文档库 最新最全的文档下载
当前位置:文档库 › 超宽频微带天线设计

超宽频微带天线设计

超宽频微带天线设计
超宽频微带天线设计

Ultra-Wideband Microstripe Antenna Design

陳建宏

Chien-Hung Chen

摘要

近十年來由於微帶天線具有體積小、重量輕、製作容易、價格低廉、可信度高,同時可附著於任何物體之表面上的特性,在無線通訊的應用上扮演著重要的角色。本文將利用全平面正方形單極微帶天線當作設計天線的原型,藉由調整金屬貼片的上緣、下緣部份與接地面的上緣部份來研製適用於超寬頻通訊系統的微帶天線。由模擬與實驗結果比較得知,可以發現其響應非常吻合,是一個適用於超寬頻通訊產品的天線。

關鍵詞:微帶天線、單極、超寬頻

、簡介

美國聯邦通信委員會(Federal Communication Commission,FCC)在西元2002年2月14日允許超寬頻技術使用於消費性電子產品上,並公佈了初步規格,FCC開放3.1GHz~10.6GHz提供超寬頻通信及測試使用。為了研究開發適用於此頻段的天線技術。將利用微帶天線的優點:體積小、重量輕、低成本、容易製作等特性,來研製適用於超寬頻通訊系統的微帶天線。

傳統的寬頻天線[2]中有行進波線天線(Traveling-Wave Wire Antenna)、螺旋形天線(Helical Antenna)、偶極圓錐形天線(Biconical Antenna)、單極圓錐形天線(Monoconical Antenna)、盤錐形天線(Discone Antenna)、袖子形天線(Sleeve Antenna)、渦狀天線(Spiral Antenna)和對數週期天線(Log-Periodic Antenna),不過其中適用於超寬頻系統的只有偶極圓錐形天線、單極圓錐形天線和盤錐形天線[3]。因為其不僅有大的輸入阻抗頻寬(Large Input Impedance Bandwidth)、其輻射場形(Radiation Pattern)也能控制在一定的頻寬中。

利用虛像法(Method of Image)[4]及接地面(Ground Plane)來使偶極天線變成單極天線,從早期的線型單極天線-窄頻(Narrowband),演化成單極圓錐形天線-中頻寬(Intermediate

),到最後的火山煙狀天線(V olcano Smoke Antenna)-寬頻(Broadband)[5]。火山煙狀天線,雖然擁有很大的頻寬,不過在實際製作上相當不容易。而圓錐形天線在輸入阻抗頻寬和輻射場型上有好的表現,其結構形狀上較為簡單、易於製作、分析容易,所以近年來有人就將兩者的優點加以結合製造出近似水滴形狀的天線[6],不僅在頻寬上符合FCC規定的3.1GHz~10.6GHz,且其輻射場形是全指向性(Omnidirection),在高頻也有維持不錯的E-plane場形。

利用圓柱形近似法[7]來找出單極微帶天線的第一個VSWR到達2的頻率點,用此方法可以用來設計天線的原型,然後再從圓錐形天線的形狀發展出其他的形狀的天線,再從中挑選有潛力成為超寬頻天線的天線單元之幾何形狀來研製適用於超寬頻通訊系統的微帶天線,其中梯型單極天線[8],[9]算是簡單幾何圖形裡容易達到超寬頻的形狀之一。

在本文的內容方面,單元二是有關超寬頻微帶天線設計的描述,其中包括了單極微帶天線的工作原理與結構參數設計分析。單元三是描述本文所設計天線的實驗與模擬結果。最後在單元四做一總結。

、天線設計

天線是一種可以將電路中的電氣訊號與空間中的電磁能量相互轉換的耦合元件或導電系統。傳送信號時,天線將無線電頻率電能轉變成電磁能量輻射到週遭的環境。接收信號時,天線接收電磁能量輻射轉變成無線電線電頻率之電能提供給接收器處理。一般最常用天線向四面八方輻射能量的輻射場型(Radiation Pattern)來描述天線性能,這是以圖形將天線輻射特性描述成空間函數的一種方式。另外,當鐀入傳輸線上射頻訊號的頻率改變時,天線之阻抗值亦跟著改變。因此,適當的訊號鐀入方式與阻抗匹配的考量,可以使得天線在共振頻率時所有入射能量都能夠輻射出去。

天線製作的流程如圖(一)所示,首先選擇天線所要設計的頻段,表(一)為目前常見的無線通訊標準所適用的頻段,而本論文著重於適用超寬頻通訊的微帶天線設計。利用圓柱形近似法來找出單極微帶天線(Monopole Microstrip Antenna)的第一個VSWR到達2的共振頻率點,用來當作天線設計的原型。然後利用電磁模擬軟體根據饋入間隙(Feed Gap)與接地面的大小,以及金屬貼片的結構進行最佳化的調整並模擬分析,最後再以雙面感光電路板(FR4)來製作出實際天線尺寸並量測此天線之相關參數。

一)全平面正方形單極天線初始結構的計算

如圖(二)所示,利用圓柱形近似法[7]來找出單極微帶天線(Monopole Microstrip Antenna)的第一個VSWR 到達2的共振頻率點,一般以L F 表示為:

g r L F L ++=72(1)

當為正方形單極天線時,

W L =(2)

可利用圓柱形表面積來等效矩形面積,則有

L W L r ?=??π2(3)可得

π2W r =(4)

將式(2)、(4)一同代入式(1),且間隙g 令為0.7,若設計的低點L F (VSWR=2時的第一個頻率)為Z GH 3,則式(1)式變成

7.02723++==πW W F L (5)

可解出1008.20=W ,因此設計出正方型邊長約為20mm ,間隙為0.7mm 的單極微帶天線。

用此方法可以得到不錯的近似,可以用來當作天線設計的原型。

(二)超寬頻天線的結構參數設計分析

在上述正方形單極初始結構中,要注意饋入間隙的大小,它會改變輻射金屬貼片(Radiation Metallic Patch)和接地面(Ground Plane)間的

特性,也就是說從饋入線看到的有效負載為天線組抗和饋入間隙電容的並聯,這會使其阻抗沒有匹配。

利用IE3D 模擬軟體,可得到從3.1GHz 開始小於-10dB 的頻寬約為5GHz 左右。這也就是說,就阻抗匹配的觀點而言,要匹配頻段f >5GHz 的電感效應,僅並聯一個固定電容(即固定饋入間隙)是無法達成寬頻匹配的目標,因此在概念上得到饋入間隙的大小必須要隨頻率改變才行。這可藉由調整金屬貼片的下緣與接地面的上緣來完成寬頻匹配的目標。同時,為了使天線具有高階模態的激發而希望增加電流密度,因此亦需要調整金屬貼片的上緣結構。

為了使得金屬貼片和接地面有更好的耦合來達到寬頻的效應,將金屬貼片的上緣、下緣部份與接地面的上緣部份設為最佳化的變數,並且一左一右設為同一變數來使天線結構保持其對稱性。最佳化的目標為:在3.1GHz~10.6GHz 頻段內使dB S 1011-≤,最佳化時第一次採用隨機法(Random Optimizer)以擴大搜尋範圍,然後再以區域收斂的方法做第二次最佳化,所得到的最佳化結果會相當良好。

、實驗與模擬結果

圖(三)為此超寬頻微帶天線之尺寸結構圖,其中金屬貼片的下緣部份與接地面的上緣部份為了寬頻匹配的最佳化而有斜角與鋸齒形狀的結果,而為了讓天線有高階模態的激發,金屬貼片的上緣部份呈現三角錐狀的結構。圖(四)則為利用基板材質4.4

厚度h為0.8mm的FR4

r

板來製作以50ohm之微帶線饋入激發的超寬頻微帶天線,其實際尺寸大小長乘寬約為4cm×3cm左右。

圖(五)為軟體模擬與實際量測之Return loss頻率響應圖。模擬結果的頻寬達3.1GHz~10.5GHz,涵蓋了整個UWB的頻帶,而實際量測的結果又比模擬結果好更多,其頻率範圍為3.2GHz~11GHz以上,由實驗與模擬結果可以得知其響應非常吻合。

圖(六)到圖(九)為該天線分別在共振頻率為3、4、5、6、7、8、9、10GH時,E-plane與H-plane之模擬輻射場型,其中E-plane為y-z平面、H-plane為x-z平面。圖(六)、(七)顯示出在範圍為3~8GHz時的E-plane輻射場型以30度、150度的地方為中心,左右約有30度到60度不等的夾角內的輻射強度大於0dB。圖(八)、(九)顯示出在3~8GHz 時的H-plane輻射場型為全向性。

、結論

在各種類天線中,當今最受歡迎的天線為平面天線。平面天線結構因為具備體積小、重量輕、製作容易、價格低廉、可信度高,同時可附著於任何物體之表面上,使得微帶天線與印刷槽孔天線被大量應用於無線通訊系統中。本文提出一種超寬頻微帶天線的設計方法,藉由經驗公式計算得到的初始方形單極天線結構,探討天線結構參數對阻抗匹配的敏感度,調整金屬貼片的上、下緣與接地面的上緣結構來完成寬頻匹配與高階模態激發的目的。由實驗與模擬結果可以得知其響應非常吻合,實際量測的頻寬範圍為3.2GHz~11GHz以上,涵蓋了整個UWB的頻帶範圍,可完全符合超寬頻通訊系統的使用。

、參考文獻:

[1]D a v i d G.L e e p e r,“Wi r e l e s s D a t a B l a s t e r”,Scientific American,2002

May.

[2]Warren L.Stutzman and Gary A.Thiele,Antenna Theory and Design,

Second Edition,John Wiley,New York,1998.

[3]M.Y.L u a n d C.S.S h i,“A h i g h-quality ultra-wideband omni-direction

a n t e n n a”,Electromagnetic Compatibility Proceedings,1997

International Symposium on,21-23May1997,pp.122-125.

[4]David K.Cheng,Field and Wave Electromagnetics,Second Edition,

Addison Wesley,1989.

[5]John D.Kraus and Ronald J.Marhefka,Antennas For All Applications,

Third Edition,McGraw-Hill,New York,2002.

[6]T.T a n i g u c h i a n d T.K o b a y a s h i,“A n O m n i d i r e c t i o n a l a n d L o w-VSWR

Antenna for the FCC-A p p r o v e d U WB F r e q u e n c y B a n d”,Antennas and Propagation Society International Symposium,2003.IEEE,V olume: 3,June22-27,2003,pp.460-463.

[7]Girish Kumar,K.P.Ray,Broadband Microstrip Antennas,Artech

House,Boston,2003.

[8]J.A.Evans,M.J.Ammann,“Plannar trapezoidal and pentagonal

monoples with impedance bandwidths in excess of10:1”,Antennas and Propagation Society,1999.IEEE International Symposium1999, V olume:3,11-16July1999Page(s):1558_1561.

[9]Z.N.Chen,“Impedance Characteristics of Trapezoidal Plannar

Monopole Antennas”,Microwave and Optical Technology Letters, 2000,27,(2),120-122.

圖(一)

(a)

(b)

圖(二

)

L

圖(三)

1.4mm

31.54mm

20.25mm

9.72mm

圖(四)

圖(五)

(a)3GHz(b)4GHz

(C)5GHz(d)6GHz

圖(六)

(e)7GHz(f)8GHz

(g)9GHz(h)10GHz

圖(七)

(a)3GHz(b)4GHz

(C)5GHz(d)6GHz

圖(八)

(e)7GHz(f)8GHz

(g)9GHz(h)10GHz

圖(九)

表(一)常見的無線通訊標準所適用的頻段

英文全名英文縮寫中文翻譯頻段

Global Positioning

System GPS全球衛星定位系統L1band:1575.42

MHz

L2band:1227.60

MHz

Global System for

Mobil Communication

GSM

*Enhanced GSM

全球行動通訊系統890~960MHz

*880~960MHz

Digital

Communication

System

DCS數位通訊系統1710~1880MHz

Personal

Communication

Services

PCS個人通訊服務系統1850~1990MHz

Integration of Mobile and Fixed

Network IMT-2000(3G)行動通訊與固網整

合系統(第三代行

動通訊)

1920~2170MHz

Bluetooth藍芽2400~2484MHz

(IEEE802.11b)Ultra Wideband

Communication

超寬頻通訊系統 3.1~10.6GHz 註:可能因地域的不同而有微幅差異,所以僅供參考。

宽频带双层微带天线

采用ANFSOFT HFSS对宽频带双层微带天线设计与仿真 石磊 北京理工大学微波通讯实验室 100081 摘要:天线作为通讯试验箱前段的重要组成部分,他承担着发射信号和接收的回波信号的任务。微带天线由于其本身的特点(如结构简单、低刨面、小型化、可以与飞行器表面共形安装而不影响飞行器的空气动力性能和占用飞行器内仓空间,天线可以与微带电路集成在一起,工业制造简单,价格低廉等优点)而得到了广泛的应用。但是对于微带天线来说,最严重的缺陷是单个贴片天的带宽太窄,与阵子天线、缝隙天线、波导开口喇叭天线等工作带宽一般在15%----50%相比,微带单贴片的天线带宽只能有百分之几。因此,最近微带天线大量的研究是关于微带天线的频带展宽技术。 关键字:双层微带天线 ,ANSOFT HFSS, 宽频带 1.天线形式的选择 选择双层微带天线原因 a.作为微带天线,它具有微带天线体积小、轻便易于集成和便于批量生产等特点。 b.根据设计要求的指标,采取了具有较宽的带宽的双层微带天线的结构。 2.天线的技术指标 由于天线作为两个近距离试验箱体上的辐射器,所以对其性能指标的要求不慎严格: * 工作频率:2.2G * 驻波比<1.5(带内) *相对带宽>10% * 极化:线极化 * 体积不能过大 3.天线结构的分析 微带天线的频带可以从以下三个方面的带宽来描述:阻带带宽、方向图带宽和极化带宽。一般来说阻带带宽是天线带宽的主要因素。通过对微带天线的分析知道,要展宽微带天线的的频带,可以采取以下几种方法:1)增加微代介质的厚度;2)降低微代介质的介电常数;3)采用有耗介质;4)对馈点电路采用宽带阻抗匹配(如阻抗匹配电路或采用开缝耦合对天线馈点);5)采用对贴片谐振。前三种办法的效果比较小,而且第三种方法是以天线增益的降低为代价的;第四种方法需要设计宽带匹配电路,但电路结构复杂,制作难度大,因此我们采用第五种方法。该方法是利用多贴片耦合的方式,使每个贴片天线的谐振中心频率各不相同,而各谐振带宽又相互交叉,使整个天线的总体带宽展宽,如图1所示就像电路中采用的多级放大器展宽频带的方法类似。每个贴片均采用矩形结 幅 度 图1 微带天线的多级谐振占宽频带 构,根据矩形天线的理论,单个矩形微带贴片天线的长度近似为1/2个波导波长,因此,单个贴片的谐振中心频率可以按:

喇叭天线地设计1206030201

微波技术与天线课程设计—— 角锥喇叭天线 :吴爽 学号:1206030201

目录 一.角锥喇叭天线基础知识 (3) 1. 口径场 (3) 2. 辐射场 (4) 3.最佳角锥喇叭 (7) 4. 最佳角锥喇叭远场E 面和H面的主瓣宽度 (7) 二.角锥喇叭设计实例 (7) 1. 工作频率 (8) 2.选用作为激励喇叭的波导 (8) 3.确定喇叭的最佳尺寸 (8) 4.喇叭与波导的尺寸配合 (9) 5.天线的增益 (10) 6.方向图 (10)

一.角锥喇叭天线基础知识 角锥喇叭是对馈电的矩形波导在宽边和窄边均按一定角开而形成的,如下图所示。矩形波导尺寸为a×b,喇叭口径尺寸为D H×D E,其E面(yz 面)虚顶点到口径中点的距离为R ,H 面(xz 面)虚顶点到口径中点的距离为R E,H 面(xz 面)虚顶点到口径中点的距离为R H。 1. 口径场 角锥喇叭的电磁场,目前还未有严格的解析解结果,原因在于,角锥喇叭在x和y两个方向随喇叭的长度方向均是渐变而逐渐扩展的,因而要在一个正交坐标系下求得角锥喇叭的场的严格解析解是困难的。通常近似地认为,矩形角锥喇叭中的电磁场具有球面波特性,而且假设角锥喇叭口径面上的相位分布沿x和y两个方向均为平方律变化。

按此假设,可写出角锥喇叭的口径场为: η πβy X R y R x j H y E H e D x E E E H -==+-)2(022)cos( (1.1) 如果是尖顶角锥喇叭,则 R H = R E ,可用作标准增益喇叭。若是楔形喇叭,则R H ≠R E 。由此口径面场分布计算的远场与实测的结果吻合的很好,说明了假设的口径场分析模型的正确性。 2. 辐射场 由角锥喇叭的口径场分布,仿照前面求 E 面和 H 面扇形喇叭远区辐射场的步骤,就可以求出角锥喇叭的远区辐射场表达式。由于计算过程较繁,这里直接给出结果。 ])cos 1([cos 2])cos 1([sin 200H E r j H E r j I I r e E j E I I r e E j E θ?λθ?λβ?βθ+=+=-- (2.1) 其中:

一种宽频带微带天线的设计

一种宽频带微带天线的设计Ξ  徐 勤 ΞΞ (南京船舶雷达研究所,江苏南京210003) 摘 要:介绍了宽频带渐变式微带缝隙天线的工作原理、设计参数及其对电性能的影响,设计了一种结构简单的天线形式,给出了该天线工作于S、C频段的结构尺寸以及VSWR、辐射方向图的仿真和测试数据曲线,两者之间有很好的一致性,并对影响天线性能的关键参数进行了误差计算。结果表明:在加工精度可达到的范围内,对天线性能的影响不大。该天线可应用于宽频带单极化、双极化阵列天线单元或反射面天线馈源。 关键词:雷微带天线;宽频带;馈源;阵列单元 中图分类号:TN822.8 文献标识码:A 文章编号:100920401(2004)022******* A design of broadband microstrip antenna X U Qi n (N anji ng M ari ne Radar Instit ute,CS IC,N anj ng210003,Chi na) Abstract:The operating principle and designing parameters of the broadband microstrip slot antenna and its influence to the electrical property are proposed in this paper.A simple form of antenna is de2 signed.The scantling of structure,VSWR,the simulation of the radiation pattern and testing data curve of the antenna operating on S and C bands with a consistency between them.An error calcu2 lating to the key parameter influencing the antenna performance is carried through.The results show that the accessible machining precision range will take little influence on the antenna perfor2 mance.The antenna is applicable to the array antenna element with broadband single polarization and dual polarization or antenna feed source with reflecting surface. K ey w ords:microstrip antenna;broadband;feed source;array element 1 引 言 通常,天线工作的最高频率与最低频率之比大于2,就属于宽频带天线;两者之比大于10,则被认为是超宽频带天线。超宽频带天线的设计是未来天线设计的发展方向之一。本文设计的宽频带渐变式微带缝隙天线,最早的形式是由P.J.G ibson、Prasad和Mahapa2 tra在1979年几乎同时提出的,它由一段一端很窄另一端按指数式、V型张开或常数未张开的槽线构成,一般分别称其为Vivaldi天线、L TSA天线或CWSA天线。通常采用双面敷铜介质基片制造,微带线印刷在介质基片的一面作为馈电,指数式、V型张开或常数开口的槽线印刷在介质基片的反面,其作用相当于微带馈电线与自由空间之间的阻抗变换网络。槽线的窄端区域决定了高频端的辐射,而张开的口径区域则决定了低频端的辐射。虽然它们的结构形式不完全相同,但工作原理及辐射的本质是一样的,如图1所示,为其典型的结构示意图。 该类天线的辐射情况与微带贴片、微带振子等不同,它属于端射式行波天线,依赖的是表面波传输,至端口辐射。由于表面波的相速一般低于光速,故渐变式微带缝隙天线属于一种慢波结构。对于沿传输路径表面波相速不变的行波天线,存在一个最佳的相速比,它能导致天线获得最大的方向性和更高的增益。但该类天线由于缝隙的渐变式张开,其传输相速是变化的,从而方向性降低,副瓣电平也降低。在与介质基片平 Ξ Ξ Ξ作者简介:徐勤(1962-),男,江西临川人,南京船舶雷达研究所高级工程师,从事舰戴雷达天线设计。 收稿日期:2004201212

一种新型的宽频带双极化基站天线_黄聪

参考文献 [1]YD/T 1108-2001. CDMA数字蜂窝移动通信网无线 同步双模(GPS/GLONASS)接收机性能要求及与基站间接口技术规范[S]. [2]YD/T 1030-1999. 800MHz CDMA数字蜂窝移动通信网空中接口技术要求[S]. [3]广嘉电子. 北斗一号授时技术及在电力系统中的应用[J]. 基础电子,2008(5). [4]杜雪涛,李楠,刘杰. 北斗与GPS双授时在TD-SCDMA中的应用[J]. 电信工程技术与标准化, 2007(7). [5]潘巍,常江,张北江. 北斗一号定位系统介绍及其应用分析[J]. 数字通信世界,2009(9). ★ 【作者简介】 陆晓东:硕士毕业于北京邮电大学电信工程学院通信与信息系统专业,现为中国电信股份有限公司北京研究院副主任工程师,长期从事电信行业咨询、3G无线网络规划与优化领域研究。曾发表多篇论文,合著有《CDMA2000无线网络规划优化技术》一书。 【摘 要】文章首先提出了一种适用于基站天线的新型宽频带双极化偶极子天线单元,并利用HFSS对天线单元的电性能进行了仿真。随后,利用该天线单元组成了一个4单元的基站线阵,并对阵列的反射底板和侧板进行了适当的设计与优化,最后也进行了仿真。 【关键词】基站天线 宽频带双极化天线 Г形微带馈线 天线阵列 HFSS 收稿日期:2010-08-13一种新型的宽频带双极化基站天线 黄 聪 薛锋章 华南理工大学电子与信息学院 1 引言 由于无线应用业务的迅速扩展以及手机用户数量的爆发性增长,社会对宽带无线通信的需求也日趋增长。而宽频带基站天线作为宽带无线通信系统一个必不可少 的前端部件,在某些情况下更希望它能够实现极化分集的效果,尤其是在一些先进的无线通信系统当中[1]。 正因为如此,近年来,宽频带、双极化、小型化天线日益受到人们的青睐。正如文献[1]所指出的,宽频带天线也相应地由单极子圆盘天线向宽频带双极化天线演 进。不少文献已提出了一些宽频带天线的设计,例如圆

HFSS的天线课程设计报告书

. . . . . 图1:微带天线的结构 一、 实验目的 ●利用电磁软件Ansoft HFSS 设计一款微带天线。 ◆微带天线要求:工作频率为2.5GHz ,带宽 (回波损耗S11<-10dB)大于5%。 ●在仿真实验的帮助下对各种微波元件有个具体形象的了解。 二、 实验原理 1、微带天线简介 微带天线的概念首先是由Deschamps 于1953年提出来的,经过20年左右的发展,Munson 和Howell 于20世纪70年代初期制造出了实际的微带天线。微带天线由于具有质量轻、体积小、易于制造等优点,现今已经广泛应用于个人无线通信中。 图1是一个简单的微带贴片天线的结构,由辐射源、介质层和参考地三部分组成。与天线性能相关的参数 包括辐射源的长度L 、辐射源的 宽度W 、介质层的厚度h 、介质 的相对介电常数r ε和损耗正切 δtan 、 介质层的长度LG 和宽度WG 。图1所示的微带贴片天线是采用微带天线来馈电的,本次将要设计的矩形微带贴片天线采用的是同轴线馈电,也就是将同轴线街头的心线穿过参考地和介质层与辐射源相连接。 对于矩形贴片微带天线,理论分析时可以采用传输线模型来分析其性能,矩形贴片微带天线的工作主模式是TM10模,意味着电场在长度L 方向上有2/g λ的改变,而在宽度W 方向上保持不变,如图2(a )所示,在长度L 方向上可以看做成有两个终端开路的缝隙辐射出电磁能量,在宽度W 方向的边缘处由于终端开路,所以电压值最大电流值最小。从图2(b )可以看出,微带线边缘的电场可以分解成垂直于参考地的分量和平行于参考地的分量两部分,两个边缘的垂直电场分量大小相等、方向相反,平行电场分量大小相等,方向相反;因此,远区辐射电场垂直分量相互抵消,辐射电场平行于天线表面。

一种超宽频带双圆锥全向天线的设计

一种超宽频带双圆锥全向天线的设计3 汪 漪,徐 勤,吴志峰33 (南京船舶雷达研究所,江苏南京210003) 摘 要:介绍了一种可工作于0.8~16GHz的超宽带双圆锥全向天线的工作原理、设计参数及其对电性能的影响,给出了该天线工作于X波段的具体结构尺寸以及VS WR、辐射方向图的仿真和测试数据曲线,以及此天线在0.8~16GHz范围内的VS WR的测试数据曲线,并提出了一些设计此天线的关键点。结果表明,此天线具有频带宽、全向均匀性好、增益大、结构简单等优点,可广泛应用于高低功率的雷达、通讯中的全向天线。 关键词:雷达;双圆锥全向天线;X波段 中图分类号:T N823.15 文献标识码:A 文章编号:1009-0401(2005)01-0025-03 Design of an ultra2wideband biconical o mni2directi onal antenna WAN G Yi,XU Q ing,WU Zhi2feng (N anjing M arine R ada r Institu te,N an jing210003,China) Abstract:The operating p rinci p le of an ultra2wideband biconical omni2directi onal antenna operating within0.8~16GHz is p resented in this paper.And its design para meters and influence on the electri2 cal p r operties are als o p r oposed.The structural size of the antenna operating at X2band and the si m ula2 ti on and test data curves of the VS WR and the radiati on pattern are p resented.The test data curve of the VS WR of the antenna operating within0.8~16GHz are als o p resented,and s ome key points of an2 tenna design are given.The results show that this antenna possesses the advantages of wide2band,good omni2directi onal unifor m ity,high gain and si m p le structure,and may be widely app lied in the omni2di2 recti onal antennas of high/l ow power radars and communicati ons. Key words:radar;biconical omni2directi onal antenna;X2band 1 引 言 通常,天线工作的最高频率和最低频率之比大于10,则被认为是超宽频带天线。本文介绍的双圆锥天线的最高频率和最低频率之比大于20,是典型的超宽带天线。此天线的结构形式如图1所示。 此天线结构简单,由两个金属圆锥和一根同轴馈线构成。其辐射情况是由振子天线演化而来,圆锥臂可以用金属板围成,也可由金属网构成。前者用于高频,后者用于低频,设计方法有差别。当锥角θ=≥20°时,双圆锥天线的带宽非常宽。它的辐射空间在两个圆锥臂之间,同轴线的内外导体分别接到双圆锥的两个顶点,即可激励最低模式TE M波。 也可以用圆波 图1 超宽带双锥全向天线典型结构 导E 01 模激励,不过其辐射的是水平极化波。这种喇叭无论工作在垂直极化还是水平极化波,其水平面都是全方向性的;在垂直面,则可按照对应极化的喇叭方向图尺寸计算,波瓣宽度与锥角和斜长有关。这种形式 52 雷达与对抗 2005年 第1期 3 33收稿日期:200421128 作者简介:汪漪(1979-),男,安徽芜湖人,南京船舶雷达研究所助理工程师,现从事雷达天线研发工作。

微带天线课程设计报告

课程设计报告 课设名称:微波技术与天线课设题目:微带天线仿真设计课设地点:跨越机房 专业班级:学号: 学生姓名: 指导教师: 2012年 6 月 23 日

一、设计要求: 矩形贴片是微带贴片天线最基本的模型,本设计就是基于微带贴片天线基础理论以及熟练掌握HFSS10仿真软件基础上,设计一个右手圆极化矩形贴片天线,其工作频率为2.45GHz,分析其远区辐射场特性以及S曲线。 矩形贴片天线示意图 二、设计目的: 1.理解和掌握微带天线的设计原理 2.选定微带天线的参数:工作频率、介质基片厚度、贴片模型及馈电点位置 3.创建工程并根据设计尺寸参数指标绘制微带天线HFSS模型 4.保存工程后设定边界条件、求解扫描频率,生成S参数曲线和方向图 5.观察对比不同尺寸参数的微带天线的仿真结果,并分析它们对性能的影响 三、实验原理: 用传输线模分析法介绍它的辐射原理。。 设辐射元的长为L,宽为ω,介质基片的厚度为h。现将辐射元、介质基片和接地板视为一段长为L的微带传输线,在传输线的两端断开形成开路,根据微带传输线的理论,由于基片厚度h<<λ,场沿h方向均匀分布。在最简单的情况下,场沿宽度ω方向也没有变化,而仅在长度方向(L≈λ/2)有变化。 在开路两端的电场均可以分解为相对于接地板的垂直分量和水平分量,两垂直分量方向相反,水平分量方向相同,因而在垂直于接地板的方向,两水平分量电场所产生的远区场同向叠加,而两垂直分量所产生的场反相相消。因此,两开路端的水平分量可以等效为无限大平面上同相激励的两个缝隙,缝的电场方向与长边垂直,并沿长边ω均匀分布。缝的宽度△L≈h,长度为ω,两缝间距为L≈

超宽频微带天线设计

Ultra-Wideband Microstripe Antenna Design 陳建宏 Chien-Hung Chen 摘要 近十年來由於微帶天線具有體積小、重量輕、製作容易、價格低廉、可信度高,同時可附著於任何物體之表面上的特性,在無線通訊的應用上扮演著重要的角色。本文將利用全平面正方形單極微帶天線當作設計天線的原型,藉由調整金屬貼片的上緣、下緣部份與接地面的上緣部份來研製適用於超寬頻通訊系統的微帶天線。由模擬與實驗結果比較得知,可以發現其響應非常吻合,是一個適用於超寬頻通訊產品的天線。 關鍵詞:微帶天線、單極、超寬頻

、簡介 美國聯邦通信委員會(Federal Communication Commission,FCC)在西元2002年2月14日允許超寬頻技術使用於消費性電子產品上,並公佈了初步規格,FCC開放3.1GHz~10.6GHz提供超寬頻通信及測試使用。為了研究開發適用於此頻段的天線技術。將利用微帶天線的優點:體積小、重量輕、低成本、容易製作等特性,來研製適用於超寬頻通訊系統的微帶天線。 傳統的寬頻天線[2]中有行進波線天線(Traveling-Wave Wire Antenna)、螺旋形天線(Helical Antenna)、偶極圓錐形天線(Biconical Antenna)、單極圓錐形天線(Monoconical Antenna)、盤錐形天線(Discone Antenna)、袖子形天線(Sleeve Antenna)、渦狀天線(Spiral Antenna)和對數週期天線(Log-Periodic Antenna),不過其中適用於超寬頻系統的只有偶極圓錐形天線、單極圓錐形天線和盤錐形天線[3]。因為其不僅有大的輸入阻抗頻寬(Large Input Impedance Bandwidth)、其輻射場形(Radiation Pattern)也能控制在一定的頻寬中。 利用虛像法(Method of Image)[4]及接地面(Ground Plane)來使偶極天線變成單極天線,從早期的線型單極天線-窄頻(Narrowband),演化成單極圓錐形天線-中頻寬(Intermediate

应用于WLAN的宽频带天线设计

应用于WLAN的宽频带天线设计

摘要:为了设计出可以覆盖无线局域网WLAN的2.4GHz,5.2GHz,5.8GHz三个频带的天线,采用一种结构简单的宽带双频共面波导馈电的单极子天线。该天线由一个平面倒L形和一个倒U形贴片连接构成,实际加工制作了一个天线并且实测了S11参数,结果表明该天线具有两个独立的谐振模式,并且在应用范围内具有良好的阻抗匹配特性。 引言 无线局域网WLAN(Wireless Local Area Network)是利用无线技术实现快速接入以太网,是无线通信技术与计算机网络相结合的产物,是对有线局域网的一种补充和扩展。和有线网络相比,WLAN具有可移动性、灵活性、更迅速、费用低、网络可靠性高等优势。近年来,随着IEEE 802.11a(5.15~5.35GHz,5.725~5.825GHz)和IEEE 802.11b/g(2.4~2.483 5GHz)标准的提出,WLAN得到了迅猛发展.与此同时对WLAN天线的要求也越来越高,要求其体积小、重量轻、生产加工便捷、天线成本低廉,同时在功能上要求使用频宽较宽以及有双频性能以同时达到IEEE 802.11a/b/g标准要求。所以,近年来对小型化的多频段WLAN天线的研究大量涌现。 在平面单极子天线中,有一种倒L形平面单极子天线,国际上已经对此进行了研究,在理论模拟仿真上,可以同时满足IEEE802.11a/b/g标准要求,其设计形式更简单,在满足带宽的要求上,体积还可进一步的缩小。所以,本文将在原来的微带馈电的倒L平面单极子天线的基础上,改变其馈电的形式,研制出一种共面波导馈电的倒L-U平面单极子天线。仿真和实测表明该天线在WLAN的三个频带范围内均具有很好的阻抗匹配和辐射特性。 1 倒L-U平面单极子天线的设计 1.1 天线分析与设计 WLAN天线形式有很多种,比如微带天线,八木天线、平面单极子天线等等。选择平面单极子天线的原因是,相对于微带天线,其带宽大;相对于八木天线,其体积小且容易共形。平面单极子天线与微带天线的结构不同在于:在金属辐射贴片对应的介质衬底另一侧的金属地板被去除,也就是采用了部分地板结构。微带天线的带宽低,因为其Q值大,即在辐射板与地板之间储存了大量的能量。平面单极子天线的辐射板的对应地板去除了,加大了辐射电阻,辐射出去的能量也大大的增加,Q值变小,带宽增大。选择共面波导馈电的形式,将地板与辐射板共面,使得带宽又增大了,而且结构更紧凑。但是由于天线与共面波导之间缺少有效的隔离,造成天线性能受共面波导尺寸的影响较严重。

通信系统天线综合课程设计报告书

J I A N G S U U N I V E R S I T Y 通信系统天线综合课程设计 学院名称: 专业班级: 学生: 学生学号:

一、课程设计目的 通过综合课程设计,在学习EDA仿真软 件HFSS使用方法的基础上,掌握常见通信系 统天线的仿真设计方法。 二、课程设计容: 以“通信系统天线”课程课件“Ch4.1 偶 极和单极天线”、“Ch4.2 常用振子天线和馈 电技术”、“Ch5 宽带天线_c”、“Ch6 移动系 统常用天线_c”为参考资料,分别仿真偶极 子天线、UHF probe 振子天线、共面波导馈 电领结天线和同轴馈电贴片天线,并对天线 进行分析。 三、设计步骤及仿真结果 天线设计实例1:偶极子天线 1)设计步骤 打开HFSS并保存一个新项目 打开File选项(alt+F),单击Save as。输入 项目名hfss_dipole。 一.Step1 创建模型 1、创建振子1 (1)选择cylinder图标 (2)输入参数: 切换到参数设置区(在工作区的右下角),设置圆柱体的基坐标为(x=0 mm,y=0 mm,z=1.25mm); 按下Enter 键后输入半径和长度:dx =2.5mm, dy=0 mm, dz=73.75mm 。 (3)设置振子1的名称和材料 在对象列表中双击cylinder1, 弹出如下属性窗口。 设置名称:将Name改为“pole1”。 设置材料:单击Material的Value,在如下对话框中输入“pec”并确定。

2、创建振子2 (1)选择cylinder图标 (2)输入参数: 切换到参数设置区,设置圆柱体的基坐标为(x=0 mm,y=0 mm,z=-1.25mm); 按下Enter 键后输入半径和长度:dx =2.5mm, dy=0 mm, dz=-73.75mm 。注意此时坐标的选取。 (3)设置名称和材料 设置名称为“pole2”,材料同为“pec”。设置完毕,如下图所示。

宽频带双层微带天线概要

- 114 - Ansoft2004年用户通讯 采用ANFSOFT HFSS对宽频带双层微带天线设计与仿真 石磊 北京理工大学微波通讯实验室 100081 摘要:天线作为通讯试验箱前段的重要组成部分,他承担着发射信号和接收的回波信号的任务。微带天线由于其本身的特点(如结构简单、低刨面、小型化、可以与飞行器表面共形安装而不影响飞行器的空气动力性能和占用飞行器内仓空间,天线可以与微带电路集成在一起,工业制造简单,价格低廉等优点)而得到了广泛的应用。但是对于微带天线来说,最严重的缺陷是单个贴片天的带宽太窄,与阵子天线、缝隙天线、波导开口喇叭天线等工作带宽一般在15%----50%相比,微带单贴片的天线带宽只能有百分之几。因此,最近微带天线大量的研究是关于微带天线的频带展宽技术。 关键字:双层微带天线,ANSOFT HFSS,宽频带 1.天线形式的选择 选择双层微带天线原因 a. 作为微带天线,它具有微带天线体积小、轻便易于集成和便于批量生产等特点。 b. 根据设计要求的指标,采取了具有较宽的带宽的双层微带天线的结构。 2.天线的技术指标 由于天线作为两个近距离试验箱体上的辐射器,所以对其性能指标的要求不慎严格: * 工作频率:2.2G * 驻波比 <1.5(带内) * 相对带宽>10%

* 极化:线极化 * 体积不能过大 3.天线结构的分析 微带天线的频带可以从以下三个方面的带宽来描述:阻带带宽、方向图带宽和极化带宽。一般来说阻带带宽是天线带宽的主要因素。通过对微带天线的分析知道,要展宽微带天线的的频带,可以采取以下几种方法:1)增加微代介质的厚度;2)降低微代介质的介电常数;3)采用有耗介质;4)对馈点电路采用宽带阻抗匹配(如阻抗匹配电路或采用开缝耦合对天线馈点);5)采用对贴片谐振。前三种办法的效果比较小,而且第三种方法是以天线增益的降低为代价的;第四种方法需要设计宽带匹配电路,但电路结构复杂,制作难度大,因此我们采用第五种方法。该方法是利用多贴片耦合的方式,使每个贴片天线的谐振中心频率各不相同,而各谐振带宽又相互交叉,使整个天线的总体带宽展宽,如图1所示就像电路中采用的多级放大器展宽频带的方法类似。每个贴片均采用矩形结 幅 度 图1 微带天线的多级谐振占宽频带 构,根据矩形天线的理论,单个矩形微带贴片天线的长度近似为1/2个波导波长,因此,单个贴片的谐振中心频率可以按: f=c λd=qγc

HFSS的天线课程设计(20201005041508).docx

一、实验目的 ●利用电磁软件Ansoft HFSS 设计一款微带天线。 ◆微带天线要求:工作频率为,带宽( 回波损耗 S11<-10dB)大于 5%。 ● 在仿真实验的帮助下对各种微波元件有个具体形象的了解。 二、实验原理 1、微带天线简介 微带天线的概念首先是由 Deschamps于 1953 年提出来的,经过 20 年左右的发展, Munson和 Howell 于 20 世纪 70 年代初期制造出了实际的微带天线。微带天线由于具有质量轻、体积小、易于制造等优点,现今已经广泛应用于个人无线通信中。 图1 是一个简单的微带贴片天线的结构,由辐射源、介质层和参考地三部分组成。与天线性能相关的参数 包括辐射源的长度L、辐射源的 宽度 W、介质层的厚度 h、介质 的相对介电常数r和损耗正切 tan、介质层的长度LG和宽度 WG。图 1 所示的微带贴片天线是图 1:微带天线的结构 采用微带天线来馈电的,本次将要设计的矩形微带贴片天线采用的是同轴线馈 电,也就是将同轴线街头的内心线穿过参考地和介质层与辐射源相连接。 对于矩形贴片微带天线,理论分析时可以采用传输线模型来分析其性能, 形贴片微带天线的工作主模式是TM10模,意味着电场在长度L方向上有 g / 2 矩 的 改变,而在宽度 W方向上保持不变,如图 2(a)所示,在长度 L 方向上可以看做 成有两个终端开路的缝隙辐射出电磁能量,在宽度W方向的边缘处由于终端开路,所以电压值最大电流值最小。从图 2(b)可以看出,微带线边缘的电场可以分解成 垂直于参考地的分量和平行于参考地的分量两部分,两个边缘的垂直电场分量大小 相等、方向相反,平行电场分量大小相等,方向相反;因此,远区辐射电场垂直分 量相互抵消,辐射电场平行于天线表面。

微波天线课程设计56GHz微带天线设计(不同切角)教材

课程设计 课程名称:微波技术与天线 课设题目:微带天线设计(不同切角) 实验地点:博学馆机房 专业班级:电信1201班 学号:2012001422 学生姓名: 指导教师:李鸿鹰 2015 年7 月 4 日

课程设计任务书 注:课程设计完成后,学生提交的归档文件应按,封面—任务书—说明书—图纸的顺序进 行装订上交(大张图纸不必装订) 指导教师签名: 日期:2015-6-10 专业班级 电信1201 学生姓名 课程名称 微波技术与天线 课程设计 设计名称 微带天线设计 设计周数 1.5周 指导教师 李鸿鹰 设计 任务 主要 设计 参数 1 熟悉HFSS 仿真平台的使用 2 熟悉微带天线的工作原理与设计方法 3 在HFSS 平台上完成如下微带天线的仿真设计 设计要求如下: 频率:5.6GHz 介质:FR4 4 结合同组其他同学的设计结果完成对于该天线结构参数与性能之间关系的探讨 5 在1.5周内完成设计任务 设计内容 设计要求 6.11:分组、任务分配、任务理解 6.12:查阅参考资料,理论上熟悉所设计的器件的工作原理与特性,完成方案设计。 6.15~6.18:熟悉仿真平台的使用,完成在平台上的建模,设置,结果提取与分析,以及验收。 6.19:同组同学结果汇总及讨论 6. 22:设计说明书的撰写 在设计过程中,作为设计小组成员,每位同学要具有团队意识和合作精神,并最终独立完成自己的设计任务。 主要参考 资 料 刘学观,微波技术与天线,西安电子科技大学电出版社,2012 顾继慧,微波技术,科学出版社,2007 李明洋,HFSS 应用设计详解,人民邮电出版社,2010 学生提交 归档文件 1.设计报告 2.工程文件

swj微波技术及天线课程设计

微波技术与天线 课程设计 题目:Novel Modified UWB Planar Monopole Antennab With Variable Frequency Band-Notch Function 专业: 2008级通信二班 作者1: 2班,200840603040,胡丹 作者2: 2班,200840603046,刘瑶瑶 作者3: 2班,200840603051,孙文静 作者4: 2班,200840603053,唐晓丽 指导教师:宗卫华 自动化工程学院 2011年6 月13 日

1、天线结构及性能 图1中显示了被推荐的宽频带的单极天线的构造,它由一个简单的天线矩形贴片、带有两个插槽的有缺口地平面和H-shaped导体面组成。被推荐的天线是建造在厚度为1.0毫米、相对介电常数为4.4的FR4基板上。微带线的宽度馈线是固定的1.86mm以获得50欧的特性阻抗。在基片的正面,印刷着一个大小是10*13.5mm矩形贴片,此矩形贴片到底面6mm长度的有槽基地的距离是2mm。关于地面结构(DGS),地平面槽的设置提供额外的电流路径。另外这种结构改变了输入阻抗的电感及电容,从而改变带宽。通过改变插槽的形状和尺寸,应用于微带线的DGS引起了谐振频率可控的结构传输的共振特性。因此,通过在地面层插入两个插槽,然后慢慢改变它的参数(WS、LS),可以获得更高的阻抗带宽。如图一所示,这两个插槽放置在距地面中心线1mm处(大约0.5Wf). 如图1,H形导体面被放置在辐射补丁的下面,相对于纵向方向也是对称的。The conductor-backed面会扰乱共振响应还可以作为一个寄生的半波共振结构电耦合到矩形单极子。At the notch frequency,电流受寄生元素的支配,在寄生元素和辐射贴片之间他们相反的方向。由此,在the notch frequency附近可以产生理想的高衰变。通过慢慢改变WH、LH、DH参数可以获得可变的band-notch特性。在此设计中WH的宽度是控制过滤带宽的主要参数,也是寄生元素和辐射贴片耦合参数。另一方面,the notched band的中心频率对WH的改变不敏感。the notched band的共振频率取决于LH和DH。在此设计中,L 的最优化长度设定在大约0.5 参考文献中给出的天线结构图如图1,其回波损耗如图2,可见天线的-6dB带宽为3.1-4.8GHz以及6.2-11.4GHz,覆盖UWB的两个频带。天线的方向图如图3,在水平面具有全向性,符合UWB通信终端天线的方向性要求。

HFSS的天线课程设计

基于 HFSS 的天线设计 一、实验目的 ●利用电磁软件Ansoft HFSS 设计一款微带天线。 ◆微带天线要求:工作频率为 2.5GHz,带宽 ( 回波损耗 S11<-10dB)大于 5%。 ● 在仿真实验的帮助下对各种微波元件有个具体形象的了解。 二、实验原理 1、微带天线简介 微带天线的概念首先是由 Deschamps于 1953 年提出来的,经过 20 年左右的 发展, Munson和 Howell 于 20 世纪 70 年代初期制造出了实际的微带天线。微带 天线由于具有质量轻、体积小、易于制造等优点,现今已经广泛应用于个人无线 通信中。 图 1 是一个简单的微带贴片天线的结构,由辐射源、介质层和参考地三部分 组成。与天线性能相关的参数 包括辐射源的长度L、辐射源的 宽度 W、介质层的厚度 h、介质 的相对介电常数r 和损耗正切 tan、介质层的长度 LG和宽度 WG。图 1 所示的微带贴片天线是图1:微带天线的结构 采用微带天线来馈电的,本次将要设计的矩形微带贴片天线采用的是同轴线馈 电,也就是将同轴线街头的内心线穿过参考地和介质层与辐射源相连接。 对于矩形贴片微带天线,理论分析时可以采用传输线模型来分析其性能,矩 形贴片微带天线的工作主模式是 TM10模,意味着电场在长度 L 方向上有g / 2 的 改变,而在宽度 W方向上保持不变,如图 2(a)所示,在长度 L 方向上可以看做 成有两个终端开路的缝隙辐射出电磁能量,在宽度W方向的边缘处由于终端开路,所以电压值最大电流值最小。从图 2(b)可以看出,微带线边缘的电场可以分解成 垂直于参考地的分量和平行于参考地的分量两部分,两个边缘的垂直电场分量大小 相等、方向相反,平行电场分量大小相等,方向相反;因此,远区辐射电场垂直分 量相互抵消,辐射电场平行于天线表面。

太原理工大学现代科技学院微波天线与技术课程设计

太原理工大学现代科技学院微波技术与天线课程设计 设计名称全波振子加引向器 专业班级信息13-1 班 学号2013101269 姓名陈凯 指导教师李鸿鹰

课程设计任务书 注:课程设计完成后,学生提交的归档文件应按,封面—任务书—说明书—图纸 指导教师签名:日期:2016-6-10

专业班级 信息13-1 学号 2013101269 姓名 陈 凯 成绩 设计名称:全波振子+引向器 一、设计要求:全波振子+1个引向器完成天线的设计。 二、天线基本理论: 1.天线的功能及应用: a) 天线的功能 b) 天线的应用 天线在无线电系统中的应用 … … …… …… …… …… …… … …装 …… …… …… …… … …… …… …… 订… …… ……………………………… …线 …… …… …… …… … …… …… ……

2.天线的分类 按工作频段划分:超长波、长波、中波、短波、超短波和微波天线; 按用途划分:通信、广播、电视、雷达、导航和测向天线等 ; 按辐射方向划分:全向天线、定向天线; 按外形划分:偶极子天线、T 形、菱形、环形、螺旋、喇叭、反射面以及透镜天线等等。 按形状划分:线天线(导线或金属棒构成)、面天线(金属面或介质面构成)。线天线主要用于长波、短波和超短波;面天线主要用于微波波段。 3.电基本振子的辐射 给出在球坐标原点沿z 轴放置的电基本振子在各向同性理想均匀无限大自由空间的表达式: 320232022cos 41sin 41sin 40jkr A r jkr A jkr A r I l j k E e r r I l j k jk E e r r r I l jk H e r r H H E θ?θ?θπωεθπωεθπ---??=-+ ?????=-+- ??? ??=+ ???===注:9022000010362/E 120H k k θ? εεππλωεμηπ-======相移常数;波阻抗(远区场) a) 近区场 当kr<<1时称为近区场,此时230 30sin 42cos 41sin 40 A A r A r I l H r I l E j r I l E j r H H E ?θθ?θπθωεπθωεπ= =-=-=== 不难看出,上述表达式和稳态场的公式完全相符,因此,近区场又称为似稳区。场随距离 的增大而迅速减少。电场滞后于磁场90度,因此复坡印延矢量是虚数(12 S E H =?),每周平均辐射的功率为零。这种没有能量向外辐射的场称之为“感应场”。 b) 远区场 当kr>>1时称为远区场,此时60sin e sin e 200jkr A jkr A r r I l E j r I l H j r E H H E θ?θ?πθλθλ--==≈=== 此时,有电场和磁场两个分量在空间相互垂直且与r 矢径方向垂直,三者构成右手螺旋系

天线理论与技术课程设计

天线理论与技术课程设计报告 课程名称 均匀直线阵 专 业 通信工程 班 级 班 学 号 姓 名 指导教师 2015年5月8日

一、实验目的: 1. 了解阵列天线的波束形成原理写出方向图函数 2. 运用MATLAB仿真阵列天线的方向图曲线 3. 变换各参量观察曲线变化并分析参量间的关系 二、实验环境: MATLAB8.0,WIN8.1系统 三、实验原理: 单个天线的方向性是有限的,为了加强天线的定向辐射能力,可以采用天线阵(Arrays)。天线阵就是将若干个单元天线按一定方式排列而成的天线系统。排列方式可以是直线阵、平面阵和立体阵。实际的天线阵多用相似元组成。所谓相似元,是指各阵元的类型、尺寸相同,架设方位相同。天线阵的辐射场是各单元天线辐射场的矢量和。只要调整好各单元天线辐射场之间的相位差,就可以得到所需要的、更强的方向性。 1. 阵列天线:阵列天线是一类由不少于两个天线单元规则或随机排列并 通过适当激励获得预定辐射特性的特殊天线。 阵列天线的辐射电磁场是组成该天线阵各单元辐射场的总和—矢量和由于各单元的位置和馈电电流的振幅和相位均可以独立调整,这就使阵列天线具有各种不同的功能,这些功能是单个天线无法实现的。 2. 方向图乘积原理:天线阵的合成方向图等于单元天线方向图与阵列因 子的乘积。 方向图乘积定理

f(θ,φ)=f1(θ,φ)×fa(θ,φ) (3-1) 上式表明,天线阵的方向函数可以由两项相乘而得。第一项f1(θ,φ)称为 元因子(Primary Pattern ),它与单元天线的结构及架设方位有关;第二项fa(θ,φ)称为阵因子(Array Pattern ),取决于天线之间的电流比以及相对位置,与单元天线无关。方向函数(或方向图)等于单元天线的方向函数(或方向图)与阵因子(或方向图)的乘积,这就是方向图乘积定理。 已知对称振子以波腹电流归算的方向函数为: ()cos(cos )cos()()60/sin m E kl kl f I r θθθθθ -== (3-2) 将l=0.25λ代入式上式可得半波振子的方向函数为: cos(cos )2()sin F π θθθ = (3-3) 如果均匀直线阵的单元天线为半波阵子的话,此即为元因子。 3. 均匀直线阵,就是所有单元天线结构相同,并且等间距、等幅激励而相 位沿阵轴线呈依次等量递增或递减的直线阵。如下图所示,N 个天线元沿y 轴排列成一行,且相邻阵元之间的距离相等都为d ,电流激励为I n =I n-1e j ξ(n=2,3, :,N),根据方向图乘积定理,均匀直线阵的方向函数等于单元天线的方向函数与直线阵阵因子的乘积。 在实际应用中,不仅要让单元天线的最大辐射方向尽量与阵因子一致, 而且单元天线多采用弱方向性天线,所以均匀直线阵的方向性调控主要通过调控阵因子来实现。因此本实验讨论主要针对阵因子,至于均匀直线天线阵的总方向图只要将阵因子再乘以单元天线的方向图就可以得到了。 图4-1 均匀直线阵坐标图

微带天线仿真设计(圆形侧馈)

太原理工大学 微波技术与天线课程设计设计题目:微带天线仿真设计 学生姓名 学号 专业班级 指导教师

太原理工大学现代科技学院 课程设计任务书 注:课程设计完成后,学生提交的归档文件应按,封面—任务书—说明书—图纸的顺序进 行装订上交(大张图纸不必装订) 指导教师签名: 日期: 专业班级 学生姓名 课程名称 微波技术与天线课程设计 设计名称 微波器件或天线设计 设计周数 1.5周 指导教师 设计 任务 主要 设计 参数 1 熟悉HFSS 仿真平台的使用 2 熟悉微带天线的工作原理与设计方法 3 在HFSS 平台上完成如下仿真设计 题目一:三角形微带天线设计(同轴馈),900MHz ,1800MHz /2.4GHz , 4GHz /2.4GHz ,5.8GHz 学号为1、6完成此题 题目二:三角形微带天线设计(侧馈),900MHz ,1800MHz /2.4GHz , 4GHz /2.4GHz ,5.8GHz 学号为2、7完成此题 题目三:圆形微带天线设计(同轴馈),900MHz ,1800MHz /2.6GHz , 4GHz /2.4GHz ,5.8GHz 学号为3、8完成此题 题目四:圆形微带天线设计(侧馈),900MHz ,1800MHz /2.6GHz , 4GHz /2.4GHz ,5.8GHz 学号为4、9完成此题 题目五:半波偶极子天线设计,900MHz ,1800MHz /2.6GHz , 4GHz /2.4GHz ,5.8GHz 学号为5、0完成此题 4 结合同组其他同学的设计结果完成对于结构参数与性能之间关系的探讨 5 在1.5周内完成设计任务 设计内容 设计要求 1、 6. 5:分组、任务分配、任务理解 2、 6. 6:查阅参考资料,理论上熟悉所设计的器件的工作原理与特性,完成方案的设计 3、 6. 7~6.9:熟悉仿真平台的使用,完成在平台上的建模,设置,结果提取与分析,以 及验收。 4、 6. 12:同组同学结果汇总及讨论 5、 6.13~6.14:设计说明书的撰写 在设计过程中,作为设计小组成员,每位同学要具有团队意识和合作精神,并最终独立完成自己的设计任务。 主要参考 资 料 刘学观,微波技术与天线,西安电子科技大学电出版社,2008 李明洋,HFSS 应用设计详解,人民邮电出版社,2010 学生提交 归档文件 1、相关知识及基本原理 2、参数归纳:材质、尺寸 3、软件仿真过程及结果分析 4、设计总结

相关文档