文档库 最新最全的文档下载
当前位置:文档库 › 横向分配系数

横向分配系数

横向分配系数
横向分配系数

桥博梁格建模时,活载是怎么加上去的,总结一下:活载加载时桥博里面需要输入的主要有“桥面布置信息”、“桥面单元描述”两个的窗口。

第一个窗口“桥面布置”填写的内容有:

1、桥面中线起点与切角,填的方法很简单,可以把建立好的梁格模型“向AUTOCAD”导出模型,然后先自己确定一条桥面中线,桥面中线的位置,建议取道路设计线一致,或尽量取在实际桥面的对称位置。确定好桥面中线后,量取桥面中线的起点位置,以及桥面中线方向与X轴的夹角,填入“桥面中线起点位置与切角”,桥面中线的方向就代表了模型中加载时行车线的方向。

2、该界面第二个要填的就是桥面横向位置对应的车道数。对于变宽桥,可以在车道变化点分别定义车道数,如下图中由4车道变为5车道,这里的“左车道数”与“右车道数”并不要求严格按实际填写(如:单向3车道,桥面中线放在桥面中心,填车道数时可以是左1右2,也可以是左2右1,填成左1.5右1.5就不合适)。但填时注意宁大勿小,(如:如果此位置可能能布下4车道,那可以填左2右2,如果布不下,程序会自己判断的,但要是填了左1右1,它就不会考虑3或者4车道的情况)。程序横向加载时,会根据最根据横向影响线,进行最不利加载。最不利加载时,根据影响线负区的长度确定加载的车道数量,可能是1-n车道。所以在n车道时,程序自动考虑了从1-n车道作用下的最不利情况。以前有设计院工程师反应有多车道时,桥博不能自动判断1-n车道中最不利情况,这种说法是错误的,要不然什么叫“自动进行影响面”加载呢。不过桥博在这块也有一种情况判断不到,就是多车道折减后的效应与2车道的相比谁更不利。所以建议当车道数大于2时,将n车道考虑折减后的模型与加只加2车道的模型进行比较,取最不利值。这个问题,在新开发的“桥梁设计师”软件中已经解决,有待桥博下次升级时将其加进去。

二、第二个窗口“桥面单元描述”的填写。

桥面单元描述中也有“桥面中线”示意图中标出来了,注意这里的“桥面中线”应与桥面布置中的保持统一,一定要是同一根线。要填的数据就是各道纵梁与“桥面中线”的相对位置。在填上面的数据时导出的模型中,直接量取各个纵梁起点和终点到桥面中线的距离即可。填时应注意正负号的规定。

这里填入的数据的目的,就是将“桥面布置”中的车道荷载加到梁格模型上去。大多数弯桥的道路设

计线可能是曲线,而桥博里尚不能把整个行车线完整定义出来,程序里面只要求给出行车线的起点和方向,所以程序加载时,做了一定的处理。

用下面的一个图片来说明这个处理:

如一个异型块,实际的梁格模型是3道弯的纵梁(2道红色边梁+1绿色中梁,我们将桥面中线定在中间腹板位置),活载加载时,根据我们在“桥面单元”中输入的信息,程序将模型等效成蓝色的(2到蓝色边梁+1粉色中梁)模型进行加载。就是把模型后面弯弯的尾巴给它甩甩直啦。

至于这种简化是否合理或者是否能满足工程精度要求,大家可以根据桥博界面上输入的数据,仔细地分析一下。通过多年来,大量的实际工程说明,这种处理方法是便捷有效的。不过周老师有云:桥博升级时,这个地方可进行修正,用户将可以在桥博中定义一条完整的行车线。如有不妥之处,欢

迎批评指正~~~~~

扩散系数计算

扩散系数计算 WTD standardization office【WTD 5AB- WTDK 08- WTD 2C】

扩散系数 费克定律中的扩散系数D代表单位浓度梯度下的扩散通量,它表达某个组分在介质中扩散的快慢,是物质的一种传递性质。 一、 气体中的扩散系数 气体中的扩散系数与系统、温度和压力有关,其量级为52 10/m s -。通常对于二元气体A、B 的相互扩散,A在B 中的扩散系数和B 在A 中的扩散系数相等,因此可略去下标而用同一符号D表示,即AB BA D D D ==。 表7-1给出了某些二元气体在常压下(5 1.01310Pa ?)的扩散系数。 对于二元气体扩散系数的估算,通常用较简单的由富勒(Fuller )等提出的公式: 1/31/32 [()()]A B D P v v = +∑∑ (7-19) 式中,D -A、B 二元气体的扩散系数,2 /m s ; P -气体的总压,Pa ; T -气体的温度,K; A M 、 B M -组分A、B 的摩尔质量,/kg kmol ; A v ∑、B v ∑-组分A、B 分子扩散体积,3 /cm mol 。 一般有机化合物可按分子式由表7-2查相应的原子扩散体积加和得到,某些简单物质则在表7-2种直接列出。 5 1.01310Pa ?

式7-19的相对误差一般小于10%。 二、 液体中的扩散系数 由于液体中的分子要比气体中的分子密集得多,因此也体的扩散系数要比气体的 小得多,其量级为92 10/m s -。表7-3给出了某些溶质在液体溶剂中的扩散系数。 式估算: 15 0.6()7.410 T B AB A M T D V -φ=?μ 2/m s (7-21) 式中,AB D -溶质A在溶剂B中的扩散系数(也称无限稀释扩散系数),2 /m s ; T -溶液的温度,K; μ-溶剂B的粘度,.Pa s ;

实验:水分子扩散系数

《计算材料学》实验讲义 实验二:分子动力学模拟-水分子扩散系数 一、前言 分子动力学模拟的基本思想是将物质看成是原子和分子组成的粒子系统(many-body systems ),设置初始位能模型,通过分析粒子的受力状况,计算粒子的牛顿运动方程,得到粒子的空间运动轨迹,可以求得复杂体系的热力学参数以及结构和动力学性质。分子动力学模拟的理论是统计力学中的各态历经假说(Ergodic Hypothesis),即保守力学系统从任意初态开始运动,只要时间足够长,它将经过相空间能量曲面上的一切微观运动状态,系统力学量的系综平均等效力学量的时间平均,因此可以通过计算系综的经典运动方程来得到力学量的性质。比如,由N 个粒子组成的系综的势能计算函数为: int U U U VDW += (1-1) VDW U 表示粒子内和粒子之间的Van der Waals 相互作用;int U 表示粒子的内部势能(键角弯曲能,键伸缩能、键扭转能等);根据经典力学方程,系统中第i 个粒子的受力大小为: U k z j y i x U F i i i i i ??? ? ????+??+??-=-?= (1-2) 那么第i 个粒子的加速度可以通过牛顿第二定律得到: ()()i i i m t F t a = (1-3) 由于体系有初始位能,每个粒子有初始位置和速度,那么加速度对时间进行积分,速度对时间积分就可以获得各个任意时刻粒子的速度和位置: i i i a v dt d r dt d ==22 (1-4) t a v v i i i +=0 (1-5) 2002 1t a t v r r i i i i ++= (1-6) i r 和v 分别是系统中粒子t 时刻的位置和速度,0i r 和0i v 分别是系统中粒子初始时刻的位置和速度。依据各态历经假说,可获得任意物理量Q 的系综平均,因此得到体系的相关性质:

扩散系数计算

7.2.2扩散系数 费克定律中的扩散系数D代表单位浓度梯度下的扩散通量,它表达某个组分在介质中扩散的快慢,是物质的一种传递性质。 一、气体中的扩散系数 气体中的扩散系数与系统、温度和压力有关,其量级为52 10/m s -。通常对于二元气体 A、B 的相互扩散,A在B 中的扩散系数和B 在A 中的扩散系数相等,因此可略去下标而用同一符号D表示,即AB BA D D D ==。 表7-1给出了某些二元气体在常压下(5 1.01310Pa ?)的扩散系数。 对于二元气体扩散系数的估算,通常用较简单的由富勒(Fuller )等提出的公式: 1/31/32 [()()]A B D P v v = +∑∑ (7-19) 式中,D -A、B 二元气体的扩散系数,2 /m s ; P -气体的总压,Pa ; T -气体的温度,K; A M 、 B M -组分A、B 的摩尔质量,/kg kmol ; A v ∑、 B v ∑-组分A、B 分子扩散体积,3 /cm mol 。 一般有机化合物可按分子式由表7-2查相应的原子扩散体积加和得到,某些简单物质则在表7-2种直接列出。 5 1.01310Pa ?

式7-19的相对误差一般小于10%。 二、液体中的扩散系数 由于液体中的分子要比气体中的分子密集得多,因此也体的扩散系数要比气体的小得 多,其量级为92 10/m s 。表7-3给出了某些溶质在液体溶剂中的扩散系数。

对于很稀的非电解质溶液(溶质A+溶剂B),其扩散系数常用Wilke-Chang 公式估算: 15 0.6()7.410 T B AB A M T D V -φ=?μ 2/m s (7-21) 式中,AB D -溶质A在溶剂B中的扩散系数(也称无限稀释扩散系数),2 /m s ; T -溶液的温度,K; μ-溶剂B的粘度,.Pa s ; B M -溶剂B的摩尔质量,/kg kmol ; φ-溶剂的缔合参数,具体值为:水2.6;甲醇1.9;乙醇1.5;苯、乙醚等不缔合的溶剂 为1.0; A V -溶质A 在正常沸点下的分子体积,3/ cm mol ,由正常沸点下的液体密度来计 算。若缺乏此密度数据,则可采用Tyn-Calus 方法估算: 1.048 0.285c V V =,其中c V 为物质 的临界体积(属于基本物性),单位为3 /cm mol ,见表7-4。

扩散系数计算

7、2、2扩散系数 费克定律中的扩散系数D代表单位浓度梯度下的扩散通量,它表达某个组分在介质中扩散的快慢,就是物质的一种传递性质。 一、气体中的扩散系数 气体中的扩散系数与系统、温度与压力有关,其量级为5 2 10/m s -。通常对于二元气体A、B 的相互扩散,A在B 中的扩散系数与B 在A 中的扩散系数相等,因此可略去下标而用同一符号D表示,即AB BA D D D ==。 表7-1给出了某些二元气体在常压下(5 1.01310Pa ?)的扩散系数。 对于二元气体扩散系数的估算,通常用较简单的由富勒(Fuller)等提出的公式 : 1/31/32 [()()]A B D P v v = +∑∑ (7-19) 式中,D -A、B 二元气体的扩散系数,2 /m s ; P -气体的总压,Pa ; T -气体的温度,K; A M 、 B M -组分A、B 的摩尔质量,/kg kmol ; A v ∑、B v ∑-组分A、B 分子扩散体积,3 /cm mol 。 一般有机化合物可按分子式由表7-2查相应的原子扩散体积加与得到,某些简单物质则在表7-2种直接列出。 5 1.01310Pa ?

式7-19的相对误差一般小于10%。 二、液体中的扩散系数 由于液体中的分子要比气体中的分子密集得多,因此也体的扩散系数要比气体的小得多, 其量级为92 10/m s -。表7-3给出了某些溶质在液体溶剂中的扩散系数。 对于很稀的非电解质溶液(溶质A+溶剂B),其扩散系数常用Wilke-Chang 公式估算: 15 0.6()7.410 T B AB A M T D V -φ=?μ 2/m s (7-21) 式中,AB D -溶质A在溶剂B中的扩散系数(也称无限稀释扩散系数),2 /m s ;

扩散系数计算

它表达某个组分在介质中扩 0.0101T 1.75 (7—19) 722扩散系数 费克定律中的扩散系数D 代表单位浓度梯度下的扩散通量, 散的快慢,是物质的一种传递性质。 一、气体中的扩散系数 气体中的扩散系数与系统、温度和压力有关,其量级为 10 m 2/s 。通常对于二元气体 A 、 B 的相互扩散,A 在 B 中的扩散系数和 B 在A 中的扩散系数相等,因此可略去下标而 用同一符号D 表示,即 D AB = D BA =D 。 表7 — 1给出了某些二元气体在常压下( 1.013 105Pa )的扩散系数。 对于二元气体扩散系数的估算,通常用较简单的由富勒( Fuller )等提出的公式: p[c V A )1/3 e V B )1/3]2 2 式中,D —A 、B 二元气体的扩散系数, m /s ; P —气体的总压,Pa ; T —气体的温度,K ; M A 、M B —组分 A 、 B 的摩尔质量,kg/kmol ; 7 V A 7 V B 3 、 —组分A 、B 分子扩散体积,cm 3 /mol 。 一般有机化合物可按分子式由表7-2查相应的原子扩散体积加和得到, 某些简单物质 则在表7-2种直接列出。 表7-1某些二元气体在常压下(5 )的扩散系数 系统 温度/K 扩散系数/(10-5m 2 /s) 系统 温度/K - 5 2 扩散系数/(10 m/s) H 2—空气 273 6.11 甲醇一空气 273 1.32 He —空气 317 7.56 乙醇一空气 273 1.02 02—空气 273 1.78 正丁醇-空气 273 0.703 Cl 2 —空气 273 1.24 苯-空气 298 0.962 H 2O —空气 273 2.20 甲醇一空气 298 0.844 298 2.56 H 2— CO 273 6.51 332 3.05 H 2— CO 2 273 5.50 NH 3 —空气 273 1.98 H 2— N 2 273 6.89 CO 2 —空气 273 1.38 294 7.63 298 1.64 H 2— NH 3 298 7.83 SO 2 —空气 293 1.22 He — Ar 298 7.29 7-2 原子扩散体积 3 v/(cm /mol) 分子扩散体积 3 工 V /( cm /mol) 原子扩散体积 3 v/(cm /mol) 分子扩散体积 3 工 V /( cm /mol) C 15.9 He 2.67 S 22.9 CO 18.0

扩散系数计算

扩散系数 费克定律中的扩散系数D代表单位浓度梯度下的扩散通量,它表达某个组分在介质中扩散的快慢,是物质的一种传递性质。 一、气体中的扩散系数 气体中的扩散系数与系统、温度和压力有关,其量级为5 2 10/m s -。通常对于二元气体A、B 的相互扩散,A在B 中的扩散系数和B 在A 中的扩散系数相等,因此可略去下标而用同一符号D表示,即AB BA D D D ==。 表7-1给出了某些二元气体在常压下(5 1.01310Pa ?)的扩散系数。 对于二元气体扩散系数的估算,通常用较简单的由富勒(Fuller )等提出的公式: 1/31/32 [()()]A B D P v v = +∑∑ (7-19) 式中,D -A、B 二元气体的扩散系数,2 /m s ; P -气体的总压,Pa ; T -气体的温度,K; A M 、 B M -组分A、B 的摩尔质量,/kg kmol ; A v ∑、B v ∑-组分A、B 分子扩散体积,3 /cm mol 。 一般有机化合物可按分子式由表7-2查相应的原子扩散体积加和得到,某些简单物质则在表7-2种直接列出。 5 1.01310Pa ?

式7-19的相对误差一般小于10%。 二、液体中的扩散系数 由于液体中的分子要比气体中的分子密集得多,因此也体的扩散系数要比气体的小得多,其量级为9 2 10/m s -。表7-3给出了某些溶质在液体溶剂中的扩散系数。 对于很稀的非电解质溶液(溶质A+溶剂B),其扩散系数常用Wilke-Chang 公式估算: 15 0.6()7.410 T B AB A M T D V -φ=?μ 2/m s (7-21) 式中,AB D -溶质A在溶剂B中的扩散系数(也称无限稀释扩散系数),2 /m s ; T -溶液的温度,K; μ-溶剂B的粘度,.Pa s ; B M -溶剂B的摩尔质量,/kg kmol ; φ-溶剂的缔合参数,具体值为:水;甲醇;乙醇;苯、乙醚等不缔合的溶剂为; A V -溶质A 在正常沸点下的分子体积,3/cm mol ,由正常沸点下的液体密度来计算。 若缺乏此密度数据,则可采用Tyn-Calus 方法估算: 1.048 0.285c V V =,其中c V 为物质的临界

扩散系数计算

. 7.2.2扩散系数 费克定律中的扩散系数D代表单位浓度梯度下的扩散通量,它表达某个组分在介质中扩散的快慢,是物质的一种传递性质。 一、气体中的扩散系数 ?52s10m/。通常对于二元气体气体中的扩散系数与系统、温度和压力有关,其量级为中的扩散系数相等,因此可略去下标而B在AA、B的相互扩散,A在B中的扩散系数和D?D?D。用同一符号D表示,即BAAB5Pa?101.013)的扩散系数。表7-1给出了某些二元气体在常压下(Fuller)等提出的公式:对于二元气体扩散系数的估算,通常用较简单的由富勒 ??1/321/3]vv))?(P[(BA(7-19)(111.75?0.0101TMM BA?D 2m/sD;二元气体的扩散系数,式中,-A、B PaP;-气体的总压,T-气体的温度,K;MMkg/kmol;的摩尔质量,、-组分A、B BA??vv BA3molcm/、-组分A、B分子扩散体积,。某些简单物质一般有机化合物可按分子式由表7-2查相应的原子扩散体积加和得到,则在表5 表7-2原子扩散体积和分子扩散体积 1 / 4 .

注:已列出分子扩散体积的,以后者为准。 式7-19的相对误差一般小于10%。二、液体中的扩散系数由于液体中的分子要比气体中的分子密集得多,因此也体的扩散系数要比气体的小得2?9s10m/。表7-3给出了某些溶质在液体溶剂中的扩散系数。多,其量级为表7-3溶质在液体溶剂中的扩散系数(溶质浓度很低) Wilke-Chang公式估算:(溶质A+溶剂B),其扩散系数常用对于很稀的非电解质溶液 T T?M)(15?B10?7.4D?AB0.6V?2sm/(7-21)A D2sm/-溶质A在溶剂B中的扩散系数(也称无限稀释扩散系数);,式中,AB T-溶液的温度,K; ?sPa.-溶剂B的粘度,;Mkmol/kg;-溶剂B的摩尔质量,B?;苯、乙醚等不缔合的溶剂;乙醇1.91.5-溶剂的缔合参数,具体值为:水2.6;甲醇 1.0;为V3molcm/,由正常沸点下的液体密度来计-溶质A在正常沸点下的分子体积,A1.048VV0.285V?为物质的方法估算:则可采用算。若缺乏此密度数据,Tyn-Calus,其中cc2 / 4 . 3C

扩散系数计算

扩散系数 费克定律中的扩散系数D 代表单位浓度梯度下的扩散通量, 它表达某个组分在介质中扩 散的快慢,是物质的一种传递性质。 一、气体中的扩散系数 5 2 气体中的扩散系数与系统、温度和压力有关,其量级为 10 m /s 。通常对于二元气体 A 、 B 的相互扩散,A 在 B 中的扩散系数和B 在A 中的扩散系数相等,因此可略去下标而用 同一符号D 表示,即 D AB D BA D 。 5 表7 — 1给出了某些二元气体在常压下( 1.013 10 Pa )的扩散系数。 对于二元气体扩散系数的估算,通常用较简单的由富勒( Fuller )等提出的公式: 1/3 1/3 2 P[( V A ) ( V B )] (7—19) 2 式中,D —A 、B 二元气体的扩散系数, m /s ; P —气体的总压,Pa ; T —气体的温度,K; M A 、M B —组分A 、B 的摩尔质量,kg / kmol ; V A V B 3 、 —组分A 、B 分子扩散体积,cm / mol 。 一般有机化合物可按分子式由表7-2查相应的原子扩散体积加和得到, 某些简单物质 则在表7-2种直接列出。 5 表7-1某些二元气体在常压下(1.013 10 Pa )的扩散系数 系统 温度/K 扩 散 系 数 系统 温度/K 扩散 系数 5 2 /(10 - m/s) 5 2 /(10 - m/s) H 2 —空气 273 甲醇一空气 273 0.0101T 175 1 1 M A M B

注:已列出分子扩散体积的,以后者为准。式7 — 19的相对误差一般小于1 0%。 二、液体中的扩散系数 由于液体中的分子要比气体中的分子密集得多,因此也体的扩散系数要比气体的小得多,其量级为10 9m2/s。表7 — 3给出了某些溶质在液体溶剂中的扩散系数。

扩散系数

布朗运动的扩散系数 刘佳杰 201202008010 摘 要:布朗运动即为分子无规则的运动,布朗运动中的扩散系数与分子的大小形状有何关系,我们设计了试验,进行求解。 关键词:布朗运动 扩散系数 因素 一、气体扩散系数 挥发性液体之气体扩散系数可藉由Winklemann’s method 来检测,在有限内径的垂直毛细管中保持固定的温度和经过毛细管顶部的空气流量,可确定液体表面的分子扩散到气体中的蒸气分压。 已知质传速率: ???? ????? ??=Bm T A A C C L C D 'N (1) D = 扩散速率 (m 2/s) C A = A 物质于界面间的饱和浓度 (kmol/m 3) L =质传有效距离(mm) C Bm =蒸气的对数平均莫耳浓度 (kmol/m 3) C T = 总莫耳浓度=C A +C Bm (kmol/m 3) 液体的蒸发速率: (2) ρL = 液体密度 ??? ????? ??=dt dL M ρ'N L A

???? ????? ??=??? ????? ??Bm T A L C C L C D dt dL M ρ (3) at t=0 , L=L 0 做积分 t C C C ρMD 2L L Bm T A L 202??? ? ?????? ??=- (4) ()()t C C C ρMD 2L 2L L L L Bm T A L 000??? ? ?????? ??=+-- (5) ()()0A T Bm L 0A T Bm L 0L C MDC C ρL L C C C MD 2ρL L t ???? ??+-???? ????? ??=- (6) M = 分子量 、 t = 时间 其中 ???? ????? ??=a abs T T T Vol kmol C 1 , 其中 Vol =22.4 m 3 (7) T 1B C C = (8) T a v a 2B C P P P C ??? ? ??-= (9) )C ln()C (C C B2 B1B2B1Bm -= (10) T a v A C P P C ??? ? ??= (11) (二)线型最小平方法 最小平方法或称最小平方差法 (least-squares method) 的最基础型──线型的 (linear)。今有一组实验数据基本上呈现线型的态势,则若以b ax y +=表示直线方程式,其中a 代表斜率 (slope),b 代表截距 (intercept),则最小平方法就是在使误差的平方和达到最小,即使下式最小化 (minimize) ()[]2 n 1i i i b ax y E ∑+-== 因此

扩散系数计算

扩 散 系 数 费克定律中的扩散系数D 代表单位浓度梯度下的扩散通量, 散的快慢,是物质的一种传递性质。 一、气体中的扩散系数 A 、 B 的相互扩散,A 在 B 中的扩散系数和 B 在A 中的扩散系数相等,因此可略去下标而 用同一符号D 表示,即 D AB D BA D 。 5 表7 — 1给出了某些二元气体在常压下( 1.013 10 Pa )的扩散系数。 对于二元气体扩散系数的估算,通常用较简单的由富勒( Fuller )等提出的公式: 1/3 1/3 2 P[( V A ) ( V B )] (7—19) 2 式中, D —A 、B 二元气体的扩散系数, m /s ; P —气体的总压,Pa ; T —气体的温度,K ; M A 、M B —组分A 、 B 的摩尔质量,kg/kmol ; V A V B 3 、 —组分A 、B 分子扩散体积,cm /mol 。 一般有机化合物可按分子式由表7-2查相应的原子扩散体积加和得到, 某些简单物质 则在表7-2种直接列出。 5 表7-1某些二元气体在常压下(1.013 10 Pa )的扩散系数 气体中的扩散系数与系统、温度和压力有关,其量级为 5 2 10 m /s 。通常对于二元气体 它表达某个组分在介质中扩

式7 —19的相对误差一般小于1 0%。 、液体中的扩散系数 由于液体中的分子要比气体中的分子密集得多,因此也体的扩散系数要比气体的小得 9 2 多,其量级为10 m /s。表7 —3给出了某些溶质在液体溶剂中的扩散系数。表7 — 3 溶质在液体溶剂中 A E) ,其扩散系数常用Wilke-Cha ng公式估算: 式中,D AB—溶质A在溶剂E中的扩散系数(也称无限稀释扩散系数),m2/s ; T —溶液的温度,K; -溶剂E的粘度,Pa.s ; M B —溶剂E的摩尔质量,kg/ kmol ; —溶剂的缔合参数,具体值为:水 2.6 ;甲醇1.9 ;乙醇1.5 ;苯、乙醚等不缔合的溶剂 为1.0; V A—溶质A在正常沸点下的分子体积,cm3/mol,由正常沸点下的液体密度来计 D AB 7.4 10 15(M B)T V A0.6 2 / m /S (7 — 21)

相关文档