文档库 最新最全的文档下载
当前位置:文档库 › 污泥对苗圃生长的银合欢幼苗发芽和初期长势的影响_英文_

污泥对苗圃生长的银合欢幼苗发芽和初期长势的影响_英文_

226 DOI: 10.1007/s11676-007-0046-4
Journal of Forestry Research, 18(3): 226–230 (2007)
Effects of sludge on germination and initial growth performance of Leucaena leucocephala seedlings in the nursery
G. M. A. Iqbal, S. M. S. Huda*, M. Sujauddin and M. K. Hossain
Institute of Forestry and Environmental Sciences, University of Chittagong, Chittagong-4331, Bangladesh
Abstract: A study was carried out to determine the influence of different types of sludges (municipal, industrial and residential) on field germination, growth and nodulation of L. leucocephala seedlings in the nursery. Before sowing of seeds, different combinations of sludges were incorporated with the nutrient deficient natural forest soils. Field germination, nodulation status and physical growth parameters of seedlings (shoot and root length, vigor index, collar diameter, leaf number, fresh and dry weight of shoot and root and total dry biomass increment) were recorded after three and six months of seed sowing. Field germination, nodulation status and growth parameters were varied significantly in the soil amended with sludges in comparison to control. The highest number of nodule was recorded from soil amended with residential sludge (1:1) and highest fresh and dry nodule weight was also found from the same combination in both three and six month old seedlings. In case of growth parameters, the highest growth was recorded from soil and residential sludge (1:1) combination compared to control. From the study, it can be recommended that soil amended with residential sludge (1:1) provide better field germination, growth and nodule formation of L. leucocephala in degraded soil. Keywords: Leucaena leucocephala; Sludge; Field germination; Seedling growth; Nodulation; Vigor index.
Introduction
Ipil ipil [Leucaena leucocephala (Lam) de Wit.] is a fast growing multipurpose tree species of the family Leguminosae (Mimosoideae). It is a large evergreen shrub or a small tree depending on its variety and the habitat in which it grows. The tree is native to Mexico and northern Central America and introduced to Indonesia, Philippines, Malaysia and other countries in South East Asia with varying degree of success (Luna 1996). Bangladesh Forest Department introduced L. leucocephala in 1977 from the Philippines for a trial plantation (Das 1985). It can produce nutritious forage, firewood, timber and rich organic fertilizer (Duke 1981). The wood has the potential to become a major source of pulp and paper, roundwood and construction materials (Anonymous 1980). The wood, leaves, twigs have a medicinal value as well as tannin. Due to its multipurpose utility and wide range of ecological amplitudes (especially suitable to Bangladesh Environment) L. leucocephala is being planted in different parts of Bangladesh by the government and other public and private sectors in different plantation programs, e.g. Agro-forestry, Community Forestry, Social Forestry, Village, Farm Forestry Program etc. (Khan et al. 2002). The species has potentiality in newly formed islands and coastal areas of the country where
Received: 2007-06-07; Accepted: 2007-06-25 Northeast Forestry University and Springer-Verlag 2007 Electronic supplementary material is available in the online version of this article at https://www.wendangku.net/doc/a03255377.html,/10.1007/s11676-007-0046-4 Biography: Gazi Mohammad Asif Iqbal (1983-) male, postgraduate student of Institute of Forestry and Environmental Sciences, University of Chittagong, Chittagong-4331, Bangladesh. *Corresponding Author: (E-mail: hudaifescu@https://www.wendangku.net/doc/a03255377.html,) Responsible editor: Hu Yanbo
need immediate plantations for suitability of soils and protecting the country from unexpected flood and other natural calamities (Alam et al. 2004). Sewage sludge, also referred as 'biosolids', is being used in agriculture/cropland as a fertilizer and an organic amendment to improve physical, chemical and biological properties of soil (Singh and Agrawal 2007; Sanchez-Monedero et al. 2004; Hossain and Miller 1994). The safe disposal of the sewage sludge is one of the major environmental concerns throughout the world (Singh and Agrawal 2007). Land application is commonly used in most municipalities (Selivanovskaya and Latypova 2006). Such application of sludge provides not only a means for sludge disposal but can also improve soil fertility and the physical properties of the soils (Peles et al. 1996; Ramachandran and D'Soura 1998; Gardiner et al. 1995; Jorba and Andres 2000). Disposal alternatives that have been tried so far include soil application, dumping at sea, landfilling and incineration (Sanchez-Monedero et al. 2004). The increasing cost of chemical fertilizers has reawakened interest in other sources of nutrients, including residential and industrial sludge. The main advantage of using sewage sludge is the soil enrichment at a lower cost that is possible with inorganic fertilizers (Hossain and Miller 1994). Generally sewage sludge is composed of organic compounds, macronutrients, a wide range of micronutrients, non-essential trace metals, organic micro pollutants and microorganisms (Singh and Agrawal 2007; Kulling 2001). The macronutrients in sewage sludge serve as a good source of plant nutrients and the organic constituents provide beneficial soil conditioning properties (Logan and Harrison 1995). Digested cake of sewage sludge contains dry solids (20–50%), organic matter (50%–70%), N (1.5%–2.5%), P (0.5%–1.8%), K (0.1%–0.3%), Ca (1.6%–2.5%) and Mg (0.1%–0.5%) (Byrom and Bradshaw 2001). Forested sites are increasingly receiving attention as potential sites for the disposal and biological recycling of both wastewater and sludges. These sites are potential for sludge disposal because

G.M.A. Iqbal et al. forests are typically located in the better drained areas and not subject to the periodic flooding occurring in alluvial agricultural lands. Moreover, as forests are not food chain crops, many of the public health concerns and land application regulations should not be as critical as those associated with agricultural sites (Cole et al. 1983). Fast growing tree species can be benefited from sludge application (Labrecque et al. 2006). Though much research has been done on the use of sewage sludge as crop fertilizers (Van den Berg 1993; Hue 1995; Merzlaya et al. 1995; Gardiner et al. 1995; Selivanovskaya et al. 1997; Selivanovskaya and Latypova 1999; Selivanovskaya and Latypova 2006), there is little study in case of L. leucocephala especially in soil conditions of Bangladesh. Thus this study is an attempt to find out the effect of sludges on field germination and growth performance as well as nodulation status of L. leucocephala seedlings.
227 periment for field germination test) and after completion of field germination only one seedling (best one) per polybag was maintained to observe the initial growth parameters of seedlings. Partial shade and covering was provided over the nursery to protect the seedlings from strong sunlight and rain. Proper care and maintenance were done from the starting time of sowing seed up to harvesting of seedlings. Watering, removal of weeds, grasses etc. were done regularly. Field germination was recorded daily from the date of seed sown and continued up to last field germination of the seed. The seedlings were allowed to grow for six months from the time of seed sowing. After three months, three seedlings from each replication of a treatment were randomly selected for measuring physical parameters of shoot and root length, collar diameter, leaf number, fresh and dry shoot and root weight, nodule number and their fresh and dry weight. For determining the seedlings dry weight, shoot and root were oven dried at 70C until the constant weight was obtained. Vigor index and total dry biomass increment (%) were also calculated by using the following formulae: Vigor index = Germination (%) × Seedling total length Total dry biomass increment (%) =
Total dry weight of the treatment - Total dry weight of the control treatment Total dry weight of the control treatment
Materials and methods
The experiment was carried out in the nursery of the Institute of Forestry and Environmental Sciences, University of Chittagong, Chittagong, Bangladesh. The seeds were collected from Bangladesh Forest Research Institute. Degraded soils were collected from hilly sites and were sieved (<3 mm) to obtain a uniform soil size. The brown hilly soils are sandy loam to sandy clay loam, moderately to strongly acid and poorly fertile with pH<5.5, organic matter<2.0%, CEC<10 me/100g and BSP<40% (Osman et al. 2001). Sludges were collected from municipal, industrial and residential sites of Chittagong city and dried properly. The dried sludges were also sieved (<3 mm) to make them free from root splinters and other foreign materials. Then the soil and sludges were mixed thoroughly at different ratios. A Complete Randomized Design (CRD) was adopted for a total of seven treatments including a control treatment and three replications for each treatment with 30 polybags for each replication (e.g. 90 polybags for each treatment and a total of 630 polybags for the whole experiment). There were seven different treatments including the control viz. T0 (soil, treated as control), T1 (soil + municipal sludge = 1:1), T2 (soil + municipal sludge = 2:1), T3 (soil + industrial sludge = 1:1), T4 (soil + industrial sludge = 2:1), T5 (soil + residential sludge = 1:1) and T6 (soil + residential sludge = 2:1). Polybags (15 cm ×10 cm in size) were filled with the prepared mixtures as mentioned above. Two seeds were sown in an individual polybag to observe the influence of sludge on field germination (e.g. a total of 180 seeds per treatment and 1260 seeds for whole ex-
×100
The same work had been done for six months old seedlings. All the data were analyzed statistically by using the computer software package SPSS and they were analyzed by DMRT.
T6 T5 T4 T3 T2 T1 T0
56
78
Treatment
70
73
70
65
64
0
20
40
60
80
Field Germination (%)
Fig. 1
Effect of sludge on field germination of L. leucocephala seeds
Table 1. Effect of sludge on shoot and root length, vigor index, collar diameter and leaf number of 3- and 6- month old L. leucocephala seedlings
Treatment T0 T1 T2 T3 T4 T5 T6 T0 T1 T2 T3 T4 T5 T6 Shoot 17.07 b* 41.00 a 47.44 a 46.44 a 44.78 a 46.11 a 42.78 a 24.67 b 57.33 a 65.11 a 67.22 a 59.22 a 71.22 a 64.22 a Length (cm) Root 15.72 b 19.11 ab 17.50 ab 24.44 a 20.11 ab 24.89 a 21.11 ab 20.00 b 37.89 a 37.89 a 39.33 a 36.00 a 43.89 a 40.44 a Vigor Index Total 32.79 b 60.11 a 64.94 a 70.88a 64.89 a 71.00 a 63.89 a 44.67 b 95.22 a 103.00 a 106.55 a 95.22 a 115.11 a 104.66 a 2098 b 3907 a 4546 a 5174 a 4542 a 5538 a 3578 a 2859 c 6189 b 7210 ab 7778 a 6665 ab 8978 ab 5861 ab Collar dia. (mm) 1.60 b 2.51 a 2.62 a 2.96 a 2.82 a 3.12 a 2.90 a 2.10 b 3.63 a 3.82 a 3.83 a 3.35 a 3.77 a 3.68 a Average number of compound leaf 7.1 c 9.8 b 10.2 b 13.4 a 10.8 b 13.8 a 10.0 b 11.3 b 13.1 ab 14.1 a 14.8 a 13.7 a 12.7 ab 12.4 ab
3-month old seedlings
6-month old seedlings
*- Means followed by the same letter (s) in the same column do not vary significantly at P<0.05, according to Duncan's Multiple Range Test (DMRT).

228
Journal of Forestry Research, 18(3): 226–230 (2007) Collar diameter was highest (3.12 mm) in T5 and was significantly (P<0.05) different from that of the control. Vigor index was highest (5538) in T5 followed by T3 and T2 and was also significantly (P<0.05) different from that of T0. The highest (13.8) average number of compound leaf was recorded in T5, whereas the lowest (7.1) was in T0 (control). In case of six months old seedlings, the highest shoot growth (71.22 cm) was also recorded in T5 and the lowest in T0. The highest root growth (43.89 cm) was found in T5. Collar diameter was highest (3.83 mm) in T3 and was significantly (P<0.05) different from that of T0. Vigor index was highest (8978) in T5 followed by T3 and T2 and was significantly (P<0.05) different from that of T0. The average number of compound leaf was maximum (14.8) in T3 followed by 14.1 and 13.7 in T2 and T4, respectively whereas, the lowest (11.3) was in T0.
Results
Field germination and morphological growth parameters of seedling The field germination percentage and growth parameters significantly (P<0.05) varied in different treatments. The highest field germination (78%) was observed in T5 and the lowest (56%) in T6 (Fig. 1). The effects of different sludges on morphological growth parameters of seedlings like shoot length, root length, total length, collar diameter and leaf number of three and six months old seedlings were shown in Table 1. In three months old seedlings, shoot growth was the highest (47.44 cm) in T2 whereas, the highest root growth (24.89 cm) was recorded in T5.
Table 2. Effect of sludge on shoot and root fresh, dry weight and total biomass increment of 3- and 6- month old L. leucocephala seedlings
Treatment Shoot 3-month old seedlings T0 T1 T2 T3 T4 T5 T6 T0 T1 T2 T3 T4 T5 T6 1.19 c * 3.87 b 4.35 b 5.42 ab 5.01 ab 7.31 a 5.05 ab 2.14 b 9.50 a 10.72 a 13.18 a 9.03 ab 13.27 a 10.76 a Fresh weight (g) Root 0.30 b 1.02 ab 1.00 ab 1.17 a 0.97 ab 1.33 a 0.87 ab 0.69 b 2.00 ab 2.87 a 2.84 a 2.42 ab 3.33 a 2.30 ab Total 1.49 c 4.89 b 5.35 ab 6.59ab 5.98 ab 8.64 a 5.92 ab 2.83 b 11.50 ab 13.59 a 16.02 a 11.45ab 16.60 a 13.06 a Shoot 0.31 b 1.22 ab 1.27 ab 1.43 ab 1.24 ab 1.90 a 1.55 a 0.61 b 3.48 a 3.82 a 4.76 a 3.06 a 4.62 a 4.00 a Dry weight (g) Root 0.03 b 0.34 a 0.14 ab 0.18 ab 0.17 ab 0.29 a 0.21 ab 0.22 b 0.78 ab 1.08 a 1.06 a 0.91 ab 1.26 a 0.89 ab Total 0.34 b 1.56 ab 1.41 ab 1.61 ab 1.41 ab 2.19 a 1.76 a 0.83 b 4.26 a 4.90 a 5.82 a 3.97 a 5.88 a 4.89 a 00.00 + 358.82 + 314.70 + 373.52 + 314.70 + 544.11 + 417.64 00.00 + 413.25 + 490.36 + 601.20 + 378.31 + 608.43 + 489.16 Total dry biomass increment (%)
6-month old seedlings
*- Means followed by the same letter (s) in the same column do not vary significantly at P<0.05, according to Duncan's Multiple Range Test (DMRT).
Table 3. Effect of sludge on nodule number and fresh and dry weights of 3- and 6- month old L. leucocephala seedlings
Nodule Number increased/ decreased (%) 00.00 + 500.00 + 400.00 + 500.00 + 400.00 + 600.00 + 300.00 00.00 + 275.00 + 250.00 + 375.00 + 250.00 + 500.00 + 300.00
Treatment T0 T1 T2 T3 T4 T5 T6 T0 T1 T2 T3 T4 T5 T6
Number 1d* 6 ab 5 bc 6 ab 5 bc 7a 4c 4d 15 c 14 c 19 b 14 c 24 a 16 bc
Weight (g) Fresh 0.020 c 0.057 ab 0.052 b 0.066 ab 0.055 b 0.075 a 0.053 b 0.077 bc 0.136 a 0.115 ab 0.136 a 0.075 bc 0.095 bc 0.068 c Dry 0.004 d 0.021 bc 0.020 bc 0.026 ab 0.020 bc 0.032 a 0.014 c 0.045 b 0.075 a 0.054 b 0.052 b 0.018 c 0.033 bc 0.020 c
3-month old seedlings
6-month old seedlings
Weight increased/ decreased (%) Fresh Dry 00.00 00.00 + 185.00 + 425.00 + 160.00 + 400.00 + 230.00 + 550.00 + 175.00 + 400.00 + 275.00 + 700.00 + 165.00 + 250.00 00.00 00.00 + 76.62 + 66.66 + 49.35 + 20.00 + 76.62 + 15.55 - 2.59 - 60.00 + 23.37 - 26.66 - 11.68 - 55.55
*- Means followed by the same letter (s) in the same column do not vary significantly at P<0.05, according to Duncan's Multiple Range Test (DMRT).
Fresh and dry matter production Fresh and dry matter production, e.g. shoot and root fresh weight, total fresh weight, shoot and root dry weight and total dry weight were shown in Table 2. In three months old seedlings, both fresh and dry shoot weights were maximum (7.31 g and 1.90 g, respectively) in T5 and were significantly (P<0.05) different from
those of T0. Fresh root weight was maximum (1.33 g) in T5 whereas, the highest (0.34 g) root dry weight was found in T1. In all the cases the lowest growth was observed in T0 (Table 2). Total dry biomass increment (%) was highest in T5 followed by T6 and T3 and was positive for all the treatments compared to T0. In case of six months old seedlings, fresh shoot weight was maximum (13.27 g) in T5, whereas, dry shoot weight was the

G.M.A. Iqbal et al. highest (4.76g) in T3 and significantly (P<0.05) different from those of T0. Both fresh and dry root weights were maximum (3.33 g and 1.26 g, respectively) in T5 and were significantly (P<0.05) different from those of T4, T6, T1 and T0. In all the cases the lowest growth was observed in T0 (Table 2). Total dry biomass increment (%) was highest in T5 followed by T3 and T2 and was positive for all the treatments compared to T0 treatment. Nodulation status of seedling Nodulation status of seedlings is presented in Table 3. In three months old seedlings, the highest (7) nodule number was found in T5 and the lowest in T0. Both fresh and dry weights of nodules were maximum (0.075 g and 0.032 g, respectively) in T5 and lowest (0.020 g and 0.004 g, respectively) in T0. The rate of nodule number increment was positive in all the treatments as compare to T0. Nodule fresh and dry weight increment were also found positive in all the treatments compare to T0. In case of six months old seedlings, nodule number was highest (24) in T5 and the lowest (4) in T0. Fresh weight of nodule was maximum (0.136 g) both in T1 and T3. Dry weights of nodules were maximum (0.075 g) in T1. Both fresh and dry weights of nodules were lowest (0.068 g and 0.020 g, respectively) in T6. The rate of nodule number increment was positive in all the treatments compare to T0. The increment rate of nodule fresh weight was positive in T1, T2, T3 and T5 and negative for T4 and T6. The increment rate of nodule dry weight was positive in T1, T2 and T3 and negative for T4, T5 and T6 in comparison with T0 treatment.
229 In the present study almost all growth parameters especially field germination (%), shoot length (cm) and shoot fresh weight (g) were found better than that findings. The parameters (total length, collar diameter and number of compound leaf) of L. leucocephala were better than that reported by Alam et al. (2004) where they used three types of media viz. peat soil + cowdung (3:1), soil + cowdung (3:1) and soil + peat soil (1:1) in three types of containers viz. transparent polybag (10 cm × 15 cm), plastic seed-tray (24.5 cm dia.) and open seed bed. Thus the influence of sludge amended soil on plants is positive which is comparable to findings recorded by others (Jorba and Andres 2000; Labrecque et al. 2006; Selivanovskaya and Latypova 2006).
Conclusion
From the present findings it may be concluded that residential (soil + residential sludge = 1:1) sludge may be used for obtaining maximum seed field germination and optimum seedling growth and nodule formation of L. leucocephala and helps to obtain healthy seedlings that can be easily established in degraded sites. Results from sludge fertilization experiments in forests in many parts of the world showed that most tree species respond positively to sludge fertilization. Residential sludges provide a potential source of nutrients to the forest crops especially fast growing species and such use can satisfy the needs for environmentally safe disposal of sludge.
Discussion
The present study indicates that the field germination percentage, growth parameters (shoot and root length, vigor index, collar diameter, leaf number, fresh and dry weight of shoot and root and total dry biomass increment) and nodule formation of seedlings recorded from different combinations of sludge treatments in L. leucocephala varied significantly compared to control. The present findings are in agreement with Jorba and Andres (2000) that sewage sludge could serve as a good organic fertilizer to maximize plant germination. Sludge amendments enhanced the germination and decreased the mortality of the seedlings. The effects were more obvious for the soil with the highest sludge treatment. The beneficial effects on the biomass of seedlings and the height of the shoots as well as on the length of the roots of the pine seedlings were greater in plots with the highest rates of composted sludge (Selivanovskaya and Latypova 2006). The present study was also coincided with Labrecque et al. (2006) who reported that fast growing species can get benefit from sludge amended soil. Sludge typically contains large amounts of plants available N and P, smaller amounts of all the secondary and micronutrients and in addition, supplies organic matters (Bates et al. 1979). The nitrogen content in the sludge is usually released more slowly than commercial fertilizers (Riha et al. 1983). This slower release is probably more appropriate for tree growths. Unfortunately, sewage sludge may also contain a range of potentially toxic metals, such as Cu, Cd, Pb, Zn and Ni (Logan and Chaney 1983). The simultaneous phyto-separation of toxic and beneficial elements from sewage sludge are possible by co-cropping using specific plants without the input of any chemicals (Wu et al. 2007). Khan et al. (2002) also noticed positive growth on L. leucocephala by using beneficial microbial inoculants (Effective Microorganisms) in different combinations.
References
Alam, M.A., Matin, M.A., Hoque, M.M. and Hoque, A.T.M.R. 2004. Growth performance of Ipil ipil (Leucaena leucocephala (Lam) de Wit.) under different conditions at nursery stage in Bangladesh. Pakistan Journal of Biological Sciences, 7(6): 1062–1069. Anonymous, 1980. Firewood crops: Shrubs and Tree Species for Energy Production. Washington, D.C.: National Academy of Sciences. Bates, T.E., Lane, T.H. and Frank, R. 1979. How and where to use sewage sludge in crop production. In: C. P. Mitchell (ed.), Nutrient Relations in Short Rotation Forestry. Forestry Research Paper, pp. 98–128. Byrom, K.L. and Bradshaw, A.D. 2001. The potential value of sewage sludge in land reclamation. In: J. E. Hall (ed.), Alternative Uses for Sewage Sludge. Proceedings of a conference organised by WRc Medmenham and held at the University of York, UK on 5-7 September 1989, pp. 1–20. Cole, D.W., Henry, C.L., Schiess, P. and Zasoski, R.J. 1983. The role of forest in sludge and wastewater utilization programs. In: A. L. Page, T. L. Gleason III, J. E. Smith, Jr., I. K. Iskander and L. E. Sommers (eds.), Proc. of the 1983 Workshop on Utilization of Municipal Wastewater and Sludge on Land. University of California, Riverside, pp. 125–143. Das, S., Jones, N. and Islam, M.A. 1985. Research trials on Ipil ipil in Bangladesh. Banobiggyan Patrika, 14: 1–2. (in Bengali). Duke, J.A. 1981. Handbook of Legumes of World Economic Importance. Plenum Press, New York. Gardiner, D.T., Miller, R.W., Badamchian, B., Azzari, A.S. and Sisson, D.R. 1995. Effects of repeated sewage sludge application on plant accumulation of heavy metals. Agri. Ecosyst. Environ, 55: 1–6. Hossain, M.K. and Miller, H.G. 1994. Sewage sludge fertilization in forest ecosystem. The Malaysian Forester, 57–4. Hue, N.V. 1995. Sewage sludge. In: Rechcigl, J.E. (Ed.), Soil Amendments and Environmental Quality. Lewis Publishers, Boca Raton, FL, pp. 199–247.

230
Jorba, M. and Andres, P. 2000. Effects of sewage sludge on the establishment of the herbaceous ground cover after soil restoration. J. Soil Water Conserv, 3: 322–326. Khan, B.M., Mridha, M.A.U., Hossain, M.K. and Xu, H.L. 2002. Nursery practice of growth on Ipil ipil [Leucaena leucocephala (Lam) de Wit.] by using beneficial microbial inoculant (Effective Microorganisms). Nature Farming and Environment, 3(1): 15–22. Kulling, D., Stadelmann, F. and Herter, U. 2001. Sewage Sludge–Fertilizer or Waste? UKWIR Conference, Brussels. Labrecque, M., Teodorescu, T.I. and Daigle, S. 2006. Effect of wastewater sludge on growth and heavy metal bioaccumulation of two Salix species. Plant and Soil, 171(2): 303–316. Logan, T.J. and Chaney, R.L. 1983. Utilization of municipal wastewaters and sludge on land – metals. In: Proceedings of the Workshop on Utilization of Municipal Wastewater and Sludge on Land, Denver, CO, pp. 235–323. Logan, T.J. and Harrison, B.J. 1995. Physical characteristics of alkaline stabilized sewage sludge (N-vitro soil) and their effects on soil properties. J. Environ. Qual, 24: 153–164. Luna, R.K. 1996. Plantation Trees. International Book Distributors. Dehra Dun, India. 975 pp. Merzlaya, G.E., Zyabcina, G.A., Nesterovich, I.A., Fomcina, T.P. 1995. Agroecologicheskaya ocenka ispolsovaniya osagkov stochnych vod. Agrochimiya, 5: 92–96 (in Russian). Osman, K.T., Rahman, M.M. and Barua, P. 2001. Effects of some forest tree species on soil properties in Chittagong University Campus, Bangladesh. Indian Forester, 127(4): 431–442.
Journal of Forestry Research, 18(3): 226–230 (2007)
Peles, J.D., Brewer, S.R. and Barrett, G.W. 1996. Metal uptake by agricultural plant species grown in sludge-amended soil following ecosystem restoration practices. Bull. Environ. Contam. Toxicol, 57: 917–923. Ramachandran, V. and D' Soura, T.J. 1998. Plant uptake of cadmium, zinc, and manganese in soils amended with sewage sludge and city compost. Bull. Environ. Contam. Toxicol, 61: 347–354. Riha, S.J., Naylor, L. and Senesac, G.P. 1983. Hybrid poplar production using municipal sewage sludge as a fertilizer resource. New York State Energy Research and Development Activity. 11 pp. Sanchez- Monedero, M.A., Mondini, C., De Nobili, M., Leita, L., Roig, A. 2004. Land applications of biosolids. Soil response to different stabilization degree or treated organic matter. Waste Management, 24(4): 325–332. Selivanovskaya, S.Yu., Latypova, V.Z., Naumova, R.P., Ravzieva, G.M. 1997. On the possibility of involvement of microelements of sewage sludge into biogeochemical circulation. Environ. Radioecol. Appl. Ecol, 1: 13–19. Selivanovskaya, S.Yu and Latypova, V.Z. 1999. Nekotorye aspecty normirovaniya kachestva i utulizazii osadkov stochnich vod. Ecologicheskaya Chimiya, 8(2): 119–129 (in Russian). Selivanovskaya, S.Yu and Latypova, V.Z. 2006. Effects of composted sewage sludge on microbial biomass, activity and pine seedlings in nursery forest. Waste Management, 26:1253–1258. Sing, R.P. and Agrawal, M. 2007. Potential benefits and risks of land application of sewage sludge. Waste Management, In Press. Van den Berg, J.J. 1993. Effects of sewage sludge disposal. Land Degrad. Rehabil, 4: 407–413. Wu, Q.T., Hei, L., Wong, J.W., Schwartz, C. and Morel J.L. 2007. Co-cropping for phyto-separation of zinc and potassium from sewage sludge. Chemosphere, In press

Chinese Abstracts 黑曲霉对二氯甲烷提取物进行抑菌性能测试,结果表明该提 取物对黑曲霉没有抑菌能力.图4表2参29. 关键词:日本花柏;心材外缘;二氯甲烷提取物;气质联机; 抑菌. CLC number: Q946.8 Document code: A Article ID: 1007662X(2007)03-0042-08 07-03-009 ACQ 防腐剂对扭叶松蓝变部分木材力学性能的影响/江京辉 任海青 吕建雄 骆秀琴 吴玉章 (中国林业科学研究院木材工 业研究所,国家林业局木材科学与技术重点实验室,北京 100091)//Journal of Forestry Research.-2007, 18(3): 213216. 本文利用三种不同浓度 ACQ 防腐剂对扭叶松蓝变木材 进行浸注处理,其浓度分别为 1.2%,2.0%和 2.8%.研究其 抗弯弹性模量,抗弯强度,冲击韧性和顺纹剪切强度(弦面) 与未处理 蓝变木 材 相应 力学性 能 的差 异,测 试 标准参照 GB1927~1943-91.研究结果显示,经浸注处理后的试样均达 到美国 AWPA 标准 UC4A 等级规定的药剂保持量;ACQ 防 腐处理大约降低了 20%扭叶松蓝变木材的冲击韧性,与未防 腐处理试样对比,在 0.01 水平上有显著差异,但不同浓度间 差异不显著; 三种浓度 ACQ 处理间以及与未处理的扭叶松蓝 变木材的抗弯强度,抗弯弹性模量和顺纹剪切强度差异不显 著;随着 ACQ 浓度的降低,冲击韧性,抗弯强度,抗弯弹性 模量和顺纹弦面剪切强度有所增大,但影响都很小.图 4 表 10 参 6. 关键词:扭叶松,蓝变处理材,非处理材,冲击韧性,抗弯 强度,抗弯弹性模量,顺纹剪切强度(弦面) CLC number: S781.2 Document code: A Article ID: 1007662X(2007)03-0213-04 07-03-010 不同水分条件下紫藤叶片光合作用的光响应/张淑勇(中国林 业科学研究院林业研究所, 北京 100091;国家林业局林木 培育重点实验室,北京 100091),夏江宝(滨州学院黄河三角 洲生态环境研究中心,滨州 256603),周泽福(中国林业科学 研究院林业研究所, 北京 100091;国家林业局林木培育重 点实验室,北京 100091),张光灿(山东农业大学林学院,泰 安 271018 ) //Journal of Forestry Research.-2007, 18(3): 217220. 通过测定 2 年生紫藤叶片气体交换参数的光响应,确定 紫藤正常生长发育所需的土壤水分条件.结果表明:紫藤的 光合速率(Pn) ,蒸腾速率(Tr)及水分利用效率(WUE)对 土壤湿度和光照强度的变化具有明显的阈值.维持紫藤同时 具有较高 Pn 和 WUE 的土壤湿度范围, 在体积含水量 (VWC) 为 15.3%~26.5%,其中最佳土壤湿度为 23.3%.适宜的土壤 水分条件下,紫藤光饱和点在 800molm-2s-1 以上,在水分 不足(VWC 为 11.9%,8.2%)或渍水(VWC 为 26.5%)时, 光饱和点低于 400molm-2s-1.此外,光响应曲线表明,随着 光合有效辐射(PAR)增加到一特殊点,气孔限制值(Ls)和 胞间 CO2 浓度出现相反的变化趋势.这个点的光合有效辐射 称为光合作用由气孔限制转变为非气孔限制的转折点.并且 不同水分条件下的转折点各不相同,当 VWC 为 28.4%,
3
15.3% 11.9%和 8.2%, 转折点分别为 600,1000, 1000 and 400 mol.m-2.s-1.总之,紫藤通过对自身生理机能的调节,对水 分胁迫具有较高的适应能力.图 6 参 26. 关键词:净光合速率;土壤湿度;光合有效辐射;水分利用 效率;紫藤 CLC number: Q945.11 Document code: A Article ID: 1007662X(2007)03-0217-04 07-03-011 传感器数量对应力波检测原木内部缺陷精度的影响/王立海, 徐华东, 周次林, 李莉, 杨学春 (东北林业大学,哈尔滨 150040) //Journal of Foresetry Research.-2007, 18(3): 221225. 木材无损检测技术是高效利用木材的方法之一.该文阐 述了应力波法检测木材缺陷的原理,分析了传感器数量对图 像的拟合度和误差率两个指标的影响.结果表明,当原木直 径在 20~40cm 范围内时, 若需对原木缺陷进行精确测量, 要 求图像拟合度接近 90%和误差率在 0.1 左右时,至少需 12 个 传感器才能满足要求;当不需要对原木缺陷进行精确测量, 只需确定缺陷的大致位置时,宜选用 10 个传感器进行测量; 当仅仅需要判断原木是否存在缺陷时,选用 6 个传感器就能 满足要求.图 3 表 4 参 8. 关键词:传感器数量;原木缺陷检测;应力波;图像拟合度 CLC number: S 781.2 Document code: A Article ID: 1007662X(2007)03-0221-05 07-03-012
污泥对苗圃生长的银合欢幼苗发芽和初期长势的影 响/G. M. A. Iqbal, S. M. S. Huda*, M. Sujauddin and M. K.
Hossain (Institute of Forestry and Environmental Sciences, University of Chittagong, Chittagong-4331, Bangladesh)//Journal of Forestry Research.-2007, 18(3): 226230. 研究了不同类型的污泥(城市的,工业的和住宅污泥) 对苗圃生长的银合欢幼苗田间萌发,生长和分枝的影响.播 种前先将不同类型污泥的混合物与养分匮乏的自然林土壤混 合.播种的 3 和 6 月后,记录幼苗大田发芽,分枝状况和其 他物理生长参数(枝条或根长,活力指数,茎直径,叶片数, 分枝或根鲜重和干重,总的生物量干重增长)等.与对照幼 苗相比,混合污泥的土壤中生长的幼苗田间发芽,分枝状况 及其他生长参数均发生了显著变化.与其它条件生长的幼苗 相比,住宅污泥与土壤混合(1:1)条件生长的 3 月龄和 6 月龄幼苗分枝数和分枝鲜或干重均最高.就生长参数而言, 住宅污泥与自然林土壤混合(1:1)生长的幼苗长势最好. 研究表明:退化的土壤补偿以住宅污泥可促进银合欢的田间 发芽,生长以及分枝的形成.图 1 表 3 参 29. 关键词:银合欢;污泥;田间发芽;幼苗生长;分枝;活力 指数 CLC number: S718 Document code: A Article ID: 1007662X(2007)03-0226-05 07-03-013 鄂尔多斯高原油蒿灌丛群落土壤呼吸日变化和季节变化特征 /金钊(中国科学院地理科学与资源研究所,北京 100101;中

描写蝴蝶生长过程的作文7篇

描写蝴蝶生长过程的作文7篇 描写蝴蝶生长过程的作文7篇 在日常生活或是工作学习中,大家最不陌生的就是作文了吧,借助作文可以提高我们的语言组织能力。怎么写作文才能避免踩雷呢?以下是小编整理的描写蝴蝶生长过程的作文,欢迎阅读,希望大家能够喜欢。 描写蝴蝶生长过程的作文篇1一只毛毛虫,蜗行在几片树叶中间,一刻也不曾放弃努力,它以为那几片叶子就是整片天空,就是整个世界。但也就是那样的几片树叶,却总也爬不到尽头,总让它难尝成功的喜悦,直到有一天,它吐丝,它作蛹,它的心中有了一个关于变成美丽蝴蝶的梦。 在那个美丽的春天,梦成真了。 最初,它身上没有美丽蝴蝶的任何痕迹。尽管如此,它一点也没有放弃努力。它一点点挣扎,努力接受着生命中应有的暴风雨。暴风雨像个筛子,淘汰了数不清的脆弱懒惰者,却留下了像这只蝴蝶一样的勇敢者。它一次又一次努力,挣脱了,它终于挣脱了茧得束缚!它掉到了另一片树叶上。这时,它惊奇地发现,眼前是又一个繁荣似锦的地方。它开始

向前飞去,可是,刚要动一下,整个身体便从树叶上滑落,重重地摔在了地上,它好像很疼,它想要打消起飞的念头,经过好长时间的努力,它没有动一下。突然,它积蓄力量,一下子跳了起来,迎接它的是又一次摔落,但这一次它没有犹豫,马上煽动羽翼,终于一点点飞了起来,它惊喜地颤栗。它继续努力,不用说,接下来是它的第三次摔落,可是第四次起飞又开始了,好像比前几次稳了些,没有摔倒。成功了,终于成功了!一阵微风吹过。花儿、草儿,颤抖了一下,它也跟着花儿、草儿有节奏地倾斜,而后终于稳住,它一直向前不停地迎着蓝天飞去…… 又是那个美丽的春天,一只斑斓的蝴蝶在绕着一片树叶,翩翩于万木花草之间,上下翻飞于丽日之下。百花吐露芬芳,万物尽显生机,缤纷盛宴正等待它来分享。原来这就是传说中最美的春天,这就是它梦想中自由的飞翔…… 描写蝴蝶生长过程的作文篇2一只小小的蝴蝶是怎样变成得?这是在一个秋天,一群小动物从家里出来找食物,准备过冬。 一只让人瞧不起的毛毛虫,从家里慢慢悠悠地爬出来找吃的,一只小熊看见它说:“这只丑陋无比的小东,西真是让人瞧不起,怪不得让人们说你是只害虫呢!”毛毛虫不服气的说:“你别看我现在丑陋无比,以后我比你美丽多了!几个月后,毛毛虫变成了一只美丽无比的蝴蝶,小动物惊讶的说:”

描写蝴蝶生长过程的作文

描写蝴蝶生长过程的作文 导读:在日常生活或是工作学习中,大家最不陌生的就是作文了吧,借助作文可以提高我们的语言组织能力。怎么写作文才能避免踩雷呢?以下是小编整理的描写蝴蝶生长过程的作文,欢迎阅读,希望大家能够喜欢。 描写蝴蝶生长过程的作文篇1 一只毛毛虫,蜗行在几片树叶中间,一刻也不曾放弃努力,它以为那几片叶子就是整片天空,就是整个世界。但也就是那样的几片树叶,却总也爬不到尽头,总让它难尝成功的喜悦,直到有一天,它吐丝,它作蛹,它的心中有了一个关于变成美丽蝴蝶的梦。 在那个美丽的春天,梦成真了。 最初,它身上没有美丽蝴蝶的任何痕迹。尽管如此,它一点也没有放弃努力。它一点点挣扎,努力接受着生命中应有的暴风雨。暴风雨像个筛子,淘汰了数不清的脆弱懒惰者,却留下了像这只蝴蝶一样的勇敢者。它一次又一次努力,挣脱了,它终于挣脱了茧得束缚!它掉到了另一片树叶上。这时,它惊奇地发现,眼前是又一个繁荣似锦的地方。它开始向前飞去,可是,刚要动一下,整个身体便从树叶上滑落,重重地摔在了地上,它好像很疼,它想要打消起飞的念头,经过好长时间的努力,它没有动一下。突然,它积蓄力量,一下子跳了起来,迎接它的是又一次摔落,但这一次它没有犹豫,马上煽动羽翼,终于一点点飞了起来,它惊喜地颤栗。它继续努力,不用说,接下来是它的第三次摔落,可是第四次起飞又开始了,好像比前几次稳了些,没有摔倒。成功了,终于成功了!一阵微风吹过。花儿、草儿,颤抖了一下,它也跟着花儿、草儿有节奏地倾斜,而后终于稳住,它一直向前不停地迎着蓝天飞去…… 又是那个美丽的春天,一只斑斓的蝴蝶在绕着一片树叶,翩翩于万木花草之

间,上下翻飞于丽日之下。百花吐露芬芳,万物尽显生机,缤纷盛宴正等待它来分享。原来这就是传说中最美的春天,这就是它梦想中自由的飞翔…… 描写蝴蝶生长过程的作文篇 2 一只小小的蝴蝶是怎样变成得?这是在一个秋天,一群小动物从家里出来找食物,准备过冬。 一只让人瞧不起的毛毛虫,从家里慢慢悠悠地爬出来找吃的,一只小熊看见它说:“这只丑陋无比的小东,西真是让人瞧不起,怪不得让人们说你是只害虫呢!”毛毛虫不服气的说:“你别看我现在丑陋无比,以后我比你美丽多了!几个月后,毛毛虫变成了一只美丽无比的蝴蝶,小动物惊讶的说:”哇——好美丽。” 小熊害羞的说:“对不起以前我说过你,你可以原谅我吗?”蝴蝶高兴地说:“可以!”从此以后他们两个有成了好朋友! 描写蝴蝶生长过程的作文篇3 在千万只的虫卵中,我睁开了我睡意惺忪的双眼,来到了这个世界。 在我睁开双眼的那一刻,似乎也有一种意识进入了我的脑海中,“新生的虫子,你要奋斗,要变成一只真正的蝴蝶!” 随着万千虫子的出生,使我们组成了一个大家庭。每个成员都有着自己的工作。我,是一个食物运输工。 春天,就是我们出生的季节。这时的我,已经胜任了这份工作,晴天,我到果树上寻找香甜的花蕊,先是大饱口福,然后满头大汗的搂着一束束的花蕊回到家中,让大家分享我辛劳的成果。雨天,我带领大家,去蔬菜地里寻找最新鲜的蔬菜叶,和同伴每一天都过得和和美美、快快乐乐。 转眼已到了夏天。夏天,我即将由平凡的小虫变为美丽的蝴蝶,在花丛中翩翩起舞;夏天,也是果实丰收的`季节。因此,我理所当然的从运输工的职位上

(完整版)微积分术语中英文对照

微积分术语中英文对照 A、B: Absolute convergence :绝对收敛 Absolute extreme values :绝对极值 Absolute maximum and minimum :绝对极大与极小Absolute value :绝对值 Absolute value function :绝对值函数Acceleration :加速度 Antiderivative :原函数,反导数 Approximate integration :近似积分(法) Approximation :逼近法 by differentials :用微分逼近 linear :线性逼近法 by Simpson’s Rule :Simpson法则逼近法 by the Trapezoidal Rule :梯形法则逼近法Arbitrary constant :任意常数 Arc length :弧长 Area :面积 under a curve :曲线下方之面积 between curves :曲线间之面积 in polar coordinates :极坐标表示之面积 of a sector of a circle :扇形之面积 of a surface of a revolution :旋转曲面之面积Asymptote :渐近线 horizontal :水平渐近线 slant :斜渐近线 vertical :垂直渐近线 Average speed :平均速率 Average velocity :平均速度 Axes, coordinate :坐标轴 Axes of ellipse :椭圆之对称轴 Binomial series :二项式级数 Binomial theorem:二项式定理 C: Calculus :微积分 differential :微分学 integral :积分学 Cartesian coordinates :笛卡儿坐标一般指直角坐标Cartesian coordinates system :笛卡儿坐标系Cauch’s Mean Value Theorem :柯西中值定理Chain Rule :链式法则 Circle :圆 Circular cylinder :圆柱体,圆筒 Closed interval :闭区间 Coefficient :系数 Composition of function :复合函数 Compound interest :复利 Concavity :凹性 Conchoid :蚌线 Conditionally convergent:条件收敛 Cone :圆锥 Constant function :常数函数 Constant of integration :积分常数 Continuity :连续性 at a point :在一点处之连续性 of a function :函数之连续性 on an interval :在区间之连续性 from the left :左连续 from the right :右连续 Continuous function :连续函数 Convergence :收敛 interval of :收敛区间 radius of :收敛半径 Convergent sequence :收敛数列 series :收敛级数 Coordinates:坐标 Cartesian :笛卡儿坐标 cylindrical :柱面坐标 polar :极坐标 rectangular :直角坐标 spherical :球面坐标 Coordinate axes :坐标轴 Coordinate planes :坐标平面 Cosine function :余弦函数 Critical point :临界点 Cubic function :三次函数 Curve :曲线 Cylinder:圆筒, 圆柱体, 柱面 Cylindrical Coordinates :圆柱坐标 D: Decreasing function :递减函数 Decreasing sequence :递减数列 Definite integral :定积分 Degree of a polynomial :多项式之次数 Density :密度 Derivative :导数 of a composite function :复合函数之导数 of a constant function :常数函数之导数directional :方向导数 domain of :导数之定义域 of exponential function :指数函数之导数higher :高阶导数 partial :偏导数 of a power function :幂函数之导数 of a power series :羃级数之导数 of a product :积之导数 of a quotient :商之导数 as a rate of change :导数当作变化率 right-hand :右导数 second :二阶导数 as the slope of a tangent :导数看成切线之斜率Determinant :行列式 Differentiable function :可导函数 Differential :微分 Differential equation :微分方程 partial :偏微分方程 Differentiation :求导法 implicit :隐求导法 partial :偏微分法 term by term :逐项求导法 Directional derivatives :方向导数Discontinuity :不连续性

蝴蝶的生长发育过程

蝴蝶的生长发育过程 对于蝴蝶的生长发育,喜欢蝴蝶的朋友都会有一些好奇吧?下面我来告诉大家蝴蝶生长发育的4个过程. 蝴蝶的一生要经过卵、幼虫、蛹和成虫4个发育阶段。人们在野外看到的蝴蝶,大多是它们的成虫。这4个发育阶段的外部形态毫无共同之点。人们一般很难想象美丽的蝴蝶是由丑陋甚至可怕的毛毛虫变来的。在生物学上,蝴蝶是属于完全变态的昆虫。蝴蝶由卵到成虫,经过四个明显不同的发育阶段,这四个阶段依次循环,周而复始,形成一圈,称为世代,也就是蝴蝶的生活史 蝴蝶完成一个世代所需时间有长有短,短的仅20多天,如菜粉蝶;长的近3年,如东北亚绢蝶。在1年之间,世代数的多少因种类而有不同。1年有1世代的,如中华虎凤蝶;也有1年多世代的,菜粉蝶多时1年达10代左右。同一种类,又因各地气候差异,年发生代数也不同,如菜粉蝶,在华北1年发生3~4代,浙江8~9代,可超过10代。即使同一种类在同一地点,也会因年气温高低,发生代数有所变化. 在一个世代内,蝴蝶各发育阶段又有什么特征呢?

(1)卵 蝶卵是蝴蝶发育的第一阶段。它的形状常因虫种不同而大有差异,有圆球形、馒头形、梨形、纺锤形等。颜色有红、白、橙、绿等,随着发育,颜色加深。卵的表面有的很光滑,有的十分粗糙,还有的具各种花纹。? (2)幼虫 幼虫咬破卵壳而外出称为孵化。刚孵化的幼虫为1龄。蝴蝶幼虫绝大多数以吃植物的茎、叶、花、果等为生,它的口器是咀嚼式。象家蚕一样,蝴蝶幼虫在生长过程中要蜕皮,生长到一定时期,就要静止蜕皮。每脱一次皮,就增加1龄,蝴蝶幼虫一般要脱3~6次皮,才能变成老熟幼虫。幼虫的大小、体色、斑纹随龄期增加会有所变化。幼虫生长发育到成熟阶段,就停止取食,选择适当场所,准备化蛹。? (3)蛹 多数蝶幼虫老熟后,在寄主植物或其它物体上先吐丝成垫,用腹末的足钩钩在上面,然后吐丝把胸部和植物围绕起来,象电工在电线杆上操作时,腰部和线杆用安全带固定牢,接着脱掉最后一层皮,形成缢

蝴蝶的生长过程(外国实施计划范例)

时间表 Two Months Before 两个月前 Submit purchase order for chick eggs and caterpillars 投寄鸡蛋或毛毛虫的订单 Determine location for obtaining tadpoles 确定可找到蝌蚪的地方 Call Fish and Game for speaker on frog species in our area One Month Before 一个月前 Order chick eggs and Caterpillars 订购鸡蛋或毛毛虫 Determine location for obtaining tadpoles 确定可找到蝌蚪的地方 Send home to parents a unit summary and supply needs list 送给学生父母一个本项目的说明摘要和所需品清单 Solicit parent volunteers 征求父母自愿者 Sign up for computer lab, incubators, projector, and digital camera 确定计算机房,孵卵器,幻灯机和数码相机等设备 Locate homes or farms for chicks after the unit 找好放置小鸡的家或农场 2 Weeks Before Check computer lab to be sure all software is available and working, and that file server is set up for our project 检查计算机设备,确定本项目所用软件有效,运行正常 Copy handouts: vocabulary, worksheets, planning sheets, etc. 复印传单:词汇表,工作表,计划等。 Check materials for each group: 检查各小组的材料: Group 1. an incubator, thermometer, thermostat two dozen fertile chicken eggs 一组:孵卵器,温度计,自动调温器两打鸡蛋。 Group 2. a fish tank, pond water, tadpoles from local creek 二组:一个鱼缸,池水,及从当地小溪得到的小蝌蚪 Group 3. an enclosed clear container with air holes, caterpillars purchased from Insect Lore 三组:一个洁净有孔的容器,购买毛毛虫 A Life Science Journal for each group 每小组一本相关生命科学杂志 1 Week Before

蝴蝶的成长变化

蝴蝶的成长变化 蝴蝶是一种「完全变态」的昆虫,也就是要经过卵-幼虫-蛹-成虫等四个阶段。每一个阶段里,虫的体内都会产生巨大的变化。 1. 卵:蝴蝶每次产卵可以多达数十至数百粒,因种类而有所差别。母蝶会将卵产在幼虫赖以维生的食草植物上,免除它孵化出来时寻找食物的困扰。卵的颜色和形状会随种类不同而有所差异,形状有圆形、椭圆形、酒杯形…等等。颜色大多为白、黄、绿…等等,表面光滑,有的还具有各式各样的花纹。卵的外壳对於这个时期的蝴蝶幼虫具有绝对的保护作用,使里面的小生命能安心的成长。 2. 幼虫:当卵内的胚胎形成幼虫之后,幼虫会咬开卵壳爬出,第一顿大餐就是卵壳,当它把卵壳吃掉之后,就开始吃它的食草

植物,幼虫时期是蝴蝶主要的觅食阶段,不停的吃、长大、脱皮。幼虫刚孵化出来称为「初龄幼虫」,而后每脱一次皮就多增加一龄,每次脱皮前不动称为「眠」,在成长过程中将会经过4~6次的脱皮,最后成为「终龄幼虫」,这时候它会去寻找适当地方开始分泌胶质包裹身体,并且逐渐形成蛹的形状,而整个化蛹的过程大概要花上一天的时间。 3. 蛹:蝴蝶的蛹虽然看起来一动也不动,其实在它体内正在进行大变化。一方面必须破坏幼虫时期的身体构造,另一方面又要创造组合蝴蝶成虫美丽的身躯,这种破坏又建设的行为实在太不可思议了,令人不禁要赞叹生命的奥秘。蛹依照生长方式可以分成三种型式: (1) 垂蛹:蛹头朝上,蛹中央以丝环绕并绑於树枝上。 (2) 挂蛹:蛹尾朝上,丝在尾端,将蛹倒挂於枝条上。 (3) 包蛹:以丝包裹身体,而后藏於花、果中。蛹多具有保护色或拟态,而且都附著在隐蔽处,以防敌人发现。 4. 成虫:蛹在经过了一段时间之后,成虫会努力从蛹挣脱出来,这个过程我们称之为「羽化」,刚羽化的蝴蝶,爬出蛹壳后,蝴蝶身体内的液体会由肌肉挤压,经过翅膀送到翅内撑开皱皱翅膀,然后由腹部排出这些液体,这时翅膀也愈合了,等翅膀乾燥之后,蝴蝶就可以展翅高飞了。

蝴蝶作文之毛毛虫变蝴蝶的过程作文

蝴蝶作文之毛毛虫变蝴蝶的过程作文

毛毛虫变蝴蝶的过程作文 【篇一:毛毛虫变蝴蝶教案】 中班科学教案《毛毛虫变蝴蝶》 设计意图: 在日常生活中,当孩子看到毛毛虫的时候,会表现出好奇、害怕等各种各样的反应,然而多数幼儿并不知道毛毛虫最终会变成美丽的蝴蝶,在《指南》中曾指出幼儿的生活经验应在轻松愉快的环境中习得,提倡在玩中学、学中玩。于是我结合主题设计了本次活动,想通过本节活动,帮助中班幼儿感知毛毛虫蜕变成蝴蝶的过程。 教学目标: 1、进一步了解毛毛虫变蝴蝶的转变过程,丰富知识经验。 2、尝试用肢体语言来表达转变的过程。 3、体验模仿的喜悦,激发表现的欲望。 教学准备: 1、图片 2、音乐《化蝶飞》《轻音乐》 3、谜语 4、字卡(毛毛虫、蝴蝶、虫蛹、虫卵)图片 5、(毛毛虫、蝴蝶、虫蛹、虫卵)生活中的实物照片4张。 教学过程: 一、开始部分

谜语导入: 教师:头上两根须,身穿花彩衣,飞在花丛中,快乐又自在。 教师:那现在小朋友来看看是什么?教师展示第一幅画,(蝴蝶) 小结:蝴蝶宝宝是一种昆虫,他喜欢花粉的味道,喜欢在花丛中自由自在的飞舞。哪你们知道蝴蝶宝宝小时候是什么样子的吗?谁来说一说,请个别幼儿。 二、基本部分 (一)故事进入主题 宝宝小时候到底是什么样子。要仔细地听,老师一会有问题要问小朋友。 教师:讲述故事 总结:蝴蝶宝宝小时候是毛毛虫,它经过不同时期的变化,变成了漂亮的蝴蝶,在花丛中自由自在的飞舞。 (二)幼儿和教师一起观察变化的过程 教师:现在我们班小朋友知道蝴蝶宝宝小时候是什么样子了吗?我们一起来看一看,蝴蝶宝宝是怎样长大的,从图一到图四,出示字卡,老师手里还有生活当中他们的图片,小朋友想不想看,然后教师把对应的图片贴上,让幼儿仔细观察。 总结:虫卵—毛毛虫—虫蛹—蝴蝶 三、操作部分 (一)通过肢体来模仿变化过程 教师:好,现在我们都知道了蝴蝶宝宝是怎样长大的了,那我们一起来学蝴蝶宝宝一样,从虫卵开始一步=步的长大,长成神奇的蝴蝶宝宝,好不好?

微分方程模型

数学建模学习辅导 第三章 微分方程模型 本章重点: 车间空气清洁问题、减肥问题、单种群增长问题与多物种相互作用问题等数学模型的建立过程与所使用的方法 复习要求: 1.进一步理解建模基本方法与基本建模过程,掌握平衡原理与微元法在建模中的用法. 所谓平衡原理是指自然界的任何物质在其变化的过程中一定受到某种平衡关系的支配.注意发掘实际问题中的平衡原理是从物质运动机理的角度组建数学模型的一个关键问题.就象中学的数学应用题中等量关系的发现是建立方程的关键一样. 微元法是指在组建对象随着时间或空间连续变化的动态模型时,经常考虑它在时间或空间的微小单元变化情况,这是因为在这些微元上的平衡关系比较简单,而且容易使用微分学的手段进行处理.这类模型基本上是以微分方程的形式给出的. 例1 设警方对司机饮酒后驾车时血液中酒精含量的规定为不超过80%(mg/ml). 现有一起交通事故,在事故发生3个小时后,测得司机血液中酒精含量是56%(mg/ml), 又过两个小时后, 测得其酒精含量降为40%(mg/ml),试判断: 事故发生时,司机是否违反了酒精含量的规定? 解:模型建立 设)(t x 为时刻t 的血液中酒精的浓度, 则依平衡原理时间间隔],[t t t ?+内, 酒精浓度的改变量 t t x x ??∝?)(, 即 t t kx t x t t x ?-=-?+)()()( 其中k >0为比例常数, 式前负号表示浓度随时间的推移是递减的, 遍除以t ?, 并令0→?t , 则得到 ,d d kx t x -= 且满足40)5(,56)3(==x x 以及0)0(x x =. 模型求解 容易求得通解为kt c t x -=e )(, 代入0)0(x x =,得到 kt x t x -=e )(0 则)0(0x x =为所求. 又由,40)5(,56)3(==x x 代入0)0(x x =可得 17.04056e 40e 56e 25030=?=????==--k x x k k k 将17.0=k 代入得 25.93e 5656e 17.03017 .030≈?=?=??-x x >80

(完整版)常微分方程习题及解答

常微分方程习题及解答 一、问答题: 1.常微分方程和偏微分方程有什么区别?微分方程的通解是什么含义? 答:微分方程就是联系着自变量,未知函数及其导数的关系式。常微分方程,自变量的个数只有一个。偏微分方程,自变量的个数为两个或两个以上。常微分方程解的表达式中,可能包含一个或几个任意常数,若其所包含的独立的任意常数的个数恰好与该方程的阶数相同,这样的解为该微分方程的通解。 2.举例阐述常数变易法的基本思想。 答:常数变易法用来求线性非齐次方程的通解,是将线性齐次方程通解中的任意常数变易为待定函数来求线性非齐次方程的通解。 例:求 ()()dy P x y Q x dx =+的通解。 首先利用变量分离法可求得其对应的线性齐次方程的通解为()P x dx y c ?=l ,然后将 常数c 变易为x 的待定函数()c x ,令()()P x dx y c x ? =l ,微分之,得到 ()()()()()P x dx P x dx dy dc x c x P x dx dx ?? =+l l ,将上述两式代入方程中,得到 ()()()()()()()()() P x dx P x dx P x dx dc x c x P x dx c x P x Q x ??+?=+l l l 即 ()() ()P x dx dc x Q x dx -? =l 积分后得到()()()P x dx c x Q x dx c -?=+? %l 进而得到方程的通解 ()()(()) P x dx P x dx y Q x dx c -? ?=+?%l l 3.高阶线性微分方程和线性方程组之间的联系如何? 答:n 阶线性微分方程的初值问题 ()(1) 11(1) 01020()...()()()(),(),....()n n n n n n x a t x a t x a t x f t x t x t x t ηηη---'?++++=??'===?? 其中12()(),...(),()n a t a t a t f t ,是区间a t b ≤≤上的已知连续函数,[]0,t a b ∈, 12,,...,n ηηη是已知常数。它可以化为线性微分方程组的初值问题

微积分术语中英文对照

微积分术语 中英文对照A、B: Absolute convergence: 绝对收敛 Absolute extreme values: 绝对极值 Absolute maximum and minimum: 绝对极大与极小 Absolute value: 绝对值 Absolute value function: 绝对值函数 Acceleration: 加速度 Antiderivative :原函数,反导数 Approximate integration :近似积分(法) Approximation :逼近法 by differentials :

用微分逼近 linear: 线性逼近法 by Simpson ' s R:ule Simp son法则逼近法by the Trapezoidal Rule: 梯形法则逼近法 Arbitrary constant :任意常数Arc length: 弧长 Area: 面积 under a curve: 曲线下方之面积 between curves: 曲线间之面积 in polar coordinates: 极坐标表示之面积 of a sector of a circle: 扇形之面积 of a surface of a revolution:

旋转曲面之面积Asymptote: 渐近线 horizontal :水平渐近线slant: 斜渐近线 vertical: 垂直渐近线 Average speed: 平均速率 Average velocity: 平均速度 Axes, coordinate: 坐标轴 Axes of ellipse: 椭圆之对称轴 Binomial series: 二项式级数 Binomial theorem : 二项式定理

微分方程ODEs解算器Initial-value Problem for ODEs Solver(English)

Initial-value Problem for ODEs Solver 1.First,let we see the initial-value problem for ODEs(ordinary differential equations) solver : [T,Y,TE,YE,IE]=odesolver(odefun,tspan,y0,options) Sxint=deval(sol,xint) Matlab supplies the following solver: solver Type of problem degree of accuracy illustrate ode45 nonstiff medium The best single step method,basing on Dormand- Prince 4-5runge-kutta,usually the acquiescent algorithm and the first choice. ode23 nonstiff low Basing on Bogacki-Shampine Runge-kutta method of order two or three,occasionally it can get the better result than ode45 to solve the low-stiff equation,to arrive the same degree of accuracy it required the smaller step length than ode45. ode113 nonstiff From low to high Disorder multistep Adams-Bashforth-Moutlon algorithm,this algorithm using the several previous value of nodal points to calculate the current value of nodal point,so in the same degree of accuracy,it is faster than ode45 and ode23 and it’s appropriate for higher order or complex operation problem,but unsuitalbe for discontinuous system. ode15s nonstiff From low to medium The disorder multistep method of solving stiff system,this algorithm using the newest numerical difference formula.If using ode45 to calculate is too slow,you can try it. ode23s stiff low The fixed order single step method of solving stiff system,because it is the single step method ,sometimes it is quicker than ode15s,but which one is better lies on specific problem and that need us to test. ode23t medium stiff low ode23tb stiff low The input parameter: odefun:differential equation’s Matlab language describing function,must be function sentence or alphabetic string,must writing in Matlab normative form(that is first order explicit differential equations)

蝴蝶成长的过程作文

蝴蝶成长的过程作文 本文是关于蝴蝶的话题作文,仅供大家参考! 有一天,我在学校蝴蝶园看见了许许多多的中华虎凤蝶,我轻轻地翻开一片绿油油的杜衡叶子,发现下面有好多这样的卵。它看起来十分好看,是玉石般的翠绿色,晶莹剔透,很小很小,直径大约是1毫米。看着这些可爱的卵,我不禁点起数来“1、2、3、4、5……”数也数不清,这些小卵真是有趣极了!这天,晴空万里,空气清新,我又来到蝴蝶园观察那些中华虎凤蝶的卵。我发现它们变成了黄绿色。在阳光下,它们一闪一闪的,像一颗颗美丽的珍珠。忽然,我在一片叶子下面发现了一颗银白色卵,它美丽如银。可它的颜色怎么和别的卵不一样呢?难道是另外的蝴蝶把卵产错了地方?还是蝴蝶妈妈心情特别好,产了一颗漂亮的卵呢?一串串的问号在我的脑海中浮现,于是我去问老师,那颗特别的卵到底是怎么回事?我本以为老师会说,这颗卵孵化出的幼虫比别的更可爱,幼虫变成的蝴蝶也更美丽。可我万万没想到的是,老师的回答出乎我的意料:“这颗卵里面没有幼虫,它是一颗没又受精的卵”。我听了大吃一惊,这么美丽的卵怎么不能孵化出可爱的小幼虫呢?我真为这颗卵感到惋惜。 过了不久,我又来到了蝴蝶园,发现好多黑黑的小幼虫。记得前几天它们还是一颗颗圆圆的小卵,它们成长的速度真快呀!但是从卵里爬出的幼虫一点也不可爱,它们的身子黑乎乎的,身上毛茸茸,大约3毫米长,丑极了。可不管长得怎么样,我还是希望它们能早一点

变成美丽的蝴蝶。 接着过了几天,我再次来到蝴蝶园,发现之前的那些黑黑的小东西长大了一点,有5毫米了,身上都是细毛,细毛外面还有好多长点的白毛。别看它们小,吃的叶子却不少,才那么几天,它们竟然把好几片叶子全吃完了,真厉害! 大约过了五、六天,我又来到蝴蝶园观察,看见那些叶片上有一些黑色的皮,并惊奇地发现小幼虫长大了许多。这是怎么回事呢?原来那是这些幼虫蜕皮了。 蝴蝶幼虫要从1龄长到5龄,一共要蜕四次皮,现在这些幼虫已经是2龄虫了。 它们幼虫期还有好多天,我要继续认真观察。我希望这些小丑丑健康成长,最后成为美丽的蝴蝶。 感谢阅读,希望能帮助您!

倒向随机微分方程弱解英文翻译

应用统计概率 第十八卷 第二期 2002年5月 、 倒向随机微分方程弱解 林清泉 ( 中国人民大学财政金融学院,北京,100872) 在这篇文章中我们引入倒向随机微分方程弱解的概念: ??-+=s s t t d ),,(Yt W Z ds Z Y s g T s s T ξ (0.1) 通过GIRSANOV 变换,建立了对随机微分方程弱解存在的等价性 (0.1),和方程: ??-Φ++=s s t t d ]),,([Yt W Z ds Z Z Y s g T s s s s T ξ (0.2) 结果在[3]是这个结论的推论,由此得到倒向随机微分方程弱解存在的几个充分条件。 关键词:倒向随机微分方程;弱解;鞅;GIRSANOV 变换 AMS 主题分类:60H15,60H20,60H10. § 1. 背景介绍 选择合适的空间P)F,,(Ω,t W 是布朗运动,t F 是由t W 满足通常的条件产生的自然过滤.一个随机过程t Y 被称为适应过滤t F (0t ≥),则称t Y 是t F 可测. 例如经典的Ito^的SDE 模型: T t 0dW Yt t dt Yt t b dYt t ≤≤+=,),(),(σ (1.3) 初始条件为00y Y =(0y 是t F 可测)。解决SDE (1.3)的方法有两种不同的 意义: 1.强解:给了一个可行空间P)F,,(Ω, 一个过滤的t F ,一个t F -布朗运动t W 和系数σ,b ,我们要寻找合适的t F 去满足程序t Y 带入(1.3)。 2.弱解:给定系数σ,b ,我们需要拟定P)F,,(Ω,t W ,t Y 来满足方程(1.3)。这是一个等效的解决方法去解决Stroock&Varadhan[1]提出的鞅问题。在一些情况下通过漂移变换,可以改变基本概率测度和减少(1.3)下b=0的情况。 应此,给出的经典lipschitz 条件可以放宽。 最近,注意到与终端的条件求解Ito^型是非常重要的学习(例如,去寻找一 个合适的解决方案在给定ξ=t Y 当),L 2 P F T ,(Ω∈ξ等诸多问题的随机控制,最优投资策略,随机微分效用和递归函数等。由于Ito^ SDE 与终端的条件

蝴蝶发育过程观察日记

蝴蝶发育过程观察日记 篇一 蛹:幼虫成熟后要变成蛹,幼虫一般在植物叶子背面隐蔽的地方,用几条丝将自己固 定住,之后直接化蛹,无茧。 2020年11月13日星期一晴 星期天上午,我们抓来了一条胖青虫。它全身碧绿,简直绿得有点透明。我们把它养 在瓶子里,我还扔了青菜进去。 星期一,我的青虫缩短了。 今天晚上,我们抖抖瓶子,青虫的头也跟着在抖。 2020年11月14日星期二晴 今天早上,我一起床,发现绿豆结的小水珠没有了,但是还有一两颗绿豆还结着两三 颗小水珠,而且有一些绿豆长出了小嫩芽,还把那层绿色的皮给裂开了一道口子。我觉得 这些绿豆长的可真快呀! 今天一到公司,奕潞在QQ上问我,你在办公室吗?我说在。不一会儿,她就提着一只 塑料盒子过来了。装着两枚蝴蝶的蛹。她说,看到我喜欢蝴蝶就送给我。蝴蝶的蛹本来是 绿色的,像玉一样。她给我的时候已经变成了黑色,可以看见白色的斑点。 你会写植物的观察日记吗,以下由为大家提供的“绿豆发芽植物观察日记”,供大家 参考借鉴,希望可以帮助到大家。 刚放假,爸爸就带我去了横店影视城,我们游玩了江南水乡,明清宫苑,清明上河图 等景点,我还穿上小格格的服饰拍了照,这儿别有一番农村风味和山城气息呢,游完了影 视城,我真正体会到了祖国大好河山的壮丽。7月13日至15日,我去参加了“勇敢者夏 令营”,这次夏令营不仅让我增长了知识,锻炼了胆量,更是让我学会了自己照顾自己, 懂得了如何跟同学们相处融洽,配合默契。8月中旬,我又到四明山森林公园观光了一番,领略了青山绿水的风光,享受了秋天般的凉爽。 今天晚上,我发现青虫已经长了角,把自己裹了起来。它尾巴下面还挂了自己蜕下的皮,皮已经缩得很小很小。 2020年11月15日星期三晴 胖青虫把自己裹起来后,颜色变得很淡很淡。

微积分常用英文词汇

V、X、Z: Value of function :函数值 Variable :变数 Vector :向量 Velocity :速度 Vertical asymptote :垂直渐近线 Volume :体积 X-axis :x轴 x-coordinate :x坐标 x-intercept :x截距 Zero vector :函数的零点 Zeros of a polynomial :多项式的零点 T: Tangent function :正切函数 Tangent line :切线 Tangent plane :切平面 Tangent vector :切向量 Total differential :全微分 Trigonometric function :三角函数 Trigonometric integrals :三角积分 Trigonometric substitutions :三角代换法 Tripe integrals :三重积分 S: Saddle point :鞍点 Scalar :纯量 Secant line :割线 Second derivative :二阶导数 Second Derivative Test :二阶导数试验法Second partial derivative :二阶偏导数 Sector :扇形 Sequence :数列 Series :级数 Set :集合 Shell method :剥壳法 Sine function :正弦函数 Singularity :奇点 Slant asymptote :斜渐近线 Slope :斜率 Slope-intercept equation of a line :直线的斜截式Smooth curve :平滑曲线

微分方程英文论文和翻译

Differential Calculus Newton and Leibniz,quite independently of one another,were largely responsible for developing the ideas of integral calculus to the point where hitherto insurmountable problems could be solved by more or less routine methods.The successful accomplishments of these men were primarily due to the fact that they were able to fuse together the integral calculus with the second main branch of calculus,differential calculus. In this article, we establish a result about controllability to the following class of partial neutral functional di ?erential equations with in?nite delay: 0,) ,()(0≥?? ???∈=++=?? t x xt t F t Cu ADxt Dxt t βφ (1) where the state variable (.)x takes values in a Banach space ).,(E and the control (.)u is given in []0),,,0(2>T U T L ,the Banach space of admissible control functions with U a Banach space. C is a bounded linear operator from U into E, A : D(A) ? E → E is a linear operator on E, B is the phase space of functions mapping (?∞, 0] into E, which will be speci?ed later, D is a bounded linear operator from B into E de?ned by B D D ∈-=????,)0(0 0D is a bounded linear operator from B into E and for each x : (?∞, T ] → E, T > 0, and t ∈ [0, T ], xt represents, as usual, the mapping from (?∞, 0] into E de?ned by ]0,(),()(-∞∈+=θθθt x xt F is an E-valued nonlinear continuous mapping on B ??+. The problem of controllability of linear and nonlinear systems represented by ODE in ?nit dimensional space was extensively studied. Many authors extended the controllability concept to in?nite dimensional systems in Banach space with unbounded operators. Up to now, there are a lot of works on this topic, see, for example, [4, 7, 10, 21]. There are many systems that can be written as abstract neutral evolution equations with in?nite delay to study [23]. In recent years, the theory of neutral functional di ?erential equations with in?nite delay in in?nite . dimension was developed an d it is still a ?eld of research (see, for instance, [2, 9, 14, 15] and the references therein). Meanwhile, the controllability problem of such systems was also discussed by many mathematicians, see, for example, [5, 8]. The objective of this article is to discuss the controllability for Eq. (1), where the linear part is supposed to be non-densely de?ned but satis?es the resolvent estimates of the Hille-Yosida theorem. We shall assume conditions that assure global existence and give the su ?cient conditions for controllability of some partial neutral functional di ?erential equations with in?nite delay. The results are obtained using the integrated semigroups theory and Banach ?xed point theorem. Besides, we make use of the notion of integral solution and we do not use the analytic semigroups theory. Treating equations with in?nite delay such as Eq. (1), we need to introduce the phase space B. To avoid repetitions and understand the interesting properties of the phase space, suppose that ).,(B B is a (semi)normed abstract linear space of functions mapping (?∞, 0] into E, and satis?es the following fundamental axioms that were ?rst introduced in [13] and widely discussed in [16]. (A) There exist a positive constant H and functions K(.), M(.):+ +?→?,with K continuous and M locally bounded, such that, for any ?∈σand 0>a ,if x : (?∞, σ + a] → E, B x ∈σ and (.)x is continuous on [σ, σ+a], then, for every t in [σ, σ+a ], the following conditions hold: (i) B xt ∈. (ii) B t x H t x ≤)(,which is equivalent to B H ??≤)0(or every B ∈?.

相关文档
相关文档 最新文档