文档库 最新最全的文档下载
当前位置:文档库 › GPS RTK测量作业方式的研究

GPS RTK测量作业方式的研究

GPS RTK测量作业方式的研究
GPS RTK测量作业方式的研究

水准仪测量高程的方法和步骤

水准仪测量高程的方法和步骤 内容:理解水准测量的基本原理;掌握DS3 型微倾式水准仪、自动安平水准仪的构造特点、水准尺和尺垫;掌握水准仪的使用及检校方法;掌握水准测量的外业实施(观测、记录和检核)及内业数据处理(高差闭合差的调整)方法;了解水准测量的注意事项、精密水准仪和电子水准仪的构造及操作方法。 重点:水准测量原理;水准测量的外业实施及内业数据处理。 难点:水准仪的检验与校正。 §2.1 高程测量(Height Measurement )的概念 测量地面上各点高程的工作, 称为高程测量。高程测量根据所使用的仪器和施测方法的不同,分为: (1)水准测量(leveling) (2)三角高程测量(trigonometric leveling) (3)气压高程测量(air pressure leveling) (4)GPS 测量(GPS leveling) §2.2 水准测量原理 一、基本原理 水准测量的原理是利用水准仪提供的“水平视线”,测量两点间高差,从而由已知点高程推算出未知点高程。

a ——后视读数A ——后视点 b ——前视读数B ——前视点 1、A、B两点间高差: 2、测得两点间高差后,若已知A 点高程,则可得B点的高程:。 3、视线高程: 4、转点TP(turning point) 的概念:当地面上两点的距离较远,或两点的高差太大,放置一次仪器不能测定其高差时,就需增设若干个临时传递高程的立尺点,称为转点。 二、连续水准测量

如图所示,在实际水准测量中,A 、B 两点间高差较大或相距较远,安置一次水准仪不能测定两点之间的高差。此时有必要沿A 、B 的水准路线增设若干个必要的临时立尺点,即转点(用作传递高程)。根据水准测量的原理依次连续地在两个立尺中间安置水准仪来测定相邻各点间高差,求和得到A 、B 两点间的高差值,有: h 1 = a 1 -b 1 h 2 = a 2 -b 2 …… 则:h AB = h 1 + h 2 +…… + h n = Σ h = Σ a -Σ b 结论:A 、B 两点间的高差等于后视读数之和减去前视读数之和。 § 2.3 水准仪和水准尺 一、水准仪(level) 如图所示,由望远镜、水准器和基座三部分组成。

gps测量的作业模式

GPS测量的作业模式 1.经典静态定位模式 (1)作业方式: 采用两台(或两台以上)接收设备,分别安置在一条或数条基线的两个端点,同步观测4颗以上卫星,每时段长45分钟至2个小时或更多。作业布置如图8-10所示。 (2)精度: 基线的相对定位精度可达5mm+1ppm·D,D为基线长度(KM)。 (3)适用范围: 建立全球性或国家级大地控制网,建立地壳运动监测网、建立长距离检校基线、进行岛屿与大陆联测、钻井定位及精密工程控制网建立等。 (4)注意事项: 所有已观测基线应组成一系列封闭图形(如图8-10),以利于外业检核,提高成果可靠度。并且可以通过平差,有助于进一步提高定位精度。 2.快速静态定位 (1)作业方法: 在测区中部选择一个基准站,并安置一台接收设备连续跟踪所有可见卫星;另一台接收机依次到各点流动设站,每点观测数分钟。作业布置如图8-11所示。 (2)精度: 流动站相对于基准站的基线中误差为5mm±1ppm·D。 (3)应用范围: 控制网的建立及其加密、工程测量、地籍测量、大批相距百米左右的点位定位。 (4)注意事项: 在测量时段内应确保有5颗以上卫星可供观测;流动点与基准点相距应不超过20km;流动站上的接收机在转移时,不必保持对所测卫星连续跟踪,可关闭电源以降低能耗。 (5)优缺点: 优点:作业速度快、精度高、能耗低;缺点:二台接收机工作时,构不成闭合图形(如图 8-11),可靠性差。 3.准动态定位 (1)作业方法: 在测区选择一个基准点,安置接收机工连续跟踪所有可见卫星;将另一台流动接收机先置于1号站(如图8-12)观测;在保持对所测卫星连续跟踪而不失锁的情况下,将流动接收机分别在2,3,4……各点观测数秒钟。 (2)精度:基线的中误差约为1~2cm。 (3)应用范围: 开阔地区的加密控制测量、工程测量及碎部测量及线路测量等。 (4)注意事项: 应确保在观测时断上有5颗以上卫星可供观测;流动点与基准点距离不超过20 km;观测过程中流动接收机不能失锁,否则应在失锁的流动点上延长观测时间1~2min。 4.往返式重复设站 (1)作业方法: 建立一个基准点安置接收机连续跟踪所有可见卫星;流动接收机依次到每点观测1~2min;1h后逆序返测各流动点1~2min。设站布置如图8-13所示。 (2)精度: 相对于基准点的基线中误差为5mm+1ppm.D。 (3)应用范围:控制测量及控制网加密、取代导线测量及三角测量、工程测量机地籍测量。 (4)注意事项: 流动点与基准点距离不超过15km;基准点上空开阔,能正常跟踪3颗及以上卫星。 5.动态定位 (1)作业方法: 建立一个基准点安置接收机连续跟踪所有可见卫星;流动接收机先在出发点上静态观测数分钟;然后流动接收机从出发点开始连续运动;按指定的时间间隔自动运动载体的实时位置。作业布置如图8-14所示

三角高程测量原理

§5.9 三角高程测量 三角高程测量的基本思想是根据由测站向照准点所观测的垂直角(或天顶距)和它们之间的水平距离,计算测站点与照准点之间的高差。这种方法简便灵活,受地形条件的限制较少,故适用于测定三角点的高程。三角点的高程主要是作为各种比例尺测图的高程控制的一部分。一般都是在一定密度的水准网控制下,用三角高程测量的方法测定三角点的高程。 5.9.1 三角高程测量的基本公式 1.基本公式 关于三角高程测量的基本原理和计算高差的基本公式,在测量学中已有过讨论,但公式的推导是以水平面作为依据的。在控制测量中,由于距离较长,所以必须以椭球面为依据来推导三角高程测量的基本公式。 如图5-35所示。设0s 为B A 、两点间的实测水 平距离。仪器置于A 点,仪器高度为1i 。B 为照准 点,砚标高度为2v ,R 为参考椭球面上B A ''的曲率半径。AF PE 、分别为过P 点和A 点的水准面。PC 是PE 在P 点的切线,PN 为光程曲线。当位于P 点的望远镜指向与 PN 图5-35

相切的PM 方向时,由于大气折光的影响,由N 点出射的光线正好落在望远镜的横丝上。这就是说,仪器置于A 点测得M P 、间的垂直角为2,1a 。 由图5-35可明显地看出,B A 、 两地面点间的高差为 NB MN EF CE MC BF h --++==2,1 (5-54) 式中,EF 为仪器高NB i ;1为照准点的觇标高度2v ;而CE 和MN 分别为地球曲率和折光影响。由 2 021s R CE = 2021s R MN ' = 式中R '为光程曲线PN 在N 点的曲率半径。设 ,K R R =' 则 2 0202.21S R K S R R R MN ='= K 称为大气垂直折光系数。 由于B A 、两点之间的水平距离0s 与曲率半径R 之比值很小(当km s 100=时,0s 所对的圆心角仅5'多一点),故可认为PC 近似垂直于OM ,即认为 90≈PCM ,这样PCM ?可视为直角三角形。则(5-54)式中的MC 为 2,10tan αs MC = 将各项代入(5-54)式,则B A 、两地面点的高差为 2 12 02,1022 01202,102,121tan 221tan v i s R K s v s R K i s R s h -+-+=--++ =αα 令式中 C C R K ,21=-一般称为球气差系数,则上式可写成

6高程测量方法

Unit 6 Methods of Elevation Determination(高程测量方法) An elevation is a vertical distance above or below a reference datum.(高程是高于或低于一个参考基准的一个垂直距离。) Although vertical distance can be referenced to any datum, in surveying, the reference datum that is universally employed is that of mean sea level (MSL).(虽然垂直距离可以参考任何一个基准,但是在测量上,这个参考基准一般使用【employ使用、雇佣】的是平均海平面(MSL)) MSL is assigned a vertical value (elevation) of 0.000 ft or 0.000 m.(MSL被赋予【assign】一个0.000英尺或0.000米的高程) All other points on the earth can be described by the elevations above or below zero.(地球上所有其它点可以用高于或低于0的高程来描述) Permanent points whose elevations have been precisely determined (benchmarks) are available in most areas for survey use.(高程精确测出的永久点(水准点)被用于【available可利用、可用到的】大多数区域的测量工作) In China, 7 years of observations at tidal stations in Qingdao from 1950 to 1956 were reduced and adjusted to provide the Huanghai vertical datum of 1956.(在中国,利用青岛验潮站【tidal stations in Qingdao】从1950年到1956年7年的观测数据处理【reduce处理、分析、减少】和平差,建立了56黄海高程系统) In the 1987, this datum was further refined to reflect long periodical ocean tide change to provide a new national vertical datum of 1985, according to the observations at tidal stations from 1952 to 1979.(1987年,在依照了【according to】验潮站1952到1979年的观测资料后,这个基准【56基准】被进一步精确【refine精确、精制v.】——反映长时期海潮变化的85国家高程基准建立起来。) Although, strictly speaking, the national vertical datum may not precisely agree with the MSL at specific points on the earth’s surface, the term MSL is generally used to describe the datum.(虽然,严格说来【strictly speaking】,国家高程基准在特殊的【specific特定的、特殊的】点上与MSL并不恰好【precisely】吻合,术语MSL一般【generally】还是用来描述它【国家高程基准】) MSL is assigned a vertical value (elevation) of 0.000 ft or 0.000 m.(MSL高程的赋值为0.000英尺或米)Difference in elevation may be measured by the following methods:(James M. Anderson and Edward M. Mikhail. 1998)(高程的差异【高差】可以由下列方法测得(詹姆斯.安德森和爱德华.???)) 1. Direct or spirit leveling, by measuring vertical distances directly.(水准测量【Direct leveling、spirit leveling都是水准测量的意思】,直接测得垂直距离【高程】) Direct leveling is most precise method of determining elevations and the one commonly used.(水准测量是高程测量方法中精度最高、使用最普遍的方法) 2. Indirect or trigonometric leveling, by measuring vertical angles and horizontal or slope distances.(三角高程测量,利用测量竖直角和水平或斜距来测高程) 3. Stadia leveling, in which vertical distances are determined by tacheometry using engineer’s transit and level rod; plane-table and alidade and level rod; or self-reducing tacheometer and level rod.(视距高程测量,利用视距测量【tacheometry】,使用工程经纬仪和水准尺;平板仪和照准仪和水准尺;或者自处理视距仪【tacheometer视距仪、准距仪】和水准尺测得垂直距离【高程】) 4. Barometric leveling, by measuring the differences in atmospheric pressure at various stations by means of a barometer.(气压水准测量【Barometric大气压力】,通过使用气压计【barometer】测量不同站点大气压力的差值来测高程) 5. Gravimetric leveling, by measuring the differences in gravity at various stations by means of a gravimeter for geodetic purposes.(重力水准测量,通过使用【by means of】重力计测量不同站点的重力值差值来测高程,用于大地测量学的目的) 6. Inertial positioning system, in which an inertial platform has tree mutually perpendicular axes, one of which is “up”, so that the system yields elevation as one of the outputs.(惯性定位系统,含有一个惯性平台,具有三个互相【mutually 相互地】垂直【perpendicular垂直的】轴,其中一个是“向上”的,所以这个系统产生【yield产生v.】的输出【output 输出n.】其中一个就是高程。) Vertical accuracies from 15 to 50 cm in distances of 60 and 100 km, respectively, have been reported.(各自地

GPS静态控制测量外业操作的指南

GPS控制测量外业作业要求及技术指南 一:外业观测作业人员操作内容 安置接收机天线(严格对中整平、定向、量取仪器高)、设置接收机中的参数(如观测模式、截止高度角、和采样间隔等;如不设参数,接收机一般就采用缺省值),以及开机、关机等工作,其他工作由接收机自动完成。 二:操作流程:【选点与埋石——GPS接收机的检查——观测方案设计——观测作业——外业观测成果质量检核】 1.选点准备: 根据收集的测区内及周边现有平面和高程控制点以及测区地形图等,依据项目任务书或合同书以及相关规范的要求在图上进行设计,标绘处计划设站的区域。 1.1选点的基本要求 基本要符合规范(全球定位系统GPS测量规范GB/T18314-2009)的相关要求: A)测站四周视野开阔,高度角15°以上不允许存在成片的障碍物 B)远离大功率无线电发射源,以免损坏接收机天线,高压

电线50米至少,大功率无线发射源至少200米。 C)测站远离房屋、围墙、广告牌、山坡及大面积平静水面(湖泊、池塘)等信号反射物,以免出现严重的多路径 效应。 D)点位应位于地质条件良好、点位稳定、易于保护的地方,并尽可能顾及交通条件。 1.2选点作业 A)测量人员应按照在图上选择的初步位置以及对点位的基本要求,在实地最终选定点位,并做好相应的标记。 B)利用旧点时,应对旧点的稳定性、可靠性和完好性进行检查,符合要求时方可利用。 C)点名以该点位所在地命名,无法区分时,可在点名后加注(一)、(二)。 D)新旧点重合时,应沿用旧点名,一般不应更改。 E)选点工作完成后,应按规范要求的形式绘制GPS网选点图,可以用相机或手机拍照片。 提交的资料:①点之记②GPS网选点图 1.3 埋石 C、D、E及GPS点在满足标石稳定、易于长期保存的前提下, 均可根据具体情况选用。 提交的资料:标石建造的照片

GPS控制测量复测方案

西咸新区秦汉新城立体城市项目GPS控制测量复测方案 编制: 审核: 审批: 中国建筑第七工程局有限公司 二零一四年三月二十日 目录

一、概况 (1) 二、技术依据 (1) 三、技术方案 (2) (一)工作流程 (2) (二)测量方案 (2) 1、平面控制网复测实施方案 (3) 1.1 复测方法 (3) 1.2 GPS测量作业的基本技术要求 (3) 1.3 保证GPS测量精度的操作要点 (4) 2、高程控制网复测实施方案 (5) 2.1 复测方法 (5) 2.2 质量保障措施 (5) 2.3 复测成果处理 (6) 2.4数据处理与平差 (6) 四、进度安排 (6) 五、任务划分与组织安排 (7) 六、仪器设备 (8) 七、测量成果 (8)

一、概况 规划一路:城市支路,行车速度30Km/h。起点里程K0+000,终点里程K0+827.131,全长827.131m。兰池大道~兰池二路段道路红线宽度15m,兰池二路~东西十一路段道路红线宽度20m,机动车道,采用沥青混凝土路面,人行道采用透水工程砖铺设,全线完成雨污水管道的铺设。 规划四路:城市支路,行车速度30Km/h。起点里程K0+000,终点里程K0+889.821,全长889.821m。全长分两段,兰池大道~兰池二路段道路红线宽度15m,兰池二路~东西十一路段道路红线宽度20m,机动车道,采用沥青混凝土路面,人行道采用透水工程砖铺设,全线完成雨污水管道的铺设。 为完成本段工程施工,西安市政设计研究院有限公司共提供了3个E 级GPS点,3个四等水准点。 本次复测任务主要内容是: 1、控制网复测及贯通测量; 2、全线三等水准点复测及贯通测量。 二、技术依据 1、《城镇道路工程施工与质量验收规范》CJJ1-2008; 2、《全球定位系统(GPS)测量规程》GB/T18314_2009; 3、《国家三、四等水准测量规范》GB12898-1991;

给排水管道工程高程测量计算方法

给排水管道高程测量计算方式 一、主管、主井: 1、原地面高程:施工图纸上有,没有的由施工员提供。 2、基底高程:管内底标高-垫层-管壁厚。检查井基底=设计给的井底标高-垫层-底板。 3、垫层高程:参照图集,看多大的管子是多厚的垫层,再在基底高程上加上垫层的厚度。 4、管道基础:看设计图纸要求的是多少度的基础。比如180°砂砾石基础,D800的管子,就需要在垫层的高程上加上480mm(管子的一半加壁厚)。 5、管道铺设就抄管内底标高,图纸上有。 6、管道回填:看回填到哪个位置,一般设计要求管顶50cm填砂砾石,做一次回填。以上至结构层下填素土,做一次回填资料。如都是填砂砾石,就做一次回填就好。填筑顶面:管顶50cm就需在垫层的高程基础上+管子大小+两个壁厚+50cm。填到结构层下的填筑顶面:路中设计顶标高-结构层厚度。回填深度:填筑顶面标高-基底高程。 7、检查井回填:看设计要求井室周围用什么土质的材料填多宽。填筑顶面标高:设计给的井底标高+埋深深度-结构层厚度。回填深度:填筑顶面标高-基底高程。 二、支管、支井: 1、原地面高程:由施工员提供。 2、基底高程:=支管管内底标高-垫层-壁厚(设计图纸上给的支管管

内底标高是指接入主井内支管的管内底标高),接入支井内的支管管内底标高=设计图纸上给的支管管内底标高+支管长度*坡度(支井向主井流水的加,主井向支井流水的减)。管内底标高-垫层-管壁厚=基底高程。检查井基底=设计给的井底标高-垫层-底板。 3、垫层高程:参照图集,看多大的管子是多厚的垫层,再在基底高程上加上垫层的厚度。 4、管道基础:看设计图纸要求的是多少度的基础。比如180°砂砾石基础,D800的管子,就需要在垫层的高程上加上480mm(管子的一半加壁厚)。 5、管道铺设就抄管内底标高,图纸上有。 6、管道回填:看回填到哪个位置,一般设计要求管顶50cm填砂砾石,做一次回填。以上至结构层下填素土,做一次回填资料。如都是填砂砾石,就做一次回填就好。填筑顶面:管顶50cm就需在垫层的高程基础上+管子大小+两个壁厚+50cm。填到结构层下的填筑顶面:路中设计顶标高-结构层厚度。 7、检查井回填:看设计要求井室周围用什么土质的材料填多宽。填筑顶面标高:设计给的井底标高+埋深深度-结构层厚度(若支井在道路外面,不存在结构层就不需要减结构层厚度)。回填深度:填筑顶面标高-基底高程。

GPS测量原理及应用

《GPS测量原理及应用》学习指导 一、控制网执行的技术标准 1、全球定位系统(GPS)测量规范(GB/T 18314—2001),中华人民共和国国家标准; 2、《国家三、四等水准测量规范》(GB12898-1991),中华人民共和国国家标准; 3、技术设计书。 二、使用仪器 测量采用的GPS接收机型号及其标称精度。 三、布网方案 1、布网要求 GPS网相邻点间基线中误差按下式计算: 式中(mm)为固定误差;(ppm)为比例误差系数;(km)为相邻点间的距离。GPS-E级网的主要技术要求应符合表1规定。相邻点最小距离应为平均距离的1/2~1/3;最大距离应为平均距离的2~3倍。 (mm) (1×10-6)

注:当边长小于200m时,边长中误差应小于20mm。 2、布网原则与网形设计 (1)GPS网应根据测区实际需要和交通状况进行设计。GPS网的点与点间不要求每点 (4)为求定GPS点在54北京坐标系中的坐标,应与当地54北京坐标系中的原有控制点联测,联测总点数不得少于3个。 (5)为了求得GPS网点正常高,应进行水准测量的高程联测,高程联测采用等级水准测量方法进行,联测的GPS-E级控制点且应均匀分布于网中。

四、选点与标石埋设 1、选点 在了解任务、目的、要求和测区自然地理条件的基础上,进行现场踏勘,最后进行选点。选点应符合下列要求: (1)点位的选择应符合技术设计要求,并有利于其它测量手段进行扩展与联测; (2)点位的基础应坚实稳定,易于长期保存,并应有利于安全作业; (3)点位应便于安置接收设备和操作,视野应开阔,视场内周围障碍物的高度角一般应小于15°; (4)点位应远离大功率无线电发射源(如电视台、微波站等),其距离不得小于200m,并应远离高压输电线其距离不得小于50m,以避免周围磁场对卫星信号的干扰; (5)点位附近不应有对电磁波反射(或吸收)强烈的物体,以减少多路径效应的影响; (6)交通应便于作业,以提高作业效率; (7)应充分利用符合上述要求原有的控制点及其标石,但利用旧点时应检查旧点的稳定性、完好性,符合要求方可利用; (8)选好点后应按合理的方法给GPS点编号。 此外,有时还需考虑测区内的通讯设施、电力供应等情况,以便于各点之间的联络和设备用电或充电。 综上所述,结合测区的实际情况, GPS控制点宜布设在较高的永久性建筑物、山顶及其它符合要求的地方,或已成型的较宽的城市主干道、路口或其它较开阔而又稳固的建(构)筑物上。

全站仪三角高程测量方法

应用全站仪进行三角高程测量的新方 在工程的施工过程中,常常涉及到高程测量。传统的测量方法是水准测量、三角高程测量。两种方法虽然各有特色,但都存在着不足。水准测量是一种直接测高法,测定高差的精度是较高的,但水准测量受地形起伏的限制,外业工作量大, 施测速度较慢。三角高程测量是一种间接测高法,它不受地形起伏的限制,且施测速度较快。在大比例地形图测绘、线型工程、管网工程等工程测量中广泛应用。但精度较低,且每次测量都得量取仪器高,棱镜高。麻烦而且增加了误差来源。 随着全站仪的广泛使用,使用跟踪杆配合全站仪测量高程的方法越来越普及,使用传统的三角高程测量方法已经显示出了他的局限性。经过长期摸索,总结出一 种新的方法进行三角高程测量。这种方法既结合了水准测量的任一置站的特点,又减少了三角高程的误差来源,同时每次测量时还不必量取仪器高、棱镜高。使三角高程测量精度进一步提高,施测速度更快。 、三角咼程测量的传统方法如图一所示,设A,B为地面上高度不同的两点。已知A 点高程H A,只要知道A 点对B点的高差H AB即可由H B=H A+H AB得到B点的高程H B。 图中:D为A、B两点间的水平距离a为在A点观测B点时的垂直角 i为测站点的仪器高,t为棱镜高 HA 为A 点高程,HB 为B 点高程。 V为全站仪望远镜和棱镜之间的高差(V=Dtan a) 首先我们假设A,B 两点相距不太远,可以将水准面看成水准面,也不考虑大气折光的

影响。为了确定高差h AB,可在A点架设全站仪,在B点竖立跟踪杆,观测垂直角a,并直接量取仪器高i和棱镜高t,若A,B两点间的水平距离为D,则h AB=V+i-t 故H B=H A+Dtan a +i-t (1) 这就是三角高程测量的基本公式,但它是以水平面为基准面和视线成直线为前提的。因此,只有当A,B 两点间的距离很短时,才比较准确。当A,B 两点距离较远时,就必须考虑地球弯曲和大气折光的影响了。这里不叙述如何进行球差和气差的改正,只就三角高程测量新法的一般原理进行阐述。我们从传统的三角高程测量方法中我们可以看出,它具备以下两个特点: 1、全站仪必须架设在已知高程点上 2、要测出待测点的高程,必须量取仪器高和棱镜高。 二、三角高程测量的新方法 如果我们能将全站仪象水准仪一样任意置点,而不是将它置在已知高程点上,同时又在不量取仪器高和棱镜高的情况下,利用三角高程测量原理测出待测点的高程,那么施测的速度将更快。如图一,假设B 点的高程已知,A 点的高程为未知,这里要通过全站仪测定其它待测点的高程。首先由(1)式可知: H A=H B-(Dtan a +-ti)(2) 上式除了Dtan a即V的值可以用仪器直接测出外,i,t都是未知的。但有一点可以确定即仪器一旦置好,i 值也将随之不变,同时选取跟踪杆作为反射棱镜,假定t 值也固定不变。从(2)可知: H A+i-t=H B-Dtan a =W (3) 由(3)可知,基于上面的假设,H A+i-t 在任一测站上也是固定不变的.而且可以计算出它的值W。 这一新方法的操作过程如下: 1、仪器任一置点,但所选点位要求能和已知高程点通视。 2、用仪器照准已知高程点,测出V 的值,并算出W 的值。(此时与仪器高程测定有关的常数如测站点高程,仪器高,棱镜高均为任一值。施测前不必设定。) 3、将仪器测站点高程重新设定为W,仪器高和棱镜高设为0即可 4、照准待测点测出其高程。 下面从理论上分析一下这种方法是否正确。 结合(1),(3)

GPS RTK测量技术作业手册(新)解析

Trimble GPS RTK线路定线测量 技术作业指导书 编著:张志刚张冠军 铁道第三勘察设计院勘测设计分院 2004年6月天津

目录 前言RTK技术简介 (1) 1什么是GPS RTK技术 (1) 2 GPS RTK技术应用范围 (2) 3 GPS RTK的组成 (3) 4 GPS RTK的工作流程 (4) 5作业测区的确定 (5) 6 坐标系统转换参数的求解 (5) 一TSC1简介 (8) 二BASE(基准站) (11) 1 BASE硬件 (11) 2 TSC1设置基准站 (12) 三ROVER(流动站) (16) 1 ROVER硬件 (16) 2 TSC1设置流动站 (16) 3 流动站点校正 (18) 四RTK测量 (18) 1 测量点 (18) 2 放样点 (18) 3 放样道路 (22) 4 其他测量功能 (23) 5 结束测量 (23) 五GPS RTK线路定线测量 (24) 1 线路设计 (24) 1.1 TSC1线路设计 (24) 1.2 TGO Roadlink线路设计 (26) 2利用TSC进行中线测量 (32)

1.1 交点、中线控制桩测量 (32) 1.2 加中桩测量 (33) 3 数据处理 (33) 附录TSC1菜单 (36)

前言GPS RTK技术简介 1 什么是GPS RTK技术 GPS RTK技术(Real-time kinematic)是建立在实时处理两个测站的载波相位基础上的。它能实时提供观测点的三维坐标,并达到厘米级(±1cm+1ppm)的高精度。常规的GPS测量方法,如Static(静态)、FastStatic (快速静态)、Postprocessed kinematic(动态)测量都需要事后进行解算才能获得毫米或厘米级的精度,而RTK是能够在野外实时得到厘米级定位精度的测量方法,它采用了载波相位动态实时差分(Real - time kinematic)方法,是GPS应用的重大里程碑,它的出现为工程放样、地形测图、各种控制测量带来了新曙光,极大地提高了外业作业效率。 高精度的GPS测量必须采用载波相位观测值,RTK定位技术就是基于载波相位观测值的实时动态定位技术,它能够实时地提供测站点在指定坐标系中的三维定位结果,并达到厘米级精度。在RTK作业模式下,基准站通过数据链将其观测值和测站坐标信息一起传送给流动站。流动站不仅通过数据链接收来自基准站的数据,还要采集GPS观测数据,并在系统内组成差分观测值进行实时处理,同时给出厘米级定位结果,历时只需1epoch。流动站可以处于静止状态,也可处于运动状态;可在固定点上先进行初始化后再进入动态作业,也可在动态条件下直接开机,并在动态环境下完成周模糊度的搜索求解。在整周末知数解固定后,即可进行每个历元的实时处理,只要能保持五颗以上卫星相位观测值的跟踪和必要的几何图形,流动站就可随时给出厘米级定位结果。 RTK技术的关键在于数据处理技术和数据传输技术,RTK定位时要

最新高程钢柱垂直度测量方法

最新高层钢柱垂直度控制实时测量工法 编写单位:中建八局青岛公司 刘宝忠 前言 随着建筑市场的发展以及建筑水平的提高,高层和超高层钢结构建筑逐步增多。在钢结构工程安装过程中,施工测量是一项专业性较强又非常重要的工程,测量精度的高低直接影响到工程质量的好坏,测量效率的高低又直接影响到工程进度的快慢,因此安装测量技术的高低是衡量钢结构工程施工水平的一项重要指标,而钢柱垂直度的控制又是高层钢结构结构施工测量的重点和难点。 高层钢结构钢柱垂直度控制实时测量工法是我们在长期高层和超高层钢结构施工测量放样实践中,充分利用免棱镜全站仪、便携式计算机(或可编程计算器)的性能,通过对传统的施工测量方法进行研究改造,形成的针对高层钢结构工程施工测量放样的施工工法。该工法的关键技术是平面控制点竖向高精度向上传递技术、钢柱中心实际位置的间接测量及理论位置数据库建立技术、计算机与全站仪进行数据实时通讯技术。该工法是在北京大学医院病房楼、郑州蓝码大厦、南京新地中心及青岛万邦中心施工测量放样经验的基础上形成的。用这种测量方法对高层钢结构钢柱安装过程进行控制,测量人员为钢柱安装人员提供的数据时间短,精度高。南京新地中心工程的钢柱节垂直度及建筑物全高垂直度经评估和鉴定,完全符合钢结构验收规范的要求。质量评定等级为合格,观感达到“好”的要求。 在此,我们编制此工法,希望它能够为以后高层钢结构的施工测量提供指导作用。 该工法于2008年3月被认定为中建八局企业工法。 1特点 传统的钢柱垂直度控制方法是先在施工操作面上放样出柱网

的纵横轴线,再利用两台经纬仪从两个近似相互垂直的方向对一根钢柱进行测量控制,这种方法投入测量人员多,结果反馈到钢柱校正操作人员的时间长,经纬仪架设位置限制较多。本工法所采用的施工测量方法,是充分利用免棱镜全站仪的免棱镜测距性能,测量钢柱立面某些特定点的三维坐标,测量值传递到便携计算机,程序依据钢柱的几何形状,间接计算出钢柱的中心偏移量及钢柱的扭转偏差值,同时可以得出钢柱的标高偏差值。因此利用本工法进行钢柱的垂直度控制测量,可以缩短施工前的轴线放样的时间,减少测量工作的劳动强度,减少测量结果的反馈时间,提高钢柱的安装质量。 2适用范围 高层钢结构钢柱垂直度控制实时测量工法适用于所有柱子安装的垂直度控制测量及质量检测验收,特别是许多非水平、非垂直的特异构件安装过程中的施工测量及质量验收。 3工艺原理 高层钢结构钢柱垂直度控制实时测量工法的工艺原理是:由于钢柱安装垂直度校正时,钢柱顶端不方便安设全站仪的反射棱镜,为此充分利用免棱镜全站仪的免棱镜测量性能,快速测量钢柱顶端特征点的三维坐标,并把测量信息通过数据线实时传输到便携式计算机中。在施工测量前的准备阶段,应认真分析图纸,建立合适实用的建筑物坐标系,收集各钢柱的中心坐标、钢柱编号、截面大小及定位角度等相关信息,并建立数据库。当测量结果被程序接收后,程序依据测量点坐标信息自动查找测量钢柱的编号,找到相关信息,并计算出该钢柱中心偏移量及钢柱的扭转偏差值等钢柱安装校正所需的相关信息,及时把相关信息反馈给施工人员作为钢柱垂直度校正的依据。

gps控制测量实习心得

gps控制测量实习心得 实习之后更要认真总结,我相信这也必将成为我们日后工作和学习中的宝贵财富。以下内容是品才网小编为您精心整理的ps控制测量实习心得,欢迎参考! gps控制测量实习心得一、实习目的 GPS静态测量 本次GPS静态观测实习的目的是巩固、扩大和加深我们从课堂上所学理论知识,获得测量工作的初步经验和基本技能,着重培养我们的独立工作能力,进一步熟练掌握测量仪器的操作技能,提高运用理论及计算能力,并对GPS静态观测全过程有一个全面和系统的认识。熟悉GPS静态相对定位原理、Sounth、Trimble、ashtech三种GPS接收机的使用掌握GPS网的网形设计。熟悉GPS静态测量的步骤。学会南方测绘 Gps数据处理软件的简单使用。 实习安排 准备好理论知识,掌握控制测量的技术要求,以及仪器的使用规范及过程,协调好分组的搭配。 仪器调度表 (略) 第三组组长: 第三组组员:

项目与内容时间安排(天)任务与要求 实习动员、领仪器工具、仪器效验1作好测前准备工作GPS静态观测1熟练掌握观测方法、要领 实习总结5整理成果、编写实习报告、归还仪器 实习任务 以各个班为单位建立测量实习队,10人一组(第三组为11人),分3组。每组领取GPS一套(包括主机、脚架、基座、连接线等)、记录板一块、对讲机、记录表。根据中华人民共和国测绘行业标准《全球定位系统城市测量技术规程》和石桥子经济开发区的具体情况,建立E级GPS网。 E级GPS网的精度要求如下表: 级别固定误差(mm)平均边长(km)比例误差系数(mm) E≤~5≤20 每小组利用各组领取到的接收机对两个控制点进行观测,观测时段为一小时,观测3个时段。 测量规范 1、《全球定位系统(GPS)测量规范》(GB/T 18314-20xx)。 2、《全球定位系统城市测量技术规范》(CJJ 73-97)。 3、CH 1002-95《测绘产品检查验收规定》。 4、CH 1003-95《测绘产品质量评定标准》。 测区概况 本测区为本溪市石桥子经济开发区辽宁科技学院周边

水准仪测量高程的方法和步骤

水准仪测量高程的方法和步骤 2010-11-28 01:58:11| 分类:工程测量|举报|字号订阅 [教程]第二章水准测量 未知2009-12-13 16:21:06 网络 内容:理解水准测量的基本原理;掌握 DS3 型微倾式水准仪、自动安平水准仪的构造特点、水准尺和尺垫;掌握水准仪的使用及检校方法;掌握水准测量的外业实施(观测、记录和检核)及内业数据处理(高差闭合差的调整)方法;了解水准测量的注意事项、精密水准仪和电子水准仪的构造及操作方法。 重点:水准测量原理;水准测量的外业实施及内业数据处理。 难点:水准仪的检验与校正。 §2.1 高程测量( Height Measurement )的概念 测量地面上各点高程的工作 , 称为高程测量。高程测量根据所使用的仪器和施测方法的不同,分为: (1)水准测量 (leveling) (2)三角高程测量 (trigonometric leveling) (3)气压高程测量 (air pressure leveling) (4)GPS 测量 (GPS leveling) §2.2 水准测量原理 一、基本原理 水准测量的原理是利用水准仪提供的“水平视线”,测量两点间高差,从而由已知点高程推算出未知点高程。

a ——后视读数 A ——后视点 b ——前视读数 B ——前视点 1、A 、 B 两点间高差: 2、测得两点间高差后,若已知 A 点高程,则可得B点的高程: 。 3、视线高程: 4、转点 TP(turning point) 的概念:当地面上两点的距离较远,或两点的高差太大,放置一次仪器不能测定其高差时,就需增设若干个临时传递高程的立尺点,称为转点。 二、连续水准测量

水准测量的方法及其实施

水准测量的方法及其实施 水准测量原理 水准测量的基本测法是:在图2-1中,已知A点的高程为H A,只要能测出A点至B点的高程之差,简称高差h AB。,则B点的高程 H B就可用下式计算求得: H B=H A+h AB (2-1) 差h AB。的原理如图2-1所示, 在A、B两点上竖立水准尺, 并在A、B两点之间安置— 图2-1 水准测量原理示意图架可以得到水平视线的仪器 即水准仪,设水准仪的水平视线截在尺上的位置分别为M、N,过A 点作一水平线与过B点的竖线相交于C。因为BC的高度就是A、B 两点之间的高差h AB。,所以由矩形MACH就可以得到计算h AB的式: h AB = a - b (2-2) 测量时,a、b的值是用水准仪瞄准水准尺时直接读取的读数值。 因为A点为已知高程的点,通常称为后视点,其读数a为后视读数,

而B点称为前视点,其读数b为前视读数。即 h AB = 后视读数-前视读数 视线高H i=H A+a (2-3)B点高程H B=H i-b (2-4)综上所述要测算地面上两点间的高差或点的高程,所依据的就是一条水平视线,如果视线不水平,上述公式不成立,测算将发生错误。因此,视线必须水平,是水准测量中要牢牢记住的操作要领。 水准仪和水准尺 一、微倾式水准仪的构造 如图2-2所示,微倾式水准仪主要由望远镜、水准器和基座组成。水准仪的望远镜能绕仪器竖轴在水平方向转动,为了能精确地提供水平视线,在仪器构造上安置了一个能使望远镜上下作微小运动的微倾螺旋,所以称微倾式水准仪。 1.望远镜 望远镜由物镜、目镜和十字丝三个主要部分组成,它的主要作用是能使我们看清远处的目标,并提供一条照准读数值用的视线。 十字丝是在玻璃片上刻线后,装在十字丝环上,用三个或四个可

水准测量基本原理教案

水准测量基本原理(教案)

水准测量基本原理 课型:讲授 教学目的与要求: 了解高程测量常用的方法。 理解水准测量基本原理。 掌握高差法、仪高法及连续水准测量计算未知点高程的方法。教学重点、难点: 重点:水准测量基本原理。 高差法、仪高法及连续水准测量计算未知点高程的方法。 难点:水准测量基本原理。 采用教具: 多媒体课件 复习、提问 1、高程的定义、高差的定义。

第一讲 水准测量基本原理 一、高程测量(测定地面点高程)的方法 高程是确定地面点位置的要素之一,在工程建设的设计、施工与管理等阶段都具有十分重要的作用。测定地面点高程的工作称为高程测量。按所使用的仪器和施测方法分:水准测量、三角高程测量、气压高程测量和GPS 高程测量。 二、水准测量基本原理 水准测量不是直接测定地面点的高程,而是测出两点间的高差。即在两个点上分别竖立水准尺,利用水准测量的仪器提供一条水平视线,瞄准并在水准尺上读数,求得两点间的高差,从而由已知点高程推求未知点高程。 如图1-1所示,设已知A 点高程为A H ,用水准测量方法求未知点B 的高程B H 。在A 、B 两点中间安置水准仪,并在A 、B 两点上分别竖立水准尺,根据水准仪提供的水平视线在A 点水准尺上读数为a ,在B 点的水准尺上读数为b ,则A 、B 两点间的高差为:b a h AB -= 图1-1 水准测量原理

设水准测量是由A 点向B 点进行,如图1-1中箭头所示,则规定 A 点为后视点,其水准尺读数a 为后视读数; B 点为前视点,其水准 尺读数b 为前视读数。由此可见,两点之间的高差一定是“后视读数”减“前视读数”。如果a >b ,则高差AB h 为正,表示B 点比A 点高;如果 a < b ,则高差AB h 为负,表示B 点比A 点低。 在计算高差AB h 时,一定要注意AB h 的下标A B 的写法: AB h 表示A 点至B 点的高差,BA h 则表示B 点至A 点的高差,两个高差应该是绝对值相同而符号相反,即:BA AB h h =- 测得A 、B 两点间高差AB h 后,则未知点B的高程B H 为: )(b a H h H H A AB A B -+=+= (1-1) 水准测量:水平视线(水准仪)+水准尺→待定点与已知点高差+已知点高程→未知点高程。 三、推导以下几种计算未知点高程的公式: 1、高差法(由一点求另一点):直接利用高差计算未知点高程。 b a h AB -=(后视读数-前视读数);AB A B h H H += 2、视线高法(仪高法,由一点求多点):由仪器视线高程H i 计算未知点B 点高程。H A 为A 点的高程,a 为水准尺读数,b 为待求高程点水准尺读数。 ?? ? -=+=b H H a H H i B A i 注意事项: ①区别仅在与计算方法不同;

GPSRTK测量技术作业手册新

内部资料注意保密Trimble GPS RTK线路定线测量 技术作业指导书 编著:张志刚张冠军 铁道第三勘察设计院勘测设计分院 2004年6月天津

目录 前言 RTK技术简介 (1) 1什么是GPS RTK技术 (1) 2 GPS RTK技术应用范围 (2) 3 GPS RTK的组成 (3) 4 GPS RTK的工作流程 (4) 5作业测区的确定 (5) 6 坐标系统转换参数的求解 (5) 一 TSC1简介 (8) 二 BASE(基准站) (11) 1 BASE硬件 (11) 2 TSC1设置基准站 (12) 三 ROVER(流动站) (16) 1 ROVER硬件 (16) 2 TSC1设置流动站 (16) 3 流动站点校正 (18) 四 RTK测量 (18) 1 测量点 (18) 2 放样点 (18) 3 放样道路 (22) 4 其他测量功能 (23) 5 结束测量 (23) 五 GPS RTK线路定线测量 (24) 1 线路设计 (24) 1.1 TSC1线路设计 (24) 1.2 TGO Roadlink线路设计 (26) 2利用TSC进行中线测量 (32)

1.1 交点、中线控制桩测量 (32) 1.2 加中桩测量 (33) 3 数据处理 (33) 附录 TSC1菜单 (36)

前言GPS RTK技术简介 1 什么是GPS RTK技术 GPS RTK技术(Real-time kinematic)是建立在实时处理两个测站的载波相位基础上的。它能实时提供观测点的三维坐标,并达到厘米级(±1cm+1ppm)的高精度。常规的GPS测量方法,如Static(静态)、FastStatic (快速静态)、Postprocessed kinematic(动态)测量都需要事后进行解算才能获得毫米或厘米级的精度,而RTK是能够在野外实时得到厘米级定位精度的测量方法,它采用了载波相位动态实时差分(Real - time kinematic)方法,是GPS应用的重大里程碑,它的出现为工程放样、地形测图、各种控制测量带来了新曙光,极大地提高了外业作业效率。 高精度的GPS测量必须采用载波相位观测值,RTK定位技术就是基于载波相位观测值的实时动态定位技术,它能够实时地提供测站点在指定坐标系中的三维定位结果,并达到厘米级精度。在RTK作业模式下,基准站通过数据链将其观测值和测站坐标信息一起传送给流动站。流动站不仅通过数据链接收来自基准站的数据,还要采集GPS观测数据,并在系统内组成差分观测值进行实时处理,同时给出厘米级定位结果,历时只需1epoch。流动站可以处于静止状态,也可处于运动状态;可在固定点上先进行初始化后再进入动态作业,也可在动态条件下直接开机,并在动态环境下完成周模糊度的搜索求解。在整周末知数解固定后,即可进行每个历元的实时处理,只要能保持五颗以上卫星相位观测值的跟踪和必要的几何图形,流动站就可随时给出厘米级定位结果。 RTK技术的关键在于数据处理技术和数据传输技术,RTK定位时要求

相关文档