文档库 最新最全的文档下载
当前位置:文档库 › 光寻址空间光调制器电寻址空间光调制器实验(浙大)

光寻址空间光调制器电寻址空间光调制器实验(浙大)

光寻址空间光调制器电寻址空间光调制器实验(浙大)
光寻址空间光调制器电寻址空间光调制器实验(浙大)

.

实验报告

课程名称: 2011-2012光信息综合实验 指导老师: 成绩:___ ____

实验名称: 液晶光阀用于光学图像实时处理 实验类型:综合型 同组学生姓名:

一、实验目的和要求 二、实验内容和原理

三、主要仪器设备、操作方法和实验步骤

四、实验结果记录、数据处理分析 五、思考题 六、实验中遇到的问题,心得体会,意见和建议

一、实验目的和要求

1、了解液晶光阀的工作原理和使用方法;

2、掌握采用液晶光阀实现非相干光——相干光图像转换和图像反转的工作原理和方法;

3、掌握应用液晶光阀进行光学图像实时相减和实时微分的方法,加深对光学图像实时处理的理解。

二、实验内容和原理

1. 液晶特性

(1) 液晶是一种有机高分子化合物,既有晶体的取向特性,又有液体的流动性。

(2) 当液晶分子有序排列时表现出光学各项异性:光矢量沿分子长轴方向时具有较大的非常光折射率ne ;而垂直分子长轴方向位寻常光折射率no(针对p 型液晶材料)。 (3) 晶轴方向即为分子长轴方向。在组成液晶盒的两玻璃间加一电压,其中的液晶分子在电场作用下会沿着电场方向排列,即光轴方向沿电场方向偏转。电场控制了双折射效应的变化。 (4) 液晶光阀正是利用此特点而制成的器件。 2. 液晶光阀结构示意

1--玻璃基片 2--透明电极 3--光导层 4--挡光层 5--介质反射膜 6--定向层 7--液晶层 8--衬垫 E--低压音频电源 K--开关

3. 液晶光阀工作原理

(1) 如液晶光阀结构图所示,工作时将待处理的非相干图像从右侧成像在光电导层上,把它作为写入光。读出光束从左侧入射,经起偏器使其偏振方向与液晶左侧分子指向方向一致。经透明电极、液晶盒之后,在右侧的介质反射膜处返回,再次穿过液晶层经偏振分光镜后,通过一个透光轴方向与起偏器偏振方向垂直的检偏器,成为输出光束。

(2) 由于光阻挡层和反射膜都很薄,交流阻抗很小,因而加在两透明电极之间的外电压主要落在液晶层和光电导层上。控制液晶电光效应的实际电压值就由光电导层与液晶层的实际阻抗之比来决定,即取决于光电导层上的光照情况。

(3) 对写入光图像上的暗区:光电导层上的光照很少,电阻很大,外电压主要分配在光电导层上,而液晶层上

E

1

8 1

5 4

6 7

6 2 3 K

2

写入光

读出光

偏振分光镜

输出光

专业: 姓名:

学号: 日期: 地点: 玉泉教三209-211

电压较小,不足以产生电光效应,从而未受到调制,输出光束保持较小输出;对写入光图像上的亮区:相应的光电导层阻抗小,电压大部分落在液晶层相应像区上,由于混合场效应,使在该区域输出光达到最大输出。这样,输出光束的光强空间分布就按照写入光的图像的空间分布而受到调制,显然,它实现了非相干--相干光图像转换功能。

4. 液晶光阀图像转换工作原理

La —He-Ne 激光器,L1—扩束镜,L2—准直透镜,PBS —偏振分光棱镜

LCLV —液晶光阀,L3—成像透镜,A —图象透明片,S —观测屏,Lamp —卤钨灯

(1) 当液晶光阀加上交流驱动电压,成像透镜L3把非相干光照射的图像成像到液晶光阀的光导层上,光导层电阻根据图像的强弱产生相应的电阻分布,同时,液晶层中的取向也产生相应的调制。 (2) 氦氖激光器通过扩束准直后的平行激光束通过偏振分束棱镜后经光阀反射,其偏振态发生变化,形成了与液晶取向相应的图像。

(3) 接着再逆向通过偏振分光棱镜后,只有S 光能反射出,因而其输出读出光也呈现出相应的图像,可在观察屏上进行观察。

(4) 如果各光路调整得好,可在观察屏上看到清晰的激光图像,与非相干光照射的图像相对应。 5. 液晶光阀的工作曲线

(1) 按照液晶光阀的工作原理,也可以从电学特性的角度考虑,将液晶层、介质高反膜、光阻隔层和光导层都相应地看作电阻和电容的组合,从而得出结论:LCLV 不能在直流状态下工作,也不能在高频状态下工作,对于一个特定的光阀而言,存在一个最佳工作点。

(2) 在上图中,透镜L4的焦面上放上光电接收器接收输出光,实验表明,液晶光阀的读出光与写入光,即输出光强与输入光强有关,在一定的输入光强范围内,输出光强与输入光强呈线性关系。

(3) 称无写入光时液晶光阀的输出光强与液晶光阀上所加的驱动电压的关系曲线为液晶光阀的工作曲线,该曲线存在多峰,输出光强在驱动电压取得某些值时出现极小值;而取另外一些值时,输出光强出现极大值。极小值处为正像工作点,极大值处为负像工作点,在做图像反转实验时。为了使正负图像对比度最好,可以选取极大值、极小值处为图像反转实验的工作点。 6. 光学图像的实时微分、相减原理

La —He-Ne 激光器,L1—扩束镜, L2—准直透镜,PBS —偏振分光棱镜 LCLV —液晶光阀,L3,A —图象透明片,S —观测屏,Lamp —卤钨灯

物1

物2

(1) 通常液晶光阀的读出光强与输入光强不是单值对应的。

(2) 利用液晶区域的这种非线性输入输出特性,可以实现图像的微分处理,获得图像的实时边缘增强,通过调整液晶光阀的驱动电压、驱动频率和入射偏振方向,能达到最佳的增强效果。

(3) 右光路中放置有λ/4波片,两图像在输出面上叠加时,相互间存在相位差,适当旋转λ/4波片,两图像在输出面叠加的结果,可以得到一个强度正比于输出图像之差的处理图像。该图像重叠在强度恒定的背景上,于是获得了图像实时相减的结果。

(4) 如果物1和物2是两个完全相同的图像,并且使两路光的放大倍率稍有差别,这时输出面上两图像大小不等,当作相减处理时,也能得到图像的轮廓,从而也可以获取光学图像的微分图像。

三、主要仪器设备、操作方法和实验步骤

本实验选用的是浙江大学生产的水平定向45°扭曲向列型液晶光阀,其分辨率为30线对/mm,以卤钨灯作为非相干光源。

1. 非相干-相干图像转换

(1) 按原理图布置调整好光路。在液晶光阀上加3-5V,1KHz的交流电压。在A处放置图象透明片,用CCD 接收经系统后的读出光图象,观察结果。

(2) 使写入光为零,光阀所加电压频率1KHz,将光阀的驱动电压从0V增加到10V,在观察屏处,用光电探测器同时测量光强值。对测量的数值进行处理,可以获得液晶光阀的工作曲线。接着,将电压分别固定在最小光强和最大光强所对应的值处,将光阀的驱动频率从0.5KHz增加到1.5KHz,得到不同条件下的曲线,进行比较。

(3) 根据获得的液晶光阀的工作曲线,确定工作曲线上的光强的极大值对应的液晶光阀上的驱动电压的频率和幅值。把光阀上的驱动电压设置为所获得的频率和幅值。写入一图象,则在观察屏上得到该图象的反转。2. 光学图像的实时相减、微分

(1) 按原理图调整布置光路。设计制作待处理图像,并置于光路中。

(2) 仔细调整光路,使两待处理图像在液晶光阀输出面上成像。

(3) 图像相减处理:挡住光路2,观察输出面P3上图象1的像,这是一个在强度恒定的背景上的正像,挡住光路1,打开光路2,观察P3上图象2的像。旋转λ/4波片,使图象2的像为反转像。打开光路1,P3上的图象重叠部分光强消失,接近于背景亮度。仔细调节照明输入面P2的光源的亮度,使输出面P3上两图象重叠部分消失,及其亮度与背景亮度完全一致,这时,便得到了相减图象。

(4) 图像微分处理:在输入面P2上改放与图象1完全相同的图象,并调节P2和透镜L2的位置,使P2上的图象在输入面P3上所成的像变得小些,小于P1上的图象在P3上所成的像,但两个像的中心重合。当这两个图象相减时,便得到输入像的轮廓,即微分图象。

四、实验结果记录、数据处理分析

1. 非相干—相干光图像转换

2. 光学图像的实时相减、微分

五、思考题

1. 液晶光阀如何实现光调制?对液晶光阀的两个玻璃基片的夹角有何要求?夹角太小时对实验有何影响?

2. 设计一个用两个液晶光阀实现两图实时相减的试验光路,并说明其工作原理。要得到理想的相减图像,对液晶光阀有什么特殊的要求?

六、实验中遇到的问题,心得体会,意见和建议(写得好有加分)

.

实验报告

课程名称: 光信息综合实验 指导老师: 成绩:________ 实验名称:基于电寻址液晶光阀的光信息综合实验系统 实验类型:综合型 同组学生姓名:

一、实验目的和要求 二、实验内容和原理 三、主要仪器设备、操作方法和实验步骤

四、实验结果记录、数据处理分析 五、思考题

六、实验中遇到的问题,心得体会,意见和建议

一、 实验目的和要求

1、加深对液晶的电光效应的理解。

2、掌握利用LCD 液晶光阀的响应曲线进行图像反转和图像边缘增强的工作原理及方法。

3、了解全息原理和计算全息的特性并学会进行全息图的光学再现。

4、掌握光学傅立叶变换的性质及全息性质。

5、加深对卷积定理的理解和全息成像原理的认识。

二、 实验内容和原理

1. 液晶的电光效应实验

图1所示液晶光阀(LCTV )是利用液晶混合场效应制成的一种透射式电寻址空间光调制器。它是一个由多层薄膜材料组成的夹层结构。在两片玻璃衬底1和8的里面是两层氧化物制成的透明电极2和7。低压电源E 就接在透明电极上。液晶层5的两边是液晶分子取向膜层3和6,两取向层的方向互相垂直,起到液晶分子定向和保护液晶层的作用。液晶层5的厚度由衬垫4和9的间隙决定,一般取d<10 um, 很多情况下d 仅为2 um 。

图1.1 液晶光阀结构示意图

控制液晶像素电光效应的实际电压值,是由液晶光阀驱动以60Hz 的频率矩阵式扫描两边的像元电极来决定的。利用90o 扭曲向列型液晶的液晶光阀与起偏器、检偏器一起组成一个空间光调制器(LC-SLM ),如图1.2所示。起偏器与检偏器的偏振轴与x 轴的夹角分别表示为1α和2α,由琼斯矩阵算法可以得到输出光束的光强透射率的表达式:

专业: 姓名:

学号: 日期: 地点:玉泉教三209-211室________________

图1.2 LC-SLM 的结构示意图

()()()()()()()()2

12122

122sin cos cos sin 2sin cos T r r r r r πααααβαα=-+-????+-????

其中()()()e o d

n n βπλθ=-,()2

22r πβ=+

当10α=,290α=?或190α=?,20α=时,有()22

1(/2)sin T r r π=-。 当120αα==?时,有()22

(/2)sin T r r π=。 当1245αα==?时,有()2

sin T r =。

因此改变起偏器和检偏器的偏振轴1α和2α,我们就可以得到不同的电光效应曲线。通过改变所加的电压值,得到不同的输出光强,就得到液晶的电光效应曲线,即电压和输出光强的关系曲线。 2. 计算全息光学实验

全息术是利用光的干涉和衍射原理,将物体发射的特定光波以干涉条纹的形式记录下来,并在一定条件下使其再现,形成原物体逼真的立体象。由于记录了物体的全部信息(振幅和位相),因此称为全息术或全息照相。全息照相分两步:波前记录和波前再现。波前记录是将物体射出(间接)的光波与另一个光波——参考光波相干涉,用照相方法将干涉条纹记录下来,称为全息图或全息照片。全息图具有栅状结构。当用原记录时的参考光或其它合适的光波照射全息图时,光通过全息图后发生衍射,其衍射光波与物体光波相似构成物体的再现象。

3. 傅立叶变换性质及全息性质的验证

傅立叶透镜将物面图像进行傅立叶变换,在透镜的像面就能得到该图像的频谱。若物面输入的是全息图,则经傅立叶变换后能在像面看到再现像。

(1) 伸缩定理:

伸缩定理表明频域中坐标u 的收缩,导致空域中坐标x 按同一比例展宽,同时振幅大小相应的降低。反之,频域中坐标u 的展宽,则导致空域中坐标x 按同一比例收缩,同时振幅的大小相应的增加。用公式表示则为 1

()x F au F f a a ????=?

? ?????

(2) 旋转定理:

如果全息图旋转了θ0度,则其再现像也将旋转θ0度。

(3)全息图的互补定理:

对全息图进行亮度反转,全息图中亮度高的区域变成低亮度,而亮度低的区域变亮。观察其再现像。

(4)全息裁减:

全息图的任何局部都能再现原图的基本形状。物体上任意点散射的光可抵达全息图的每点或每个局部,与参考光相干涉形成基本全息图,也就是全息图的每点或局部都记录着来自所有物点的散射光。显然物体全息图每一个局部都能再现原来的像。实验中这一性质可以得到很好的验证。

(5)卷积定理

卷积定理是指两个函数乘积的傅里叶变换,等于各自傅里叶变换的卷积。反之,两个函数卷积的傅里叶变换,等于各自傅里叶变换的乘积。数学表示是

(

G

[u

)

(

)

(

)]

(

f

F?

=

*

?和)

x

x

g

u

F

=

)

(

)]

(

)

(

)

[u

(

x

f

G

g

F*

u

F

x

简单的演示方法可以将两个间距不同的正交光栅重叠在一起,表示两个图像相乘,用激光照射,在傅里叶变换透镜的后焦面上看到它们的频谱的卷积。

三、主要仪器设备、操作方法和实验步骤

1.液晶的电光效应实验

激光器提供入射光,LCD液晶光阀由驱动电路驱动,并与计算机相连,光探测器采用硅光电池以探测透过液晶的光强。

(1)按照“光路调整步骤”部分的说明调好光路。

(2)检查系统是否运行正常,运行软件CGH.exe, 软件操作见软件使用说明。

(3)保持室内环境光较暗。挡掉进入光探测器的激光,读取光探测器读数,此时反应环境光强度,在下面

数据处理过程中均需先减去该数值。如果环境足够暗,该读数为0。

(4)点击程序界面电光效应菜单,输入不同的电压值V,间隔取0.5V或者更小,读取光探测器读数,记

录下相应的光强,填入数据记录表格。

(5)调好光路后,不旋转检偏器,直接测量一组数据。

(6)全屏显示图片库中的white.bmp图,旋转检偏器使得透过光强最小(注意不可能完全消除),即实现

了图像反转,测量此时的电光效应曲线。

(7)全屏显示图片库中black_gray_white. Jpg图,旋转检偏器,使得灰度部分达到最亮,而黑白部分亮度

机会相同,此时即实现了边缘增强,测量此时的电光效应曲线。

(8)比较三条曲线的异同。

2. 计算全息光学实验

透射型电寻址液晶光阀与计算机视频输出联接,接受其调制信号。计算机输出全息图的电信号到液晶光阀上,由驱动电路驱动的LCD根据寻址电信号改变其每一个液晶像素的透过率,从而把电信号转换成空间的光强分布。激光器出射的光束经由显微物镜扩束、小孔滤波和准直透镜准直(也可以不准直)后,激光束照射记录着全息条纹的液晶光阀,全息条纹将入射的激光向特定的方向衍射,衍射光线经过傅里叶变换透镜会聚形成物体的像。

(1)根据“光路调整步骤”说明调好光路。

(2)连接CCD和其显示终端并调整使摄像头正常工作。

(3)检查系统是否运行正常,运行软件CGH.exe,软件操作见软件使用说明。

(4)程序界面上选择打开按钮,从原图文件夹中选择一张原图。为便于观察,最好选择由简单的几何线条

构成的图片。

(5)点击全息变换,选择实部编码(Re)、虚部编码(Im)、位相编码(Ph)中的一种,用计算全息程序生成

全息图。

(6)选择全屏显示。

(7)移动接收屏直至观察到清晰的再现像,或者利用CCD接收此时的再现像。

(8)选择其他编码方式,观察不同编码方式下的全息图和再现像。

(9)重复步骤4—8,选择其他图片进行实验。

(10)在程序中打开一幅全息图,选择按钮Am,可以观察到计算机模拟再现象。

3. 傅立叶变换性质及全息性质的验证

(1)根据“光路调整步骤”调好光路。

(2)连接CCD和其显示终端并调整使摄像头正常工作,注意旋下CCD的镜头部分。

(3)检查系统是否运行正常,运行软件CGH.exe,软件操作见软件使用说明。

(4)程序界面上选择打开按钮,从原图文件夹中选择一张原图。任选一种编码方式(除Am之外)进行傅

立叶变换,得到的全息图输入LCD显示,调整CCD位置观察再现像。

(5)验证傅立叶缩放定理。在软件界面上点击几何变换—缩放菜单,打开缩放图像对话框,在对话框里

的宽度和高度编辑框里输入图像缩放后的数值,如扩大一倍或减小一倍,每次缩放后调整CCD位置观察再现像的变化情况。

(6)验证旋转定理。计算产生两幅全息图。在一幅全息图中选中一部分复制并粘帖到另一全息图中,然后

将该部分旋转90度。用纸板接收,看到其中一再现像旋转了90度。如果用CCD接收,需要适当调整CCD的位置。

(7)观察互补全息图再现。对于任意一张全息图,选择软件上亮度变换菜单中图象亮度反转菜单,得到

原图的互补图。观察再现像,对比与反转前有何变化。

(8)观察全息图裁减。对于任意一张全息图,按住鼠标左键选取一定范围的框图,然后拖动到任意位置,

观察此过程中的再现像变化情况。

(9)验证卷积定理。全屏显示white.bmp图,在傅立叶透镜后焦面上用纸屏接收并观察图像,可以看到液

晶器件本身网格结构所产生的点阵,此为液晶屏本身网格结构的频谱,注意观察各点之间的距离。打开图片库中的grating8.bmp图,全屏显示,观察此时的点阵情况。

四、实验结果记录、数据处理分析

1.液晶的电光效应实验

2. 计算全息光学实验

3. 傅立叶变换性质及全息性质的验证

五、思考题

1. 除了傅立叶变换计算全息图,还有什么其他变换类型全息图。

2. 目前使用的编码方式并非最优的,能否设计一种更简便、快捷的编码方式。

3. 再现像的大小跟那些因素有关?

4. 还有哪些方法可以验证傅立叶变换性质?

六、实验心得、体会、意见和建议(写得好有加分)

基于液晶空间光调制器相位调制的波面转换

?激光元件与器件? 基于液晶空间光调制器相位调制的波面转换 范君柳1,冯秀舟2,方建兴2,朱爱敏1 1.苏州科技学院数理学院物理实验中心,苏州 215009; 2.苏州大学物理科学与技术学院,苏州 215006 提要:本文介绍了一种基于液晶空间光调制器(LCS LM )相位调制特性的波面转换方法,可将入射光变换成任意波面。测量了液晶空间光 调制器相位调制特性,得到相位和灰度的对应关系;分别以几何理论和G-S 算法为基础计算出衍射光学元件(DOE )的表面相位分布;将DOE 表面的相位分布转换为灰度分布显示在LCS LM 上,使得LCS LM 具有波面实时转换功能;并以高斯激光为入射光对其进行波面转换实验,实验结果证明了设计方法的准确性及可行性。 关键词:液晶空间光调制器;相位调制;波面转换中图分类号:O439,O436.1,O438 文献标识码:A 文章编号:0253-2743(2009)06-0007-02 Conversion of w ave front based on phase modulation of liquid crystal spatial light modulator FAN Jun -liu 1,FE NG X iu -zhou 2,FANGJian -xing 2,ZHU Ai -m in 1 1.Center of Physics Laboratory ,School of M athematical and Physical Sciences ,University of Science and T echnology of Suzhou ,Suzhou 215009,China ; 2.School of Physical Science and T echnology ,S oochow University ,Suzhou 215006,China Abstract :A method of wave -front conversion based on phase m odulation of liquid crystal spatial light m odulator (LCS LM )is proposed.W e obtain the rela 2tion between phase and scale through measuring the phase -m odulation characteristics of LCS LM.Phase distribution of diffractive optical element ’s (DOE )are calculated using geometrical theory and G-S alg orithm ,the LCS LM is capable of wave -front conversion by changing phase distribution into gray distribution which is displayed on LCS LM.Experiments of G auss beam ’s wave -front conversion prove the accuracy and feasibility of the design method. K ey w ords :liquid crystal spatial light m odulator ;phase m odulation ;wave -front conversion 收稿日期:2009-08-13 基金项目:苏州科技学院教学质量工程建设项目(2008YK A -03)资助。 作者简介:范君柳(1983-),男,助理实验师,主要从事信息光学和衍射光学的研究。 在激光技术的许多应用领域中,光束质量至关重要。例 如在激光加工、光学信息处理、存储与记录以及惯性约束核聚变(ICF )中往往需要使用形状各异甚至大小可变的激光光斑,而经常使用的单模激光光束的横截面上光强呈高斯分布,因此在实际应用中,根据不同的要求,人们常常需要将激光束波面进行转换,以达到改变激光束强度分布的目的。 目前主要有这样几种典型的光束波面变换方法:光楔列 阵(SW A )聚焦光学系统〔1〕、双折射透镜组〔2〕 、随机相位板及 二元光学元件(BOE )〔3〕 等方法。其中二元光学元件对入射光进行波面变换具有衍射效率高,光斑轮廓可调等优点,但是其质量水平受微精细加工技术发展水平的制约,且它的激光损伤阈值较低,在强激光系统的应用上还有困难。在本文中我们提出利用液晶空间光调制器(LCS LM )的相位调制特性〔4-8〕结合几何理论〔9,10〕和G-S 算法〔11,12〕实现对入射激光的波面变换,得到了预期的实验结果,该方法不仅成本、功耗低,尺寸小,重量轻,而且具有更大的设计自由度,通过算法的改变可以将入射光变换成任意波面。 1 理论分析 1.1 波面转换理论 波面转换通常需要衍射光学器件(Diffraction Optical E le 2ment -DOE )来实现,为了达到目标光强分布,需要设计器件表面的相位分布。而该设计过程是一个逆向过程,即已知输入光强分布和输出光强分布,来求解DOE 的相位分布,在这里我们主要利用几何理论和G-S (G erchberg -Saxton )算法来计算DOE 表面的相位分布。 我们首先运用这两种算法分别计算出DOE 的表面相位分布,然后在计算机上模拟入射高斯光经过具有如此表面相位分布的DOE 后的衍射结果(见图1)。其中图1(b )为运用几何理论将入射高斯光的波面转换成正方框形光束,图1(c )为运用G-S 算法将入射高斯光转换成椭圆光。模拟过程中,主要参数选取为:波长λ=532nm ,DOE 所在处光腰半径ω(z )=3.0mm ,DOE 衍射焦距选取为f =250mm ,物面与像面抽样点数均为800×800。1.2 LCS LM 的相位调制特性 对于由扭曲向列型液晶构成的液晶空间光调制器(Liq 2uid Crystal S patial Light M odulator -LCS LM )(结构如图2),运用 琼斯矩阵方法〔13〕 可得 T =cos γ〔cos (Ψ1-Ψ2+α)〕+αγ sin γ×sin (Ψ1-Ψ2+α)2 + β γsin γcos (Ψ1+Ψ2- α)(1)图1 计算模拟结果 图2 液晶空间光调制器结构图 7 范君柳等:基于液晶空间光调制器相位调制的波面转换 《激光杂志》2009年第30卷第6期 LASER JOURNA L (V ol.30.N o.6.2009)

变压器实验报告

专业:电子信息工程: 实验报告 课程名称:电机与拖动指导老师:卢琴芬成绩: 实验名称:单相变压器同组学生姓名:刘雪成李文鑫 一、实验目的和要求(必填)二、实验内容和原理(必填) 三、主要仪器设备(必填)四、操作方法和实验步骤 五、实验数据记录和处理六、实验结果与分析(必填) 七、讨论、心得 一、实验目的 1.通过空载和短路实验测定变压器的变比和参数。 2.通过负载实验测取变压器的运行特性。 二、预习要点 1.变压器的空载和短路实验有什么特点实验中电源电压一般加在哪一方较合适 2.在空载和短路实验中,各种仪表应怎样联接才能使测量误差最小 3.如何用实验方法测定变压器的铁耗及铜耗。 三、实验项目 1.空载实验 测取空载特性U0=f(I0), P0=f(U0)。 2.短路实验 测取空载特性U K=f(I K), P K=f(U K)。 3.负载实验 (1)纯电阻负载 保持U1=U1N, cos φ2=1的条件下,测取U2=f(I2)。 四、实验线路及操作步骤 1.空载试验

实验线路如图3-1所示,被试变压器选用DT40三相组式变压器,实验用其中的一相,其额定容量P N=76W,U1N/ U2N=220/55V,I1N/I2N=0.345/1.38A。变压器的低压线圈接电源,高压线圈开路。接通电源前,选好所有电表量程,将电源控制屏DT01的交流电源调压旋钮调到输出电压为零的位置,然后打开钥匙开头,按下DT01面板上“开”的按钮,此时变压器接入交流电源,调节交流电源调压旋钮,使变压器空载电压U0=1.2 U N,然后,逐次降低电源电压,在1.2~0.5U N的范围内,测取变压器的U0、I0、 P0共取6-7组数据,记录于表2-1中,其中U=U N的点必测,并在该点附近测的点应密些。为了计算变压器的变化,在U N 以下测取原方电压的同时,测出副方电压,取三组数据记录于表3-1中。 图3-1 空载实验接线图 COSφ2=1 U1= U N= 220 伏

(全)浙江大学实验室安全准入考试答案

1、[判断题]触电事故是因电流流过人体而造成的。(分值1.0) 你的答案:正确 2、[判断题]用手搬运重物时,应先以半蹲姿势,抓牢重物,然后用腿肌出力站起,切勿弯腰,以防伤及背部和腰。(分值1.0) 你的答案:正确 3、[判断题]高校实验室科研教学活动中产生和排放的废气、废液、固体废物、噪声、放射性等污染物,应按环境保护行政主管部门的要求进行申报登记、收集、运输和处置。严禁把废气、废液、废渣和废弃化学品等污染物直接向外界排放。(分值1.0) 你的答案:正确 4、[判断题]化学废液要回收并集中存放,不可倒入下水道。(分值1.0) 你的答案:正确 5、[判断题] 电离辐射的标识是: (分值1.0) 你的答案:正确 6、[判断题]因为实验需要,可以在实验室存放大量气体钢瓶。(分值1.0) 你的答案:错误 7、[判断题]若被火场浓烟所困,应迅速起身跑出火场。(分值1.0) 你的答案:错误 8、[判断题]电弧焊焊接工位的防护屏可预防焊接电弧辐射对他人的伤害。(分值1.0) 你的答案:正确 9、[判断题]及时淘汰老化、性能不稳又具有安全隐患的仪器设备(如冰箱10年以上,烘箱 12年以上)。(分值1.0) 你的答案:正确

10、[判断题]实验结束后,应该打扫卫生、整理或运走废弃的试样或物品。(分值1.0) 你的答案:正确 11、[判断题]实验废弃物应分类存放,及时送学校废弃物中转站,最后由学校联系有资质的公司进行处理。(分值1.0) 你的答案:正确 12、[判断题]灭火的四种方法是隔离法、窒息法、冷却法、化学抑制法。(分值1.0) 你的答案:正确 13、[判断题]如遇呼吸道吸进有毒气体、蒸气、烟雾而引起呼吸系统中毒时,应立即将病人移至室外空气新鲜的地方,解开衣领,使之温暖和安静,切勿随便进行人工呼吸。(分值1.0) 你的答案:正确 14、[判断题]当发生火情时尽快沿着疏散指示标志和安全出口方向迅速离开火场。(分值1.0)你的答案:正确 15、[判断题]可以用湿布擦电源开关。(分值1.0) 你的答案:错误 16、[判断题]急救时伤口包扎越紧越好。(分值1.0) 你的答案::错误 17、[判断题]手工锻造时思想要集中,掌钳者必须夹牢和放稳工件,并控制锤击方向。(分值1.0) 你的答案:正确 18、[判断题]锻造过程中,身体不得接触尚未冷却透的锻件。(分值1.0) 你的答案:正确 19、[判断题]所有操作或接触放射性核素的实验室人员应接受放射性基础知识、相关技术和放射性防护的指导和培训。实行持证上岗,并佩戴个人专用的辐射剂量计。(分值1.0) 你的答案:正确 20、[判断题]冲压模型前,不用清理干净工作台上的不必要的物件。(分值1.0) 你的答案:错误 21、[判断题]浇注期间,其他同学不用让开通道,或可站在身旁观看。(分值1.0) 你的答案:错误 22、[判断题]废弃的放射源,必须报实验室与设备管理处,由实验室与设备管理处联系有资质的单位进行收贮,不得私自处理。(分值1.0) 你的答案:正确

变压器实验报告汇总

四川大学电气信息学院 实验报告书 课程名称:电机学 实验项目:三相变压器的空载及短路实验专业班组:电气工程及其自动化105,109班实验时间:2014年11月21日 成绩评定: 评阅教师: 电机学老师:曾成碧 报告撰写:

一、实验目的: 1 用实验方法求取变压器的空载特性和短路特性。 2 通过空载及短路实验求取变压器的参数和损耗。 3 计算变压器的电压变化百分率和效率。 4掌握三相调压器的正确联接和操作。 5 复习用两瓦特法测三相功率的方法。 二.思考题的回答 1.求取变压器空载特性外施电压为何只能单方向调节?不单方向调节会出现什么问题? 答:因为当铁磁材料处于交变的磁场中时进行周期性磁化时存在磁滞现象。如果不单方向调节变压器外施电压,磁通密度并不会沿原来的磁化曲线下降,所以会影响实验结果的准确性。 2.如何用实验方法测定三相变压器的铜、铁损耗和参数?实验过程中作了哪些假定? 答:变压器的空载实验中认为空载电流很小,故忽略了铜耗,空载损耗近似等于变压器铁耗Fe P P ≈0,同时忽略了绕组的电阻和漏抗。空载时的铁耗可以直接用两瓦特法测得,根据公式2 003/I P r m ≈可以求得励磁电阻,由003/I U Z m ≈可以求得励磁阻抗,由2 2 k m m r Z X -=可以求得励磁电抗值。 在变压器的短路实验中,由于漏磁场分布十分复杂,故在T 形等效电路计算时,可取k x x x 5.0'21==σσ,且k r r r 5.0'21==。同时由于外加电压低,忽略了铁耗,故假设短路损耗等于变压器铜耗。短路损耗k P 可直接由两瓦特法测得,有公式k k k I P r 2/=可得k r ,k k k I U Z 3/=,故k k k r Z x 22-=。 3.空载和短路实验中,为减小测量误差,应该怎样联接电压接线?用两瓦特表法测量三相功率的原理。 答:变压器空载实验中应当采用电流表内接法。因为空载实验测量的是励磁阻抗,阻抗值较大,若采用电流表外接法,电压表会有明显的分流作用,从而产生较大的误差。 变压器短路实验应当采用电流表外接法。因为短路实验中测量的是漏阻抗,

空间光调制器的应用

DOI 10.1007/s11141-015-9547-8 Radiophysics and Quantum Electronics,Vol.57,Nos.8–9,January,2015 (Russian Original Vol.57,Nos.8–9,August–September,2014) APPLICATION OF THE PHASE LIGHT MODULATOR IN THE IMAGE OPTICAL ENCRYPTION SCHEME WITH SPATIALLY INCOHERENT ILLUMINATION A.P.Bondareva,N.N.Evtikhiev,V.V.Krasnov,? and S.N.Starikov UDC004.932.4+004.942 +535.42+535.8 We describe application of the phase liquid-crystal spatial light modulator HoloEyePLUTOVIS as an encoding element in the image optical encryption scheme with spatially incoherent illumi- nation.Optical encryption and numerical decryption of test images were conducted.The results of experiments demonstrate the e?ciency of the constructed optical encryption scheme. 1.INTRODUCTION Currently,we are witnessing the existence and intense development of the optical encryption meth-ods characterized by a high speed,simultaneous multichannel processing,and the absence of concomitant radiation in the radio-frequency band.Encryption systems in spatially coherent monochromatic light are widespread.One of the best-known systems uses the double random-phase encryption[1–5].In this case, encryption is performed in monochromatic spatially coherent light using two random phase masks.Appli-cation of random phase masks as two-dimensional encoding keys leads to the fact that such systems have a high cryptographic strength.However,because of the need to record phase,such systems require holo-graphic methods of recording and,correspondingly,complex optical schemes.Moreover,the use of random phase masks leads to a poor-quality encryption of images. To simplify the encryption schemes and improve the decryption quality,one can pass from spatially coherent to spatially incoherent radiation.In this case,recording of the encrypted image is no longer required and the holographic recording scheme becomes unnecessary.The encryption is performed by transmission of monochromatic spatially incoherent radiation from the encrypted object through a di?ractive optical element,resulting in the formation of an intensity distribution described by the object image convolution with a point spread function,namely,an impulse response of the di?ractive optical element in intensity[6, 7].This intensity distribution is the encrypted image recorded by a matrix photosensor. The fundamental possibility of optical encryption in incoherent light was demonstrated in[8],but using a random phase mask as the encoding di?ractive optical element precluded the achievement of an acceptable decryption quality.This is because the point spread function of a random phase mask is virtually unlimited in space and signi?cantly exceeds the size of the encrypted image.As a result,the photosensor records only the central part of the encrypted image,which leads to distortions of the decrypted image.To solve this problem,we suggest that the encoding element is not used as a random phase mask,but as a di?ractive optical element having a given spatially limited point spread function,with length smaller than the size of the encrypted image. ?vitally.krasnov@mail.ru National Nuclear Research University(NNRU),Moscow,Russia.Translated from Izvestiya Vysshikh Ucheb-nykh Zavedenii,Radio?zika,Vol.57,No.8–9,pp.693–701,August–September2014.Original article submitted November11,2013;accepted March31,2014. 0033-8443/15/5708-0619c 2015Springer Science+Business Media New York619

浙江大学生物化学丙实验报告3,4

,. 实验报告 课程名称: 生物化学实验(丙) 指导老师: 方祥年 成绩:__________________ 实验名称: 蔗糖酶蛋白含量的测定、蔗糖酶活力测定及其分离纯化效果的评价 同组学生姓名: 金宇尊、鲍其琛、袁平、朱耀仁、蔡玉林 一、实验目的和要求(必填) 二、实验内容和原理(必填) 三、实验材料与试剂(必填) 四、实验器材与仪器(必填) 五、操作方法和实验步骤(必填) 六、实验数据记录和处理 七、实验结果与分析(必填) 八、讨论、心得 一、实验目的和要求 1、蔗糖酶蛋白含量的测定——Folin-酚法 ①学习Folin-酚法测定蛋白质含量的原理和方法; ②掌握分光光度法制作标准曲线,准确测定未知样品的蛋白质含量; ③掌握分光光度计的使用方法。 2、蔗糖酶活力测定——3.5-二硝基水杨酸法 ①掌握酶活力测定的基本原理和方法; ②学习酶的比活力的计算。 二、实验内容和原理 1、Folin-酚测定法 Folin-酚试剂是由甲、乙两种试剂组成的。甲试剂由碳酸钠、氢氧化钠、硫酸铜和酒石酸钾钠组成,在碱性条件下蛋白质中的肽键与酒石酸钾钠铜盐起作用,生成紫红色络合物;乙试剂是由磷钼酸和磷钨酸、硫酸、溴等组成,在碱性条件下,铜-蛋白质络合物以及蛋白质中的酪氨酸残基(酚基)和色氨酸还原磷钼酸-磷钨酸试剂(乙试剂)产生深蓝色(钼蓝和钨蓝的混合物),其色泽深浅与蛋白质含量成正比。可用500nm 波长比色测定,适于测定蛋白质含量0.05~0.5g/L 。 优点: 简单、迅速、灵敏度高;反应较稳定。 缺点: 该反应受多种因素的干扰。 2、蔗糖酶活力测定 蔗糖酶(β-D-呋喃型果糖苷-果糖水解酶EC 3.2.1.26),是一种水解酶。它能催化非还原性双糖(蔗糖)的1,2-糖苷键裂解,将蔗糖水解为等量的葡萄糖和果糖(还原糖)。因此,每水解1mol 蔗糖,就能生成2mol 还原糖。还原糖的测定有多种方法,例如:纳尔逊-索模吉试剂比色法,斐林试剂法等。 专业: 农业资源与环境 姓名: 李佳怡 学号: 3130100246 日期: 2015.5. 26 地点: 生物实验中心310 装 订 线

光寻址空间光调制器电寻址空间光调制器实验(浙大)

.. . .. . . 实验报告 课程名称: 2011-2012光信息综合实验 指导老师: 成绩:___ ____ 实验名称: 液晶光阀用于光学图像实时处理 实验类型:综合型 同组学生: 一、实验目的和要求 二、实验容和原理 三、主要仪器设备、操作方法和实验步骤 四、实验结果记录、数据处理分析 五、思考题 六、实验中遇到的问题,心得体会,意见和建议 一、 实验目的和要求 1、了解液晶光阀的工作原理和使用方法; 2、掌握采用液晶光阀实现非相干光——相干光图像转换和图像反转的工作原理和方法; 3、掌握应用液晶光阀进行光学图像实时相减和实时微分的方法,加深对光学图像实时处理的理解。 二、 实验容和原理 1. 液晶特性 (1) 液晶是一种有机高分子化合物,既有晶体的取向特性,又有液体的流动性。 (2) 当液晶分子有序排列时表现出光学各项异性:光矢量沿分子长轴方向时具有较大的非常光折射率ne ;而垂直分子长轴方向位寻常光折射率no(针对p 型液晶材料)。 (3) 晶轴方向即为分子长轴方向。在组成液晶盒的两玻璃间加一电压,其中的液晶分子在电场作用下会沿着电场方向排列,即光轴方向沿电场方向偏转。电场控制了双折射效应的变化。 (4) 液晶光阀正是利用此特点而制成的器件。 2. 液晶光阀结构示意 1--玻璃基片 2--透明电极 3--光导层 4--挡光层 5--介质反射膜 6--定向层 7--液晶层 8--衬垫 E--低压音频电源 K--开关 3. 液晶光阀工作原理 (1) 如液晶光阀结构图所示,工作时将待处理的非相干图像从右侧成像在光电导层上,把它作为写入光。读出光束从左侧入射,经起偏器使其偏振方向与液晶左侧分子指向方向一致。经透明电极、液晶盒之后,在右侧的介质反射膜处返回,再次穿过液晶层经偏振分光镜后,通过一个透光轴方向与起偏器偏振方向垂直的检偏器,成为输出光束。 (2) 由于光阻挡层和反射膜都很薄,交流阻抗很小,因而加在两透明电极之间的外电压主要落在液晶层和光 E 1 8 1 5 4 6 7 6 2 3 K 2 写入光 读出光 偏振分光镜 输出光 专业: 姓名: 学号: 日期: 地点: 玉泉教三209-211

变压器实验报告汇总

变压器实验报告汇总

四川大学电气信息学院 实验报告书 课程名称:电机学 实验项目:三相变压器的空载及短路实验专业班组:电气工程及其自动化105,109班实验时间:2014年11月21日 成绩评定: 评阅教师: 电机学老师:曾成碧 报告撰写:

一、实验目的: 1 用实验方法求取变压器的空载特性和短路特性。 2 通过空载及短路实验求取变压器的参数和损耗。 3 计算变压器的电压变化百分率和效率。 4掌握三相调压器的正确联接和操作。 5 复习用两瓦特法测三相功率的方法。 二.思考题的回答 1.求取变压器空载特性外施电压为何只能单方向调节?不单方向调节会出现什么问题? 答:因为当铁磁材料处于交变的磁场中时进行周期性磁化时存在磁滞现象。如果不单方向调节变压器外施电压,磁通密度并不会沿原来的磁化曲线下降,所以会影响实验结果的准确性。 2.如何用实验方法测定三相变压器的铜、铁损耗和参数?实验过程中作了哪些假定? 答:变压器的空载实验中认为空载电流很小,故忽略了铜耗,空载损耗近似等于变压器铁耗Fe P P ≈0,同时忽略了绕组的电阻和漏抗。空载时的铁耗可以直接用两瓦特法测得,根据公式2 003/I P r m ≈可以求得励磁电阻,由003/I U Z m ≈可以求得励磁阻抗,由2 2 k m m r Z X -=可以求得励磁电抗值。 在变压器的短路实验中,由于漏磁场分布十分复杂,故在T 形等效电路计算时,可取k x x x 5.0'21==σσ,且k r r r 5.0'21==。同时由于外加电压低,忽略了铁耗,故假设短路损耗等于变压器铜耗。短路损耗k P 可直接由两瓦特法测得,有公式k k k I P r 2/=可得k r ,k k k I U Z 3/=,故k k k r Z x 22-=。 3.空载和短路实验中,为减小测量误差,应该怎样联接电压接线?用两瓦特

浙江大学CAD实验室简介

?简介 浙江大学计算机辅助设计与图形学国家重点实验室为国家“七五”计划建设项目,一九八九年开始建设,一九九○年对外开放。一九九二年建成并通过国家验收。 计算机辅助设计与图形学是多学科交叉的高技术研究领域。本实验室主要从事计算机辅助设计、计算机图形学的基础理论、算法及相关应用研究。实验室的基本定位是:紧密跟踪国际学术前沿,大力开展原始性创新研究及应用集成开发研究,使实验室成为具有国际影响的计算机辅助设计与图形学的研究基地、高层次人才培养的基地、学术交流的基地和高技术的辐射基地。 近二十年来,实验室依托浙江大学计算机、数学、机械等学科,作为项目负责单位先后承担了一批国家级科重大研项目和国际合作项目,在计算机辅助设计与图形学的基础研究和系统集成等方面取得了一批重要成果,其中多项成果获国家奖励,并形成了一支学风正派、勤奋踏实、勇于创新的学术队伍。实验室积极推进国际合作,与美国、德国、英国、法国、日本等国外相关研究机构展开了广泛的学术合作和交流,产生了较大的国际学术影响,曾被国际权威期刊SCIENCE列为中国TOP-LEVEL国家重点实验室。实验室曾两次获得由国家科技部颁发的先进集体及个人“金牛奖”。 实验室拥有一流的软硬件平台以及丰富的数字资源,热忱欢迎国内外研究人员来室工作和交流。 潘云鹤院士任实验室学术委员会主任,鲍虎军研究员任实验室主任。 ?实验室的主要研究方向 1.计算机辅助设计 研究计算机辅助设计与分析模拟的前沿技术,解决产品模型的高效构建、可信分析、设计知识的有效表示与处理等关键问题,实现复杂产品设计开发所需的高效性、可靠性、集成性和智能性。重点研究: 高性能产品建模技术、仿真驱动设计技术、虚拟样机、设计知识获取与重用、面向领域的专业CAD技术与系统等。 2.图形与视觉计算 研究几何、材质、运动数据的获取、处理和表示的基础理论与算法,解决复杂对象的高效构建和逼真呈现等关键问题,研发高清影视、立体电视、三维游戏创作的软件系统,实现产业应用。重点研究:几何计算与设计、真实感图形的高效绘制、图象与三维视觉计算、计算机动画与游戏等。 3.虚拟现实 探索虚拟环境的真实感知以及虚实环境融合的一致性理论与方法,研究虚拟环境构建、绘制、显示、人机交互、增强现实等虚拟现实关键技术,研发混

浙江大学本科实验报告规范(暂行)

关于印发《浙江大学本科实验报告规范(暂行)》的通知 各学院: 现将《浙江大学本科实验报告规范(暂行)》印发给你们,请遵照执行。 教务处 二OO六年十一月十 六日 浙江大学本科实验报告规范(暂行) 实验报告是学生实验研究结果的文字记录和总结,是培养学生动手能力、写作能力、分析能力等综合能力的重要手段。为进一步提高本科实验教学质量,规范我校本科实验报告的格式、评阅、收集及保管等方面的工作,特制定本规范。 一、实验报告的管理规范 (一)对学生的基本要求 1.按照实验课程教学计划的要求,原则上每个实验项目提 交一份实验报告。 2.按照规定的时间和要求,完成实验报告并交实验教师批改。 3.实验报告第一页用学校统一的实验报告纸书写(可用A4纸下载打印学校统一规定的实验报告格式),附页可用A4纸书写,要求字迹工整,实验数据必须真实、有效,曲线要画在座标纸上,线路图要整齐、清楚(不得徒手画)。电子版的实验报告也要统一

采用学校规定的实验报告格式。 (二)对实验教师的要求 1.实验报告批改要有签名,打分,原则上要求有评语。 2.对学生完成的实验报告数量和质量要作书面记录,每个实验项目的实验报告成绩登记在实验报告成绩登记表(见附件1)中,并按一定比例(独立设课的实验报告一般为10-15%),作为平时成绩的一部分计入实验课总评成绩内。每学期装订成册时附在封面后第一页。 3.对迟交实验报告的学生要酌情扣分,对缺交和抄袭实验报告的学生应及时批评教育,并对该次实验报告的分数以零分处理。对单独设课的实验课程,如学生抄袭或缺交实验报告达该课程全学期实验报告总次数三分之一以上,不得同意其参加本课程的考核。 4.实验教师每学期负责对拟存档的学生实验报告按课程、学生收齐并装订成册(装订顺序由实验教师自行决定)。装订线在左侧,第一页加订实验报告封皮(封皮按学生装订见附件2,按课程装订见附件3)。实验报告可根据课程性质提交电子版,但需要有教师的批改记录,并将电子版汇总后刻录在一张光盘上,加上封面。 (三)对管理部门的要求 1.课程结束后,由各学院负责本科教学管理的科室负责督促收齐各门实验课程的实验报告。 2.由各学院确定具体实验室负责保管相应实验课程的实验报告。 3.教务处负责组织人员对实验报告进行不定期抽

单相变压器实验报告

单相变压器实验报告 Document serial number【UU89WT-UU98YT-UU8CB-UUUT-UUT108】

单相变压器实验报告学院:电气工程学院 班级:电气1204班 姓名:卞景季 学号: 组号: 22 一、实验目的 通过空载和短路实验测定变压器的变比和参数。 通过负载实验测取变压器的运行特性。 二、实验预习 1、变压器的空载和短路实验有什么特点实验中电源电压一般加在哪一方较合适 答:空载试验的电压一般加在低压侧,因为低压侧电压低,电流大,方便测量。短路试验就是负载实验,高压加,低压短路,得到试验数据。 2、在空载和短路实验中,各种仪表应怎样联接才能使测量误差最小 答:在量程范围内,按实验要求电流表串联、电压表并联、功率表串联(同相端短接)。 3、如何用实验方法测定变压器的铁耗及铜耗。 答:空载实验所测得的功率为铁耗,短路实验所测得的功率为铜耗。 三、实验项目 1、空载实验 测取空载特性U 0=f(I ),P =f(U ) , cosφ =f(U )。 2、短路实验 测取短路特性U K =f(I K ),P K =f(I K ), cosφ K =f(I K )。 四、实验方法1

2、屏上排列顺序 D33、DJ11、 3、空载实验 (1相组式变压器DJ11U 1N /U 2N =220/55V ,I 路。 (2 (3范围内,测取变压器的U 0、I 0、P 0。 (4)测取数据时,U=U N 点必须测,并在该点附近测的点较密,共测取数据7-8组。记录于表3-1中。 (5)为了计算变压器的变比,在U N 以下测取原方电压的同时测出副方电压数据也记录于表3-1中。 表4、短路实验 (1)按下控制屏上的“停止”按钮,切断三相调压交流电源,按图3-2接线(以后每次改接线路,都要关断电源)。将变压器的高压线圈接电源,低压线圈直接短路。 图3-2 短路实验接线图 (2)选好所有测量仪表量程,将交流调压器旋钮调到输出电压为零的位置。 (3)接通交流电源,逐次缓慢增加输入电压,直到短路电流等于 为止,在~I N 范围内测取变压器的U K 、I K 、P K 。 (4)测取数据时,I K =I N 点必须测,共测取数据6-7组记录于表3-2中。实验时记下周围环境温度(℃)。 X

浙江大学实验室冰箱使用与管理规定

浙江大学实验室冰箱使用与管理规定 日期:2006-10-31 9:35:02阅读:319次 (二○○六年十月二十五日) 根据教育部令第20号《高等学校实验室工作规程》(1992.6)和公安部令第61号《机关、团体、企业、事业单位消防安全管理规定》(2001.11),为了加强实验室安全管理,促进学校创一流建设和打 造平安校园,特制定本规定。 1.实验室使用的普通用途的冰箱,规定使用年限为12年,超过使用年限的,作强制报废处理。如果使用时间尚未到期限,但是损坏严重、无法修理的也须报废。 2.对于现有贮藏化学类试剂、易燃易爆物品的冰箱,必须实施防爆改造。没有经过改造及使用10年以上的冰箱不得用于贮藏化学类物品,经过改造的冰箱可以延长使用年限至12年。如果是无霜冰箱,由于无法实施改造,必须改变其用途,只能贮藏普通物品。 3.自2007年1月1日起,凡是需要购置贮藏化学类物品的冰箱时,应购买具有防爆功能的冰箱;因各种原因无法购置防爆冰箱的,必须购买“电子温控冰箱”(并应拆除照明系统),不得购买“机械温控型”的有霜、无霜冰箱,否则不予办理固定资产增置。 4.各单位到实验室与设备管理处做冰箱固定资产增置手续时,除了原规定的设备信息等相关要求外,还需提供冰箱类型的证明(说明书等)。 5.严禁将易燃易爆物品、气体钢瓶和杂物等堆放在冰箱的附近,要保持实验室通风。

6.各级单位和师生员工,必须提高实验室安全意识,加强冰箱的使用与管理,经常进行检查,杜绝违规操作。 7.对于因管理不善、违规操作引起的安全事故,学校将追究当事人和实验室主管领导的责任,给予行政处分直至追究法律刑事责任。 实验室与设备管理处 二OO六年十月二十五日

浙江大学实验报告模板

课程名称:材料科学与工程基础实验指导老师:李雷成绩:__________________ 实验名称:介电材料电学性能实验类型:同组学生姓名:13组 一、实验目的和要求(必填)二、实验内容和原理(必填) 三、主要仪器设备(必填)四、操作方法和实验步骤 五、实验数据记录和处理六、实验结果与分析(必填) 七、讨论、心得 一、实验目的 1、了解低损耗介电材料在微波通讯技术中的应用; 2、了解介质谐振法的测试原理; 3、掌握利用介质谐振法测试低损耗材料微波介电性能的技术。 二、实验原理 微波指频率介于300MHz和300GHz之间的电磁波,在通讯领域有着非常广泛的应用。而微波介质材料指适用于微波频段的低损耗(通常在10-3数量级以下)、温度稳定型电介质材料(通常为陶瓷材料),被广泛应用于微波介质谐振器、振荡器、滤波器、双工器、微波电容器及微波基板等,是移动通讯、卫星通讯、全球卫星定位系统(GPS)、蓝牙技术以及无线局域网(WLAN)等现代微波通讯技术的关键材料之一。 对于工作于较低频率下的介电材料,一般用介电常数?r、介电损耗tanδ及介电性能的温度依赖性表征其介电性能。而对工作于微波频段的损耗介质材料,相对应的三个基本参数及其要求则为:合适的介电常数?r、高Qf值及近零谐振频率温度系数τf。其中。当微波介质材料作为谐振单元使用时,应具有较高的介电常数,以 满足器件小型化的需要;而当其作为微波基板使用时,由于微波在基板中传播的速

度,为了减小微波电路中的延迟,介质材料应具有尽可能低的介电常数?r。Qf值定义为品质因子Q(介电损耗tanδ的倒数)与频率的f的乘积,单位为GHz。高Qf值对应微波介质材料作为谐振单元使用时的良好频率选择性及作为微波基板使用时的低信号衰减。一般认为,低损耗材料在微波频段的Qf值为不随频率变化的常数。低损耗微波介质材料作为谐振单元使用时,其谐振频率f 通常随温度线性变化,故用谐振频率温度系数τf表征其温度稳定性,定义为,单位为ppm/, 其中T 2和T 1 表示两个测试温度。本实验课中只涉及介电常数?r及Qf值的测试。 在测试频率较低、试样尺寸远小于电磁波波长时(如1MHz以下),可以把片状 介质材料两端面镀上金属电极、构成平板电容器,直接用LCR仪或阻抗分析仪测试其介电性能。但当频率升至微波频段时,试样尺寸已可与电磁波波长相比拟,以上方法不再适用。 对于低损耗介质材料,其微波介电性能需用网络分析仪及介质谐振法进行测试。网络分析仪通常有两个端口,均可发射和接受微波信号,其测试参数为S参数,定义为接收与发射信号电压的比值,为模在0-1间的复数。S参数常用对数形式表示,定义为20loge∣S∣,取值在-∞ ~0之间,单位为dB。由S参数的定义知:两端口网络分析仪中共有四个S参数:S11,S21,S12,S22,其中第一、二个下标分别表示接收及发射端口。圆柱形金属空腔即为最简单的微波谐振器,其谐振频率f 及品质因子Qu由空腔的尺寸及金属内壁的表面电导率决定。用低损耗介质材料部分填充 金属腔,即构成介质谐振器,其谐振频率f 及品质因子Qu由试样的尺寸、介电性能(?r、Qf值)及金属腔的性质(尺寸及表面电导率)共同决定。因此,通过测试介 质谐振器谢振峰的性质(谐振频率f 及品质因子Qu),即可通过数值方法求解出待测试样的?r及Qf值。 三、测试步骤 1)将试样尺寸及估计的介电常数输入至程序,计算介质谐振器大致的谐振频率范围。 2)在估计的频率范围内找到谐振峰(对应于S21)参数的最大值。 3)将谐振频率处的S21参数调至-40dB以下,记录谐振频率f 及3dB带宽△f。

光寻址空间光调制器电寻址空间光调制器实验(浙大)

实验报告 课程名称: 2011-2012光信息综合实验 指导老师: 成绩:___ ____ 实验名称: 液晶光阀用于光学图像实时处理 实验类型:综合型 同组学生姓名: 一、实验目的和要求 二、实验内容和原理 三、主要仪器设备、操作方法和实验步骤 四、实验结果记录、数据处理分析 五、思考题 六、实验中遇到的问题,心得体会,意见和 建议 一、实验目的和要求 1、了解液晶光阀的工作原理和使用方法; 2、掌握采用液晶光阀实现非相干光——相干光图像转换和图像反转的工作原理和方法; 3、掌握应用液晶光阀进行光学图像实时相减和实时微分的方法,加深对光学图像实时处理的理解。 二、实验内容和原理 1. 液晶特性 (1) 液晶是一种有机高分子化合物,既有晶体的取向特性,又有液体的流动性。 (2) 当液晶分子有序排列时表现出光学各项异性:光矢量沿分子长轴方向时具有较大的非常光折射率ne ;而垂直分子长轴方向位寻常光折射率no(针对p 型液晶材料)。 (3) 晶轴方向即为分子长轴方向。在组成液晶盒的两玻璃间加一电压,其中的液晶分子在电场作用下会沿着电场方向排列,即光轴方向沿电场方向偏转。电场控制了双折射效应的变化。 (4) 液晶光阀正是利用此特点而制成的器件。 2. 液晶光阀结构示意 1--玻璃基片 2--透明电极 3--光导层 4--挡光层 5--介质反射膜 6--定向层 7--液晶层 8--衬垫 E--低压音频电源 K--开关 3. 液晶光阀工作原理 (1) 如液晶光阀结构图所示,工作时将待处理的非相干图像从右侧成像在光电导层上,把它作为写入光。读出光束从左侧入射,经起偏器使其偏振方向与液晶左侧分子指向方向一致。经透明电极、液晶盒之后,在右侧的介质反射膜处返回,再次穿过液晶层经偏振分光镜后,通过一个透光轴方向与起偏器偏振方向垂直的检偏器,成为输出光束。 (2) 由于光阻挡层和反射膜都很薄,交流阻抗很小,因而加在两透明电极之间的外电压主要落在液晶层和光电导层上。控制液晶电光效应的实际电压值就由光电导层与液晶层的实际阻抗之比来决定,即取决于光电导层上的光照情况。 E 1 8 1 5 4 6 7 6 2 3 K 2 写入光 读出光 偏振分光镜 输出光 专业: 姓名: 学号: 日期: 地点: 玉泉教三209-211

纯相位空间光调制器动态控制光束偏转

文章编号:025827025(2006)0720899204 纯相位空间光调制器动态控制光束偏转 刘伯晗,张 健 (哈尔滨工业大学超精密光电仪器工程研究所,黑龙江哈尔滨150001) 摘要 提出并设计了一个采用液晶空间光调制器(L CSL M )作为光束动态偏转器件的无机械光束扫描系统,实现了光束的方向和强度的可编程控制,解决了远场任意图形的激光光束动态逼近问题。逼近方法采用纯相位调制技术和傅里叶迭代优化算法结合的衍射图形相位优化设计方法。介绍了点阵图形发生原理并给出实验装置图。实验结果显示,用该方法产生的二维阵列式光束,其光斑强度偏差度小于8%,图形发生响应时间小于100ms ,该实验结果能够满足多光束准确动态偏转的要求。该系统具有精确、响应快、无机械惰性等特点,在激光寻的、制导以及多目标威胁预警和反击中有着重要的研究价值。 关键词 激光应用;空间光调制器;光束偏转;优化算法;相位调制中图分类号 TN 249 文献标识码 A Dynamical Laser Beams Steering with Phase 2Only Spatial Light Modulator L IU Bo 2han ,ZHAN G Jian (I nstitute of Ult ra 2Precision O ptoelect ronic I nst rument Engineering ,H arbin I nstitute of Technology ,H arbin ,Heilong j iang 150001,China ) Abstract A non 2mechanical beam steering system is proposed and designed to resolve the problem of approaching the far 2field diff ractive pattern with laser beams.A beam steering method based on the phase only modulation with a liquid crystal spatial light modulator (L CSL M )is studied and described to control the light beams programmably.The Fourier iterative optimal algorithm is adopted to design the optimal phases approaching the expected far 2field diffractive pattern.The schematic diagram and the experimental set 2up are given.Results show that the method can generate 22D spots arrays with the intensity error rate less than 8%.The response time of generating the dynamical diffractive pattern is less than 100ms.With the merits of lightness ,precision and quick response ,this scanning system is of value in the fields of multi 2object tracing ,laser guiding and multi 2object defense.K ey w ords laser application ;spatial light modulator ;beam steering ;optimal algorithm ;phase modulation 收稿日期:2005210231;收到修改稿日期:2006202224 作者简介:刘伯晗(1977—),男,吉林人,哈尔滨工业大学博士研究生,主要从事光电测试、空间光信息处理方面的研究。E 2mail :hit_bohanliu @https://www.wendangku.net/doc/a26710830.html, 导师简介:张 健(1944— ),男,江苏无锡人,哈尔滨工业大学教授,博士生导师,主要从事光电精密测量及信息处理方面的研究。E 2mail :zjlab @https://www.wendangku.net/doc/a26710830.html, 1 引 言 目前,传统的激光雷达因采用万向节等具有机械惯性的扫描装置而使其性能受到限制,迫切需要一种精确、快速响应的无机械惯性的扫描元件来代替[1]。基于光学相位阵列技术的液晶空间光调制器,作为具有克服以上诸多缺点潜力的新型可编程衍射光学元器件正在得到广泛应用[1,2]。由于纯相位液晶空间光调制器可以实现相位的连续调制,这一点使其非常适用于空间光束偏转,因而其在激光 相控阵雷达和自由空间光互连等领域有广阔的应用前景[3,4]。据现有资料,国内对液晶空间光调制器 的研究尚处于起步阶段[5~8]。本文设计了一个能够发射任意衍射点阵图形的系统装置。设计中的一个核心部件是液晶空间光调制器(L CSL M ),是美国BNS (Boulder Nonlinear Systems )公司的专利产品,是近年发展起来的微电子机械(M EMS )领域的最新研究成果[9]。该系统采用液晶空间光调制器,通过对一组激光束的相位进行控制和波束合成,成   第33卷 第7期2006年7月 中 国 激 光 C H IN ESE J OU RNAL O F L ASERS Vol.33,No.7 J uly ,2006

相关文档