文档库 最新最全的文档下载
当前位置:文档库 › 内存映射文件测试报告(windows)

内存映射文件测试报告(windows)

内存映射文件测试报告(windows)
内存映射文件测试报告(windows)

内存映射文件测试报告(windows)

目录

1 内存映射文件简介 (3)

1.1内存映射文件概念 (3)

1.2内存映射文件优点 (3)

1.3内存映射文件原理简述 (3)

2内存映射文件函数(windows) (4)

2.1内存映射文件操作流程 (4)

2.2函数说明 (4)

2.2.1 CreateFile (4)

2.2.2 CreateFileMapping (4)

2.2.3 MappViewOfFile (5)

3测试用例及结果(windows) (5)

3.1用例1 (5)

3.1.1 测试目的及流程 (5)

3.1.2 测试结果 (6)

3.2用例2 (6)

3.2.1 测试目的及流程 (6)

3.2.2 测试结果 (7)

3.3用例3 (7)

3.3.1 测试目的及流程 (7)

3.3.2 测试结果 (7)

3.4用例4 (7)

3.4.1 测试目的及流程 (7)

3.4.2 测试结果 (8)

3.5用例5 (8)

3.5.1 测试目的及流程 (8)

3.5.2 测试结果 (8)

4其他说明 (8)

5附录(代码) (9)

5.1创建内存映射文件代码 (9)

5.2测试用例3代码 (10)

1内存映射文件简介

1.1内存映射文件概念

内存映射文件提供了一组独立的函数,使应用程序能够通过内存指针像访问内存一样访问磁盘上的文件。通过内存映射文件函数可以将磁盘上的文件全部或者部分映射到进程的虚拟地址空间的某个位置。一旦完成映射,对磁盘文件的访问就可以像访问内存文件一样便捷。

1.2内存映射文件优点

文件操作是应用程序最为基本的功能之一,Win32 API和MFC均提供有支持文件处理的函数和类,常用的有Win32 API的CreateFile()、WriteFile()、ReadFile()和MFC提供的CFile类等。一般来说,以上这些函数可以满足大多数场合的要求,但是对于某些特殊应用领域所需要的动辄几十GB、几百GB、乃至几TB的海量存储,再以通常的文件处理方法进行处理显然是行不通的。

因此提出内存映射文件,它的优点为:

(1)系统使用内存映射文件,以便加载和执行.exe和DLL文件。这可以大大节省页文件空间和应用程序启动运行所需的时间。

(2)可以使用内存映射文件来访问磁盘上的数据文件。可以不必对文件执行I/O操作,并且可以不必对文件内容进行缓存。

(3)可以使用内存映射文件,使同一台计算机上运行的多个进程能够相互之间共享数据。注:使用内存映射文件数据传输是通过4k大小的数据页面实现的。

1.3内存映射文件原理简述

内存映射文件是将硬盘上文件的位置与进程逻辑地址空间中一块大小相同的区域之间的一一对应。这种对应关系纯属是逻辑上的概念,物理上是不存在的,原因是进程的逻辑地址空间本身就是不存在的。在内存映射的过程中,并没有实际的数据拷贝,文件没有被载入内存,只是逻辑上被放入了内存。

内存映射文件是把数据文件的一部分映射到虚拟地址空间(映射到的区域是在0x800000000~0xBFFFFFFF内),但不提交RAM,存取这段内存的指令同样会产生页面异常。操作系统捕获到这个异常后,分配一页RAM,并把它映射到当前进程发生异常的地址处,然后系统把文件中相应的数据独到这个页面中,继续执行刚才产生异常的指令。

它使应用程序可以通过内存指针对磁盘上的文件进行访问,其过程就如同对加载了文件的内存的访问。通过文件映射这种使磁盘文件的全部或部分内容与进程虚拟地址空间的某个区域建立映射关联的能力,可以直接对被映射的文件进行访问,而不必执行文件I/O操作也

无需对文件内容进行缓冲处理。内存文件映射的这种特性是非常适合于用来管理大尺寸文件的。

需要说明的是,在系统的正常的分页操作过程中,内存映射文件并非一成不变的,它将被定期更新。如果系统要使用的页面目前正被某个内存映射文件所占用,系统将释放此页面,如果页面数据尚未保存,系统将在释放页面之前自动完成页面数据到磁盘的写入。

2内存映射文件函数(windows)

2.1内存映射文件操作流程

(1)调用 CreatFile 打开想要映射的文件,获得句柄hFile;

(2)调用 CreatFileMapping 函数生成一个建立在CreatFile函数创建的文件对象基础上的内存映射对象,得到句柄hFileMap;

(3)调用 MapViewOfFile 函数把整个文件的一个区域或者整个区域映射到内存中,得到指向映射到内存的第一个字节的指针 lpMemory;

(4)用该指针来读写文件;

(5)调用 UnmapViewOfFile 来解除文件映射,传入参数为 lpMemory;

(6)调用 CloseHandle 来关闭内存映射文件,传入参数为 hFileMap;

(7)调用 CloseHandle 来关闭文件,传入函数为 hFile。

2.2函数说明

2.2.1 CreateFile

功能说明:

创建或打开一个文件内核对象,这个对象标识了磁盘上将要用作内存映射文件的文件。2.2.2 CreateFileMapping

功能说明:

创建一个有名的共享内存。

HANDLE CreateFileMapping(

HANDLE hFile, // 映射文件的句柄,设为0xFFFFFFFF以创建一个进程间共享的对象LPSECURITY_ATTRIBUTES lpFileMappingAttributes, // 安全属性

DWORD flProtect, // 保护方式

DWORD dwMaximumSizeHigh, //对象的大小

DWORD dwMaximumSizeLow,

LPCTSTR lpName // 必须为映射文件命名

);

2.2.3 MappViewOfFile

功能说明:

在创建文件映射对象后使用可以调用MapViewOfFile函数映射到本进程的地址空间内。

LPVOID MapViewOfFile(HANDLE hFileMappingObject,

DWORD dwDesiredAccess,

DWORD dwFileOffsetHigh,

DWORD dwFileOffsetLow,

DWORD dwNumberOfBytesToMap

);

参数说明:

dwDesiredAccess:用来指定我们想对文件进行的操作,如:FILE_MAP_READ等。dwFileOffsetHigh 和dwFileOffsetLow :用来指定打开文件中欲映射的起始偏移位置(映射整个的文件,可指定它们的值为0)。

dwNumberOfBytesToMap:用来指定欲映射的字节数(映射整个的文件,设定该值为0)。

MapViewOfFile()函数允许全部或部分映射文件,在映射时,需要指定数据文件的偏移地址以及待映射的长度。其中,文件的偏移地址由DWORD型的参数dwFileOffsetHigh和dwFileOffsetLow组成的 64位值来指定,而且必须是操作系统的分配粒度的整数倍,对于Windows操作系统,分配粒度固定为64KB。当然,也可以通过如下代码来动态获取当前操作系统的分配粒度:

3测试用例及结果(windows)

说明:以下测试环境为windows xp系统,2G内存,个人使用pc机。

3.1用例1

3.1.1 测试目的及流程

测试目的:

对于使用fopen,fread,fclose操作文件,与内存映射文件方法,两者效率比较。

流程一:

(1)使用fopen打开文件;

(2)使用fread读取文件;

(3)使用fclose关闭文件。

流程二:

(1)使用CreateFile,CreateFileMapping创建文件对象和文件映射对象;

(2)使用MapViewOfFile将文件映射到进程地址空间(整个文件都映射到内存);

(3)使用MapViewOfFile函数返回的内存指针,访问数据。

(4)释放内存映射对象,关闭以上操作产生的句柄。

3.1.2 测试结果

(3)按照“流程一”操作文件,第一次运行耗时较长,以后的操作耗时和内存映射文件耗时相差不多。可能是系统文件缓存原因。

3.2用例2

3.2.1 测试目的及流程

测试目的:

比较fopen,fread,fclose操作文件,与内存映射文件方法,在打开文件后,多次读取文件的速度。

流程一:

(4)使用fopen打开文件;

(5)多次使用fread读取文件;

(6)使用fclose关闭文件。

流程二:

(5)使用CreateFile,CreateFileMapping创建文件对象和文件映射对象;

(6)使用MapViewOfFile将文件映射到进程地址空间(整个文件都映射到内存);

(7)重复使用MapViewOfFile函数返回的内存指针,访问数据。

(8)释放内存映射对象,关闭以上操作产生的句柄。

3.2.2 测试结果

(1)循环打开100个不同文件,每打开一次文件,读取文件内容操作1000次:

流程一时间约为:650ms

流程二时间约为:65ms

(2)循环打开100个不同文件,每打开一次文件,读取文件内容操作2000次:

流程一时间约为:1265ms

流程二时间约为:60ms

3.3用例3

3.3.1 测试目的及流程

测试目的:

测试内存映射文件最大同时打开文件的总大小。

测试流程:

(1)使用CreateFile,CreateFileMapping创建文件对象和文件映射对象;

(2)使用MapViewOfFile将文件映射到进程地址空间(整个文件都映射到内存);

(3)重复以上操作打开不同文件,直到MapViewOfFile返回错误。

(4)关闭以上操作产生的句柄,释放文件映射对象。

3.3.2 测试结果

3.4用例4

3.4.1 测试目的及流程

测试目的:

(1)测试是否可以创建多个文件映射内核句柄,但不进行文件映射到内存操作;

(2)轮循上一步得到的不同文件映射内核句柄,将对应的文件映射到内存。

测试流程:

(1)使用CreateFile,CreateFileMapping创建多个文件对象和文件映射对象,并将其保存到

std::map中;

(2)使用std::map中保存的句柄,调用MapViewOfFile将文件映射到进程地址空间;(3)释放步骤(2)产生的文件映射对象;

(4)重复步骤(2),步骤(3);

(5)关闭std::map中保存的句柄。

3.4.2 测试结果

产生多个文件映射句柄,并保存。可依据需要,对某个文件映射内核句柄进行MapViewOfFile 文件映射到内存操作。释放文件映射对象后,重新映射其他文件映射句柄。避免进程地址空间的大小限制。

3.5用例5

3.5.1 测试目的及流程

测试windows(64位)下,内存映射大小。

测试环境:

机器:192.168.75.238

内存:64GB

系统:windows server 2003(64位)

3.5.2 测试结果

测试结果:

测试文件夹文件个数:共2047个文件(47个1g大小的文件2000个5m大小文件)

全部映射成功,共映射约58128m(约56g)文件,未发生错误。

4其他说明

(1)因进程地址空间大小有限制,所以内存映射文件也同样有限制,可通过调用MapViewOfFile时,指定映射的起始偏移位置,来映射部分文件到内存。

(2)测试未调查linux下文件映射的资料。

(3)因个人水平,可能存在理解偏差或代码编写有误,会不断改进。

5附录(代码)

5.1创建内存映射文件代码

// 1.创建一个“文件”内核对象

HANDLE hFile = CreateFileA(file_path, GENERIC_READ | GENERIC_WRITE, 0, NULL, OPEN_EXISTING, FILE_ATTRIBUTE_NORMAL, NULL);

if (hFile == INVALID_HANDLE_VALUE)

{

printf("test_file_mapping | CreateFileA failed (GetLastError = %d)... \n", GetLastError());

return -1;

}

// 2.打开一个“文件映射”内核对象

HANDLE hFileMap = OpenFileMapping(FILE_MAP_READ | FILE_MAP_WRITE, false, NULL);

if (hFileMap == NULL)

{

// 如果对象不存在,创建一个“文件映射”内核对象

DWORD dwFileSize = 0;

hFileMap = CreateFileMapping(hFile, NULL, PAGE_READWRITE, 0,

0,NULL);

if (hFileMap == NULL)

{

printf("test_file_mapping | CreateFileMapping failed (GetLastError = %d)... \n", GetLastError());

return -1;

}

}

// 3.将数据映射到进程地址空间

PVOID pvFileView = MapViewOfFile(hFileMap, FILE_MAP_READ, 0,0,0);

if (pvFileView == NULL)

{

printf("test_file_mapping | MapViewOfFile failed (GetLastError = %d)... \n", GetLastError());

return -1;

}

// 4.访问或修改数据

char* pszVal = (char*)pvFileView;

// 5.撤销文件内核对象

UnmapViewOfFile(pvFileView);

// 6.关闭文件内核对象和文件映射内核对象CloseHandle(hFileMap);

CloseHandle(hFile);

5.2测试用例3代码

#include

#include "iFly_Assert.h"

#include "utils/sutils.h"

#include

#include

sp::str_arr res_file;

unsigned int tick_count();

const char* get_res_file_name(int cursor);

unsigned int tick_count()

{

return ::GetTickCount();

}

const char* get_res_file_name(int cursor)

{

return res_file[cursor % res_file.size()].c_str(); }

int main(int argc,char* argv[])

{

int ret = 0;

SP_ASSERT(argc == 3);

const char* uri = argv[1];

int loop_count = atoi(argv[2]);

// get resource file list

sp::get_file_list(uri, res_file, "*", false);

const char* file_name = "";

unsigned int tick_start;

unsigned int tick_end;

int icount = 0;

std::map mapping_map;

unsigned long long total_size = 0;

double size_m = 0;

unsigned int f_size = 0;

HANDLE hMapFile = NULL;

HANDLE hFile = NULL;

for (int i = 0;i < loop_count;i++)

{

icount = i;

file_name = get_res_file_name(i);

hFile = CreateFileA(file_name, GENERIC_READ | GENERIC_WRITE, 0, NULL, OPEN_EXISTING, FILE_ATTRIBUTE_NORMAL, NULL);

if (hFile == INVALID_HANDLE_VALUE)

{

printf("CreateFileA failed (GetLastError = %d)... \n",

GetLastError());

break;

}

hMapFile = CreateFileMapping(hFile, NULL, PAGE_READWRITE, 0, 0,NULL);

if (hMapFile == NULL)

{

printf("CreateFileMapping failed,file name = %s,GetLastError = %d\n", file_name, GetLastError());

break;

}

mapping_map.insert(std::pair(hFile, hMapFile));

f_size = sp::get_file_size(file_name);

total_size += f_size;

printf("file num = %d,file size = %d\n",

(icount+1),

f_size);

}

size_m = (double)total_size / (1024*1024);

printf("total file size = %llu(%f)\n",total_size,size_m);

std::map::iterator iter1 = mapping_map.begin();

for (; iter1 != mapping_map.end(); iter1++)

{

HANDLE hFile_m = iter1->first;

HANDLE hMappingFile_m = iter1->second;

PVOID p_file_view = MapViewOfFile(hMappingFile_m, FILE_MAP_READ, 0,0,0);

if (p_file_view == NULL)

{

printf("MapViewOfFile failed,file name = %s,GetLastError = %d\n",

file_name, GetLastError());

return -1;

}

char* pszVal = (char*)p_file_view;

UnmapViewOfFile(p_file_view);

}

char c[100];

printf("close ... ?\n");

gets(c);

std::map::iterator iter2 = mapping_map.begin();

for (; iter2 != mapping_map.end(); iter2++)

{

HANDLE hFile_m = iter2->first;

HANDLE hMappingFile_m = iter2->second;

CloseHandle(hMappingFile_m);

CloseHandle(hFile_m);

}

mapping_map.clear();

system("pause");

return 0; }

关于VB内存映射文件的使用

VB内存映射文件的使用 引言 文件操作是应用程序最为基本的功能之一,Win32 API和MFC均提供有支持文件处理的函数和类,常用的有Win32 API的CreateFile()、WriteFile()、ReadFile()和MFC提供的CFile类等。一般来说,以上这些函数可以满足大多数场合的要求,但是对于某些特殊应用领域所需要的动辄几十GB、几百GB、乃至几TB的海量存储,再以通常的文件处理方法进行处理显然是行不通的。目前,对于上述这种大文件的操作一般是以内存映射文件的方式来加以处理的,本文下面将针对这种Windows核心编程技术展开讨论。 内存映射文件 内存映射文件与虚拟内存有些类似,通过内存映射文件可以保留一个地址空间的区域,同时将物理存储器提交给此区域,只是内存文件映射的物理存储器来自一个已经存在于磁盘上的文件,而非系统的页文件,而且在对该文件进行操作之前必须首先对文件进行映射,就如同将整个文件从磁盘加载到内存。由此可以看出,使用内存映射文件处理存储于磁盘上的文件时,将不必再对文件执行I/O操作,这意味着在对文件进行处理时将不必再为文件申请并分配缓存,所有的文件缓存操作均由系统直接管理,由于取消了将文件数据加载到内存、数据从内存到文件的回写以及释放内存块等步骤,使得内存映射文件在处理大数据量的文件时能起到相当重要的作用。另外,实际工程中的系统往往需要在多个进程之间共享数据,如果数据量小,处理方法是灵活多变的,如果共享数据容量巨大,那么就需要借助于内存映射文件来进行。实际上,内存映射文件正是解决本地多个进程间数据共享的最有效方法。 内存映射文件并不是简单的文件I/O操作,实际用到了Windows的核心编程技术--内存管理。所以,如果想对内存映射文件有更深刻的认识,必须对Windows操作系统的内存管理机制有清楚的认识,内存管理的相关知识非常复杂,超出了本文的讨论范畴,在此就不再赘述,感兴趣的读者可以参阅其他相关书籍。 内存映射文件使用方法 1) 首先要通过CreateFile()函数来创建或打开一个文件内核对象,这个对象标识了磁盘上将要用作内 存映射文件的文件。 2)在用CreateFile()将文件映像在物理存储器的位置通告给操作系统后,只指定了映像文件的路径, 映像的长度还没有指定。为了指定文件映射对象需要多大的物理存储空间还需要通过 CreateFileMapping()函数来创建一个文件映射内核对象以告诉系统文件的尺寸以及访问文件的方式。 3)在创建了文件映射对象后,还必须为文件数据保留一个地址空间区域,并把文件数据作为映射到该 区域的物理存储器进行提交。由MapViewOfFile()函数负责通过系统的管理而将文件映射对象的全部或部分映射到进程地址空间。此时,对内存映射文件的使用和处理同通常加载到内存中的文件数据的处理方式基本一样。 4)在完成了对内存映射文件的使用时,还要通过一系列的操作完成对其的清除和使用过资源的释放。 这部分相对比较简单,可以通过UnmapViewOfFile()完成从进程的地址空间撤消文件数据的映像、通过CloseHandle()关闭前面创建的文件映射对象和文件对象。 内存映射文件相关函数 在使用内存映射文件时,所使用的API函数主要就是前面提到过的那几个函数,下面分别对其进行介绍:

北理工操作系统内存管理实验报告

实验三:内存管理 班级: 学号:

姓名: 一、实验目的 1.通过编写和调试存储管理的模拟程序以加深对存储管理方案的理解; 2.熟悉虚存管理的页面淘汰算法; 3.通过编写和调试地址转换过程的模拟程序以加强对地址转换过程的了解。 二、实验要求 1.设计一个请求页式存储管理方案(自己指定页面大小),并予以程序实现。 并产生一个需要访问的指令地址流。它是一系列需要访问的指令的地址。为不失一般性,你可以适当地(用人工指定地方法或用随机数产生器)生成这个序列。 2.页面淘汰算法采用FIFO页面淘汰算法,并且在淘汰一页时,只将该页在页 表中抹去。而不再判断它是否被改写过,也不将它写回到辅存。 3.系统运行既可以在Windows,也可以在Linux。 三、实验流程图

图1 页式存储管理程序参考流程 四、实验环境 硬件设备:个人计算机。 系统软件:windows操作系统,Visual C++6.0编译环境。 五、实验结果

说明:模拟产生35个指令地址,随机产生20个指令地址进行排队,假设主存中共有10个工作集页帧。将前9个指令调入内存,因为前9个指令中,页号为13的指令有两个,所以调入内存中共有8页。此时主存中还有两个空闲帧。此时按刚才随机顺序进行访问指令工作。前9页因都在主存中可直接调用。第10个随机地址为页号为5的指令,也在主存中,也可直接调用。页号为24,3因不在主存中,需要调用进主存。此时主存已满。然后主存需要进行调用页号为27号的指令,因主存已满,需要执行FIFO算法,将最先进入主存的页号为30的指令调出,将27号放入第1000000帧。以后需要调用的页面按照存在就无需调用,否则按FIFO原则进行调页工作。 六、实验感想 七、实验代码 #include

实验三存储管理实验

实验三存储管理实验 Pleasure Group Office【T985AB-B866SYT-B182C-BS682T-STT18】

实验三存储管理实验 一. 目的要求: 1、通过编写和调试存储管理的模拟程序以加深对存储管理方案的理解。熟悉虚存管理的各种页面淘汰算法。 2、通过编写和调试地址转换过程的模拟程序以加强对地址转换过程的了解。二.实验内容: 1、设计一个固定式分区分配的存储管理方案,并模拟实现分区的分配和回收过程。 可以假定每个作业都是批处理作业,并且不允许动态申请内存。为实现分区的分配和回收,可以设定一个分区说明表,按照表中的有关信息进行分配,并根据分区的分配和回收情况修改该表。 算法描述: 本算法将内存的用户区分成大小相等的四个的分区,设一张分区说明表用来记录分区,其中分区的表项有分区的大小、起始地址和分区的状态,当系统为某个作业分配主存空间时,根据所需要的内存容量,在分区表中找到一个足够大的空闲分区分配给它,然后将此作业装入内存。如果找不到足够大的空闲分区,则这个作业暂时无法分配内存空间,系统将调度另一个作业。当一个作业运行结束时,系统将回收改作业所占据的分区并将该分区改为空闲。 算法原程序 #include "" #include "" #include <>

#include <> #define PCB_NUM 5 行程序."); printf("\n\t\t\t0.退出程序."); scanf("%d",&m); switch(m) { case1: break; case0: system("cls"); menu(); break; default: system("cls"); break; } } void paixu(struct MemInf* ComMem,int n) { int i,j,t; for(j=0; jComMem[i+1].size) { t=ComMem[i].size; ComMem[i].size=ComMem[i+1].size; ComMem[i+1].size=t; } } void paixu2() { int i,j,t; for(j=0; j<4; j++) for(i=0; i<4-j; i++) if(pcbList[i].size>pcbList[i+1].size) { t=pcbList[i].size; pcbList[i].size=pcbList[i+1].size; pcbList[i+1].size=t; } } void main() { DD: menu();

四川大学 操作系统上机实验 实验五 Windows虚拟存储器管理

实验报告 实验名称:Windows虚拟存储器管理 实验时间:2013年5月27日 实验人员:____郑笑凡___(姓名)__1143041243__(学号)____2011____(年级) 实验目的:1、了解Windows 2000/XP的内存管理机制,掌握页式虚拟存储技术。 2、理解内存分配原理,特别是以页面为单位的虚拟内存分配方法。 3、学会使用Windows 2000/XP下内存管理的基本API函数 实验环境:windows xp 实验步骤: 1、下载virtumem.cpp; 2、建立工程,将virtumen.cpp加入; 3、编译工程,观察结果,确信六种状态都出现至少一次,必要时可改程 序,方便观察结果; 4、看懂程序,按要求另写一段小程序; 5、编译,执行,观察结果。 6,总结。 实验陈述: 1、基础知识: pagefile.sys文件的位置在:__安装的系统盘根目录下____________________________________此文件的作用:____实现物理内存的扩展__________________________________________________ 改变此文件大小的方法:右击”我的电脑”,依次选择”属性”—“高级”—“性能选项”— “更改”_______________________________________ 虚拟地址空间中的页面分为:提交页面,保留页面,空闲页面 页面的操作可以分为:保留、提交、回收、释放、加锁 2、编程准备. 页面属性是在结构体MEMORY_BASIC_INFORMATION_的字段AllocationProtect 和字段中Protect体现出来的。 简述VirtualFree,VirtualPtotect,VirtualLock,VirtualUnlock,VirtualQuery的作用:_ VirtualFree:__释放虚存___________________________________________________ VirtualPtotect:_保留虚存_________________________________________________ VirtualLock:___加锁虚存_________________________________________________ VirtualUnlock:_解锁虚存________________________________________________ VirtualQuery:____查询虚存_______________________________________________ 3、编程 1)将virtumem.cpp加入工程,编译,执行。 是否能编译成功?是 请描述运行结果:

主板芯片和内存映射

astrotycoon 大道至简,贵在恒久力行

Diagram for modern motherboard. The northbridge and southbridge make up the chipset.

(补充: 北桥芯片用于与CPU、内存和AGP视频接口,这些接口具有很高的传输速率。北桥芯片还起着存储器控制作用,因此Intel把该芯片标号为MCH(Memory Controller Hub)芯片。南桥芯片用来管理低、中速的组件,例如,PCI总线、IDE硬盘接口、USB端口等,因此南桥芯片的名称为ICH(I/O Controller Hub)) As you look at this, the crucial thing to keep in mind is that the CPU doesn’t really know anything about what it’s connected to. It talks to the outside world through its pins bu t it doesn’t care what that outside world is. It might be a motherboard in a computer but it could be a toaster, network router, brain implant, or CPU test bench. There are thre e main ways by which the CPU and the outside communicate: memory address space, I/O address space, and interrupts. We only worry about motherboards and memory for now. 正如你所看到的,其实CPU是完全不知道自己与哪些外部器件相连接的。 CPU仅仅通过自己的引脚与外界沟通,而它并不关心自己是与什么设备在沟通。或许是另一台计算机的主板,或许是烤面包机,网络路由器,脑植入医疗设备,又或许是CPU测试仪。 CPU主要通过三种方式与外界通信:内存地址空间,IO地址空间,和中断。我们目前只关注主板和内存。 In a motherboard the CPU’s gateway to the world is the front-side bus connecting it to the northbridge. Whenever the CPU needs to read or write memory it does so via this b us. It uses some pins to transmit the physical memory address it wants to write or read, while other pins send the value to be written or receive the value being read. An Intel Core 2 QX6600 has 33 pins to transmit the physical memory address (so there are 233 choices of memory locations) and 64 pins to send or receive data (so data is transmitte d in a 64-bit data path, or 8-byte chunks). This allows the CPU to physically address 64 gigabytes of memory (233 locations * 8 bytes) although most chipsets only handle up to 8 gigs of RAM. CPU通过前端总线与北桥芯片连接,作为与外界通信的桥梁。无论何时,CPU都可以通过前端总线来读写内存。 CPU通过一些引脚来传送想要读写物理内存的地址,同时通过另一些引脚来发送将要写入内存的数据或者接收从内存读取到的数据。 Intel Core 2 QX6600 用33个引脚来传送物理内存地址(因此共有233 个内存地址),并且用64个引脚来发送或接收数据(所以数据在64位通道中传输,也就是8字节的数据块)。因此C PU可以访问64G的物理内存(233*8字节),尽管多数芯片组只能处理8G大小的物理内存。 Now comes the rub. We’re used to thinking of memory only in terms of RAM, the stuff programs read from and write to all the time. And indeed most of the memory requests from the processor are routed to RAM modules by the northbridge. But not all of them. Physical memory addresses are also used for communication with assorted devices on t he motherboard (this communication is called memory-mapped I/O). These devices include video cards, most PCI cards (say, a scanner or SCSI card), and also the flash mem ory that stores the BIOS. 那么现在的问题是,通常一提起内存我们仅仅联想到RAM,以为程序一直读写的就只是RAM。的确,绝大多数来自CPU的内存访问请求都被北桥芯片映射到了RAM。但是,注意,不是全部。物理内存同样可以用来与主板上的各种设备通信(这种通信方式被称为I/O内存映射)。这些设备包括显卡,大多数PCI卡(比如,扫描仪,或者是SCSI卡),也包括存储BIOS的flash存储器。 When the northbridge receives a physical memory request it decides where to route it: should it go to RAM? Video card maybe? This routing is decided via the memory addres s map. For each region of physical memory addresses, the memory map knows the device that owns that region. The bulk of the addresses are mapped to RAM, but when the y aren’t the memory map tells the chipset which device should service requests for those addresses. This mapping of memory addresses away from RAM modules causes the c lassic hole in PC memory between 640KB and 1MB. A bigger hole arises when memory addresses are reserved for video cards and PCI devices. This is why 32-bit OSes have pr oblems using 4 gigs of RAM. In Linux the file /proc/iomem neatly lists these address range mappings. The diagram below shows a typical memory map for the first 4 gigs of p hysical memory addresses in an Intel PC:

操作系统实验之内存管理实验报告

学生学号 实验课成绩 武汉理工大学 学生实验报告书 实验课程名称 计算机操作系统 开 课 学 院 计算机科学与技术学院 指导老师姓名 学 生 姓 名 学生专业班级 2016 — 2017 学年第一学期

实验三 内存管理 一、设计目的、功能与要求 1、实验目的 掌握内存管理的相关内容,对内存的分配和回收有深入的理解。 2、实现功能 模拟实现内存管理机制 3、具体要求 任选一种计算机高级语言编程实现 选择一种内存管理方案:动态分区式、请求页式、段式、段页式等 能够输入给定的内存大小,进程的个数,每个进程所需内存空间的大小等 能够选择分配、回收操作 内购显示进程在内存的储存地址、大小等 显示每次完成内存分配或回收后内存空间的使用情况 二、问题描述 所谓分区,是把内存分为一些大小相等或不等的分区,除操作系统占用一个分区外,其余分区用来存放进程的程序和数据。本次实验中才用动态分区法,也就是在作业的处理过程中划分内存的区域,根据需要确定大小。 动态分区的分配算法:首先从可用表/自由链中找到一个足以容纳该作业的可用空白区,如果这个空白区比需求大,则将它分为两个部分,一部分成为已分配区,剩下部分仍为空白区。最后修改可用表或自由链,并回送一个所分配区的序号或该分区的起始地址。 最先适应法:按分区的起始地址的递增次序,从头查找,找到符合要求的第一个分区。

最佳适应法:按照分区大小的递增次序,查找,找到符合要求的第一个分区。 最坏适应法:按分区大小的递减次序,从头查找,找到符合要求的第一个分区。 三、数据结构及功能设计 1、数据结构 定义空闲分区结构体,用来保存内存中空闲分区的情况。其中size属性表示空闲分区的大小,start_addr表示空闲分区首地址,next指针指向下一个空闲分区。 //空闲分区 typedef struct Free_Block { int size; int start_addr; struct Free_Block *next; } Free_Block; Free_Block *free_block; 定义已分配的内存空间的结构体,用来保存已经被进程占用了内存空间的情况。其中pid作为该被分配分区的编号,用于在释放该内存空间时便于查找。size表示分区的大小,start_addr表示分区的起始地址,process_name存放进程名称,next指针指向下一个分区。 //已分配分区的结构体 typedef struct Allocate_Block { int pid; int size; int start_addr; char process_name[PROCESS_NAME_LEN]; struct Allocate_Block *next; } Allocate_Block; 2、模块说明 2.1 初始化模块 对内存空间进行初始化,初始情况内存空间为空,但是要设置内存的最大容量,该内存空间的首地址,以便之后新建进程的过程中使用。当空闲分区初始化

内存映射文件

内存映射文件: 内存映射文件有三种,第一种是可执行文件的映射,第二种是数据文件的映射,第三种是借助页面交换文件的内存映射.应用程序本身可以使用后两种内存映射. 1.可执行文件映射: Windows在执行一个Win32应用程序时使用的是内存映射文件技术.系统先在进程地址空间的0x00400000以上保留一个足够大的虚拟地址空间(0x00400000以下是由系统管理的),然后把应用程序所在的磁盘空间作为虚拟内存提交到这个保留的地址空间中去(我的理解也就是说,虚拟内存是由物理内存和磁盘上的页面文件组成的,现在应用程序所在的磁盘空间就成了虚拟地址的页面文件).做好这些准备后,系统开始执行这个应用程序,由于这个应用程序的代码不在内存中(在页面文件中),所以在执行第一条指令的时候会产生一个页面错误(页面错误也就是说,系统所访问的数据不在内存中),系统分配一块内存把它映射到0x00400000处,把实际的代码或数据读入其中(系统分配一块内存区域,把它要访问的在页面文件中的数据读入到这块内存中,需在注意是系统读入代码或数据是一页一页读入的),然后可以继续执行了.当以后要访问的数据不在内存中时,就可以通过前面的机制访问数据.对于Win32DLL的映射也是同样,不过DLL文件应该是被Win32进程共享的(我想应该被映射到x80000000以后,因为0x80000000-0xBFFFFFFF是被共享的空间). 当系统在另一个进程中执行这个应用程序时,系统知道这个程序已经有了一个实例,程序的代码和数据已被读到内存中,所以系统只需把这块内存在映射到新进程的地址空间即可,这样不就实现了在多个进程间共享数据了吗!然而这种共享数据只是针对只读数据,如果进程改写了其中的代码和数据,操作系统就会把修改的数据所在的页面复制一份到改写的进程中(我的理解也就是说共享的数据没有改变,进程改写的数据只是共享数据的一份拷贝,其它进程在需要共享数据时还是共享没有改写的数据),这样就可以避免多个进程之间的相互干扰. 2.数据文件的内存映射: 数据文件的内存映射原理与可执行文件内存映射原理一样.先把数据文件的一部分映射到虚拟地址空间的0x80000000 - 0xBFFFFFFF,但没有提交实际内存(也就是说作为页面文件),当有指令要存取这段内存时同样会产生页面错误异常.操作系统捕获到这个异常后,分配一页内存,映射内存到发生异常的位置,然后把要访问的数据读入到这块内存,继续执行刚才产生异常的指令(这里我理解的意思是把刚才产生异常的指令在执行一次,这次由于数据已经映射到内存中,指令就可以顺利执行过去),由上面的分析可知,应用程序访问虚拟地址空间时由操作系统管理数据在读入等内容,应用程序本身不需要调用文件的I/O函数(这点我觉得很重要,也就是为什么使用内存映射文件技术对内存的访问就象是对磁盘上的文件访问一样). 3.基于页面交换文件的内存映射: 内存映射的第三种情况是基于页面交换文件的.一个Win32进程利用内存映射文件可以在进程共享的地址空间保留一块区域(0x8000000 - 0xBFFFFFFF),这块区域与系统的页面交换文件相联系.我们可以用这块区域来存储临时数据,但更常见的做法是利用这块区域与其他进程通信(因为0x80000000以上是系统空间,进程切换只是私有地址空间,系统空间是所有进程共同使用的),这样多进程间就可以实现通信了.事实上Win32多进程间通信都是使用的内存映射文件技术,如PostMessage(),SentMessage()函数,在内部都使用内存映射文件技术. 使用内存映射文件的方法: 1.利用内存映射文件进行文件I/O操作: CreateFile()-->CreateFileMapping()-->MapViewOfFile()......

实验3内存管理 空闲分区表

南京信息工程大学实验(实习)报告实验(实习)名称实验3 内存管理日期 14.5.30 得分指导教师 系计软院专业软件工程年级班次姓名学号 实验3 内存管理 1、程序中使用的数据结构及符号说明。 struct form{//空闲分区表单 int startaddress;//起址 int size;//长度 char state;//状态r代表未分配,e表示空表单 }; struct work{//作业表单 int id;//作业号 int size;//申请空间大小 int from;//起址,正在执行的程序的起址,就绪程序为0k,完成程序为-1k char state;//作业状态,r表示就绪,d表示正在运作,o表示作业完成 }; 2、作业流程 【1】创建作业表 【2】创建空闲分区表 【3】为作业4申请空闲分区 【4】回收作业2、3的申请量 【5】打印作业完成情况 【6】回收作业1、4的申请量 【7】打印作业完成情况 3、打印一份源程序并附上注释。 #include #define NUM 10//表单长度 struct form{//空闲分区表单 int startaddress;//起址 int size;//长度 char state;//状态r代表未分配,e表示空表单 }; struct work{//作业表单 int id;//作业号 int size;//申请空间大小 int from;//起址 char state;//作业状态,r表示就绪,d表示正在运作,o表示作业完成 };

void showallwork(work *w){//展示所有作业情况 printf("以下是所有作业情况:\n"); printf("----------------------------------\n"); printf("作业号所需空间大小起始地址状态\n"); printf("----------------------------------\n"); for(int i = 0 ;i < 4;i++) { printf("%4d %8dk %8dk%6c\n",w[i].id ,w[i].size ,w[i].from ,w[i].state ); } printf("----------------------------------\n"); printf("《r表示就绪状态,d表示正在执行,o表示完成》"); printf("\n"); printf("\n"); } void Init_work(work *w){//初始化作业 printf(" 请输入作业号所需空间起始地址(0表示地址未分配): \n"); for(int i =0 ; i<4 ;i++) { printf(" "); scanf("%d%dk%dk",&w[i].id,&w[i].size,&w[i].from); if(w[i].from ) w[i].state = 'd'; else w[i].state = 'r'; printf("------------------------作业《%d》已经创建\n",w[i].id ); } showallwork(w); printf("初始化作业完成\n"); printf("\n"); printf("\n"); } void Init_forms(form *f){//初始化表单 printf("请输入起址长度:\n"); for(int i=0,j=1;i

操作系统实验内存分配

精心整理西安邮电大学 (计算机学院) 课内实验报告 1. (1 (2 (3 原因,写出实验报告。 2.实验要求: 1)掌握内存分配FF,BF,WF策略及实现的思路; 2)掌握内存回收过程及实现思路; 3)参考本程序思路,实现内存的申请、释放的管理程序,调试运行,总结程序设计中出现的问题并找出原因,写出实验报告。

3.实验过程: 创建进程: 删除其中几个进程:(默认以ff首次适应算法方式排列) Bf最佳适应算法排列方式: wf最差匹配算法排列方式: 4.实验心得: 明 实验中没有用到循环首次适应算法,但是对其他三种的描述还是很详细,总的来说,从实验中还是学到了很多。 5.程序源代码: #include #include #include #include

#define PROCESS_NAME_LEN 32 //进程名长度 #define MIN_SLICE 10 //最小碎片的大小#define DEFAULT_MEM_SIZE 1024 //内存大小 #define DEFAULT_MEM_START 0 //起始位置 /*内存分配算法*/ #define MA_FF 1 #define MA_BF 2 #define MA_WF 3 /*描述每一个空闲块的数据结构*/ struct free_block_type { }; /* /* { }; /* /* void display_menu(); int set_mem_size(); void set_algorithm(); void rearrange(int algorithm); int rearrange_WF(); int rearrange_BF(); int rearrange_FF(); int new_process(); int allocate_mem(struct allocated_block *ab);

操作系统实验五 Windows XP 虚拟内存管理

实验五 Windows XP 虚拟内存管理 一实验目的 1) 了解存储器管理以及虚拟存储器管理的基本原理 2)了解和学习Windows系统管理工具中关于内存管理的设置和使用; 二实验环境 需要准备一台运行Windows XP操作系统的计算机。 三背景知识 虚拟存储器技术是当代计算机中广泛采用的内存管理方案,在Windows XP中合理的进行虚拟内存的设置,可以更有效的提高系统的工作效率。利用系统自带的系统监视器可以查看虚拟内存的使用情况,根据使用情况可以灵活的进行虚拟内存的管理。 四实验内容与步骤 启动并进入Windows环境,单击Ctrl + Alt + Del键,或者右键单击任务栏,在快捷菜单中单击“任务管理器”命令,打开“任务管理器”窗口。 步骤1:当前机器中由你打开,正在运行的应用程序有: 1) 5.doc[兼容模式]-Microsoft Word 2) 常州大学-Windows Internet Explorer 3) 常州大学教务单点登录接入平台- Windows Internet Explorer 步骤2:单击“进程”选项卡,一共显示了 33 个进程。请试着区分一下,其中: 系统 (SYSTEM) 进程有 19 个,填入表2-1中。 表2-1 实验记录 映像名称用户名CPU使用率内存使用进程实现的功能Svchost.exe SYSTEM 00 4416K NT Kernel &System Service.exe SYSTEM 00 3272K Windows会话管理器 Sqlservr.ex e SYSTEM 00 9580K Client Server Runtime Process LMS.exe SYSTEM 00 2912K 服务和控制器应用程序MDM.exe SYSTEM 00 3424K Local Security Authority Process Inetinfo.exe SYSTEM 00 9780K 本地会话管理器服务Spoolsv.exe SYSTEM 00 5612K Windows 服务主进程 Ati2evxx.e xe SYSTEM 00 4024K 360主动防御服务模块 Svchost.exe SYSTEM 00 24912K Windows 登录应用程序Svchost.exe SYSTEM 00 5084K Windows 服务主进程Service.exe SYSTEM 00 3476K 服务和控制器应用程序Isass.exe SYSTEM 00 1736K Local Security Authority Process

几种常用的经常出现于现有嵌入式应用中的内存映射I-O方法概述

几种常用的经常出现于现有嵌入式应用中的内存映射I/O方法概述Linux 暴风雨般占领了嵌入式系统市场。分析家指出,大约有1/3到1/2的32/64位新的嵌入式系统设计采用了Linux。嵌入式Linux 已经在很多应用领域显示出优势,比如SOHO家庭网络和成像/多功能外设。在(NAS/SAN)存储,家庭数字娱乐(HDTV/PVR/DVR /STB),和手持设备/无线设备,特别是数字移动电话更获得大幅度发展。 嵌入式Linux新应用不会凭空从开发者的头脑中冒出来,大部分项目都是由成千上万行,甚至数百万行的代码组成。成千上百的嵌入式项目已经成功地将现有的其它平台的代码移植到Linux下,比如Wind River VxWorks 和pSOS,VRTX,Nucleus 和其它RTOS。这些移植工作有着重要的价值和现实意义。 到目前为止,大多数关于移植已有的RTOS应用到嵌入式Linux的文献,关注RTOS 接口(API)、任务、调度模式以及怎样将他们映射到相应得用户空间去。同样重要的是,在I/O调用密集的嵌入式程序中如何将RTOS的硬件接口代码移植到更加规范的Linux设备驱动程序中去。 本文将概述几种常用的经常出现于现有嵌入式应用中的内存映射I/O方法。它们涵盖的范围从对中断服务例程的特殊使用及用户线程对硬件访问到出现于有些ROTS中的半规范化驱动程序模型。这对于移植RTOS 代码到规范化的Linux设备启动程序具有一定启发作用,并且介绍了一些移植方法。特别地,本文会重点讨论RTOS和Linux中的内存映射,基于I/O 调度队列的移植,将RTOS I/O重定义到Linux下的驱动程序和守护进程里。RTOS I/O 概念 “不规范”是描述大多数RTOS系统I/O的最佳词语。多数RTOS是针对较早的无MMU 的CPU而设计,所以忽略了内存管理部分,即使当MMU问世后也是这样:不区分物理地址和逻辑地址。大多数RTOS还全部运行在特权模式,虽然表面上看来是增强了性能。全部的RTOS 应用和系统代码都能够访问整个地址空间、内存映射过的设备、以及其他I/O操作。这样,即使存在差别,也是很难把RTOS应用程序代码同驱动程序代码区分开

实验三 存储管理指导

实验三存储管理 实验目的 1) 加深对存储管理的理解; 2) 掌握几种页面置换算法; 3) 通过实验比较各种置换算法的优劣。 实验要求 1) 编写程序完成实验内容; 2) 对测试数据进行分析; 3) 撰写实验报告。 实验内容 1) 定义为进程分配的物理块数; 2)定义进程运行所需访问的页面号; 3)定义页的结构; 4)模拟两种页面置换算法; 5)计算页面置换算法的命中率; 6)比较两种算法的优劣。 实验原理 1.虚拟存储 基于局部性原理,应用程序在运行之前,没有必要全部装入内存,仅须将那些当前要运行的少数页面或段先装入内存便可运行,其余部分暂留在盘上。程序在运行时,如果它所要访问的页(段)已调入内存,便可继续执行下去;但如果程序所要访问的页(段)尚未调入内存(称为缺页或缺段),此时程序应利用OS所提供的请求调页(段)功能,将它们调入内存,以使进程能继续执行下去。如果此时内存已满,无法再装入新的页(段),则还须再利用页(段)

的置换功能,将内存中暂时不用的页(段)调至盘上,腾出足够的内存空间后,再将要访问的页(段)调入内存,使程序继续执行下去。 2.页面置换算法 1)最佳(Optimal)置换算法 最佳置换算法是由Belady于1966年提出的一种理论上的算法。其所选择的被淘汰页面,将是以后永不使用的,或许是在最长(未来)时间内不再被访问的页面。采用最佳置换算法,通常可保证获得最低的缺页率。但由于人们目前还无法预知一个进程在内存的若干个页面中,哪一个页面是未来最长时间内不再被访问的,因而该算法是无法实现的,但可以利用该算法去评价其它算法。 2)最近最久未使用(LRU)置换算法 FIFO置换算法性能之所以较差,是因为它所依据的条件是各个页面调入内存的时间,而页面调入的先后并不能反映页面的使用情况。最近最久未使用(LRU)的页面置换算法,是根据页面调入内存后的使用情况进行决策的。由于无法预测各页面将来的使用情况,只能利用“最近的过去”作为“最近的将来”的近似,因此,LRU置换算法是选择最近最久未使用的页面予以淘汰。该算法赋予每个页面一个访问字段,用来记录一个页面自上次被访问以来所经历的时间t,当须淘汰一个页面时,选择现有页面中其t值最大的,即最近最久未使用的页面予以淘汰。 LRU置换算法虽然是一种比较好的算法,但要求系统有较多的支持硬件。为了了解一个进程在内存中的各个页面各有多少时间未被进程访问,以及如何快速地知道哪一页是最近最久未使用的页面,须有两类硬件之一的支持:寄存器或栈。 a)寄存器 为了记录某进程在内存中各页的使用情况,须为每个在内存中的页面配置一个移位寄存器,可表示为R=R n-1R n-2R n-3… R2R1R0当进程访问某物理块时,要将相应寄存器的R n-1位置成1。此时,定时信号将每隔一定时间(例如100 ms)将寄存器右移一位。如果我们把n位寄存器的数看做是一个整数,那么,具有最小数值的寄存器所对应的页面,就是最近最久未使用的页面。 b)栈 可利用一个特殊的栈来保存当前使用的各个页面的页面号。每当进程访问某页面时,便将该页面的页面号从栈中移出,将它压入栈顶。因此,栈顶始终是最新被访问页面的编号,而栈底则是最近最久未使用页面的页面号。

实验4内存管理资料讲解

实验 4 内存管理

实验4内存管理 学校:FJUT 学号:3131903229 班级:计算机1302姓名:姜峰 注:其中LFU和NRU算法运行结果可能与其他人不同,只是实现方式不同,基本思路符合就可以。 .实验学时与类型 学时:2,课外学时:自定 实验类型:设计性实验二.实验目的 模拟实现请求页式存储管理中常用页面置换算法,理会操作系统对内存的 调度管理。 三?实验内容 要求:各算法要给出详细流程图以及执行结果截图。 假设有一程序某次运行访问的页面依次是: 0,124,3,4,5,1,2,5,1,2,3,4,5,6 ,请给出采用下列各页面置换算法时页面的换进换出情况,并计算各调度算法的命中率(命中率二非缺页次数/总访问次数),初始物理内存为空,物理内存可在4?20页中选择。 (1)FIFO :最先进入的页被淘汰; (2)LRU :最近最少使用的页被淘汰; (3)OPT :最不常用的页被淘汰;(选做) ⑷LFU :访问次数最少的页被淘汰(LFU)。(选做)

源代码: #i nclude #include #in elude #i nclude #defi ne MAXNUM 100 struct Phy_Memory{ //定义一个物理内存结构体 char Page; int time; }; char *OutPut; struct Phy_Memory *Phy_Page; void Print(char *PageStr,int Phy_PageNum,int absence){ // 打印图解函数int i,j; for(i=0;iPage!=*Temp;i++); if(i

相关文档
相关文档 最新文档