文档库 最新最全的文档下载
当前位置:文档库 › 铁路信号浪涌保护器施工工艺标准

铁路信号浪涌保护器施工工艺标准

铁路信号浪涌保护器施工工艺标准
铁路信号浪涌保护器施工工艺标准

铁路信号浪涌保护器施工工艺标准

1. 信号电源应采用三级防雷措施,第一级(Ⅰ级)信号电源引入处(建筑物配电盘处或信号电源防雷箱处),第二级(Ⅱ级)电源屏电源引入侧,第三级(Ⅲ级)UPS电源引入侧。

2. 电源屏内部电源入口的防雷设置在符合“铁运[2006]26号”文时,可作为信号电源的第二级防雷。电源屏输入/输出端应设置浪涌保护器。

3. 信号电源SPD采用压敏电阻串放电管纵横向防雷设置。单相稳定电流小于100A的机房,电源线与防雷箱的连接线长度不得大于0.5m,受条件限制连接线长度大于0.5m 时,应采用凯文接线法连接。防雷箱接地线必须与电源保护地线(PE)连接,并就近与接地汇集线连接。当Ⅰ级与Ⅱ级配线长度小于10m、Ⅱ级与Ⅲ级配线长度小于5m时,应加装退藕器。信号电源SPD参数选择应符合举例设计图的规定或电源实际情况确定。连接线应采用多股绝缘软线,第I级连接线截面积不小于10mm2、第Ⅱ级不小于6mm2、第Ⅲ级不小于2.5mm2。

4. 信号机点灯电路、主灯丝断丝报警电路、场(站)间联系电路SPD采用压敏电阻串放电管纵向防雷设置,SPD参数选择应符合相关规定。

5. 轨道电路SPD设置方式及参数选择应符合相关规定。轨道电路受电端通道浪涌保护器采用横向配置方式。25Hz 相敏轨道电路、50Hz交流连续式轨道电路室外送电端轨道变压器宜采用防雷型变压器,室外受电端宜采用高隔离变压器。当50Hz交流连续式轨道电路室外送、受电端轨道(中继)变压器采用既有型号时,轨道电路轨旁SPD按有关要求设置。

6. 四线制自动闭塞方向电路SPD采用压敏电阻串联放电管横向防雷设置,SPD参数选择应符合举例设计图或相关规定。

7. 计轴传输通道SPD设置方式及参数应符合举例设计图或相关规定。

8. 数据传输应采用光缆传输。当条件受限时数据传输、视频信号传输及其它小信号传输通道SPD设置方式及参数应符合举例设计图或相关规定。

9. 通信交换机与CTC或TDCS间的通信宜采用光电隔离;采用电缆传输时,应设置SPD装置,其地线应采用共地方式或采用贯通电缆在地下将二地网(线)连接。

10. 计算机I/O板采集、驱动传输通道SPD设置方式及参数应符合相关规定。

11. 数据传输、视频信号传输、计算机I/O板采集/驱动及其它小信号传输,应根据实际雷害状况,在传输通道上确

定设置SPD。

12. 驼峰测长、测速、测重及有源踏板SPD设置方式及参数应符合相关规定。

13. 并联型浪涌保护器与被保护设备间连接线的截面积应不小于1.5mm2,其长度不得大于0.5m,受条件限制时,应不大于1.5m或采用凯文接法。浪涌保护器与接地汇集线间连接线的截面积应不小于1.5mm2,其长度应不大于1m。

14. 所有传输放电电流的导线应采用阻燃型绝缘护套。

15. 220V交直流电源线与其它电线(缆)在组合架(柜)上的走线槽内走线宜屏蔽隔离。

16. 信号设备房内安装空调时应设置浪涌保护器。

铁路信号施工工艺设计与技术标准

信号工程施工技术及工艺标准一、室外电缆工程 1)、挖电缆沟 1.电缆经路选择在路基边坡坡脚外1米内,防护栏之内,遇特殊情况可选择在路肩上,但绝对不允许在铁路线路安全保护区外挖沟敷设电缆。对因条件限制不能设在护网或围墙内的电缆,采取以下防护措施:在电缆沟上部安装警示板,并在其上加倍设置电缆标和警示牌密度。 2.电缆沟直、低平,沟内无石块和容易损伤电缆的杂物。 3.电缆沟深度: (1)站内路肩0.8米(电缆曹防护、钢管防护地段沟深同),区间和路基下的站内电缆沟1.2米。 (2)穿越股道、公路的沟深和引入电缆沟深度相同(股道下防护管上面距路基土面不得少于0.4米)。 4.平行于股道的干线电缆距最近钢轨轨底的距离: (1)在线路外侧,应不少于2米(当路基宽度不够时,在保证轨底边缘与电缆的斜面距离不少于2米的原则下,此距离可减至不少于1.7米。 (2)在线路间不少于1.6米(线间距为4.5米时,不得少于1.5米)。2)、电缆敷设: 1.信号设备所采用的电缆规格、型号应符合设计文件规定。 2.电缆允许在任何水平差的径路上敷设,敷设时其弯曲半径应不少于: (1)全塑电缆为其外径10倍。

(2)铠装电缆为其外径15倍。 3.电缆敷设前应进行单盘测试,电缆敷设后及接续配线前,进行施工测试;接续配线前的测试数据,做为电缆隐蔽工程测试记录。 4.电缆应缓和的敷设在沟内,使其有一定的自然弯曲,其附加长度,一般包括: (1)室内储备量为5米(另加实际引入和做头所需长度); (2)设备间电缆每端出土及做头各2米; (3)桥、较大涵洞、隧道两端储备量各不少于5米,并能满足电缆热胀冷缩的需要。桥面上电缆槽及桥两端采用防护钢管外水泥包封。 5.电缆尽量不接续,购货前,测量好实际长度订购。不得以时,站内地上接续,区间地下接头盒接续。地下接续后不得回填,每站全部地下接续完毕后,经现场测试、验收合格后,方可回填,并及时埋设接头标。 6.电缆沟内敷设多根电缆时,需排列整齐,互不交叉,如需分层敷设时,其上下层间距不得少于0.1米。 7.电缆标、警示牌设置原则v: 直线段每50米设置一个电缆埋设标,再隔50米设置一个警示牌,再隔50米设置一个电缆标,以此类推。下列处所应埋设电缆标: (1)电缆在转向及分支处无电缆盒时; (2)电缆长度超过50米的直线中间点; (3)电缆地下接头处,其标桩应有"接续标"字样,并注明埋深、电缆编号,竣工图要有显示。 (4)电缆穿越障碍物时(如大型管道、高压电缆等) 过轨、公路、干

设备基础施工工艺标准 (208-1996)(完整版)

设备基础施工工艺标准(208-1996) 范围 本工艺标准适用于工业与民用建筑中的一般中、小型混凝土设备基础。 施工准备 2.1 材料及主要机具: 2.1.1 水泥:宜325~425号矿渣硅酸盐水泥或普通硅酸盐水泥。 2.1.2 砂:中、粗砂,含泥量不大于5%。 2.1.3 石子:卵石或碎石,粒径0.5~ 3.2cm,含泥量不大于2%。 2.1.4 水:应用自来水或不含有害物质的洁净水。 2.1.5 外加剂、掺合料:其品种及掺量。应根据需要,通过试验确定 2.1.6 主要机具:应备有搅拌机、磅秤、手推车或翻斗车、铁锹(尖、平头)、振捣器(棒式或平板式)、刮杠、木抹子、串桶或溜槽、胶皮管等。 2.2 作业条件: 2.2.1 基础轴线尺寸,基底标高和地质情况均经过检查,并应办完隐检手续。 2.2.2 安装的模板已经过检查,符合设计要求,并办完预检手续。 2.2.3 在槽帮上、墙面或模板上做好混凝土上平的标记。较大型基础或阶梯型基础,应设水平桩或弹上线。 2.2.4 埋在基础中的钢筋、螺栓、预埋件、设备管线均已安装完毕,并经过有关部门检查验收,并办完隐检手续。 2.2.5 由试验室确定混凝土配合比,经核查后,调整第一盘混凝土的各种材料的用量,进行技术交底及试拌。同时准备好混凝土试模。 操作工艺 3.1 工艺流程: 槽底或模板内清理→混凝土拌制→混凝土浇筑→混凝土振捣→混凝土找平→混凝土养护 3.2 清理:在地基或基土上清除淤泥和杂物,并应有防水和排水措施。对于干燥土应用水润湿,表面不得存有积水。清除模板内的垃圾、泥土等杂物,并浇水润湿木模板,堵塞板缝和孔洞。 3.3 混凝土拌制:后台要认真按混凝土的配合比投料;每盘投料顺序为石子→水泥→砂子(掺合料)→水(外加剂)→。严格控制用水量,搅拌均匀,搅拌时间一般不少于90s。 3.4 混凝土的浇筑: 3.4.1 混凝土的下料口距离所浇筑的混凝土的表面高度不得超过2m,如自由倾落超过2m时,应采用串桶或溜槽。 3.4.2 混凝土的浇筑应分层连续进行,一般分层厚度为振捣器作用部分长度的1.25倍,最大厚度不超过50cm。 3.4.3 用插入式振捣器应快插慢拔,插点应均匀排列,逐点移动,顺序进行,不得遗漏,做到振捣密实。移动间距不大于振捣棒作用半径的1.5倍。振捣上一层时,应插入下层5cm,以消除两层间的接缝。平板振捣器的移动间距,应能保证振捣器的平板覆盖已振捣的边缘。 3.4.4 混凝土不能连续进行浇筑时,如果超过2h以上,应按设计要求和施工规范的规定留置施工缝。

浪涌保护器选型

电涌保护器选型 随着国际信息潮流的冲击、微电子科技的沸腾和通讯、计算机及自动控制技术的日新月 异,建筑开始走向高品质、高功能领域,形成了一种新的建筑形式——智能建筑。由于在智能建筑中存在众多信息系统,《建筑物防雷设计规范》GB50057-94(2002年版)(以下简称《防雷规范》)提出了安装电涌保护器的相关要求,以保证信息系统的安全稳定运行,笔者仅对其中使用的电涌保护器的产品选型提几点自己的看法。电涌保护器从本质上看就是一种等电位连接用的材料而已,其选型就是指在不同的防雷区内,按照不同雷击电磁脉冲的严重程度和等电位连接点的位置,决定位于该区域内的电子设备采用何种电涌保护器,实现与共用接地体等电位联结。笔者将从电涌保护器的最大放电电流Imax、持续工作电压Uc、保护电压Up、漏电流Ip、告警方式等方面进行论述。按照《防雷规范》第6.4.4条规定“电涌保护器必须能承受预期通过它们的雷电流,并应符合以下两个附加要求:通过电涌时的最大钳位电压,有能力熄灭在雷电流通过后产生的工频续流。”即电涌保护器的最大钳位电压加上其两端的感应电压应与所属系统的基本绝缘水平和设备允许的最大电涌电压协调一致。最大放电电流按照《防雷规范》第6.4.6条规定,在LPZOA、LPZOB与LPZ1区的交界处安装电涌保护器其最大放电电流计算如下:根据《防雷规范》规定的“全部雷电流的50%流入建筑物的防雷装置。另50%流入引入建筑物的各种外来导电物、电力线缆、通信线缆等设施”, 表一:首次雷击的雷电流参量 雷电流参数一类防雷建筑物二类防雷建筑物三类防雷建筑物 I幅值(KA)200 150 100 T1波头时间( s)350 350 350 雷电波经建筑物引入的电力线缆、信息线缆、金属管道等分解,总配电间的低配供电线缆雷电流的分流值计算表如表二,线路屏蔽时,通过的雷电流降低到原来的30%,根据《通信局(站)雷电过电压保护工程设计规范》YD/T5098-2001中规定的脉冲为10/350 s波形的电荷量 约为8/20 s模拟雷电波波形电荷量的20 ..倍,具体计算如下: 表二:供电线缆雷电流分流值表 雷电流参数一类防雷建筑二类防雷建筑三类防雷建筑 I幅值(KA)200 150 100 供电线缆总分流值(kA)33.33 25 16.67 每根电缆分流值(kA)11.11 8.33 5.56

铁路信号运营基础总复习题

4、简述列车运行图的分类,并说明下面列车运行图的名称。 5-1-5 5、说明下图中编组站的布置类型?几级几场?有何优缺点? 五、计算题(共10分,第1题6分,第2题4分) 1、 如图所示,某三显示自动闭塞区段,闭塞分区的长度均为1950m ,两列车的长度均为250m , 列车的平均速度为61km/h ,求两列车的追踪间隔时间? 2、 用文字或符号标示出此三显示区段各通过信号机色灯的颜色。 六、问答题(共10分,第1题3分,第2题4分,第3题4分) 1、什么是进路? 2、车站主要有哪些进路? 3、列车进路的划分原则是什么? 练习一答案 一、填空题 1、二分格运行图、十分格运行图和小时格运行图 2、机车车辆限界和建筑限界 3、站间区间、所间区间和闭塞分区 4、保证行车安全、提高运输效率 5、超前式和滞后式 6、轨道和桥隧建筑物 7、12.5m 和25m ;1435mm 8、空间间隔法和时间间隔法 9、(法国U/T 系统、德国LZB 系统、日本ATC 系统、欧洲ETCS 列控系统)任写两种即可 10、推送部分、峰顶平台和溜放部分 11、检查轨道空闲和传递车地信息 前车 后车

六、问答题 1、什么是进路? 列车或调车车列在站运行时所经由的路径称为进路。 2、车站主要有哪些进路? 按作业性质,进路可以分为列车进路和调车进路。 列车进路又可分为接车进路、发车进路、通过进路和转场进路。 调车进路又可分为调车接车方向的进路和调车发车方向的进路。 3、列车进路的划分原则是什么? 1)进路的始端一般是信号机(防护进路); 2)进路围包括道岔和道岔区段; 3)一架信号机同时可以防护几条进路,即它可以作为几条进路的始端; 4)发车进路的终端可以是信号机、站界标及警冲标; 5)调车进路和列车进路一样,也要有一定的围才能对它进行防护。只是一般比列车进路要短。

铁路信号电缆施工工艺规定

. . 铁路信号电缆施工工艺规定 第一章总则 第一条为了规范在广铁(集团)公司管内的铁路信号电缆施工,从源头预防信号设备故障,特制定本规定。 第二章铁路信号电缆使用规定 第二条 ZPW—2000系列自动闭塞轨道区段以及2000系列的站内电码化设备采用铁路数字信号电缆,计轴设备、应答器使用专用数字信号电缆,其它设备应采用综合护套或铝护套信号电缆等非数字信号电缆。 第三条电化区段主干信号电缆应采用铝护套信号电缆,电化区段与非电化区段连接的站(场)联电缆应采用铝护套信号电缆。 第四条 ZPW—2000系列采用的铁路内屏蔽数字信号电缆,应遵循以下使用原则 1.两个频率相同的发送与接收不能采用同一根电缆。 2.两个频率相同发送(接收)不能设置在同一屏蔽四线组内。 3.电缆中有两个及其以上的相同频率的发送或接收时,该电缆需采用内屏蔽电缆。 . . . . .

4.电缆中各发送、各接收频率均不相同时,可采用非内屏蔽电缆,但线对必须按4线组对角线成对使用。 5.内屏蔽电缆有2对以上的备用芯线时,必须有一个完整的内屏蔽4芯组。 第五条轨道电路发送、接收电缆应成对使用。 第三章铁路信号电缆径路选择原则 第六条铁路信号电缆敷设前,由施工单位会同工务段、电务段、通信段等设备管理单位配合人员进行现场踏勘,共同确认敷设径路。 第七条两设备间距离最短,通过股道及障碍物最少,利于施工及维修方便。 第八条避开线路和其他建筑物的改、扩建处。 第九条避免在道岔的岔尖、辙岔心和钢轨接头处穿越股道。 第十条避免通过碱、酸、盐性等有化学腐蚀物质的地带,各种管道径路复杂地带。 第十一条避免通过土壤松软容易塌陷的地带,以及坚石、池沼、污水坑等处。 第十二条电缆径路与铁路平行时,距最近轨底边缘的距离,在线路外侧L为2m。如路基宽度不够时,在保证轨底边缘与电缆间斜面距离不小于2m的情况下,L可减至不小于1.7m。在线路间,L为1.6m。若线路间距为4.5m,此项距离L可减至— 2 —

设备基础施工工艺标准

设备基础施工工艺标准 1 范围 本工艺标准适用于工业与民用建筑中的一般中、小型混凝土设备基础。 2 2 施工准备 2.1 材料及主要机具: 2.1.1 水泥:宜325~425号矿渣硅酸盐水泥或普通硅酸盐水泥。 2.1.2 砂:中、粗砂,含泥量不大于5%。 2.1.3 石子:卵石或碎石,粒径0.5~ 3.2cm,含泥量不大于2%。 2.1.4 水:应用自来水或不含有害物质的洁净水。 2.1.5 外加剂、掺合料:其品种及掺量。应根据需要,通过试验确定。 2.1.6 主要机具:应备有搅拌机、磅秤、手推车或翻斗车、铁锹(尖、平头)、振捣器(棒式或平板式)、刮杠、木抹子、串桶或溜槽、胶皮管等。 2.2 作业条件: 2.2.1 基础轴线尺寸,基底标高和地质情况均经过检查,并应办完隐检手续。 2.2.2 安装的模板已经过检查,符合设计要求,并办完预检手续。 2.2.3 在槽帮上、墙面或模板上做好混凝土上平的标记。较大型基础或阶梯型基础,应设水平桩或弹上线。 2.2.4 埋在基础中的钢筋、螺栓、预埋件、设备管线均已安装完毕,并经过有关部门检查验收,并办完隐检手续。 2.2.5 由试验室确定混凝土配合比,经核查后,调整第一盘混凝土的各种材料的用量,进行技术交底及试拌。同时准备好混凝土试模。 3 操作工艺

3.1 工艺流程: 槽底或模板内清理混凝土拌制混凝土浇筑 混凝土振捣混凝土找平混凝土养护 3.2 清理:在地基或基土上清除淤泥和杂物,并应有防水和排水措施。对于干燥土应用水润湿,表面不得存有积水。清除模板内的垃圾、泥土等杂物,并浇水润湿木模板,堵塞板缝和孔洞。 3.3 混凝土拌制:后台要认真按混凝土的配合比投料;每盘投料顺序为石子→水泥→砂子(掺合料)→水(外加剂)→。严格控制用水量,搅拌均匀,搅拌时间一般不少于90s。 3.4 混凝土的浇筑: 3.4.1 混凝土的下料口距离所浇筑的混凝土的表面高度不得超过2m,如自由倾落超过2m时,应采用串桶或溜槽。 3.4.2 混凝土的浇筑应分层连续进行,一般分层厚度为振捣器作用部分长度的1.25倍,最大厚度不超过50cm。 3.4.3 用插入式振捣器应快插慢拔,插点应均匀排列,逐点移动,顺序进行,不得遗漏,做到振捣密实。移动间距不大于振捣棒作用半径的1.5倍。振捣上一层时,应插入下层5cm,以消除两层间的接缝。平板振捣器的移动间距,应能保证振捣器的平板覆盖已振捣的边缘。 3.4.4 混凝土不能连续进行浇筑时,如果超过2h以上,应按设计要求和施工规范的规定留置施工缝。 3.4.5 浇筑混凝土时,应经常注意观察模板、支架、螺栓、管道和预留孔洞、预埋件有无走动情况,当发现有变形或位移时,应立即停止浇筑,并及时修整和加固模

浪涌保护器的选型及使用

浪涌保护器的选型及使用 由于电气类和电子元件的高损耗,浪涌保护(浪涌保护器或SPD)在风能行业中过电压保护过程中越来越普遍。 风机停机的代价是非常高的,只有在不得不停机的情况下,才能停机。随着风机型号的增大而当其电力系统崩溃带来的损失也不断增大,因此为了免受过电压造成损失而实施保护措施的需求也随之增高。业主对浪涌保护器的需求越来越普遍。这意味着开发商和风机制造商必须确保系统符合现行法律规定及现代风力发电机组可靠性的要求。为了推动这项工作,国际电工委员会出版了低压用电分配系统浪涌保护设备选择和使用的标准。(IEC61643 低电压保护设备:第十二章是关于低压用电分配系统的浪涌保护器的选择和应用原理)该标准是一个应用及配置指南,对评估浪涌保护重要性非常有用,该标准同时也给风机浪涌保护设备的安装和尺寸测量提供指导规范。 应用指南 该标准可作为设计手册,并阐述了很多选型和设计时要考虑的相关问题。该标准也说明了选择过电压保护设备的各种问题。标准的第一部分详述了浪涌保护的基本原理和选择浪涌保护器时的各种相关参数(第3、4和5节)。简述之后就是应用指南,一步步介绍在选型前怎样评估应用程序(第6.1节)。下图是评估中最重要问题的概览:

选择安装浪涌保护器时,首先要考虑电网的设计(例如:TN-S系统,TT系统,IT 系统等)。浪涌保护器的安装位置也要考虑,它的放置位置与被保护设备间的距离要合适。如果浪涌保护器放置得离被保护设备太远了,那就不能确保被保护设备得到有效保护;如果太近了,设备和浪涌保护器之间会产生振荡波,而这样,即使设备被认为是被保护的,会在被保护设备上产生巨大的过电压。 仅因为正确安装浪涌保护器是个简单问题,导致许多浪涌保护器安装位置设计不合理。安装浪涌保护器时,首先确保它被放置在被保护设备的入口处;第二要正确安装浪涌保护器的接地线;第三连接浪涌保护器的电缆要尽可能的短。根据此标准(一般来说),连接电缆的电感一般是1μH/m左右。所以设计该系统时,记得连接电缆要包含火线和接地线。

铁路信号施工工艺标准

HHDWG/XH-06-2013 怀化电务段施工标准体系 施工工艺标准 车站与区间信号 Q/GZT-HHD01SG-2012 广州铁路(集团)公司怀化电务段 目录 第一章信号电缆施工 第一节电缆型号及测试 第二节电缆敷设 第三节电缆防护 第四节电缆屏蔽连接 第五节电缆配线 第二章室外设备安装 第一节地面固定信号及标志牌 第二节道岔 第三节轨道电路 第四节计轴设备 第五节配线 第三章室内设备安装

第一节组合架、分线盘、走线架、组合柜、移频柜、综合柜及计算机联锁接口架 第二节控制台、人解盘及显示设备 第三节计算机联锁设备 第四节电源屏(含电源开关箱、防雷开关箱) 第五节配线 第四章系统防雷 第一节既有信号楼施工 第二节新建信号建筑物避雷带与法拉第屏蔽笼施工 第三节室内接地汇集线及等电位连接 第四节浪涌保护器 第五节轨旁设备接地及电缆屏蔽接地施工要求 第六节信号楼信号设备接地示意图 第七节贯通地线 第五章微机监测与TDCS施工工艺 第六章ZPW-2000轨道电路 第一节轨道电路分割及长度计算标准 第二节电气绝缘节设备安装 第三节机械绝缘节设备安装 第四节ZPW-2000钢轨引接线规格、型号及安装标 第五节平交道口、桥梁处设备的安装 第六节补偿电容的安装 第七节禁停标志牌的安装

第八节信号机安装 第九节防雷地线 第十节电化复线区段横向连接线设置原则 第十一节电缆补偿方法 第七章信号设备标识工艺标准图 第八章(沪昆线)室外设备安装与地面硬化工艺标准图 第一章信号电缆 第一节电缆型号及测试 一、电缆型号 (一)信号电缆型号 1. 信号电缆的导电芯线应采用标称直径为1.0mm的软铜线,其允许工作电压不得低于工频500V或直流1000V。 2. 集中联锁和自动闭塞区间的信号电缆,应采用综合护套、铝护套和数字信号电缆。有特殊要求的设备,如计轴设备、应答器等设备应采用专用数字信号电缆。 (1)信号电缆按护套类型包括塑料护套(PTY03、PTY23等)、综合护套(PTYA23、PTYA22)、铝护套(PTYL23、PTYL22)信号电缆,电缆规格用电缆芯数表示分为:4、6、8、9、12、14、16、19、21、24、28、30、33、37、42、44、48、52、56、61。 (2)铁路数字信号电缆分为塑料护套(SPTYW03或SPTYW23)、综合护套(SPTYWA23)、铝护套(SPTYWL23)、内屏蔽(SPTYWP03或SPTYWP23、SPTY-WPA23、SPTYWPL23)数字电缆。 (二) 信号电缆使用范围 1. 集中联锁和自动闭塞区间的信号电缆,应采用综合护套、铝护套、数字信号电缆。 2. 电化区段主干信号电缆应采用铝护套信号电缆,电化区段与非电化区段连接的站(场)联电缆应采用铝护套信号电缆。 3. ZPW-2000系列自动闭塞轨道区段以及2000系列的站内电码化设备采用铁路数字信号电缆,计轴设备、应答器使用专用数字信号电缆,其它设备应采用综合护套或铝护套信号电缆等非数字信号电缆。 4.ZPW-2000系列采用的铁路内屏蔽数字信号电缆,应遵循以下使用原则: (1)两个频率相同的发送与接收不能采用同一根电缆。 (2)两个频率相同发送(接收)不能设置在同一屏蔽四线组内。 (3) 电缆中有两个及其以上的相同频率的发送或接收时,该电缆需采用内屏蔽电缆。 (4)电缆中各发送、各接收频率均不相同时,可采用非内屏蔽电缆,但线对必须按4线组对角线成对使用。 (5)内屏蔽电缆有2对以上的备用芯线时,必须有一个完整的内屏蔽4芯组。 5.轨道电路发送、接收电缆应成对使用。

设备基础施工方案

110千伏沥窖变电站#3变扩建工程地基与基础分部工程施工方案 工程名称:110千伏沥窖变电站#3变扩建工程 工程地点:广州市海珠区沥窖村110千伏沥窖变电站内施工单位:广州市电力工程有限公司 编制单位:广州市电力工程有限公司 项目负责人: 编制人:邱玉彬编制日期:2007年12月14日审批负责人:审批日期:

目录 一、工程概况及特点 (3) 二、施工准备 (3) 三、施工总体安排 (5) 四、主要工序的施工方法 (5) 五、各项施工资源计划 (11) 六、施工质量保证措施 (11) 七、消除质量通病的具体措施 (13) 八、施工安全措施 (14)

一、工程概况及特点 1.1 工程概况 本工程地基与基础工程主要包括如下项目:避雷器支架及基础1组、电容式电压互感器支架及基础3个、隔离开关支架及基础3组、电流互感器基础1组、断路器基础1座、110kV中间构架及基础1组、旁路母线构架及基础2组、端子箱基础1个、#3主变压器基础1个、#3主变构架及基础1组、中性点支架及基础1个、母线桥支架及基础4个、#3主变防火墙1道;户外电容器基础6组、配电室1间、400*400电缆沟65m、800*800电缆沟60m、2*1200*1000电缆沟75m及部分200*200电缆沟等。 1.2工程特点 本期扩建工程均近距离带电设备,施工时应在确保安全的情况下进行施工。 工程10千伏配电室、主变基础构架及电容器设备基础采用φ500水泥搅拌桩对地基进行处理加固,其余设备基础采取换土处理,换填3:7砂石1米厚;2*1200*1000电缆沟底换填块石基础500厚;400*400电缆沟、800*800电缆沟沟底换填3:7砂石500厚。水泥搅拌桩使用的固化剂为普通硅酸盐水泥,强度等级为32.5R,掺入量为15%。具体施工方法另详水泥搅拌桩专项施工方案。 二、施工准备 2.1 技术准备 1、组织施工技术人员熟悉图纸、施工工艺及有关技术规范,了解设计要 求达到的技术标准、明确工艺流程。 2、将编制好且通过审批的《施工方案》作为作业指导书,与施工人员进

浪涌保护器的安装

浪涌保护器的有关知识和安装 电涌保护器(SPD)工作原理和结构 电涌保护器(Surge protection Device)是电子设备雷电防护中不可缺少的一种装置,过去常称为“避雷器”或“过电压保护器”英文简写为SPD.电涌保护器的作用是把窜入电力线、信号传输线的瞬时过电压限制在设备或系统所能承受的电压范围内,或将强大的雷电流泄流入地,保护被保护的设备或系统不受冲击而损坏。 电涌保护器的类型和结构按不同的用途有所不同,但它至少应包含一个非线性电压限制元件。用于电涌保护器的基本元器件有:放电间隙、充气放电管、压敏电阻、抑制二极管和扼流线圈等。 一、SPD的分类 1、按工作原理分: 1.开关型:其工作原理是当没有瞬时过电压时呈现为高阻抗,但一旦响应雷电瞬时过电压时,其阻抗就突变为低值,允许雷电流通过。用作此类装置时器件有:放电间隙、气体放电管、闸流晶体管等。 2.限压型:其工作原理是当没有瞬时过电压时为高阻扰,但随电涌电流和电压的增加其阻抗会不断减小,其电流电压特性为强烈非线性。用作此类装置的器件有:氧化锌、压敏电阻、抑制二极管、雪崩二极管等。 3.分流型或扼流型 分流型:与被保护的设备并联,对雷电脉冲呈现为低阻抗,而对正常工作频率呈现为高阻抗。 扼流型:与被保护的设备串联,对雷电脉冲呈现为高阻抗,而对正常的工作频率呈现为低阻抗。 用作此类装置的器件有:扼流线圈、高通滤波器、低通滤波器、1/4波长短路器等。按用途分: (1)电源保护器:交流电源保护器、直流电源保护器、开关电源保护器等。 (2)信号保护器:低频信号保护器、高频信号保护器、天馈保护器等。 二、SPD的基本元器件及其工作原理 1.放电间隙(又称保护间隙): 它一般由暴露在空气中的两根相隔一定间隙的金属棒组成,其中一根金属棒与所需保护设备的电源相线L1或零线(N)相连,另一根金属棒与接地线(PE)相连接,当瞬时过电压袭来时,间隙被击穿,把一部分过电压的电荷引入大地,避免了被保护设备上的电压升高。这种放电间隙的两金属棒之间的距离可按需要调整,结构较简单,其缺点时灭弧性能差。改进型的放电间隙为角型间隙,它的灭弧功能较前者为好,它是靠回路的电动力F作用以及热气流的上升作用而使电弧熄灭的。 2.气体放电管: 它是由相互离开的一对冷阴板封装在充有一定的惰性气体(Ar)的玻璃管或陶瓷管内组成的。为了提高放电管的触发概率,在放电管内还有助触发剂。这种充气放电管有二极型的,也有三极型的,

设备基础施工工艺标准

(一)设备基础施工工艺标准 <1>施工准备 <1.1>材料及主要机具: <1.1.1>水泥:宜用强度等级32.5~42.5的矿渣硅酸盐水泥或普通硅酸盐水泥。 <1.1.2>砂:中、粗砂,含泥量不大于5%。 <1.1.3>石子:卵石或碎石,粒径0.5~3.2cm,含泥量不大于2%。 <1.1.4>水:应用自来水或不含有害物质的洁净水。 <1.1.5>外加剂、掺合料:其品种及掺量。应根据需要,通过试验确定 <1.1.6>主要机具:应备有搅拌机、磅秤、手推车或翻斗车、铁锹(尖、平头)、振捣器(棒式或平板式)、刮杠、木抹子、串桶或溜槽、胶皮管等。 <1.2>作业条件: <1.2.1>基础轴线尺寸,基底标高和地质情况均经过检查,并应办完隐检手续。 <1.2.2>安装的模板已经过检查,符合设计要求,并办完预检手续。 <1.2.3>在槽帮上、墙面或模板上做好混凝土上平的标记。较大型基础或阶梯型基础,应设水平桩或弹上线。 <1.2.4>埋在基础中的钢筋、螺栓、预埋件、设备管线均已安装完毕,并经过有关部门检查验收,并办完隐检手续。 <1.2.5>由试验室确定混凝土配合比,经核查后,调整第一盘混凝土的各种材料的用量,进行技术交底及试拌。同时准备好混凝土试模。

<2>操作工艺 <2.1>工艺流程: 槽底或模板内清理→混凝土拌制→混凝土浇筑→混凝土振捣→混凝土找平→混凝土养护 <2.2>清理:在地基或基土上清除淤泥和杂物,并应有防水和排水措施。对于干燥土应用水润湿,表面不得存有积水。清除模板内的垃圾、泥土等杂物,并浇水润湿木模板,堵塞板缝和孔洞。 <2.3>混凝土拌制:后台要认真按混凝土的配合比投料;每盘投料顺序为石子→水泥→砂子(掺合料)→水(外加剂)→。严格控制用水量,搅拌均匀,搅拌时间一般不少于90s。 <2.4>混凝土的浇筑: <2.4.1>混凝土的下料口距离所浇筑的混凝土的表面高度不宜超过2m,如自由倾落超过2m时,应采用串桶或溜槽。 <2.4.2>混凝土的浇筑应分层连续进行,一般分层厚度为振捣器作用部分长度的 1.25倍,最大厚度不超过50cm。 <2.4.3>用插入式振捣器应快插慢拔,插点应均匀排列,逐点移动,顺序进行,不得遗漏,做到振捣密实。移动间距不大于振捣棒作用半径的1.5倍。振捣上一层时,应插入下层5cm,以消除两层间的接缝。平板振捣器的移动间距,应能保证振捣器的平板覆盖已振捣的边缘。

浪涌保护器的安装

欢迎阅读 浪涌保护器的有关知识和安装 电涌保护器(SPD )工作原理和结构 电涌保护器(SurgeprotectionDevice )是电子设备雷电防护中不可缺少的一种装置,过去常称为“避雷器”或“过电压保护器”英文简写为SPD.电涌保护器的作用是把窜入电力线、信号传输线的瞬时过电压限制在设备或系统所能承受的电压范围内,或将强大的雷电流泄流入地,保护被保护的设备或系统不受冲击而损坏。 11.2.3.(1.过电压袭来时,间隙被击穿,把一部分过电压的电荷引入大地,避免了被保护设备上的电压升高。这种放电间隙的两金属棒之间的距离可按需要调整,结构较简单,其缺点时灭弧性能差。改进型的放电间隙为角型间隙,它的灭弧功能较前者为好,它是靠回路的电动力F 作用以及热气流的上升作用而使电弧熄灭的。 2.气体放电管: 它是由相互离开的一对冷阴板封装在充有一定的惰性气体(Ar )的玻璃管或陶瓷管内组成的。为了提高放电管的触发概率,在放电管内还有助触发剂。这种充气放电管有二极型的,也有三极型的,

气体放电管的技术参数主要有:直流放电电压Udc;冲击放电电压Up(一般情况下Up≈(2~3)Udc;工频而授电流In;冲击而授电流Ip;绝缘电阻R(>109Ω);极间电容(1-5PF) 气体放电管可在直流和交流条件下使用,其所选用的直流放电电压Udc分别如下:在直流条件下使用:Udc≥1.8U0(U0为线路正常工作的直流电压) 在交流条件下使用:Udc≥1.44Un(Un为线路正常工作的交流电压有效值) 3.压敏电阻: 它是以ZnO为主要成分的金属氧化物半导体非线性电阻,当作用在其两端的电压达到一定数值后,电阻对电压十分敏感。它的工作原理相当于多个半导体P-N的串并联。压 , ; Ub 4. 9 ( ( ( (4)反向变位电压:它是指管子在反向泄漏区,其两端所能施加的最大电压,在此电压下管子不应击穿。此反向变位电压应明显高于被保护电子系统的最高运行电压峰值,也即不能在系统正常运行时处于弱导通状态。 (5)最大泄漏电流:它是指在反向变位电压作用下,管子中流过的最大反向电流。(6)响应时间:10-11s 5.扼流线圈:扼流线圈是一个以铁氧体为磁芯的共模干扰抑制器件,它由两个尺寸相同,匝数相同的线圈对称地绕制在同一个铁氧体环形磁芯上,形成一个四端器件,要对于共模信号呈现出大电感具有抑制作用,而对于差模信号呈现出很小的漏电感几乎不起作

设备基础施工工艺

设备基础施工工艺 本工艺标准适用于工业与民用建筑中的一般中、小型混凝土设备基础。 ^ 2.1 材料及主要机具: 2.1.1 水泥:宜325~425号矿渣硅酸盐水泥或普通硅酸盐水泥。 2.1.2 砂:中、粗砂,含泥量不大于5%。 2.1.3 石子:卵石或碎石,粒径0.5~ 3.2cm,含泥量不大于2%。 2.1.4 水:应用自来水或不含有害物质的洁净水。 2.1.5 外加剂、掺合料:其品种及掺量。应根据需要,通过试验确定2.1.6 主要机具:应备有搅拌机、磅秤、手推车或翻斗车、铁锹(尖、平头)、振捣器(棒式或平板式)、刮杠、木抹子、串桶或溜槽、胶皮管等。 2.2 作业条件: 2.2.1 基础轴线尺寸,基底标高和地质情况均经过检查,并应办完隐检手续。 2.2.2 安装的模板已经过检查,符合设计要求,并办完预检手续。 2.2.3 在槽帮上、墙面或模板上做好混凝土上平的标记。较大型基础或阶梯型基础,应设水平桩或弹上线。 2.2.4 埋在基础中的钢筋、螺栓、预埋件、设备管线均已安装完毕,并经过有关部门检查验收,并办完隐检手续。

2.2.5 由试验室确定混凝土配合比,经核查后,调整第一盘混凝土的各种材料的用量,进行技术交底及试拌。同时准备好混凝土试模。 3.1 工艺流程: 槽底或模板内清理→混凝土拌制→混凝土浇筑→混凝土振捣→混凝土找平→ 混凝土养护 3.2 清理:在地基或基土上清除淤泥和杂物,并应有防水和排水措施。对于干燥土应用水润湿,表面不得存有积水。清除模板内的垃圾、泥土等杂物,并浇水润湿木模板,堵塞板缝和孔洞。 3.3 混凝土拌制:后台要认真按混凝土的配合比投料;每盘投料顺序为石子→水泥→砂子(掺合料)→水(外加剂)→。严格控制用水量,搅拌均匀,搅拌时间一般不少于90s。 3.4 混凝土的浇筑: 3.4.1 混凝土的下料口距离所浇筑的混凝土的表面高度不得超过2m,如自由倾落超过2m时,应采用串桶或溜槽。 3.4.2 混凝土的浇筑应分层连续进行,一般分层厚度为振捣器作用部分长度的1.25倍,最大厚度不超过50cm。 3.4.3 用插入式振捣器应快插慢拔,插点应均匀排列,逐点移动,顺序进行,不得遗漏,做到振捣密实。移动间距不大于振捣棒作用半径的1.5倍。振捣上一层时,应插入下层5cm,以消除两层间的接缝。平板振捣器的移动间距,应能保证振捣器的平板覆盖已振捣的边缘。 3.4.4 混凝土不能连续进行浇筑时,如果超过2h以上,应按设计要求

如何安装浪涌保护器

如何安装浪涌保护器 浪涌保护器,也称防雷器,是一种为各种电子设备、仪器仪表、通讯线路提供安全防护的电子装置。当电气回路或者通信线路中因为外界的干扰突然产生尖峰电流或者电压时,浪涌保护器能在极短的时间内导通分流,从而避免浪涌对回路中其他设备的损害。 为了防止过电压对设备带来的危害,我们可加装浪涌保护器来防护,可分为电源线路防护,信号线路防护,天馈线路防护三大类。 电源线路浪涌保护器(SPD)的安装应符合下列规定: 1、电源线路的各级浪涌保护器(SPD)应分别安装在被保护设备电源线路的前端,浪涌保护器各接线端应分别与配电箱内线路的同名端相线连接。浪涌保护器的接地端与配电箱的保护接地线(PE)接地端子板连接,配电箱接地端子板应与所处防雷区的等电位接地端子板连接。各级浪涌保护器(SPD)连接导线应平直,其长度不宜超过0.5m。 2、带有接线端子的电源线路浪涌保护器应采用压接;带有接线柱的浪涌保护器宜采用线鼻子与接线柱连接。

3、浪涌保护器(SPD)的连接导线最小截面积宜符合下表的规定。 防护级别SPD的类型导线截面积(mm2) SPD连接相线铜导线SPD接地端连接铜导线 第一级开关型或限压型16 25 第二级限压型10 16 第三级限压型6 10 第四级限压型4 6 天馈线路浪涌保护器(SPD)的安装应符合下列规定: 1、天馈线路浪涌保护器SPD应串接于天馈线与被保护设备之间,宜安装在机房内设备附近或机架上,也可以直接连接在设备馈线接口上。 2、天馈线路浪涌保护器SPD的接地端应采用截面积不小于6mm2的铜芯导线就近连接到直击雷非防护区(LPZ0A)或直击雷防护区(LPZ0B)与第一防护区(LPZ1)交界处的等电位接地端子板上,接地线应平直。 信号线路浪涌保护器(SPD)的安装应符合下列规定:

铁路信号贯通地线施工工艺标准

铁路信号贯通地线施工工艺标准 1. 贯通全线的直接埋设的铜缆地线,其截面积应计算确定。对于新建时速200km/h,客货共线自动闭塞铁路区段,贯通地线的截面积宜采用不小于35mm2的裸铜缆。 贯通地线在电气上必须全线贯通,接头处应采用搭接焊接方式。贯通地线直埋地下,埋深不小于1m,接地电阻值应小于1Ω。 2. 贯通地线与轨道电路的连接,应符合下列要求: (1) 贯通地线间隔一定距离与轨道电路的连接一次,其间隔距离应满足轨道电路调整、分路、断轨检查功能。 (2) 贯通地线与轨道电路连接,必须通过完全横向连接线才能接至无绝缘轨道电路空心线圈或有绝缘轨道电路的扼流变压器中点。 (3) 当上、下行两线的绝缘节之间的距离大于100m时,必须增加一个空扼流变压器完成横向连接并接至贯通地线。 3. 贯通地线的综合使用 (1) 通信、信号、红外线轴温监控系统及其他电子信息监控系统的接地装置,可接至贯通地线。 (2) 电力电缆的金属外皮、接触网杆塔集中地线可接至贯通地线。

(3) 沿线声屏障和隔离网、桥梁栏杆、雨棚等金属构件为防止电磁感应而采用的接地装置可接至贯通地线。 (4) 电力装置地线、电气化接触网地线与通信、信号及其他电子信息监控系统地线在贯通地线上的连接点的间隔应不小于25m。 4. 贯通地线的敷设 (1) 贯通地线与信号电缆同沟直埋于地下,并应埋在信号电缆下方,与土壤直接接触。 (2) 当信号电缆敷设在石质地带的电缆槽内时,贯通地线应在大地侧电缆槽底部敷设。 (3) 当贯通地线敷设在大桥上时,贯通地线宜与桥墩上预留的基础接地体可靠连接。 (4) 当贯通地线敷设在长大隧道内时,宜与隧道内预留的接地体可靠连接。 (5) 桥梁、隧道地段、车站范围及牵引变电所附近的区段应在铁路两侧敷设贯通地线。 (6) 客运专线应在铁路两侧敷设贯通地线;新建200km/h客货共线铁路路基地段宜在铁路两侧敷设贯通地线。 (7) 160km/h及以下铁路自动闭塞区段、电子设备集中区段可在一侧敷设贯通地线。 5. 两侧设有贯通地线的区段,在适当地点应将两侧的贯

设备基础施工工艺标准

设备基础施工工艺标准 1范围 本工艺标准适用于工业与民用建筑中的一般中、小型混凝土设备基础。 2施工准备 2.1 材料及主要机具: 2.1.1 水泥:宜用强度等级32.5~42.5的矿渣硅酸盐水泥或普通硅酸盐水泥。 2.1.2 砂:中、粗砂,含泥量不大于5%。 2.1.3 石子:卵石或碎石,粒径0.5~ 3.2cm,含泥量不大于2%。 2.1.4 水:应用自来水或不含有害物质的洁净水。 2.1.5 外加剂、掺合料:其品种及掺量。应根据需要,通过试验确定 2.1.6 主要机具:应备有搅拌机、磅秤、手推车或翻斗车、铁锹(尖、平头)、振捣器(棒式或平板式)、刮杠、木抹子、串桶或溜槽、胶皮管等。 2.2 作业条件: 2.2.1 基础轴线尺寸,基底标高和地质情况均经过检查,并应办完隐检手续。 2.2.2 安装的模板已经过检查,符合设计要求,并办完预检手续。 2.2.3 在槽帮上、墙面或模板上做好混凝土上平的标记。较大型基础或阶梯型基础,应设水平桩或弹上线。 2.2.4 埋在基础中的钢筋、螺栓、预埋件、设备管线均已安装完毕,并经过有关部门检查验收,并办完隐检手续。 2.2.5 由试验室确定混凝土配合比,经核查后,调整第一盘混凝土的各种材料的用量,进行技术交底及试拌。同时准备好混凝土试模。 3操作工艺 3.1 工艺流程: 槽底或模板内清理→混凝土拌制→混凝土浇筑→混凝土振捣→混凝土找平→混凝土养护

3.2 清理:在地基或基土上清除淤泥和杂物,并应有防水和排水措施。对于干燥土应用水润湿,表面不得存有积水。清除模板内的垃圾、泥土等杂物,并浇水润湿木模板,堵塞板缝和孔洞。 3.3 混凝土拌制:后台要认真按混凝土的配合比投料;每盘投料顺序为石子→水泥→砂子(掺合料)→水(外加剂)→。严格控制用水量,搅拌均匀,搅拌时间一般不少于90s。 3.4 混凝土的浇筑: 3.4.1 混凝土的下料口距离所浇筑的混凝土的表面高度不宜超过2m,如自由倾落超过2m时,应采用串桶或溜槽。 3.4.2 混凝土的浇筑应分层连续进行,一般分层厚度为振捣器作用部分长度的1.25倍,最大厚度不超过50cm。 3.4.3 用插入式振捣器应快插慢拔,插点应均匀排列,逐点移动,顺序进行,不得遗漏,做到振捣密实。移动间距不大于振捣棒作用半径的1.5倍。振捣上一层时,应插入下层5cm,以消除两层间的接缝。平板振捣器的移动间距,应能保证振捣器的平板覆盖已振捣的边缘。 3.4.4 见素砼浇筑。 3.4.5 浇筑混凝土时,应经常注意观察模板、支架、螺栓、管道和预留孔洞、预埋件有无走动情况,当发现有变形或位移时,应立即停止浇筑,并及时修整和加固模板,完全处理好后,再继续浇筑混凝土。 3.4.6 混凝土振捣密实后,表面应用木杠刮平,木抹子搓平。 3.4.7 混凝土的养护:混凝土浇筑搓平后,应在12h左右加以覆盖和洒水,浇水的次数应能保持混凝土有足够的润湿状态。养护期一般不少于7昼夜。 3.4.8 雨、冬期施工时,露天浇筑混凝土应编制季节性施工方案,采取有效地措施,确保混凝土的质量,否则不得任意施工。 4质量标准 4.1 主控项目: 4.1.1 混凝土所用的水泥、骨料、水、外加剂等必须符合施工规范和有关标准的规定。

电涌保护器的选择过程及安装方式

电涌保护器的选择过程及安装方式 摘要文章简述了为防护雷击电磁脉冲(电涌)对信息系统造成干扰破坏,在设计中如何选择电涌保护器(SPD),及在选择使用电涌保护器时涉及的几个主要步骤。 关键词雷击电磁脉冲电涌电涌保护器(SPD)选择过程安装全球每年因雷电灾害造成的人员伤害、财产损失不计其数,引起火灾、爆炸、信息系统瘫痪的事故频繁发生。因此对雷电的危害必须有充分认识,对雷电的危害种类加以区分,才能有效地防止灾害的发生。雷电的破坏除了直接雷的破坏外,还有感应雷的破坏、雷电波侵入引起的破坏等。 ------------------------ 对于防护直接雷的破坏我们已有比较成熟的方法。随着社会经济和科学技术的发展,电子设备及微电子设备得到广泛的应用,我们在注意预防直接雷引起破坏的同时,还必须注意预防感应雷及雷电波侵入产生电 涌引起的破坏。 电涌是微秒量级的异常大电流脉冲,它可使电子设备受到瞬态过电流 电压的破坏。每年半导体器件的集成化都在提高,元件的间距在减小,半导体的厚度在变薄,这使得电子设备受瞬态过电流 电压破坏的可能性越来越大。如果一个电涌导致的瞬态过电压超过一个电子设备的承受能力,那么这个设备或者被完全破坏,或者寿命大大缩短。 雷电是导致电涌最大的原因。 电涌保护器的防雷电是把因雷电感应而窜入电力线、信号传输线的高电压限制在一定的范围内,保证用电设备不被击穿。加装电涌保护器可把电器设备两端实际承受的电压限制在允许范围内,以起到保护设备的作用。 1.4高层建筑 取两种情况分析: (1)C1+C2+C3+C4+C5=1.0+2.0+1.0+1.0+1.5=6.5Nc=0.00089 (2)C1+C2+C3+C4+C5=1.0+3.0+3.0+1.0+1.5=9.5Nc=0.00061 1.5本次工程为高层建筑物 取Nc=0.00061 根据地区雷电日Td按公式(2)决定地区雷击频度Ng Ng=0.024Td1.3=0.024×35.11.3次 km2年(2) =2.45次 km2年 式中雷电日按南京地区Td=35.1 根据地区雷击频度Ng和建筑物等效接闪面积Ae按公式(3)决定建筑物年平均接闪次数N: N=KAeNg次 年(3) 其中K为地形校正系数:一般情况取1;旷野孤立的建筑取2;金属屋面的砖木结构建筑物取1.7;河边、湖边、山坡下,山地中土壤电阻率较底处,底下水露头处,土山顶部,山谷风口,特别潮湿的建筑物取1.5。 Ae为建筑物等效接闪面积km2; 当建筑物高度H>100m时 Ae=[LW+2(L+W)H+πH2]×10-6(4) 当建筑物高度H<100m时 Ae=[LW+2(L+W)D+πD2]×10-6(5)

铁路信号施工实用工艺实用标准化

HHDWG/XH-06-2013 电务段施工标准体系 施工工艺标准 车站与区间信号 Q/GZT-HHD01SG-2012 铁路(集团)公司电务段

目录 第一章信号电缆施工 第一节电缆型号及测试 第二节电缆敷设 第三节电缆防护 第四节电缆屏蔽连接 第五节电缆配线 第二章室外设备安装 第一节地面固定信号及标志牌 第二节道岔 第三节轨道电路 第四节计轴设备 第五节配线 第三章室设备安装 第一节组合架、分线盘、走线架、组合柜、移频柜、综合柜及计算机联锁接口架 第二节控制台、人解盘及显示设备 第三节计算机联锁设备 第四节电源屏(含电源开关箱、防雷开关箱) 第五节配线 第四章系统防雷 第一节既有信号楼施工 第二节新建信号建筑物避雷带与法拉第屏蔽笼施工

第三节室接地汇集线及等电位连接 第四节浪涌保护器 第五节轨旁设备接地及电缆屏蔽接地施工要求 第六节信号楼信号设备接地示意图 第七节贯通地线 第五章微机监测与TDCS施工工艺 第六章 ZPW-2000轨道电路 第一节轨道电路分割及长度计算标准 第二节电气绝缘节设备安装 第三节机械绝缘节设备安装 第四节ZPW-2000钢轨引接线规格、型号及安装标 第五节平交道口、桥梁处设备的安装 第六节补偿电容的安装 第七节禁停标志牌的安装 第八节信号机安装 第九节防雷地线 第十节电化复线区段横向连接线设置原则 第十一节电缆补偿方法 第七章信号设备标识工艺标准图 第八章(沪昆线)室外设备安装与地面硬化工艺标准图

第一章信号电缆 第一节电缆型号及测试 一、电缆型号 (一)信号电缆型号 1. 信号电缆的导电芯线应采用标称直径为1.0mm的软铜线,其允许工作电压不得低于工频500V或直流1000V。 2. 集中联锁和自动闭塞区间的信号电缆,应采用综合护套、铝护套和数字信号电缆。有特殊要求的设备,如计轴设备、应答器等设备应采用专用数字信号电缆。 (1)信号电缆按护套类型包括塑料护套(PTY03、PTY23等)、综合护套(PTYA23、PTYA22)、铝护套(PTYL23、PTYL22)信号电缆,电缆规格用电缆芯数表示分为:4、6、8、9、12、14、16、19、21、24、28、30、33、37、42、44、48、52、56、61。 (2)铁路数字信号电缆分为塑料护套(SPTYW03或SPTYW23)、综合护套(SPTYWA23)、铝护套(SPTYWL23)、屏蔽(SPTYWP03或SPTYWP23、SPTY-WPA23、SPTYWPL23)数字电缆。 (二) 信号电缆使用围 1. 集中联锁和自动闭塞区间的信号电缆,应采用综合护套、铝护套、数字信号电缆。 2. 电化区段主干信号电缆应采用铝护套信号电缆,电化区段与非电化区段连接的站(场)联电缆应采用铝护套信号电缆。 3. ZPW-2000系列自动闭塞轨道区段以及2000系列的站电码化设备采用铁路数字信号电缆,计轴设备、应答器使用专用数字信号电缆,其它设备应采用综合护套或铝护套信号电缆等非数字信号电缆。 4.ZPW-2000系列采用的铁路屏蔽数字信号电缆,应遵循以下使用原则: (1)两个频率相同的发送与接收不能采用同一根电缆。 (2)两个频率相同发送(接收)不能设置在同一屏蔽四线组。 (3) 电缆中有两个及其以上的相同频率的发送或接收时,该电缆需采用屏蔽电缆。 (4)电缆中各发送、各接收频率均不相同时,可采用非屏蔽电缆,但线对必须按4线组对角线成对使用。 (5)屏蔽电缆有2对以上的备用芯线时,必须有一个完整的屏蔽4芯组。 5.轨道电路发送、接收电缆应成对使用。 二、电缆测试 (一) 信号电缆主要电气特性要求: 1. 在20℃时,信号电缆导电线芯的直流电阻,每千米不大于23.5Ω。 2. 信号电缆芯线间绝缘电阻、任一芯线对地绝缘电阻,使用500V兆欧表(或高阻兆欧表)测试,每千米不得小于3000MΩ。 3. 铁路数字信号电缆芯线间绝缘电阻、任一芯线对地绝缘电阻,使用500V兆欧表(或高阻兆欧表)测试,每千米不得小于10000MΩ。 4. 计轴专用电缆芯线间绝缘电阻、任一芯线对地绝缘电阻,使用500V兆欧表(或高阻兆欧表)测试,每千米不得小于5000MΩ。 5. 特殊规格电缆,其电气特性应符合设计规定。

相关文档
相关文档 最新文档