-?=g x g x g )(R x ∈这表明1)0(0)(==g x g 或。 1)若0)(=x g )(R x ∈,则x b x f -=)(; 2)若1)0(=g ,在②式中令0=x 得:1)(1)(33)0()(--=?=y g y g g y g ,即0)(31)(=--y g y g 。)(R y ∈③ 考虑函数t t h t -=-13)(,它的导函数13ln 3)('1-=-t t h ,则11)(log log 0)('33<+=?=e t t h ,于是可知0)(=t h 有两根11=t 和 c t =2)10(<

二次函数的几种解析式及求法教学设计

二次函数的几种解析式及求法教学设计 福泉一中:齐庆方 一、指导思想与理论依据 (一)指导思想:本次课的教学设计以新课程标准关于数学教学的核心理念为基本遵循,坚持以教师为主导,以学生为主体,以培养能力为基准,采取符合学生学习特点的多样式的学习方法,通过教学容和教学过程的实施,帮助学生在自主探索和合作交流的过程中真正理解和掌握基本的数学知识和技能、数学思想和方法,促进学生学会用数学的思考方式解决问题、认识世界. (二)理论依据:本次课的教学设计以新课程标准关于数学教育的理论为基本依据,主要把握了两个方面的理论: 1、新课程标准关于数学整体性的理论.教学中注意沟通各部分之间的联系,通过类比、联想、知识的迁移和应用等方式,使学生体会知识之间的联系,感受数学的整体性,进一步理解数学的本质,提高解决问题的能力. 2、新课程标准关于教师教学的理论.教师应该更加关注:1)科学的基本态度之一是疑问,科学的基本精神之一是批判.要注意培养学生科学的质疑态度和批判性的思维习惯;2)提出问题是数学学习的重要组成部分,更是数学创新的出发点.要注意培养学生提出问题的能力;3)在教学中更加关注学生知识的储备、能力水平、思维水平等;4)关注学生的学习态度、学习方法、学习习惯,在思维的最近发展区设计教学容.

二、教学背景分析 (一)学习容分析 “待定系数法”是数学思想方法中的一种重要的方法,在实际生活和生产实践中有着广泛的应用.学生对于“待定系数法”的学习渗透在不同的学习阶段,初中阶段要求学生初步学会用待定系数法求函数解析式;因此这节课的学习既是初中知识的延续和深化,又为后面的学习奠定基础,起着承前启后的作用.另外,待定系数法作为解决数学实际问题的基本方法和重要手段,在其他学科中也有着广泛的应用. (二)学生情况分析 对于初三学生来说,在学习一次函数的时候,学生对于用待定系数法求函数解析式的方法已经有所认识,他们已经积累了一定的学习经验.在学习完一次函数后继续学习用待定系数法求函数解析式,学生已经具备了更多的函数知识,同时,初三的学生已经具备了一定的分析问题、解决问题能力和创新意识,这些对本节课的学习都很有帮助.在今后高中的数学学习中,学生还会继续运用待定系数法解决相关问题.新课标对学生在探究问题的能力,合作交流的意识等方面有了更高的要求,在教学中还有待加强相应能力的培养. (三)教学方式与教学手段、技术准备以及前期的教学状况、问题、对策说明

多元函数最值问题(1)

多元函数最值问题 一.方法综述 多元函数的最值问题就是在多个约束条件下,某一个问题的最大和最小值.在所列的式子之中,有多个未知数.求解多元函数的最值问题技巧性强、难度大、方法多,灵活多变,多元函数的最值问题蕴含着丰富的数学思想和方法.解题办法常有:导数法、消元法、基本不等式法、换元法、数形结合法、向量法等. 二.解题策略 类型一 导数法 例1.【2018上海市长宁、嘉定区一模】若不等式()2 2 2x y cx y x -≤-对任意满足0x y >>的实数x , y 恒成立,则实数c 的最大值为__________. 【答案】4 【举一反三】【2018江西省临川二中、新余四中联考】已知函数()f x 的定义域是R , ()()()2 10 811(0) x a x x f x ln x x ?-++≤?=?++>??(a 为小于0的常数)设12x x <且()()12 ''f x f x =,若2 1 x x -的最小值 大于5,则a 的范围是__________. 【答案】(),4-∞-

类型二 消元法 例2.【2018河北省廊坊市第八高级中学模拟】若对任意的实数x ,都存在实数y 与之对应,则当 ()220x y y x e y x a e ----=时,实数a 的取值范围为( ) A. 1, 2e ? ? -∞ ?? ? B. (),0-∞ C. 10,3e ?? ??? D. 1,3e ??-∞ ?? ? 【答案】D 【解析】由题设有()33x y a y x e -=-,令x y t -=,则3,t a t e t R =-∈,所以()3'13,t a t e t R =-+∈,当 1,3t ??∈-∞- ???时, '0a >, 3t a te =在1,3??-∞- ???为增函数;当1,3t ??∈-+∞ ???时, '0a <, 3t a te =在 1,3? ?-∞- ? ?? 为减函数,所以m a x 13a e =,注意到当0t >时, 0a <,故选D. 【解题秘籍】题设条件中变量较多,但可以把x y -看成整体,从而把问题转化为一元函数的值域来讨论. 类型三.基本不等式法 例 3.【2018湖南省长沙市第一中学模拟】设二次函数()2 f x ax bx c =++(,,a b c 为常数)的导函数为

函数方程常用解法:

函数方程常用解法: (1)配方法:利用配方的方法将)())((x g x f =?的右端变成关于)(x ?的函数。例如 已知 221)1(x x x x f +=+,求)(x f 。 解 )(x ?=x x 1+,利用配方的方法,设法将等式的右端变成以x x 1+为变元的函数,即 2)1(212122222-+=-++=+x x x x x x 于是有2)1(1)1(222-+=+=+x x x x x x f 得到2)(2 -=x x f (2)换元法:将函数方程的变量进行适当的变量替换,求出方程的解。 例如 已知x f x x 2)1 e 1e (=-+,求).(x f 解 利用换元的方法,令1e 1e -+=x x y ,则11ln -+=y y x ,带入原方程得到1 1ln 2)(-+=y y y f ,即为 1 1ln 2)(-+=x x x f 有时得到一个新的函数方程,将函数方程的变量进行适当的变量替换,会得到一个或几个新的函数方程,则联立新旧方程,然后求得其解。 (3)待定系数法:当已知)(x f 是多项式函数时,可利用待定系数的方法求解函数方程。首先写出函数的一般表达式,然后由已知条件,根据多项式相等来确定待定的系数。例如 已知函数23)1(2--=+x x x f ,求)(x f 。 解 由于)1(+x f 不改变)(x f 的次数,所以)(x f 为1二次函数,可设c bx ax x f ++=2)( 则c b bx ax ax c x b x a x f +--++=-+-+=+12)1()1()1(22 231)2(22+-=+-+-+=x x b c x b a ax 由已知条件得出4,1,1=-==c b a 故有4)(2+-=x x x f

解题秘诀:二次函数最值的4种解法(1)

二次函数最值的4种解法,看完不惧压轴题! 从近几年的各地中考试卷来看,求面积的最值问题在压轴题中比较常见,而且通常与二次 函数相结合。 在这里以一道中考题为例,介绍几种不同的解题方法,供同学们参考,都掌握了之后一定 会在压轴题上有一个大的提升。 ps.因格式问题,部分上标未能正常显示,望知悉。 高途课堂整理 1、如图1,抛物线y=-x2+bx+c 与x 轴交于A(1,0),B(-3,0)两点。 (1)求该抛物线的解析式; (2)设(1)中的抛物线交y 轴于C 点,在该抛物线的对称轴上是否存在点Q,使得△QAC 的 周长最小?若存在,求出Q 点的坐标;若不存在,请说明理由; (3)如图2,在(1)中的抛物线上的第二象限上是否存在一点P,使△PBC 的面积最大?若存 在,求出点P 的坐标及△PBC 的面积最大值;若没有,请说明理由。

解答: (1)抛物线解析式为y=-x2-2x+3; (2)Q(-1,2); 下面着重探讨求第(3)小题中面积最大值的几种方法. 解法1:补形、割形法 高途课堂整理几何图形中常见的处理方式有分割、补形等,此类方法的要点在于把所求图形的面积进行 适当的补或割,变成有利于表示面积的图形。 方法一 如图3,设P 点(x,-x2-2x+3)(-3

高途课堂整理

高途课堂整理方法二如图4,设P 点(x,-x2-2x+3)(-3

(下略.) 高途课堂整理解法2:“铅垂高,水平宽”面积法 如图5,过△ABC 的三个顶点分别作出与水平线垂直的三条直线,外侧两条直线之间的距离 叫△ABC 的“水平宽”(a),中间的这条直线在△ABC 内部线段的长度叫△ABC 的“铅垂高(h)”, 我们可得出一种计算三角形面积的另一种方法:S△ABC=1/2ah,即三角形面积等于水平宽 与铅垂高乘积的一半。

多元目标函数最值问题

多元目标函数最值问题 目标:1.达到灵活运用基本不等式2(0,0)a b ab a b +≥≥≥来解决高考中有关最值问题。 2.善于观察、联想,迅速研判最值题型,通过变型或转换寻找条件与结论的衔接点,创造性地解决最值问题。 3.能通过减元来研究目标函数最值 一.激活思维 1、若正数,a b 满足1ab =,则2a b +最小值 . 2、已知0,0,2a b a b >>+=,则14y a b =+的最小值是 . 3、设,x y 为实数,若2241x y xy ++=,则2x y +的最大值是 . 4、已知,a b 均为正实数,且1a b +=,求11()()y a b a b =++的最小值。 二.分类解密 目标1 两元以下函数最值问题 例1:若不等式 ,对任意恒成立,则实数的最大值为 。 变式1 若 则 。 变式2 若 ,则的最小值 。

例2.若,x y 满足20403x y x y x -≥??+-≥??≤?,则3322x y x y +的取值范围是 变式1 已知,x y 为正数,则22x y x y x y +++的最大值为 变式2 设(,)P x y 为函数21(3)y x x =->图象上一动点,记353712x y x y m x y +-+-= +--,则当m 最小是P 的坐标为 目标2 多元问题处理 例3. 若实数 ,则的最小值为 。 变式1 设 为正实数,且满足的最小值是 。 变式2已知正实数 满足的最小值为 。 变式3 若 ,且则 。 例4.已知,,x y z R +∈,求 2221612xy yz x y z +++的最大值 变式训练 1 若关于x 的一元二次不等式()20ax bx c a b ++≥<的解集为R ,则24a b c M b a ++= -的最小值是 三. 1、设,则 的最小值为 。

多元函数求最值

多元函数求最值

多元函数求最值问题 一.【问题背景】 多元函数是高等数学中的重要概念之一,但随着新课程的改革,高中数学与大学数学知识的衔接,多元函数的值域与最值及其衍生问题在高考试题中频频出现,因其技巧性强、难度大、方法多、灵活多变而具有挑战性,成为最值求解中的难点和热点。同时,多元函数最值问题中蕴含着丰富的数学思想和方法,而且有利于培养学生联想、化归的解题能力。因此,怎样求多元函数的最值,是师生们非常关注和必须解决的问题,也是高考考生们必须具备的解题技能。 二.【常见的方法】 导数法、消元法、均值不等式法(“1”代换)、换元法(整体换元 三角换元)、数形结合法、柯西不等式法、向量法等 主要思想方法:数形结合、化归思想等 三.【范例】 例1:已知实数,x y 满足0x y >>,且2x y +≤,则21 3x y x y ++- 的最小值为 。 方法一 因为422x y +≥,所以

()2121 4( )()[(3)()]332333322 x y x y x y x y x y x y x y x y x y x y ++++-+-+--+=+ + +-+≥≥ 当且仅当221,32 x y ==-取等号,故 21 3x y x y ++-的最小值324+ 【评注】这是一个二元函数的最值问题,通常有两个途径,一是通过消元,转化为一元函数,再用单调性或基本不等式求解,二是直接用基本不等式,因已知条件中既有和的形式,又有积的形式,不能一步到位求出最值,考虑用基本不等式放缩后,再通过不等式的途径进行。 方法二 利用不等式()2 2 2 a b a b p q p q +++≥,引证: 记向量 (,)x y p q p q ==,因为()2 2 2 x y x y ??≤ 所 以 ()2 22a b a b p q p q +++≥, 则 () () 2 2121 32x y x y x y ++-+≥ 322+ 【评注】在求有些多元函数的最值时,恰当构造 向量模型,利用向量数量积的性质,常可使复杂问题变得简单明了,使繁琐的解题显得巧妙自然。 方法三 因为 0,2x y x y >>+≤,所以 01y << 又因为 ()() 2121332222211y x y x y y y y y -++=+-+-+-≥

经典二次函数和实际应用题解法

二次函数运用题 一:知识点 利润问题:总利润=总售价–总成本 总利润=每件商品的利润×销售数量 二:例题讲解 1、(20XX年内蒙古包头)将一条长为20cm的铁丝剪成两段,并以每一段铁丝的长度为周长各做成一个正方形,则这两个正方形面积之和的最小值是cm2. 2、(20XX年聊城冠县实验中学二模)某商品原价289元,经连续两次降价后售价为256元,设平均每次降价的百分率为x,则下面所列方程正确的是________________ 3、用48米长的竹篱笆围建一矩形养鸡场,养鸡场一面用砖砌成,另三面用竹篱笆围成,并且在与砖墙相对的一面开2米宽的门(不用篱笆),问养鸡场的边长为多少米时,养鸡场占地面积最大?最大面积是多少? 4、某商场销售一批衬衫,平均每天可售出20件,每件盈利40元,为扩大销售增加盈利,尽快减少库存,商场决定采取降价措施,经调查发现,若每件衬衫每降价1元,商场平均每天可以多售出2件.(1)若每件降价x元,每天盈利y元,求y与x的关系式.(2)若商场平均每天要盈利1200元,每件衬衫应降价多少元?(3)每件衬衫降价多少元时,商场每天盈利最多?盈利多少元? 5、某宾馆客房部有60个房间供游客居住,当每个房间的定价为每天200元时,房间可以住满.当每个房间每天的定价每增加10元时,就会有一个房间空闲.对有游客入住的房间,宾馆需对每个房间每天支出20元的各种费用.设每个房间每天的定价增加x元.求: (1)房间每天的入住量y(间)关于x(元)的函数关系式. (2)该宾馆每天的房间收费z(元)关于x(元)的函数关系式. (3)该宾馆客房部每天的利润w(元)关于x(元)的函数关系式;当每个房间的定价为每天多少元时,w有最大值?最大值是多少? 6、某商店经营一批进价每件为2元的小商品,在市场营销的过程中发现:如果该商品按每件最低价3元销售,日销售量为18件,如果单价每提高1元,日销售量就减少2件.设销售单价为x(元),日销售量为y(件).(1)写出日销售量y(件)与销售单价x(元)之间的函数关系式; (2)设日销售的毛利润(毛利润=销售总额-总进价)为P(元),求出毛利润P(元)与销售单价x(元)之间的函数关系式; (3)在下图所示的坐标系中画出P关于x的函数图象的草图,并标出顶点的坐标; (4)观察图象,说出当销售单价为多少元时,日销售的毛利润最高?是多少? 7、(08 凉州)我州有一种可食用的野生菌,上市时,外商李经理按市场

几种常见的微分方程简介,解法

第十二章:微分方程 教学目的: 1.了解微分方程及其解、阶、通解,初始条件和特等概念。 2.熟练掌握变量可分离的微分方程及一阶线性微分方程的解法。 3.会解齐次微分方程、伯努利方程和全微分方程,会用简单的变量代换解某些微分方程。 4.会用降阶法解下列微分方程:()()n y f x =, (,)y f x y '''+和(,)y f y y '''= 5.理解线性微分方程解的性质及解的结构定理。 6.掌握二阶常系数齐次线性微分方程的解法,并会解某些高于二阶的常系数齐次线性微分方程。 7.求自由项为多项式、指数函数、余弦函数,以及它们的和与积的二阶常系数非齐次线性微分方程的特解和通解。 8.会解欧拉方程,会解包含两个未知函数的一阶常系数线性微分方程组。 9.会解微分方程组(或方程组)解决一些简单的应用问题。 教学重点: 1、可分离的微分方程及一阶线性微分方程的解法 2、可降阶的高阶微分方程()()n y f x =, (,)y f x y '''+和(,)y f y y '''= 3、二阶常系数齐次线性微分方程; 4、自由项为多项式、指数函数、余弦函数,以及它们的和与积的二阶常系数非齐次线性微分方程; 教学难点: 1、齐次微分方程、伯努利方程和全微分方程; 2、线性微分方程解的性质及解的结构定理; 3、自由项为多项式、指数函数、余弦函数,以及它们的和与积的二阶常系数非齐次线性微分方程的特解。 4、欧拉方程

§12. 1 微分方程的基本概念 函数是客观事物的内部联系在数量方面的反映, 利用函数关系又可以对客观事物的规律性进行研究. 因此如何寻找出所需要的函数关系, 在实践中具有重要意义. 在许多问题中, 往往不能直接找出所需要的函数关系, 但是根据问题所提供的情况, 有时可以列出含有要找的函数及其导数的关系式. 这样的关系就是所谓微分方程. 微分方程建立以后, 对它进行研究, 找出未知函数来, 这就是解微分方程. 几个概念: 微分方程: 表示未知函数、未知函数的导数与自变量之间的关系的方程, 叫微分方程. 常微分方程: 未知函数是一元函数的微分方程, 叫常微分方程. 偏微分方程: 未知函数是多元函数的微分方程, 叫偏微分方程. 微分方程的阶: 微分方程中所出现的未知函数的最高阶导数的阶数, 叫微分方程的阶. x 3 y x 2 y 4xy =3x 2 , y (4) 4y 10y 12y 5y =sin2x , y (n ) 1=0, 一般n 阶微分方程: F (x , y , y , , y (n ) )=0. y (n )=f (x , y , y , , y (n 1) ) . 微分方程的解: 满足微分方程的函数(把函数代入微分方程能使该方程成为恒等式)叫做该微分方程的解. 确切地说, 设函数y =j (x )在区间I 上有n 阶连续导数, 如果在区间I 上, F [x , j (x ), j (x ), , j (n ) (x )]=0, 那么函数y =j (x )就叫做微分方程F (x , y , y , , y (n ) )=0在区间I 上的解. 通解: 如果微分方程的解中含有任意常数, 且任意常数的个数与微分方程的阶数相同, 这样的解叫做微分方程的通解. 初始条件: 用于确定通解中任意常数的条件, 称为初始条件. 如 x =x 0 时, y =y 0 , y = y 0 . 一般写成 00y y x x ==, 0 0y y x x '='=. 特解: 确定了通解中的任意常数以后, 就得到微分方程的特解. 即不含任意常数的解. 初值问题: 求微分方程满足初始条件的解的问题称为初值问题.

相关文档