文档库 最新最全的文档下载
当前位置:文档库 › 弹塑性力学课程论文

弹塑性力学课程论文

弹塑性力学课程论文
弹塑性力学课程论文

土的本构关系模型现状与趋势的研究

摘要: 概述了土的本构关系的重要性以及发展现状, 介绍了其包括的理论模型,综合分析了土的本构模型的研究现状,讨论了经典模型的建立依据和适用条件,并对土的本构模型研究发展趋势进行了评述与展望。

关键词: 土;土力学;土的本构模型;现状与趋势

The Study Status and Prospect for the Constitutive Model of Soil Abstract: The soil mechanics was began in 1925 when Terzaghi firstly wrote the book of SOIL MECHANICS.Then the subject was developed quickly and established system- atically. It has been a significant knowledge for guiding many geotechnical engineer- ing construction in the past 80 years. The constitutive models of so il is the most basic, important and key part in the theory of soil mechanics. Building these co- nstitutive models correctly and using themproperly are significant for improving and calculating geotechnical engineering.The study status and applications of the con- stitutive models were discussed in the paper.Furthermore the development tendency of geotechnical engineering in the 21st century was analyzed and predicted in the end.

Key words: soil ; soil mechanics ; the constitutive model of soil ; study status and prospect

1 土的本构关系的概述

广义的说, 本构关系是指自然界的作用与由该作用产生的效应之间的关系。几十年来, 各国学者已经发展了数百个本构模型, 取得了丰硕的研究成果。土体是天然地质材料的历史产物。土是一种复杂的多孔材料,在受到外界荷载作用后,其变形具有以下特性[1,2];①土体的变形具有明显的非线性,如:土体的压缩试验e-p曲线、三轴剪切试验的应力应变关系曲线、现场承载板试验所得p-s 曲线等;②土体在剪切应力作用下会产生塑性应变,同时球应力也引起塑性应变;③土体尤其是软粘土,具有十分明显的流变特性;④由于土体的构造或沉积等原因,使土具有各向异性;⑤紧砂、超固结粘土等在受剪后都表现出应变软化的特性;⑥土体的变形与应力路径有关,证明不同的加载路径会出现较大的差别;⑦剪胀性等。为了更好地描述土体的真实力学-变形特性,建立其应力、应变和时间的关系,在各种试验和工程实践经验的基础上提出一种数学模型,即:土体的本构关系。但由于土的种类繁多, 性质复杂, 到目前土的本构关系仍有很多的问题值得进一步研究。理论模型主要包括线弹性模型、非线性弹性模型、弹塑性模型、粘塑性模型等几大类, 以及后来发展起来的内时模型、损伤模型及结构性模型等新型模型。它们能较好的反映岩土的某种或几种特性, 是建立工程实用模型的基础。本文对已建立的经典本构模型进行综合分析,指出各种模型的优缺点和适用性,并对土的本构模型未来研究趋势进行展望。

2 土的本构模型研究进展

2.1 土的线弹性模型

经典土力学将土体视为理想弹性体,在进行变形计算时采用基于广义虎克定律的线性弹性模型,假定土体的应力和应变关系成正比,通过测定土在不排水条件下的弹性模量E和泊松比μ,或者体积变形模量K 和剪切模量G来描述其应力-应变关系。土的线弹性模型简单,适用于不排水、安全系数较大、土体不发生屈服的情况,工程中可用于[1,5]:①计算地基中的垂直应力分布;②计算地基在不排

水加荷情况下的位移和沉降;③基坑开挖问题计算,用于估计基坑在不排水条件下的侧向压力与侧向位移;④计算软粘土地基在加荷不排水条件下的沉降和孔隙水压力。

2.2 土的非线弹性模型

土体在外荷载作用下一般都要发生屈服,其应力-应变关系具有非线性,土体发生的变形既有弹性变形又有塑性变形,土的非线弹性模型可以较好地描述其变形特性。土的非线弹性模型理论可以

分为三类: 弹性模型、超弹性(Hyper Elastic)模型(又称Green超弹性模型)和次弹性( Hypo Elastic) 模型。其中影响最大、最具有代表性的主要是邓肯一张( Duncan- Chang)模型[6,7]。邓肯一张模型以虎克定律为基础,假定模型中的参数(弹性模量E 、泊松比μ、体积变形模量K和剪切模量G )是应力状态的函数,与应力路径无关,利用土体常规三轴试验得到的应力一应变曲线建立了模型参数关系。Duncan- Chang模型能较好地反映土体的主要变形特性,考虑了土体非线性变形中加载模量和卸载模量的不同,模型中参数的物理意义明确,同时可以通过常规三轴试验确定其模型参数,因而在工程

中得到了广泛的应用。但是, 该模型不能反映土体的剪胀性及中主应力对模量的影响,针对该缺陷,沈珠江[8]提出了考虑球张量与偏张量相互影响及土体剪胀性的非线性弹性模型。

2.3土的弹塑性模型

土的弹塑性模型能较好地模拟土的弹塑性应力一应变关系。土的弹塑性模型研究早期是借用金

属材料的经典理想弹塑性模型,经过Drucker[9]和Roscoe逐渐发展建立了加工硬化弹塑性理论和临界土力学。随后人们根据不同的屈服准则、硬化及软化定律及流动法则,相继建立了大量的弹塑性模型,其中主要有:

1)剑桥( Cambridge)模型。剑桥模型由剑桥大学罗斯科(K. H. Roscoe)[3,4]等根据正常固

结或弱超固结粘土(又称为“卡姆粘土”)的三轴试验结果建立的,模型中假定土体为加工硬化材料,服从相关流动法则和能量守衡方程,又称为临界状态模型,它从理论上阐明了土体的弹塑性变形特性。1968年K.H. Roscoe和J.B.Burland[9]对模型进行了修正,建立了修正的剑桥模型。模型通过常规三轴试验测定土的压缩特性常数λ、膨胀特性常数k和试验常数M (由土的内摩擦角控制)三个参数,就能确定正常固结或弱超固结粘土在各种应力路径下的应力和应变,在许多情况下能较好地反

映土的变形特性。

2)拉德-邓肯( https://www.wendangku.net/doc/a310735652.html,de-J.M.Duncan)模型。1975年Lade和Duncan[10]将土体视为加工硬化材料,认为材料服从不相关联流动准则,采用塑性功硬化规律,根据砂土立方体试样的真三轴压缩试

验结果,建立了一个适于无粘性土的弹塑性本构模型,可用于三向应力情况,参数由三轴试验结果

推算确定。模型中考虑中主应力、剪胀效应以及应力路径的影响,试验证明,在大多数荷载情况下

它能较好地模拟无粘性土的应力一应变性状。

3)边界面模型。为了描述反向卸载时的Bauschinger效应和周期循环加载情况, Morz、Iwam、Dafalias以及Dafalias-Hormann等人发展了各种边界面模型,其中比较有代表性的是Dafatias-H ermann边界面模型[11],该模型主要基于塑性硬化模量场理论和边界面理论,考虑了应力路径在屈服面内时可能产生的塑性变形情况。

4)多屈服面模型。不少学者认为单一屈服面难于解释土的变形特征,主张采用塑性体应变与塑

性偏差应变或其组合作为各自硬化参数,利用两个或多个屈服面组合来描述土的变形特征,提出了

双屈服面模型和多屈服面模型,沈珠江[12]发展了多重屈服面的概念并建立了三重屈服面模型,该多重屈服面模型能不同程度地反映土的剪胀与剪缩。对不同的应力路径也有较好的适应性。

2.4 土的粘弹塑性模型

土体在骨架应力作用下,颗粒的重新排列和骨架的错动具有明显的时间效应,土体的变形和内部应力变化都与时间有关,通过大量的试验证明了土体具有粘弹性特征。土体的粘弹塑性模型建立一般采用三个基本元件: 虎克体弹簧、牛顿体粘壶和圣维南体滑块来进行组合,建立的经典模型有[1,2]: Maxwell模型、Kelvin模型和Bingham模型,随后相继建立了Merchant模型、Schiffman模型、广义Voigt模型和Lee模型。国内针对上海软土的流变特性,建立了工程实用的上海软土粘弹塑性模型,同时夏才初[13]建立了统一的土的流变模型和参数识别方法。

2.5 土的其它模型

近年来随着CT技术、X射线和光弹试验等在土体研究中的应用,对土体的宏观变形和微观规律有了更进一步的认识,尤其是原状土的结构性研究引起重视,建立了不少的模型。研究成果表明:粘土的结构性对其压缩特性、强度包线特性、固结系数等都具有显著的影响。在研究土体结构性模型的同时,不少学者结合其它理论建立了土体的损伤本构模型和内时模型。

1.6 土的本构模型研究新理论

建立土的本构模型的核心问题就是通过土体在实验中所表现出的力学行为来反演其内在的本构关系。近年来, 由于科学技术的发展,大量非线性科学理论,如分形几何,突变论、人工神经网络和生物竞争理论等被引入到土本构模型的研究中,不少学者借助先进的数学理论和数值算法去探索土体本构模型研究的新途径,这些方法主要依据实验资料,通过模型本身的运算来建立合理的本构关系,有较高的应用价值,但模型的准确性和适用范围还有待深入探讨。

3 土的本构模型研究趋势

自Terzagh i于1925年撰写《土力学》一书以来,土力学研究已经有近一个世纪的时间。土是一种天然地质材料,复杂的工程性质与力学行为推动了土的本构模型研究不断深入。今后,对土的本构模型仍有许多问题需要进一步深入研究:

1)建立和发展复杂应力状态与加卸载序列条件下土的本构模型,准确反映土的非线性、非弹性、软化、剪胀与剪缩性等特性,同时能揭示土的某些特殊变形特性及机理,反映土的原生状态及应力诱发的各向异性效应及特殊荷载条件下的力学规律。

2)重视模型参数的测定和选用,重视本构模型验证以及推广应用研究,通过不同类型仪器、不同应力路径的土工试验、离心模型试验以及工程现场测试等验证形式,客观地评价和论证已建模型的正确性与可靠性,全面系统地讨论与比较模型的实用性、局限性及其适用范围,在现有条件下加强本构模型研究试验数据的统一管理与共享,开展本构模型基本参数数据库的建立与维护研究,更好地为工程建设服务。

3)开展非饱和土的本构模型研究。建立非饱和土的本构模型时应充分考虑土中含水量的影响及颗粒骨架、孔隙水与气体三相之间的界面相互作用及相互交换问题。目前相关文献已对此开展了富有成效的前期研究工作。

4)注重土体的微观结构和宏观结构研究,揭示土结构性及其变化的力学效果,了解宏观现象下的内在本质,建立正确可靠的物理、力学和数学模型,对土的力学性状进行模拟,解决工程实际问题。软粘土、黄土等结构性较强的土体,应继续开展结构性模型的研究,引入损伤力学理论以及CT、X射线等测试技木,揭示土体剪切带的形成机理以及土体的刚度降低与强度丧失之间的内在联系规律。将宏观力学和微观结构研究相结合,引入各种非线性理论,从土的微观结构入手研究土的应力-

应变-时间三者之间的规律。重视土的结构性模型研究是21世纪土力学研究的重要内容之一。

5)土的本构模型中许多假设条件与实际工况不符,影响了工程计算的精度和适用性,今后应加以改进和提高,建立用于解决实际工程问题的实用性模型,反映特定状况下土体的主要性状,用于工程理论计算,获得工程精度要求的结果,服务各类工程建设。

4 结语

近一个世纪来,随着科学技术的不断进步土的本构模型研究取得了令人瞩目的成就。展望未来,新的更大规模的工程建设对土的本构模型研究提出了更高的要求,土的本构模型的研究应在大量工程实践经验的归纳、总结与反思的基础上,注重与现代数学物理方法和计算机工具的结合,不断吸取其它学科的新成果,使土的本构模型研究进入更高的层次。

参考文献

[1] 钱家欢,殷宗泽.土工原理与计算(第二版)[M].北京:中国水利水电出版社.1996,1-29.

[2] 龚晓南.土塑性力学[M].杭州: 浙江大学出版社,1999.

[3] Roscoe K.H , Schofield A.N, Worth C.P.on the yielding of soils[J].Geotechnique,1958,8(1):22-53.

[4] Roscoe K, H. , Schof ield A. N. , Thu rairajah A. Y ield ing of clays instatesw etter than critical [J] . G eolechn ique, 1963, 13 ( 1 ) : 211 -240.

[5] 邓子胜.混凝土和土的本构模型[J].五邑大学学报(自然科学版),2002,6(2):6-10.

[6] Duncan J.M.,Chang C.Y.Nonlinear analysis of stress-strain in

soil[J].Proe.ACSE,1970,96(SM5):1629-1653.

[7] Duncan J.M.,Byrne P.,Wong K.S., eta.l Strength, stress-strain and bulk modulus parameters for finite elem ent analysis of stresses and movements in soil masses[R].Report,UCB /CT /80-01,1980.

[8] Druker D.C.,Gibson H.E.,Henkel D.J.Soil mechanics and work harding theodes of plastteity[J].Proc.ASCE Tran, 1957,122:338-346.

[9] Roscoe K.H.,Burland J.B,on the generalized stress-Strain behavior of “w et”clay[A ].Engineering Plast ility[C].Cambridge University Press,1968,535-609.

[10] Lade P.,Duncan J.M.Elastoplastic stress-strain response: cohesive soils[J].Proc.ASCE,

1975,101( 10):1037- 1053.

[11] Dafalias Y.F,HERRMANNL.R.A bounding surface soil plasticity model[A].Proc Int Symposium.Soil under

C yel i and Transient loading[C].1980.

[12] 沈珠江.土的三重屈服面应力应变模型[J].固体力学学报,1984(2):51-57.

[13] 夏才初,孙钧.蠕变试验中流变模型辨识及参数确定[J].同济大学学报,1996(5):498-503.

材料力学小论文 竹竿性能分析

竹子外形和截面性能的力学分析 选课序号100 姓名杨建成学号2220133836 摘要:略约200字 一引言 在日常生活中,随处可见竹子,竹竿可视为上细下粗、横截面为空心圆形的杆件。这样的形状赋予了竹子很强的抗弯强度。 二力学分析 材料力学的任务是在满足强度、刚度和稳定性的要求下,以最经济的代价为构件确定合理的形状和尺寸,选择适宜的材料,为构件设计提供必要的理论基础的计算方法。换句话说,材料力学是解决构件的安全与经济问题。所谓安全是指构件在外力作用下要有足够的承载能力,即构件要满足强度、刚度和稳定性的要求。所谓经济是指节省材料,节约资金,降低成本。当然构件安全是第一位的,降低经济成本是在构件安全的前提下而言的。实际工程问题中,构件都应有足够的强度、刚度和稳定性。 本文以竹子为研究对象,其简化力学模型如下图所示。 竹子体轻,质地却非常坚硬,强度比较高,竹子的顺纹抗拉强度170Pa,顺纹抗压强度达80Pa 单位质量的抗拉强度大概是普通钢材的两倍。 根据材料力学,弯曲正应力是控制强度的主要因素,自然界的竹子经常受到来自风的力,主要是弯矩,主要是弯曲正应力。

从公式可以看出,当弯矩一定的时候,正应力与惯性矩正反比。 截面为实心圆的对中性轴的惯性矩,大部分树木都是这种结构。 (假设实心和空心竹子的横截面) 2.1 竹子的弯曲强度分析 根据材料力学的弯曲强度理论, 弯曲正应力是控制强度的主要因素, 弯曲强度条件为 max max []z M W σσ= ≤ (1) 横截面如上图所示。实心圆截面和空心圆截面的抗弯截面模量分别为: 332 W d π = 实 (2) 341 132 ()()D W D D π αα= -= 空 (3) 式中,d 是实心杆横截面直径,D 和D 1分别是空心杆横截面外径和内径,1 D D α=为空心杆内外径之比。 当空心杆和实心杆的两横截面的面积相同时

振动力学课程设计报告

振动力学课程设计报告-(2) 振动力学课程设计报告 课设题目:电磁振动给料机的振动分析与隔振设计 单位: 专业/班级: 姓名:

指导教师: 1、课题目的或意义 通过对结构进行振动分析或参数设计,进一步巩固和加深振动力学课程中 的基本理论知识,初步掌握实际结构中对振动问题分析、计算的步骤和方法,培养和提高独立分析问题和运用所学理论知识解决实际问题的能力。 2、课题背景: 1、结构:本设计中,料槽底板采用16mm厚钢板焊接而成,再用筋板加强。料槽衬板采用20mm厚钢板。料槽材料全部采用镇静钢,能承受工作过程中由于振动产生的交变载荷,焊缝不易开裂。 2、工程应用前景:振动给料机用于把物料从贮料仓或其它贮料设备中均匀或定量的供给到受料设备中,是实行流水作业自动化的必备设备分敞开型和封闭型两种,本设计中电磁振动给料为双质体系统,结构简单,操作方便,不需润化,耗电量小;可以均匀地调节给料量为了减小惯性力,在保证强度和刚度的前提下, 应尽可能减轻振动槽体的质量。从而使其在实际工程应用中会有非常广泛的前景。 二、振动(力学)模型建立

1、结构(系统)模型简介

k4、C4分别为尼龙连接板得等效刚度和阻尼。 g为偏心块质量,m为给料槽体质量,m2激振器的振动质量。 m R —输送槽体(包括激振器)的质量,1500kg ;即g m 叫 m G —槽内物料的结合质量。 在实际中系统为离散的,而建立模型后将质量进行集中从而该系统可视为为连续系统,通过上网搜索资料以及书中知识总结并设计出如上所示电磁振动给料机力学模型,其组成为料槽、电磁激振器、减振器、电源控制箱等组成。 2、系统模型参数 (包括系统所必需的几何、质量、等效刚、激励等)

身边的力学论文

身 边 的 力作 学业 院系:土木工程学院 专业:建筑环境与设备工程班级: 姓名: 学号: 联系方式:

身边的力学 一、引言: 我们平时都很难想到力学在生活中具体有着什么作用,然而力学在生活中的应用有很多,人人都知道几乎所有的实体都和力学有着关系,例如我们中学中学过,人走路和摩擦力、支持力有关,砂轮磨东西和和离心力有关。我们确实很不善于去深析其中的道理。 我们以往学习的力学是纯粹的理论学习,理解其中的受力原理,做好物理分析即可。对于实实在在的生活现象的剖析,我们却没有做好。在课堂上,老师说到空泡理论、压力变化引起物体相变等这些知识我们都是有所了解的,但是要去分析现象得出原理,却没有那么简单了,这不仅需要深刻理解理论的同时,练就一双有洞察力的眼睛。 二、汽车上的力学: 汽车身上使用的的力学知识除了轴承之间的带动等简单机械运动外,较多就是流体、热力两大部分了。这些多是作用在空气或者是液体上的力,所以常是以压力、温度和速度的形式表现出来的。 我们都知道汽车能够形式起来都源自于其各个轴承相互传动带来带动车轮转动来支配车辆运动的。这些设计 1、汽车上的流体力: 流体力学和传统的固体受力不同,它旨在研究流体本身的静止状态和运动状态,以及流体和固体界壁间有相对运动时的相互作用和流动的规律。所研究的受力物质是水、空气、汽轮机工作介质的水蒸气、润滑油等。在汽车身上有着很多关于流体力的运用,最主要的就是其外轮廓的流线设计。 同我们平时喜欢玩的球一样,设计其外形除了好看,运动舒适外,很大一部分就是考虑其外形会对其空中飞行有什么影响了。例如高尔夫球,表面设很多多面体凹点,目的在于利用多面造型就是利用粗糙度使层流转变为紊流的临界雷诺数减小,使流动变为紊流,以减小阻力。足球、篮球在流线上也有考虑。 生活中常见的这些来来往往飞驰的汽车,简直是与流体力学的巧妙结合。好的汽车表面都有着近乎完美的流线,为了让运动时汽车车身上的气流顺利通过,减少车身上对气流的扰动,减少涡流的产生,以增大行驶速度。车的前部设计成稍微偏下的样子,是为了减少当速度增大时从车底流过造成作用在车身上的

弹塑性力学计算题终稿

1试根据下标记号法和求和约定展开下列各式(式中i 、j = x 、y 、z ): ① ij ij σε ; ② j i x '; 2在物体内某点,确定其应力状态的一组应力分量为:x σ= 0,y σ= 0,z σ= 0,xy τ= 0,yz τ=3a , zx τ=4a ,知0a >。试求: 1 该点应力状态的主应力1σ、2σ和3σ; 2 主应力1σ的主方向;3主方向彼此正交; 解:由式(2—19)知,各应力不变量为 、, 代入式(2—18)得: 也即 (1) 因式分解得: (2)则求得三个主应力分别为。 设主应力与xyz 三坐标轴夹角的方向余弦为 、 、 。 将 及已知条件代入式(2—13)得:

(3) 由式(3)前两式分别得: (4) 将式(4)代入式(3)最后一式,可得0=0的恒等式。再由式(2—15)得: 则知 ;(5) 同理可求得主应力的方向余弦、、和主应力的方向余弦、、,并且考虑到同一个主应力方向可表示成两种形式,则得: 主方向为:;(6) 主方向为:;(7) 主方向为:;(8) 若取主方向的一组方向余弦为,主方向的一组方向余弦为 ,则由空间两直线垂直的条件知:

(9) 由此证得主方向与主方向彼此正交。同理可证得任意两主应力方向一定彼此正交。 3一矩形横截面柱体,如图所示,在柱体右侧面上作用着均布切向面力q,在柱体顶面作用 均布压力p。试选取: 3232 ?=++++ () y Ax Bx Cx Dx Ex 做应力函数。式中A、B、C、D、E为待定常数。试求: (1)上述?式是否能做应力函数; (2)若?可作为应力函数,确定出系数A、B、C、D、E。 (3)写出应力分量表达式。(不计柱体的体力) 解:据结构的特点和受力情况,可以假定纵向纤维互不挤压,即: ;由此可知应力函数可取为: (a) 将式(a)代入,可得: (b) 故有: ; (c) 则有: ; (d) 略去中的一次项和常数项后得:

材料力学论文学习心得

《集中力作用下深梁弯剪耦合变形应力计算方法》学习心得 背景 深梁是工程中常见的的结构,其跨高比一般介于3~8之间。当梁上作用集中力时,既有弯矩又有剪力即横力弯曲,出现弯剪耦合现象。由于剪力的存在,梁的横截面上会出现翘曲现象,并且与中性层平行的截面上出现挤压应力。 跨高比小于5的梁在应用细长梁的纯弯曲理论及假设计算时,误差会随跨高比的减小而迅速增大。对这种深梁而言,细长梁理论就不适用了。深梁应力计算主要影响因素有截面形状、支座约束、跨高比,究其原因是集中力作用下发生弯曲变形时,平面假设和纵向纤维相互不挤压的假设与实际相差太大。 原理 文章只研究两端简支和两端固支时,集中载荷作用在跨中时的横力弯曲的问题,以矩形截面为例,然后推广至工字形截面。 模型简化:在深梁跨中施加集中力F ;当深梁为简支时,两端只有集中反力R 的作用;当深梁为固支时,梁两端受到剪力和弯矩的共同作用。当深梁受有集中力时,由于跨度小,梁高大,其跨中截面的挠度较小。故以力的作用点为圆心的区域内按一半平面考虑应力分布。根据弹性力学半平面体在边界上受集中力作用时,应力计算方法得出深梁内的应力分布。由弹性力学半平面模型可得到图1所示载荷下应力表达式。 ?x =? 2F πx 2y (x 2+y 2)2 (1) 在梁两端集中反力作用下,梁内也会产生应力场,按照叠加原理,梁内应力由这三个力产生的应力场叠加而得。为方便将这三个应力叠加在一起,文章采用了坐标变换, 变换方式坐标轴以图2为基准。坐标变换公式如下: 对于集中力F 产生的应力场,有如下坐标变换:

x F=x?l 2 y F=y?? 2 (2) 对于集中反力R1产生的应力场,有如下坐标变换: x R 1 =?x y R 1=?y+? 2 (3) 对于集中反力R2产生的应力场,有如下坐标变换:x R 2 =l?x y R 2=?y+? 2 (4) 将(2)、(3)、(4)式代入到(1)中,由平衡原理知R1=R2=F 2 ,可得到叠加后应力表达式: ?x=2F π x?l 2 2 (y+? 2 ) ( x?l 2 2 + y+? 2 2 )2 ? F π x2 ?y+? 2 x2+ ?y+? 2 22 ? F π l?x2 ?y+? 2 l?x2+ ?y+? 2 22 (5) 梁在集中力作用下,不仅引起剪力,还会产生弯矩,因此需要考虑弯矩剪力共同作用产生的应力。再将材料力学梁受弯矩作用下的应力公式代入叠加到(5)式中,可得弯剪共同作用下的应力表达式: ?x=My I + 2F π x?l 2 2 (y+? 2 ) ( x?l 2 2 + y+? 2 2 )2 ? F π x2 ?y+? 2 x2+ ?y+? 2 22 ? F π l?x2 ?y+? 2 l?x2+ ?y+? 2 22 (6) 分析 对(6)式所得结果进行无量纲化分析,定义剪跨比η=x l (0<η<1),跨高 比α=l ?,和y值的无量纲值ξ=y ?/2 。将其代入(6)得到 ?x=My I +F 2π? {2α 2 η+1 2 2 (ξ+1) α2 η+1 2 +1ξ+12 2 ?α2η2?ξ+1 α2η2+1 4 ?ξ+12 2 ?α2(1?η)2?ξ+1 α21?η2+1 4 ?ξ+12 2 }(7) 再将大括号中的表达式用λ表达得到?x=My I +Fλ 2π? 。为材料力学解加一个修 正项。为比较材料力学和修正项的比例又引入无量纲翘曲应力λ?=Fλ 2π? I My 。得到 无量纲弯曲正应力表达式:

振动力学课程设计报告

振动力学课程设计报告 课设题目: 单位: 专业/班级: 姓名: 指导教师: 2011年12月22日

一、前言 1、课题目的或意义 振动力学课程设计是以培养我们综合运用所学知识解决实际问题为目的,通过实践,实现了从理论到实践再到理论的飞跃。增强了认识问题,分析问题,解决问题的能力。带着理论知识真正用到实践中,在实践中巩固理论并发现不足,从而更好的提高专业素养。为认识社会,了解社会,步入社会打下了良好的基础。 通过对GZ电磁振动给料机的振动分析与减振设计,了解机械振动的原理,巩固所学振动力学基本知识,通过分析问题,建立振动模型,在通过软件计算,培养了我们独立分析问题和运用所学理论知识解决问题的能力。 2、课题背景: 随着科学技术发展的日新月异,电磁振动给料机已经成为当今工程应用中空前活跃的领域,在生活中可以说是使用的广泛,因此掌握电磁振动给料机技术是很有必要的和重要的。 GZ系列电磁振动给料机广泛应用于矿山、冶金、煤炭、建材、轻工、化工、电力、机械、粮食等各行各业中,用于把块状、颗粒状及粉状物料从贮料仓或漏斗中均匀连续或定量地给到受料装置中去。特别适用于自动配料、定量包装、给料精度要求高的场合。例如,向带式输送机、斗式提升机,筛分设备等给料;向破碎机、粉碎机等喂料,以及用于自动配料,定量包装等,并可用于自动控制的流程中,实现生产流程的自动化。 GZ电磁振动给料机的工作原理: GZ电磁振动给料机的给料过程是利用电磁振动器驱动给料槽沿倾斜方向做直线往复运动来实现的,当给料机振动的速度垂直分量大于策略加速度时,槽中的物料将被抛起,并按照抛物线的轨迹向前进行跳跃运动,抛起和下落在1/50秒完成,料槽每振动一次槽中的物料被抛起向前跳跃一次,这样槽体以每分钟3000次的频率往复振动,物料相应地被连续抛起向前移动以达到给料目的。 GZ系列电磁振动给料机主要用途:

《神奇的材料》结课论文

生命的启示 ——仿生材料的应用及发展 学号:1505024303 姓名:宫美梅 2016.6.5

生命的启示 ——仿生材料的应用及发展 革命导师马克思曾经说过:“自然界为劳动提供材料,劳动把材料变成财富。”材料是人类赖以生活和生产的物质基础,是人们用以作为物品的物质。生产技术的进步是和新材料的应用密切相关的,因为材料的好坏,直接影响着生产工具的优劣和产品的价值,所以人类总是不断地去寻找、发现新材料,以促进生产,改善物质和文化生活。而新材料的应用,不仅可以大大促进科学技术和生产的发展,也使人类的活动方式发生日新月异的变化。 自然界的创造力总是令人惊奇,天然生物材料经历几十亿年进化,大都具有最合理、最优化的宏观、细观、微观复合完美的结构,并具有自适应性和自愈合能力,如竹、木、骨骼和贝壳等。其组成简单,通过复杂结构的精细组合,从而具有许多独有的特点和最佳的综合性能。人类从自然界的生物身上得到启迪,从而设计出了更完美的材料和物件。 例1.人造纤维 最早开始研究并取得成功的仿生材料之一就是模仿天然纤维和人的皮肤的接触感而制造的人造纤维。对蚕或者蜘蛛吐出的丝,人类自古就有很大的兴趣,这些丝纯粹是由蛋白质构成,特别是蚕丝,具有温暖的触感和美丽的光泽。二十世纪以来,人们模仿蚕吐丝的过程研制了各种化学纤维的纺丝方法,此后又模仿生物纤维的吸湿性、透气性等服用性能研制了许多新型纤维,例如,牛奶蛋白质与丙烯晴共聚纤维(东洋纺) ,商品名为稀苤的高吸湿性纤维(旭化成) 等等。这些产品的出现显示了人类仿造生物纤维表面细微形态与内部构造取得了成功。另外人们还对蚕的产丝体进行了卓有成效的研究(日本农业生物资源研究所) ,并且对蜘蛛丝也进行了研究(日本岛根大学) ,研究者们期待着有朝一日能够制造出与蚕丝完全一样的人造丝。 例2.人鱼传说 在陆地上生活的动物有肺,能够分离空气中的氧气,水里的鱼有鳃,能够分离溶解在水中的氧气,供给身体使用。人们仿造这种特性,制作了薄膜材料,用于制造高浓度氧气、分离超纯水等,以达到节省能源以及高分离率的目的。目前人们正在研制具有动物肺和鱼鳃那样功能的材料,如果研制成功的话,人类在水底世界的活动将发生一场新的革命。

《岩石力学》课程论文

************ 《岩石力学》课程论文 专业 ******* 年级班别 ****** 学号 ******* 姓名 ****** 土木工程与建设管

岩体的强度在检测中的应用 摘要:随着地球板块的运动越来越剧烈,地震等多种地质灾害的发生,人们 清晰地认识到岩体强度的重要性。故此,岩体强度的确定方法尤其重要。本 文介绍试验确定法以及及估算法。 关键字:试验确定法;估算法;岩体强度 引言 目前在岩石力学与工程领域中广泛采用了数值模拟技术,但是在进行数值模拟时遇 到的最主要的困难之一就是如何准确地确定岩体强度参数以开展模拟计算。公认比 较准确的仅限于室内岩石力学试验参数,同时现场岩体原位试验成本都十分昂贵, 因此寻找适合的岩体强度估算方法就成为摆在众多研究人员面前的一个问题。 1 岩体强度的确定方法 1.试验的确定法 (一)岩体单轴抗压强度的测定 切割成的试件。在拟加压的试件表面抹一层水泥砂浆,将表面抹平,并在其上放置方木和工字钢组成的垫层,以便把千斤顶施加的荷载经垫层均匀传给试体。根据试体受载截面积,计算岩体的单轴抗压强度。 (二)岩体的抗剪强度的测定 一般采用双千斤顶法:一个垂直千斤顶施加的正压力,另一个千斤顶施加的横 推力。 为使剪切面上不产生力矩效应,合力通过剪切面中心,使其接近于纯剪切破坏,另外一个千斤顶成倾斜布置。一般采取倾角a=15°。试验时,每组试体应有5个以 上,剪切面上应力按式(1-1)计算。然后根据τ、σ绘制岩体的强度曲线。 F a T P sin += σ a f t cos =τ (1-1)

(三)岩体三轴压缩强度试验 地下工程的受力状态是思维的,所以做三轴力学试验非常重要。但由于现场原位三轴力学实验在技术上很复杂,只在非常必要时才进行。现场岩体三轴试验装置,用千斤顶施加轴向荷载,用压力枕施加围压荷载。 根据围压情况可分为等围压三轴试验(32σσ=)和真三轴试验(321σσσ>>)。研究表明,中间主应力在岩体强度中起重要作用,再多节理的岩体中尤为重要。因此,真三轴试验越来越受重视。而等围压三轴试验的实用性更强。 2.经验的估算法 (一)准岩体强度 这种方法实质是用某种简单的试验指标来修正岩块强度作为岩体强度的估算值。 节理,裂隙等结构面是影响岩体强度的主要因素,其分布情况可通过弹性波传 播来查明。弹性波穿过岩体时,遇到裂隙便发生绕射或被吸收,传播速度将有所降低。裂隙越多,波速降低越大,小尺寸试件含裂隙少,传播速度大。因此根据弹性波在岩石试块和岩体中的传播速度比,可判断岩体中裂隙发育程度。称此比值的平方为岩体完整性(龟裂)系数,以K 表示。 2 ???? ??=K cl ml νν (二)Hoek-Brown 经验方程 1) Hoek-Brown 强度准则的发展历史 最初的Hoek-B rown 强度准则是Hoek E 在专著《岩石地下工程》( Underground Excavations in Rock,1980)一书中发展起来的。当时在设计地下岩石开挖工程时需要输入一些参数, 这就要求提供一个准则来估算岩体强度。Hoek E 和Brown E T 在分析Giffith 理论和修正的Griffith 理论的基础上, 凭借自己在岩石力学方面深厚的理论功底和丰富的实践经验, 通过对大量岩石三轴试验资料和岩体现场试验成果的统计分析,用试错法导出的岩块和岩体破坏时极限主应力之间的关系式(2-1) , 即为Hoek-Brown 强度准则 , 也称为狭义Hoek-Brown 强度准则。Hoek, Brown 最为突出的贡献是将数学公式与地质描述联系到了一起。起初使用的Bieniawski 岩体分级系统( RMR 法)、后来使用的地质强度指数法(GSI 法)、随后发展完善的Hoek-Brown 准则都使用了GSI 系统。

弹塑性力学总结汇编

弹塑性力学总结 弹塑性力学的任务是分析各种结构物或其构件在弹性阶段和塑性阶段的应力和位移,校核它们是否具有所需的强度、刚度和稳定性,并寻求或改进它们的计算方法。并且弹塑性力学是以后有限元分析、解决具体工程问题的理论基础,这就要求我们掌握其必要的基础知识和具有一定的计算能力。通过一学期的弹塑性力学的学习,对其内容总结如下: 一、弹性力学 1、弹性力学的基本假定 求解一个弹性力学问题,通常是已知物体的几何形状(即已知物体的边界),弹性常数,物体所受的外力,物体边界上所受的面力,以及边界上所受的约束;需要求解的是物体内部的应力分量、应变分量与位移分量。求解问题的方法是通过研究物体内部各点的应力与外力所满足的静力平衡关系,位移与应变的几何学关系以及应力与应变的物理学关系,建立一系列的方程组;再建立物体表面上给定面力的边界以及给定位移约束的边界上所给定的边界条件;最后化为求解一组偏分方程的边值问题。

在导出方程时,如果考虑所有各方面的因素,则导出的方程非常复杂,实际上不可能求解。因此,通常必须按照研究对象的性质,联系求解问题的范围,做出若干基本假定,从而略去一些暂不考虑的因素,使得方程的求解成为可能。 (1)假设物体是连续的。就是说物体整个体积内,都被组成这种物体的物质填满,不留任何空隙。这样,物体内的一些物理量,例如:应力、应变、位移等,才可以用坐标的连续函数表示。 (2)假设物体是线弹性的。就是说当使物体产生变形的外力被除去以后,物体能够完全恢复原来形状,不留任何残余变形。而且,材料服从虎克定律,应力与应变成正比。 (3)假设物体是均匀的。就是说整个物体是由同一种质地均匀的材料组成的。这样,整个物体的所有部分才具有相同的物理性质,因而物体的弹性模量和泊松比才不随位置坐标而变。 (4)假设物体是各向同性的。也就是物体内每一点各个不同方向的物理性质和机械性质都是相同的。 (5)假设物体的变形是微小的。即物体受力以后,整个物体所有各点的位移都小于物体的原有尺寸,因而应变和转角都远小于1。这样,在考虑物体变形以后的平衡状态时,可以用变

材料力学论文

大连理工大学 材料力学论文 学生:宋子杰 学号: 201241013 班级:运船1201 院(系):运载工程与力学学部 专业:船舶与海洋工程 2014 年 6 月 11日

材料力学在螺纹连接中的应用 摘要:在我们的日常生活中,处处离不开连接。连接是指被连接件与连接件的组合。就机械零件而言,被连接件有轴与轴上零件、轮圈与箱盖、焊接零件中的钢板与型钢等。这样应用广泛的连接中螺栓是必不可少的成分。因此,螺纹连接的强度校核便成为了工程中必不可少的环节。 关键词:连接;材料力学;强度校核 正文: 一:材料力学知识简介与生活中的运用 材料力学(mechanics of materials)是研究材料在各种外力作用下产生的应变、应力、强度、刚度、稳定和导致各种材料破坏的极限。材料力学是所有工科学生必修的学科,是设计工业设施必须掌握的知识。学习材料力学一般要求学生先修高等数学和理论力学。材料力学与理论力学、结构力学并称三大力学。 1.研究材料在外力作用下破坏的规律; 2.为受力构件提供强度,刚度和稳定性计算的理论基础条件; 3.解决结构设计安全可靠与经济合理的材料力学基本假设; a)连续性假设——组成固体的物质内毫无空隙地充满了固体的体积 b)均匀性假设——在固体内任何部分力学性能完全一样 c)各向同性假设——材料沿各个不同方向力学性能均相同 d)小变形假设——变形远小于构件尺寸,便于用变形前的尺寸和几何形状进行计算。 人们运用材料进行建筑、工业生产的过程中,需要对材料的实际承受能力和内部变化进行研究,这就催生了材料力学。运用材料力学知识可以分析材料的强度、刚度和稳定性。材料力学还用于机械设计使材料在相同的强度下可以减少材料用量,优化机构设计,以达到降

振动力学课程设计题目

振动力学课程设计题目 采用MATLAB 对所选的问题进行数值计算和作图,采用高于MATLAB7.4(2007)版本所编写的程序需转换为文本(.txt )文件, 早于MATLAB7.4(2007)版本所编写的程序可直接采用M 文件传送至QQ :296637844。题目如下,其中1,2,3题为必做题,4-38选二题(第一轮:一班01号为第4题, 一班02号为第5题…一班28号为第25题, 二班01号为第26题,…二班17号为第38题, 二班18号为第4题,…二班27号为第13题;第二轮:一班01号为第14题…)。文件名采用自己的姓名。考核时间暂定于12月30日。 题目: 1. 编写MA TLAB 程序,根据书本公式(3.1-10)、(3.1-10)作出单自由度系统强迫振动的幅频特性曲线、相频特性曲线。0.1,0.2,0.3,0.5,0.7,1.0,1.2?=。 2. 根据书本图4.5-3,分析有阻尼动力减振器的特性。包括在不同的质量比,频率比,阻尼比条件下结构的响应。 3. 对于图2所示体系,用矩阵迭代法计算其固有频率及振型。 1231,2m m m ===,1230 c c c ===,1231,5,8k k k ===,1230,0,0F F F ===, 1231,1,1ωωω===。 4. 采用中心差分法计算单自由度体系10105sin(/2)x cx x t ++= ,当c=3和c=20,000,0x x == 前10s 内的位移,作出其时间位移曲线图。 5. 采用Houbolt 法计算单自由度体系10105sin(/2)x cx x t ++= ,当c=3和c=20,000,0x x == 前10s 内的位移,作出其时间位移曲线图。 6. 采用Wilson-θ法计算单自由度体系10105sin(/2)x cx x t ++= ,当c=3和c=20,000,0x x == 前10s 内的位移,作出其时间位移曲线图。 7. 采用Newmark-β法计算单自由度体系10105sin(/2)x cx x t ++= ,当c=3和c=20,000,0x x == 前10s 内的位移,作出其时间位移曲线图。 8. 采用中心差分法计算10105sin(/2)2sin()sin(2)x cx x t t t ++=++ ,当c=3和c=20,000,0x x == 前10s 内的位移,作出其时间位移曲线图。 9. 采用Houbolt 法计算10105sin(/2)2sin()sin(2)x cx x t t t ++=++ ,当c=3和c=20,000,0x x == 前10s 内的位移,作出其时间位移曲线图。 10. 采用Wilson-θ法计算10105sin(/2)2sin()sin(2)x cx x t t t ++=++ ,当c=3和c=20,000,0x x == 前10s 内的位移,作出其时间位移曲线图。 11. 采用Newmark-β法计算10105s in (/2)2s in ()s in (2 x c x x t t t ++=++ ,当c=3和c=20,000,0x x == 前10s 内的位移,作出其时间位移曲线图。 12. 采用卷积积分法计算单自由度体系m=10kg ,c=3Ns/m ,k=10N/s ,分别 在()5(),5(),5sin(2)(),(02)F t N t N t N t s =≤≤作用下前10s 内的时间位移曲线。 13. 采用中心差分法计算单自由度体系m=10kg ,c=3Ns/m ,k=10N/s ,分别在()5(),5(),5sin(2)(),(02)F t N t N t N t s =≤≤作用下前10s 内的时间位移曲线。 14. 采用Houbolt 法计算单自由度体系m=10kg ,c=3Ns/m ,k=10N/s ,分别在 ()5(),5(),5sin(2)(),(02)F t N t N t N t s =≤≤作用下前 10s 内的时间位移曲线。 15. 采用Wilson-θ法计算单自由度体系m=10kg ,c=3Ns/m ,k=10N/s ,分别

材料力学论文

中国古代的材料与结构 一、前言 中国是一个历史悠久、文化源远流长的国家。经历了绵绵五千年的历史沉积,中国文化在中华民族的传承中不断得到发展。而文化的沉淀,不仅仅凝聚在优雅的诗词和动人心弦的历史故事中,更多的是以建筑的物质形象存在于我们身边,以具体的技术体现在我们使用的工具中。中国古代没有现在高端的技术与高效精密的工具设备,使用的材料也都是通过粗制加工后得到,然而中国古代的许多建筑在经历了几千年的风吹雨打后仍屹立于世,备受世人感叹。它们不仅是前人的智慧的结晶,更是世界的瑰宝。 二、中国古代建筑的材料与结构 放眼中国古代的建筑,可谓是丰富多彩。其中最常见的有木结构、石木结构,如布达拉宫等藏式古建筑;有石结构,如石牌楼、石桥及部分地区的长城等;有土结构,如秦汉时期的长城、延安陕北地区的窑洞等;有砖结构,如影壁、围墙等;还有竹建筑,如南方少数民族地区的竹楼等。而根据不同建筑的结构特点,中国古建筑所用的建筑材料主要有:木材、砖瓦、石材、土、竹子等。 (一)中国古建筑的发展历史 1.原始雏形 早在五十万年前的旧石器时代,中国原始人就已经知道利用天然的洞穴作为栖身之所,北京、广东、湖北、浙江等地均发现有原始人居住过的崖洞。 到了新石器时代, 黄河中游的氏族部 落,利用黄土层为墙 壁,用木构架、草泥 建造半穴居住所,进 而发展为地面上的建 筑,并形成聚落。长 江流域,因潮湿多雨, 常有水患兽害,因而 发展为干栏式建筑。 据考古发掘,约在距 今六、七千年前,中 国古代人已知使用榫卯构筑木架房屋,如浙江余姚河姆渡遗址。木构架的形制已经出现,房屋平面形式也因功用不同而有圆形、方形、吕字形等。这是中国古建筑的草创阶段。 春秋、战国时期,中国的大地上先后营建了许多都邑,夯土技术已广泛使用于筑墙造台。此时木构技术较之原始社会已有很大提高。春秋、战国的各诸侯国均各自营造了以宫室为中心的都城。这些都城均为夯土版筑,墙外周以城濠,辟有高大的城门。宫殿布置在城内,建在夯土台之上,木构架已成为主要的结构方式,屋顶已开始使用陶瓦。这标志着中国古代建筑已经具备了雏形,不论是夯土技术、木构技术还是建筑的平面布局、以及建筑材料的制造与运用,都达到了雏

身边的力学 结课论文——表面张力

表面张力 学院: 专业: 班级: 学号: 姓名: 联系方式:

以前跟同学一起做过一个实验,拿一个杯子,把水加到杯子的边缘处,再依次往杯子里投放硬币,看谁先让水溢出杯子。看似已满的杯子,还是可以放进去好多个硬币。以前觉得好神奇,现在才知道这是由于表面张力的作用。 表面张力是液体表面层由于分子引力不均衡而产生的沿表面作用于任一界线上的张力。通常,处于液体表面层的分子较为稀薄,其分子间距较大,液体分子之间的引力大于斥力,合力表现为平行于液体界面的引力。液体的内聚力是形成表面张力的原因。在液体内部,每个分子都在每个方向都受到邻近分子的吸引力(也包括排斥力),因此,液体内部分子受到的分子力合力为零。然而,在液体与气体的分界面上的液体分子在各个方向受到的引力是不均衡的,造成表面层中的分子受到指向液体内部的吸引力,并且有一些分子被“拉”到液体内部。因此,液体会有缩小液面面积的趋势,在宏观上的表现即为表面张力现象。表面张力是物质的特性,其大小与温度和界面两相物质的性质有关。表面张力系数可以用毛细管上升法,挂环法,威廉米平板法,旋转滴法等方法测量。 上述的实验中,当放入硬币的时候,水面升高了,但是,在水杯边沿的水,由于受到水表面的张力而保持连接不脱离,从而形成了水平面高于杯子边沿的现象。 还有一个实验也体现了水的表面张力。在空瓶内盛满水,用大头针在白纸上扎许多孔,把有孔纸片盖住瓶口,用手压着纸片,将瓶倒转,使瓶口朝下,将手轻轻移开,纸片纹丝不动地盖住瓶口,而且水也未从孔中流出来。 薄纸片能托起瓶中的水,是因为大气压强作用于纸片上,产生了向上的托力。小孔不会漏出水来,是因为水有表面张力,水在纸的表面形成水的薄膜,使水不会漏出来。这如同布做的雨伞,布虽然有很多小孔,仍然不会漏雨一样。 生活中也有很多表面张力现象。 将一根针小心地放在水里,针不会沉下去,而是浮在水面,也是因为表面张力把针“撑起来”了。露珠之所以是圆的,也是因为表面张力的作用,表面张力促使露珠以最小的表面积的状态存在,而体积相等的物体中,只有球体的表面积最小,所以露珠总是圆的。但是,由于地球引力的存在,露珠不可能是纯圆的。 大千世界,力学现象处处存在,而这些力学现象也恰恰给了我们一个神奇的世界!

材料力学论文

材料力学在生活中的应用 学院: 专业: 班级: 姓名: 学号: 授课老师:

摘要:在如今现代化的社会中,随着高新技术的研发,建筑行业的大力发展,机械材料的广泛使用,大到机械中的各种机器,建筑中的各个结构,小到生活中的塑料食品包装,很小的日用品,各种物件都要符合它的强度、刚度、稳定性要求才能够安全、正常工作,所以材料力学就显得尤为重要,材料力学知识在生活中得到广泛的。 关键字:材料力学、生活应用、材料知识 正文: 材料力学是研究材料在各种外力作用下产生的应变、应力、强度、刚度、稳定和导致各种材料破坏的极限。主要研究杆件的应力、变形以及材料的宏观力学性能的学科。材料力学是固体力学的一个基础分支。它是研究结构构件和机械零件承载能力的基础学科。其基本任务是:将工程结构和机械中的简单构件简化为一维杆件,计算杆中的应力、变形并研究杆的稳定性,以保证结构能承受预定的载荷;选择适当的材料、截面形状和尺寸,以便设计出既安全又经济的结构构件和机械零件。 在生活中随处可见的桥梁,桥是一种用来跨越障碍的大型构造物。确切的说是用来将交通路线 (如道路、铁路、水道等)或者其他设施 (如管道、电缆等)跨越天然障碍 (如河流、海峡、峡谷等)或人工障碍 (高速公路、铁路线)的构造物。桥的目的是允许人、车辆、火车或船舶穿过障碍。桥可以打横搭着谷河或者海峡两边,又或者起在地上升高,槛过下面的河或者路,让下面交通畅通无阻。如果在安

全的前提下,将原来的四个桥墩和三个拱形拉索变为三个桥墩和两个拱形拉索。不仅可以节约大量的材料,降低成本,而且有美观。 生活中我们平常吃到的面条,有的口感筋道,有的口感松散。材料力学在外力作用下,虽然产生较显著变形而不被破坏的材料,称为塑性材料。在外力作用下,发生微小变形即被破坏的材料,称为脆性材料。用《质构仪评价面条质地品质的研究》一文指出:用不同的材料:试样A :100 %的面包粉;试样B:面包粉和饼干粉的质量比为 3/ 1;试样C :面包粉和饼干粉的质量比为1/ 1;试样D :面包粉 和饼干粉的质量比为1/ 3;试样E :饼干粉的含量为100%。用质构 仪对其进行了TPA 实验、剪切实验和拉伸实验,得到:指标 A B C D E;最大拉伸应力 3. 546 3. 245 2. 790 2. 571 2. 211;拉伸应变 1. 357 1. 336 1. 315 1. 052 0. 821。筋道感得分 1. 773 0. 935 - 0. 407 - 1. 380 - 1. 972。硬度得分1. 778 0. 815 0. 064 - 1. 270 - 2. 175 在材料力学中,我们把拉伸试验共分 四个阶段:1弹性阶段2屈服阶段3强化阶段4颈缩阶段。而抗压强度或强度极限是材料的重要指标。工程上常将延伸率〉5%的材料称为塑性材料,而将延伸率占<5%的材料称为脆性材料。我们这里把工程的比例引用,进行如下计算:拉伸应变:L = L2/ L1(L1为拉伸前的面条长度; L2 :拉断瞬间面条长度的增加量)拉应力P=F/A(P为正拉力,A为截面面积La=1.357 Pa =3.546 Lb=1.336 Pb= 3.245 Lc=1.315 Pc = 2.790 Ld=1.052 Pd = 2.571 Le=0.821 Pe = 2.118 由塑性材料拉伸La-P图可知,材料在颈缩阶段迅速收缩,

材料力学在生活中与应用

材料力学理论在生活中的应用这篇论文选取了三个生活实例,运用材料力学所学的知识,通过受力分析,应力分析,强度校核回答了三个基本问题:铝合金封的廊子窗格是否可以无限高;千斤顶的承载重量是否可以任意大小和桥梁。 关键词 材料力学拉压强度挠度剪切压杆稳定组合变形受力单元体铝合金千斤顶 1.铝合金封的廊子窗格是否可以无限高 图一铝合金门窗、廊子 走在大街上,我们可以看到各式各样的廊子样式,可以看到大小不一的窗格布置,学了材料力学这门课程,我们不禁要提问了,窗格尺寸的极限是多么大才能保证支撑它的铝合金材料安全,不会变形? 现在就将这个模型抽象出来,假设铝合金材料是空心铝管,厚度可以任意选择,屈服强度取,只受玻璃给的压力(设玻璃居中,由于给定一段铝合金,主要承载件是玻璃,而且玻璃的相对总质量远远大于承载的铝合金的质量),外力是均匀分布力,设普通玻璃的密度是(忽略玻璃的宽度),玻璃高度为H,取长度a mm的铝合金材料,宽度为b mm,高为h mm,如图二所示:

图二 玻璃安装示意图 该结构危险点在铝合金与玻璃接触处,并且中间部位有一定的挠度(只要有承载,就一定有挠度),当承载到一定极限时,挠度太大不满足装配要求了,或者承载到一定极限就会使铝合金破坏。 情形(一):挠度w 不满足装配要求—— 将图二简化为图三(a)所示的力学简图,装配要求挠度值为[w],只要w ≤[w]即可。 首先,做外力矩 ,单位力力矩图 ,如图三(b)所示。 图三 (a) 简化模型 图三 (b) 弯矩图 运用图乘法可以求的w= ρ ρ ,进而, ρ , 可以满足装配要求。如果给定了最大允许装配误差[w],知道铝合金管的宽b ,还知道所使用的玻璃的密度ρ,那么 ρ,也就是玻璃不可能无限高,是有一个极限值的。 情形(二):剪切破坏—— 因为玻璃是有一定的厚度的,设厚为δ在玻璃与铝合金接触的地方, 有剪切

工程徐变力学-课程小论文

混凝土的徐变理论分析与测量 —力学二班 1117030232 张文杰 徐变力学作为广义的工程力学的一个分支,主要研究材料徐变性质对结构物和机械零件的强度,刚度和稳定性影响的一门学科。许多工程材料在各种不同条件下都具有显著的徐变和松弛性质,一方面材料的徐变和应力松弛有时严重影响结构和机械的工作,另一方面它们也可以改善结构的工作条件。因此研究徐变力学在工程中的应用理论至关重要。 金属材料与混凝土是工程中徐变研究的重点,但两者又有很大不同。混凝土的徐变过程受外加荷载、加载龄期、持荷时间、温度、湿度等因素影响,徐变物理方程的建立较为复杂。一般金属徐变过程与材料性质、应力水平和工作温度有关;在常温时徐变较小,计算中可以忽略不计;而混凝土常温时的徐变效应较为显著,不能忽略。 徐变对混凝土有很大的影响,既有利又有害,它缓解混凝土局部应力是有利的;给预应力结构带来应力损失,使混凝土和钢筋应力重新分布是有害的[2]。主要问题有:预应力混凝土在徐变影响下的应力损失问题;徐变对于大体积混凝土裂缝的影响;混凝土徐变力学行为的有限元分析;高强混凝土徐变力学实验及理论研究;混凝土徐变机理和预测模型的分析研究等。 由于运输能力的需求及科学技术的发展,现阶段建设的桥梁越来越复杂,跨径也越来越大,对于桥梁的要求也就越来越高,因此预应力技术的应用也越来越广泛,徐变对预应力桥梁的影响也就依时而生。 对于预应力混凝土桥梁而言,由于混凝土徐变的时变性质,预应力混凝土桥梁的徐变效应贯穿于桥梁建造至整个服役期,且其效应依时而变。预应力混凝土桥梁的徐变效应主要体现于以下几个方面: (1)梁体中混凝土和钢筋的应力、应变均随时间而变化 (2)梁体的挠度或上拱度随时间而变化 (3)超静定体系梁发生体系转换时所产生的徐变次内力随时间而变 (4)在持续荷载作用下,徐变降低了相对于该持续荷载而言的梁体刚度

弹塑性力学学习体会

弹塑性力学读书报告 本学期我们选修了樊老师的弹塑性力学,学生毕备受启发对工科来说,弹塑性力学的任务和材料力学、结构力学的任务一样,是分析 各种结构物体和其构件在弹塑性阶段的应力和应变,校核它们是否具有所需的强度、刚度和稳定性,并寻求或改进它们的计算方法。 但是在研究方法上也有不同,材料力学为简化计算,对构件的应力分布和变形状态作出某些假设,因此得到的解答是粗略和近似的; 而弹塑性力学的研究通常不引入上述假设,从而所得结果比较精确, 并可验证材料力学结果的精确性。 弹塑性力学的任务是分析各种结构物或其构件在弹性阶段和塑 性阶段的应力和位移,校核它们是否具有所需的强度、刚度和稳定性,并寻求或改进它们的计算方法。并且弹塑性力学是以后有限元分析、 解决具体工程问题的理论基础,这就要求我们掌握其必要的基础知识和具有一定的计算能力。通过一学期的弹塑性力学的学习,对其内容总结如下: 第一章绪论 首先是弹塑性力学的研究对象和任务。 1、弹塑性力学:固体力学的的一个分支学科,是研究可变形固体受 到外载荷、温度变化及边界约束变动等作用时,弹性变形及应力状态的科学。 2、弹塑性力学任务:研究一般非杆系的结构的响应问题,并对基于 实验的材料力学、结构力学的理论给出检验。

这里老师讲到过一个重点问题就是响应的理解,主要就是结构在外因的作用下产生的应力场(强度问题)、应变场(刚度问题),整体大变形(稳定性问题)。 3、弹性力学的基本假定 求解一个弹性力学问题,通常是已知物体的几何形状(即已知物体的边界),弹性常数,物体所受的外力,物体边界上所受的面力,以及 边界上所受的约束;需要求解的是物体内部的应力分量、应变分量与位移分量。求解问题的方法是通过研究物体内部各点的应力与外力所 满足的静力平衡关系,位移与应变的几何学关系以及应力与应变的物理学关系,建立一系列的方程组;再建立物体表面上给定面力的边界以及给定位移约束的边界上所给定的边界条件;最后化为求解一组偏分方程的边值问题。 在导出方程时,如果考虑所有各方面的因素,则导出的方程非常复杂,实际上不可能求解。因此,通常必须按照研究对象的性质,联系求解问题的范围,做出若干基本假定,从而略去一些暂不考虑的因素,使 得方程的求解成为可能。 (1)假设物体是连续的。就是说物体整个体积内,都被组成这种物 体的物质填满,不留任何空隙。这样,物体内的一些物理量,例如: 应力、应变、位移等,才可以用坐标的连续函数表示。 (2)假设物体是线弹性的。就是说当使物体产生变形的外力被除去 以后,物体能够完全恢复原来形状,不留任何残余变形。而且,材料 服从虎克定律,应力与应变成正比。

振动力学课程设计报告材料(2)

振动力学课程设计报告 课设题目:电磁振动给料机的振动分析与隔振设计单位: 专业/班级: 姓名: 指导教师:

一、前言 1、课题目的或意义 通过对结构进行振动分析或参数设计,进一步巩固和加深振动力学课程中的基本理论知识,初步掌握实际结构中对振动问题分析、计算的步骤和方法,培养和提高独立分析问题和运用所学理论知识解决实际问题的能力。 2、课题背景: 1、结构:本设计中,料槽底板采用16mm厚钢板焊接而成,再用筋板加强。料槽衬板采用20mm厚钢板。料槽材料全部采用镇静钢,能承受工作过程中由于振动产生的交变载荷,焊缝不易开裂。 2、工程应用前景:振动给料机用于把物料从贮料仓或其它贮料设备中均匀或定量的供给到受料设备中,是实行流水作业自动化的必备设备分敞开型和封闭型两种,本设计中电磁振动给料为双质体系统,结构简单,操作方便,不需润化,耗电量小;可以均匀地调节给料量为了减小惯性力,在保证强度和刚度的前提下,应尽可能减轻振动槽体的质量。从而使其在实际工程应用中会有非常广泛的前景。 二、振动(力学)模型建立 1、结构(系统)模型简介

O 1 O 0 O 2 123123k k k c c c 、为隔振弹簧,为主振弹簧,、、分别为隔振和主振弹簧的阻尼 4k 、4c 分别为尼龙连接板得等效刚度和阻尼。 0m 为偏心块质量,1m 为给料槽体质量,2m 激振器的振动质量。 R m —输送槽体(包括激振器)的质量,1500kg ;即012R m m m m ++= G m —槽内物料的结合质量。 在实际中系统为离散的,而建立模型后将质量进行集中从而该系统可视为为连续系统,通过上网搜索资料以及书中知识总结并设计出如上所示电磁振动给料机力学模型,其组成为料槽、电磁激振器、减振器、电源控制箱等组成。 2、系统模型参数 (包括系统所必需的几何、质量、等效刚、激励等)

相关文档