文档库 最新最全的文档下载
当前位置:文档库 › 磁场部分参考答案

磁场部分参考答案

磁场部分参考答案
磁场部分参考答案

磁场部分参考答案

1、

1:图3-2-8所示,两互相靠近且垂直的长直导线,分别通有电流强度

和的电流,试确定磁场为

零的区域。

分析:建立图示直角坐标系,用安培定则判断出两电流形成的磁场方向后,

可以看出在Ⅰ、Ⅲ两象限内,两磁场方向相反,因此合磁场为零区域只能出现在这两个象限内。 解:设P(x 、y)点合磁感强度为零,即有得

这就是过原点的直线方程,其斜率为I /I 。

2、

2:如图3-2-9所示,将均匀细导线做成的圆环上任意两点A 和B 与固定电源连接起来,计算由环上电流引起的环中心的磁感强度。

分析:磁感强度B 可以看成圆环上各部分(将圆环视为多个很小长度部分的累加)的贡献之和,因为对称性,圆环上各部分电流在圆心处磁场是相同或相反,可简化为代数加减。

解:设A 、B 两点之间电压为U ,导线单位长度电阻,如图3-2-10所示,则二段圆环电流

磁感强度B 可以是圆环每小段

部分磁场的叠加,在圆心处,可表达为,

所以:

因 故,即两部分在圆心处产生磁场的磁感强度大小相等,但磁场的方向正好相反,因此环心处的磁感强度等于零。

1I 2I 021=-y I k x I k x I I y 12=21ρραR U I =1ραπ?-=R U I )2(2l ?B ?B ?R l I k B ??=?αα11111kI R R I k R l I k B =?==)2()2(22222απαπ-=?-?==kI R R l k R l I k

B ραπραR I R I )2(21-=21B B

=

3、

3 距地面h 高处1水平放置距离为L 的两条光滑金属导轨,跟导轨正交的水平方向的线路上依次有电动势为的电池,电容为C 的电容器及质量为m 的金属杆,如图3-3-5,单刀双掷开关S 先接触头1,再

扳过接触头2,由于空间有竖直向下的强度为B 的匀强磁场,使得金属杆水平向右飞出做平抛运动。测得其水平射程为s ,问电容器最终的带电量是多少?

分析:开关S 接1,电源向电容器充电,电量。S 扳向2,电容器通过金属杆放电,电流通过金属杆,金属杆受磁场力向右,金属杆右边的导

轨极短,通电时间极短,电流并非恒定,力也就不是恒力。因此不可能精确计

算每个时刻力产生的效果,只能关心和计算该段短时间变力冲量的效果,令金

属杆离开导轨瞬间具有了水平向右的动量。根据冲量公式,跟安培力的冲量相联系的是时间内流经导体的电量。由平抛的高度与射程可依据动量定理求出,电容器最终带电量可求。

解:先由电池向电容器充电,充得电量

。之后电容器通过金属杆放电,放电电流是变化电流,安培力也是变力。根据动量定理:

其中 =s/t ,h=gt

综合得

电容器最终带电量

点评:根据动量定理来研究磁场力冲量产生的效果,实际上就是电量和导体动量变化的关系,这是磁场中一种重要的问题类型。

εε=C Q 0q BL t BLi t F ?=?=?t ?q ?εC Q =0BLi F =mv q BL t BLi t F =?=?=?v 21

2h g s

v 2=h g BL ms BL mv q 2==

?h g BL ms C q Q Q 20-

ε=?-=图3-3-5

4、

4 图3-3-6中,无限长竖直向上的导线中通有恒定电流,已知由产生磁

场的公式是

,k 为恒量,r 是场点到导线的距离。边长为2L 的正方形线圈轴线与

导线平行。某时刻线圈的ab 边与导线相距2L 。已知线圈中通有电流。求此时刻线圈所受的磁场力矩。

分析:画俯视图如图3-3-7所示,先根据右手螺旋法则确定

和的方向,再根据左手定则判断ab 边受力和cd 边受力的方向,然后求力矩。

解:根据右手螺旋法则和左手定则确定

和、和的方向,如图3-3-7所示。

对轴产生的力矩

对轴产生的力矩

两个力矩俯视都是逆时针同方向的,所

以磁场对线圈产生的力矩

点评:安培力最重要的应用就是磁场力矩。这是电动机的原理,也是磁电式电流表的构造原理。一方面要强调三维模型简化为二维平面模型,另一方面则要强调受力边的受力方向的正确判断,力臂的确定,力矩的计算。本题综合运用多个知识点解决问题的能力层次是较高的,我们应努力摸索和积累这方面的经验。

0I 0I r I k

B 0=0I O O '0I 0I I 1B 2B 1F 2F 1B 2B 1F 2F L I k B 20

1=L I K

B 2202=I kI LI B F 0112==I kI LI B F 022222==1F O O 'IL kI L F M 011==2F O O 'IL kI L F M 02

22122==IL kI M M M 02123=+

=

5、

5.如图3-4-8所示,在平面内,y >O 区域有匀强电场,方向沿-y 方向,大小为E ,y <O 区域有匀强磁场,方向垂直纸面向里,大小为B ,一带电+q 、质量为m 的粒子从y 轴上一点P 由静止释放,要求粒子能经过x 轴上Q 点,Q 坐标为(L ,O),试求粒子最初释放点P 的坐标。

分析:解决上述问题关键是明确带电粒子的受力和运动特点。从y 轴上释放后,只受电场力加速做直线运动,从O 点射入磁场,然后做匀速圆周运动,半圈后可能恰好击中Q 点,也可能返回电场中,再减速、加速做直线运动,然后又返回磁场中,再经半圆有可能击中Q 点,……。那么击中Q 点应满足

的条件。

2.空间区域同时存在电场和磁场

(1) (1) 电场和磁场正交 如图3-4-9所示,空间存在着正交的电场和磁场区域,电场平行

于纸面平面向下,大小为E ,磁场垂直于纸面向内,磁感强度为B ,一带电粒子以初速进入磁场,,,设粒子电量

+q ,则受力:洛=方向向上,F 电=qE 方向向下。若满足: =qE

=E/B

则带电粒子将受平衡力作用做匀速直线运动,这是一个速度选择器模型。

若粒子进入正交电磁场速度,则可将分解为,粒子的运动可看成是与两个运动的合运动,因而粒子受到的洛伦兹力可看成是与的合力,而

与电场力qE 平衡,粒子在电场中所受合力为

,结果粒子的运动是以的匀速直线运动和以速度所做匀速圆周运动

的合运动。

6、6.如图3-4-10正交电磁场中,质量m 、带电量+q 粒子由一点P 静止释放,分析它的运动。

xoy L

R n =?20v E v ⊥0B v ⊥0f B qv 0B qv 00v 0v v ≠v 10v v v +=0v 1v B qv 0B qv 1B qv 0B qv 10v 1

v B E

图3-4-9

分析:粒子初速为零释放,它的运动轨迹是如图3-4-10所示的周期性的曲线。初速为零,亦可看成是向右的与向左-两个运动的合运动,其中大小为:=E/B

所以+q 粒子可看成是向右

匀速直线运动和逆时针的匀速圆周运动的合运动。电场方向上向下最大位移

一个周期向右移动距离L 即PP 之距为

代入,得: 最低点Q 点速度

(2) (2) 电场和磁场平行

如图3-4-11所示的空间区域有相互平行的电场和磁场E 、B 一带电+q 粒子以初速射入场区(或B)。则带电粒子在磁场力作用下将做圆周运动,电场力作用下向上做加速运动,由于向上运动速度分量始终与B 平行,故粒子受洛伦磁力大小恒为,结果粒子运动是垂直于E(或B)平面的半径R=m /qB 的匀速圆周运动和沿E 方向匀加速直线运动的合运动,即一个螺距逐渐增大的螺旋运动。

(3) (3) 电场力、洛伦磁力都与方向垂直,粒子做匀速圆周运动。

例如电子绕原子核做匀速圆周运动,电子质量m ,电量为e ,现在垂直轨道平面方向加一匀强磁场,磁感强度大小为B ,而电子轨道半径不变,已知电场力3倍与洛伦磁力,试确定电子的角速度。

在这里电子绕核旋转,电场力、洛伦磁力提供运动所需向心力,即

电+洛=

而f 洛可能指向圆心,也可能沿半径向外的,因而可能是

0v 0v 0v 0v 0v R d m 2=2

0qB mE qB mv R ==2

2qB mE

d m =

1T

v L ?=0qB m T π2=2

2qB m E L π=02v v Q =0v E v ⊥01v B qv 00v 0v f f r m v /

2图3-4-10

B 0υ3-4-11

7、 7.在如图3-4-12所示的直角坐标系中,坐标原点O 固定电量为Q 的正点电荷,另有指向y 轴正方向(竖直向上方向),磁感应强度大小为B 的匀强磁场,因而另一个质量为m 、电量力为q 的正点电荷微粒恰好能以y 轴上的点为圆心作匀速圆周运动,其轨道平面(水平面)与平面平行,角速度为,试求圆心的坐标值。

分析:带电微粒作匀速圆周运动,可以确定在只有洛伦磁力和库仑力的情况下除非与O 不重合,必须要考虑第三个力即重力。只有这样,才能使三者的合力保证它绕在水平面内作匀速圆周运动。

解:设带电微粒作匀速圆周运动半径为R ,圆心的纵坐标为y ,圆周上一点与坐标原点的连线和y 轴夹角为,那么有

带电粒子受力如图3-4-13所示,列出动力学方程为

mg=F 电cos θ (1)

f 洛-F 电 (2) f 洛= (3) 将(2)式变换得

f 洛-F 电 (4) 将(3)代入(4),且(1)÷(4)得

r mv evB evB /32=+r mv evB evB /32=-m eB 21=ωm eB 42=ωO 'xoz ωO 'O 'O 'O 'θy R tg =θR m 2sin ω=

θ?RB q ω=R m 2ωθ

sin

图3-4-13

消去R 得

8、8.如图3-4-14所示,被1000V 的电势差加速的电子从电子枪发射出

来,沿直线方向运动,要求电子击中在方向、距离枪口5cm 的靶M ,对

以下两种情形求出所用的均匀磁场的磁感应强度B .

(1)磁场垂直于由直线

与点M 所确定的平面。 (2)磁场平行于TM 。

解: (1)从几何考虑得出电子的圆轨道的半径为(如图3-4-15)

按能量守恒定律,电荷Q 通过电势差U 后的速度v 为 即 作用在电荷Q 上的洛伦磁力为 这个力等于向心力

故所需的磁感应强度为

用上面的半径和速度值,得到

由于,

,所以 B=0.0037T (2)在磁场施加的力与速度垂直,所以均匀恒定磁场只改变电子速度的方向,不改变速度的大小。 我们把电子枪发射的电子速度分解成两个直线分量:沿磁场B 方向的和垂直磁场的,

R y R m RB q mg =-2ωω2

ωωm B q mg y -=

a a a a d

r sin 2=UQ mv =221m UQ v 2=QBv F =QBv r m v =2rQ m v

B =Q U d a B m 2sin 2=

kg m 311011.9-?=C Q 19106.1-?=a v cos a v

sin a 图3-4-14

图3-4-15

因为在磁场的方向上,磁场对它没有作用力(图3-4-16)。

电子经过d/时间后到达目标M 。由于磁场B 和垂直的速度分量

,电子在圆轨道上运动,由

得到圆半径为 电子在目标M 的方向上也具有速度,结果是电子绕B 方向作螺旋线运动。电在在d/时间内,在绕了k 圈后击中目标。K 是一个整数。圆的周长为

由于绕圆周运动的速度是,故绕一周的时间是

这个值乘上整数k ,应等于 d/

因此,所需的磁感应强度为

k=1时,电子转一圈后击中目标:k=2时,电子转两圈后击中目标,等等。只要角度

相同,磁场方

向相反与否,无关紧要。

用给出的数据代入,得 B=k ×0.0067T

9、 9.一根边长为a 、b 、c(a >>b >>c)的矩形截面长棒,如图3-4-17所示,由半导体锑化铟制成,棒中有平行于a 边的电流I 通过,该棒放在垂直于c 边向外的磁场B 中,电流I 所产生的磁场忽略不计。该电流的载流子为电子,在只有电场存在时,电子在半导体中的平均速度

,其中为迁移率。 (1)

(1) 确定棒中所产生上述电流的总电场的大小和方向。 (2) (2) 计算夹c 边的两表面上相对两点之间的电势差。

a v cos a v cos a v sin a BQv r a mv sin sin 22=QB a

m v r sin =a v cos a v cos QB a mv r /sin 22ππ=a v sin QB m a QBv a mv ππ2sin sin 2=a v cos k QB m a v d ?=π2cos Q U d a k v Qd a m k B m 2cos 2cos 2π=??

=a E v μ=μ

图3-4-16

(3) (3) 如果电流和磁场都是交变的,且分别为,),求

(2)中电势差的直流分量的表达式。

已知数据:电子迁移率,电子密度,I=1. 0A ,B=0.1T ,b=1.0cm ,

c=1.0mm ,e=1.6×10-19C

分析: 这是一个有关霍尔效应的问题,沿电流方向,导体内存在电场,又因为霍尔效应,使得电子偏转,在垂直电流方向产生电场,两侧面间有电势差的存在

解: (1)因为

所以电场沿方向分量

沿c 方向的分量

总电场大小:

电场方向与边夹角,=

(2) 上、下两表面电势差

(3)加上交变电流和交变磁场后,有前面讨论的上、下表面电势差表达式,可得:

= 因此

的直流分量为 直= 10、

t I I ωsin 0=?ω+=t B B sin(0s V m ?=/8.72μ322/105.2m n ?=c nevb I ?=s m nebc v /251==

a m V v E /2.3///==μ⊥=qE qvB m V vB E /5.2==⊥m V E E E /06.422//=+=⊥a a a 38)2.35.2()(1//1==-⊥-tg E E tg V c E U 3105.2-⊥⊥?=?=nec IB U =

)sin(sin 00?+ω?ω==⊥t t nec B I nec IB U ???????+?+ωcos 21)2cos(2100t nec B I ⊥U ⊥U ?cos 200nec B I y x

z O E B 图3-4-18

0.如图3-4-18所示,空间有互相正交的匀强电场E 和匀强磁场B ,E 沿+y 方向,B 沿+z 方向,一个带正电+q 、质量为m 的粒子(设重力可以忽略),从坐标圆点O 开始无初速出发,求粒子坐标和时间的函数关系,以及粒子的运动轨迹。

分析:正离子以O 点起无初速出发,受恒定电场力作用沿+y 方向运动,

因为速度v 的大小、方向都改变,洛伦兹力仅在xOy 平面上起作用,粒子

轨迹一定不会离开xOy 平面且一定以O 为起点。既然粒子仅受的两个力中一个是恒力一个是变力,作为解题思路,利用独立性与叠加原理,我们设

想把洛伦兹力分解为两个分力,使一个分力跟恒电场力抵消,就把这个实际受力简化为只受一个洛伦兹力分力的问题。注意此处不是场的分解和抵消,而是通过先分解速度达到对力进行分解和叠加。

我们都知道,符合一定大小要求的彼此正交的匀强复合电磁场能起速度选择器作用。受其原理启发,设想正离子从O 点起(此处)就有一个沿x 轴正方向、大小为

的始终不变的速度,当然在O 点同时应有一个沿-x 方向的大小也是的速度,保证在O 点,则,沿-y 方

向,qE 沿+y 方向,彼此抵消,可写成。因任一时刻,所以

,或改写成:。始终的三个速度和都在xOy 平面上,其物理意义是:正离子在复合场中受的两个真实的力()和F(E)的矢量和,可以用一个洛伦磁力分力来代替,这样做的一个先决条件是把正离子运动看成以下两个分运动的合成:①沿+x 方向的=E/B 的匀速直线运动;②在xOy 平面上的一个匀速圆周运动,其理由是:是平面力,轨迹又是平面的不是三维空间的,所以必与垂直,在O 点就是-,之后不对离子

作功,大小不变,充当向心力。这个圆周运动特征量是:,,

解:t=0时刻,正离子位于O 点,此时起离子具有两个速度:一是速度方向始终不变、大小为=E/B 的速度。由这个速度引起的洛伦磁力跟电场力抵消。另一个速度是在O 点时沿-x 方向的大小为E/B 的速度,00=v B E v =0B E

00=v qE qBv c =c qBv )()(E F v f c B -=v v v c t '+=)()()(v f v f v f B c B t B '+=)()()(v f E F v f B t B '=+B f B f t v )(v f B 'c v )(v f B ')(v f B 'v 'v 'c v )(v f B 'v ')(v f B 'qB m

T π2=m qB T =π=

ω22

qB mE qB v m r ='=c v

C 图3-4-19

该速度引起的洛伦磁力指向(0,+)点,这点就是t=0时的圆心。之后该圆心以速率沿平行于x 轴

正向的方向无滑动开始平动,正离子是该圆周上的一个点,且t=0是恰好就是该圆与x 轴的切点即坐标原点,此后,正离子相对圆心以角速度顺时针绕行。在xOy 平面上,粒子的轨迹被称为旋轮线,其坐标值随时间的变化为参数方程:

z=0 (1)

(2) (3) 有一定数学能力的人不妨尝试把参数t 消去得出y 与x 的关系式,用来表示其轨迹的方法。

点评:设想一个轮子沿地面做无滑动的滚动,轮子边缘用红颜料涂上色,观察这个边缘所得的运动轨迹就是旋轮线。

11、

11. 磁流体发电机的示意图如图3-5-5所示,横截面为矩形的管道长为

,宽为,高为b ,上、下两个侧面是绝缘体,相距为的前后两个侧面是电阻可以忽略不计的导体,此两导体侧面与一负载电阻R 相连。整个管道放在一个匀强磁场中,磁感应强度大小为B ,方向垂直于上、下侧面向上。现有电离气体(正、负带电粒子)持续稳定地流经管道,为了使问题简化,设横截面上各点流速相同。已知流速与电离气体所受摩擦阻力呈正比;且无论有无磁场时都维持管两端电离气体的压强差为ρ。设无磁场存在时电离气体的流速为,求有磁场存在时此磁流体发电机的电动势大小。已知电离气体的平均电阻

率为ρ。

分析:由于气体流经管道过程中受摩擦和安培力作用,维持气体匀速运动,故必须

使管两端存在压力差,以克服上述的阻力,因而本题即可以从力的平衡角度解决问题,也可以从能量守恒的角度来考虑。

解法一:从力平衡角度看,设有磁场存在时,电离气体的流速为。其产生的电

动势为 2

qB m E c v ωt m qB qB

mE t B E t r t v x c sin sin 2-=-=ω)cos 1(cos 2

t m qB qB mE t r r y -=-=ωl a a 0v εv Bva =

εL

图3-5-5

闭合电路中电流 , 为电源内阻,大小为代入得

管内气体所受安培力 摩擦阻力

稳定平衡时

无磁场时,摩擦阻力,

稳定平衡时

所以有:

两式比:

解得,综合以上各式得

解法二:从能量观点看,无磁场时,外界压力的功率等于克服摩擦力的功率,即

有磁场时,外界压力的功率等于克服摩擦力的功率加上回路电功率

当气体稳定时,又有

L

R r I +=

εr bl a

r ρ=L B bl pa I +=

/εL

L B bl a v a B B bl a Ba BIa F +=+==//22ρρεkv f =F f pab +=0f 00kv f =0f pab =F pab kv f -==pab kv f ==00pab RL bl pa v a B pab v v +-=/220v )/(0B

v pb bl pa

R Ba

pab l ++=ε000v kv pabv ?=L R bl pa v kv v pab ++?=?2

ε

代入上式得 同样可求得

12、 a q qvB ε=Ba v ε=L R Bl pa aB v pb B pb ++=2202εεε)/(0B v Pb R Bl pa Ba pab L ++ε=ε

13、

14、

15、

电磁场与电磁波试题及答案

《电磁场与电磁波》试题2 一、填空题(每小题1分,共10分) 1.在均匀各向同性线性媒质中,设媒质的介电常数为ε,则电位移矢量D 和电场E 满足的 方程为: 。 2.设线性各向同性的均匀媒质中电位为φ,媒质的介电常数为ε,电荷体密度为V ρ,电位所满足的方程为 。 3.时变电磁场中,坡印廷矢量的数学表达式为 。 4.在理想导体的表面,电场强度的 分量等于零。 5.表达式()S d r A S ??称为矢量场)(r A 穿过闭合曲面S 的 。 6.电磁波从一种媒质入射到理想导体表面时,电磁波将发生 。 7.静电场是保守场,故电场强度沿任一条闭合路径的积分等于 。 8.如果两个不等于零的矢量的点积等于零,则此两个矢量必然相互 。 9.对横电磁波而言,在波的传播方向上电场、磁场分量为 。 10.由恒定电流产生的磁场称为恒定磁场,恒定磁场是 场,因此,它可用磁矢位函数的旋度来表示。 二、简述题 (每小题5分,共20分) 11.试简述磁通连续性原理,并写出其数学表达式。 12.简述亥姆霍兹定理,并说明其意义。 13.已知麦克斯韦第二方程为S d t B l d E S C ???-=???,试说明其物理意义,并写出方程的微 分形式。 14.什么是电磁波的极化?极化分为哪三种? 三、计算题 (每小题10分,共30分) 15.矢量函数z x e yz e yx A ??2 +-= ,试求 (1)A ?? (2)A ?? 16.矢量z x e e A ?2?2-= ,y x e e B ??-= ,求 (1)B A - (2)求出两矢量的夹角

17.方程2 2 2 ),,(z y x z y x u ++=给出一球族,求 (1)求该标量场的梯度; (2)求出通过点()0,2,1处的单位法向矢量。 四、应用题 (每小题10分,共30分) 18.放在坐标原点的点电荷在空间任一点r 处产生的电场强度表达式为 r e r q E ?42 0πε= (1)求出电力线方程;(2)画出电力线。 19.设点电荷位于金属直角劈上方,如图1所示,求 (1) 画出镜像电荷所在的位置 (2) 直角劈任意一点),,(z y x 处的电位表达式 20.设时变电磁场的电场强度和磁场强度分别为: )cos(0e t E E φω-= )cos(0m t H H φω-= (1) 写出电场强度和磁场强度的复数表达式 (2) 证明其坡印廷矢量的平均值为:) cos(2100m e av H E S φφ-?= 五、综合题 (10分) 21.设沿z +方向传播的均匀平面电磁波垂直入射到理想导体,如图2所示,该电磁波电场 只有x 分量即 z j x e E e E β-=0? (1) 求出反射波电场的表达式; (2) 求出区域1 媒质的波阻抗。 图1

磁场练习题及答案解析

(时间:90分钟,满分:100分) 一、选择题(本题包括12小题,每小题5分共60分.在每小题给出的四个选项中,有的只有一个选项正确,有的有多个选项正确,全部选对的得5分,选对但不全的得2分,有选错或不答的得0分) 1.有关洛伦兹力和安培力的描述,正确的是( ) A.通电直导线在匀强磁场中一定受到安培力的作用 B.安培力是大量运动电荷所受洛伦兹力的宏观表现 C.带电粒子在匀强磁场中运动受到的洛伦兹力做正功 D.通电直导线在磁场中受到的安培力方向与磁场方向平行 解析:选B.安培力方向与磁场垂直,洛伦兹力不做功,通电导线在磁场中不一定受安培力.安培力是大量运动电荷所受洛伦兹力的宏观表现. 2. 图3-6 (2011年东北师大高二检测)磁场中某区域的磁感线,如图3-6所示,则( ) A.a、b两处的磁感应强度的大小不等,B a>B b B.a、b两处的磁感应强度的大小不等,B a<B b C.同一通电导线放在a处受力一定比放在b处受力大 D.同一通电导线放在a处受力一定比放在b处受力小 解析:选A.由磁感线的疏密可知B a>B b,由通电导线所受安培力与通电导线的放置有关,通电导线放在a处与放在b处受力大小无法确定. 3.(2011年聊城高二检测) 图3-7 两个绝缘导体环AA′、BB′大小相同,环面垂直,环中通有相同大小的恒定电流,如图3-7所示,则圆心O处磁感应强度的方向为(AA′面水平,BB′面垂直纸面)( ) A.指向左上方 B.指向右下方 C.竖直向上 D.水平向右 答案:A 4. 图3-8 (2011年汕头高二检测)如图3-8所示,垂直纸面放置的两根直导线a和b,它们的位置固定并通有相等的电流I;在a、b沿纸面的连线的中垂线上放有另一直导线c,c可以自由运动.当c中通以电流I1时,c并未发生运动,则可以判定a、b中的电流( ) A.方向相同都向里 B.方向相同都向外 C.方向相反

高中物理磁场综合练习及答案

高中物理磁场综合练习及答案 高中物理磁场综合练习及答案 一、选择题(本题10 小题,每小题 5 分,共50 分) 1. 一个质子穿过某一空间而未发生偏转,则() A. 可能存在电场和磁场,它们的方向与质子运动方向相同 B. 此空间可能有磁场,方向与质子运动速度的方向平行 C. 此空间可能只有磁场,方向与质子运动速度的方向垂直 D. 此空间可能有正交的电场和磁场,它们的方向均与质子速度的方向垂直 答案ABD 解析带正电的质子穿过一空间未偏转,可能不受力,可能受力平衡,也可能受合外力方向与速度方向在同一直线上. 2. 两个绝缘导体环AA′ 、BB′ 大小相同, 环面垂直,环中通有相同大小的恒定电流,如图 1 所示,则圆心0处磁感应强度的方向为(AA′面水平,BB′ 面垂直纸面) A. 指向左上方 B. 指向右下方 C. 竖直向上 D. 水平向右 答案A 3. 关于磁感应强度B,下列说法中正确的是()

A. 磁场中某点B的大小,跟放在该点的试探电流元的情况有关 B. 磁场中某点B的方向,跟该点处试探电流元所受磁场力的方向一致 C. 在磁场中某点试探电流元不受磁场力作用时,该点B 值大小为零 D. 在磁场中磁感线越密集的地方,B值越大 答案D 解析磁场中某点的磁感应强度由磁场本身决定,与试探电流元无关. 而磁感线可以描述磁感应强度,疏密程度表示大小. 4. 关于带电粒子在匀强磁场中运动,不考虑其他场力 (重力)作用,下列说法正确的是() A. 可能做匀速直线运动 B. 可能做匀变速直线运动 C. 可能做匀变速曲线运动 D .只能做匀速圆周运动 答案A 解析带电粒子在匀强磁场中运动时所受的洛伦兹力 跟速度方向与磁场方向的夹角有关,当速度方向与磁场方向平行时,它不受洛伦兹力作用,又不受其他力作用,这时它将做匀速直线运动,故A项正确.因洛伦兹力的方向始终与速度方向垂直,改变速度方向,因而同时也改变洛伦兹力的方向,故洛伦兹力是

磁场练习题 (3)

稳恒磁场 一.选择题: 1.边长为L 的一个导体方框上通有电流I,则此框中心的磁感应强度[ ]. (1)与L 有关 (2)正比于L 2 (3)正比于L (4)反比于L (5)与I 2有关 2.一载有电流I 的细导线分别均匀密绕成半径为R 和r (R=2r)的螺线管,两螺线管单位长度上的匝数相等,?两螺线管中的磁感应强度的大小B R 和B r 应满足:[ ] (1)B R =2B r (2)B R =B r (3)2B R =2B r (4)B R =4B r 3.均匀磁场的磁感应强度B 垂直于半径为r 的圆面.今以该圆周为边线作一半球面s,则通过s 面的磁通量的大小为:[ ] (1) 2B r 2π (2)B r 2 π. (3) 0 . (4) 无法确定. 4.如图,在一圆形电流I 所在的平面内,选取一个同心圆形闭和回路L,则由安培环路定理可知:[ ] (1) 0=??L l B d 且环路上任意一点B=0, (2) 0=??L l B d 且环路上任意一点B ≠0, (3) 0≠??L l B d 且环路上任意一点B ≠0, (4) 0≠??L l B d 且环路上任意一点B=常数。 5.一半导体样品通过的电流为I, 放在磁场中,如图,实验测的霍耳电压U ba <0, 此半导体是[ ] (1) N 型 (2)P 型 6. 反,这两圆柱面之间距轴线为r 处的磁感应强度大小为[ ] (1) 0 (2)r I πμ20 (3)r I πμ0 (4)πμ20Ir 7.可以用安培环路定理求磁场的是 [ ] (1)通电螺绕环 (2)圆电流 (3)半圆电流 (4)一段直电流

电磁场考试试题及答案解析

电磁波考题整理 一、填空题 1. 某一矢量场,其旋度处处为零,则这个矢量场可以表示成某一标量函数的(梯度)形式。 2. 电流连续性方程的积分形式为(??? s dS j=- dt dq) 3. 两个同性电荷之间的作用力是(相互排斥的)。 4. 单位面积上的电荷多少称为(面电荷密度)。 5. 静电场中,导体表面的电场强度的边界条件是:(D1n-D2n=ρs) 6. 矢量磁位A和磁感应强度B之间的关系式:(B=▽x A) 7. .E(Z,t)=e x E m sin(wt-kz-)+ e y E m cos(wt-kz+),判断上述均匀平面电磁波的极化方式为:(圆极化)(应该是90%确定) 8. 相速是指均匀平面电磁波在理想介质中的传播速度。 9.根据电磁波在波导中的传播特点,波导具有(HP)滤波器的特点。(HP,LP,BP三选一) 10.根据电与磁的对偶关系,我们可以由电偶极子在远区场的辐射场得到(磁偶极子)在远区产生的辐射场 11. 电位移矢量D=ε0E+P在真空中P的值为(0) 12. 平板电容器的介质电容率ε越大,电容量越大。 13.恒定电容不会随时间(变化而变化) 14.恒定电场中沿电源电场强度方向的闭合曲线积分在数值上等于电源的(电动势) 15. 电源外媒质中电场强度的旋度为0。 16.在给定参考点的情况下,库伦规范保证了矢量磁位的(散度为零) 17.在各向同性媚质中,磁场的辅助方程为(D=εE, B=μH, J=σE) 18. 平面电磁波在空间任一点的电场强度和磁场强度都是距离和时间的函数。 19. 时变电磁场的频率越高,集肤效应越明显。

20. 反映电磁场中能量守恒与转换规律的定理是坡印廷定理。 二、名词解释 1. 矢量:既存在大小又有方向特性的量 2. 反射系数:分界面上反射波电场强度与入射波电场强度之比 3. TEM波:电场强度矢量和磁场强度矢量均与传播方向垂直的均匀平面电磁波 4. 无散场:散度为零的电磁场,即·=0。 5. 电位参考点:一般选取一个固定点,规定其电位为零,称这一固定点为参考点。当取点为参考点时,P点处的电位为=;当电荷分布在有限的区域时,选取无穷远处为参考点较为方便,此时=。 6. 线电流:由分布在一条细线上的电荷定向移动而产生的电流。 7.磁偶极子:磁偶极子是类比电偶极子而建立的物理模型。具有等值异号的两个点磁荷构成的系统称为磁偶极子场。磁偶极子受到力矩的作用会发生转动,只有当力矩为零时,磁偶极子才会处于平衡状态。利用这个道理,可以进行磁场的测量。但由于没有发现单独存在的磁单极子,故我们将一个载有电流的圆形回路作为磁偶极子的模型。 8. 电磁波的波长:空间相位变化所经过的距离称为波长,以表示。按此定义有,所以。 9. 极化强度描述介质极化后形成的每单位体积内的电偶极矩。 10. 坡印廷定理电磁场的能量转化和守恒定律称为坡印廷定理:每秒体积中电磁能量的增加量等于从包围体积的闭合面进入体积功率。 11. 线性均匀且各向同性电介质若煤质参数与场强大小无关,称为线性煤质。若煤质参数与场强方向无关,称为各向同性煤质。若煤质参数与位置无关,责称均匀煤质。若煤质参数与场强频率无关,称为各向同性煤质。 12.安培环路定理在真空中磁感应强度沿任意回路的环量等于真空磁导率乘以与该回路相交链的电流的代数和。

磁场综合测试题

磁场综合测试题 一、单项选择题:本大题共6小题,每小题3分,共18分。在每小题给出的四个选项中,只有一项是符合题目要求的。 1.指南针静止时,其位置如图中虚线所示.若在其上方放置一水平方向的导线,并通以恒定电流,则指南针转向图中实线所示位置.据此可能是(B ) A.导线南北放置,通有向北的电流 B.导线南北放置,通有向南的电流 C.导线东西放置,通有向西的电流 D.导线东西放置,通有向东的电流 2.如图所示,用两根相同的细绳水平悬挂一段均匀载流直导线MN ,电流I 方向从M 到N ,绳子的拉力均为F ,为使F =0,可能达到要求的方法是 ( C ) A .加水平向右的磁场 B .加水平向左的磁场 C .加垂直纸面向里的磁场 D .加垂直纸面向外的磁场 3.如图所示,铜质导电板置于匀强磁场中,通电时铜板中电流方向向上.由于磁场的作用,则(A ) A.板左侧聚集较多电子,使b 点电势高于a 点电势 B.板左侧聚集较多电子,使a 点电势高于b 点电势 C.板右侧聚集较多电子,使a 点电势高于b 点电势 D.板右侧聚集较多电子,使b 点电势高于a 点电势 4.如图所示,三根通电直导线P 、Q 、R 互相平行,通过正三角形的三个顶点,三条导线通入大小相等,方向垂直纸面向里的电流;通电直导线产生磁场的磁感应强度B=kI/r ,I 为通电导线的电流强度,r 为距通电导线的距离的垂直距离,K 为常数;则R 受到的磁场力的方向 是(A ) A.垂直R ,指向y 轴负方向 B.垂直R ,指向y 轴正方向 C.垂直R ,指向x 轴正方向 D.垂直R ,指向x 轴负方向 5.图中的D 为置于电磁铁两极间的一段通电 直导线,电流方向垂直于纸面向里.在开关S 接通后,导线D 所受磁场力的方向是( A ) A .向上 B .向下 C .向左 D .向右 6.如图,在一水平放置的平板MN 的上方有匀强磁场,磁感应强度的大小为B ,磁场方向垂直于纸面向里.许多质量为m 带电量为+q 的粒子,以相同的速率v 沿位于纸面内的各个方向,由小孔O 射入磁场区域. 不计重力,不计粒子间的相互影响。下列图中阴影部分表示带电粒子可能经过的区域,其中Bq mv R .哪个 图是正确的?(A ) b

高中物理磁场测试题

《磁场》学习效果自我评估检测题一 班级 姓名 一、选择题(本题共8小题,每小题至少有一答案正确,) 1、如图所示,一束带负电粒子沿着水平方向向右飞过磁针正上方, 磁针N极将………( ) A 、向纸内偏转 B 、向纸外偏转 C 、不动 D 、无法确定 2、下列说法正确的是………………………………………………………………………( ) A 、磁感线上某点切线方向就是该点磁感强度方向 B 、沿着磁感线方向磁感强度越来越小 C 、磁感线越密的地方磁感强度越大 D 、磁感线是客观存在的真实曲线 3、下列说法正确的是………………………………………………………………………( ) A 、一小段通电导线放在某处不受磁场力作用,则该处磁感强度为零 B 、由IL F B = 可知,磁感强度大小与放入该处的通电导线I 、L 的乘积成反比 C、因为IL F B =,故导线中电流越大,其周围磁感强度越小 D 、磁感强度大小和方向跟放在磁场中通电导线所受力的大小和方向无关 4、关于洛伦兹力,以下说法正确的是……………………………………………………( ) A 、带电粒子运动时不受洛伦兹力作用,则该处的磁感强度为零 B、磁感强度、洛伦兹力、粒子的速度三者之间一定两两垂直 C 、洛伦兹力不会改变运动电荷的速度 D 、洛伦兹力对运动电荷一定不做功 5、在回旋加速器中……………………………………………………………………………( A 、电场用来加速带电粒子,磁场则使带电粒子旋转 B 、电场和磁场同时用来加速带粒子 C、在确定的交流电源下,回旋加速器的半径越大,同一带电粒子获得的动能越大 D 、同一带电粒子得到的最大动能只与交流电源的电压大小有关,而与电源的频率无关 6、如图所示,一条形磁铁放在水平桌面上,在它的正中央上方固定一直导线,导线与磁场垂直,若给导线通以垂直于纸面向里的电流,则………………………………………( ) A 、磁铁对桌面压力增大 B 、磁场对桌面压力减小 C 、桌面对磁铁没有摩擦力 D、磁铁所受合力不为零 7、如图,a 、b 、c 、d是四根长度相同,等间距地被竖直固定在同一平面上的通电长直导线,当它们通以大小相等,方向如图的电流时,各导线所受磁场力的合力情况是( ) A、导线a受力方向向左 B 、导线b受力方向向左 C 、导线c 受力方向向左 D 、导线d 受力方向向右 8、一个带电粒子沿垂直于磁场的方向射入一匀强磁场,粒子的一段径迹如图所示,径迹上的每一小段都可近似看成圆弧,由于带电粒子使沿途的空气电离,粒子的能量逐渐减小,(电荷不变),从图中可以确定…………………………………………………………( ) v N I

电磁场与电波试题及答案.

1. 写出非限定情况下麦克斯韦方程组的微分形式,并简要说明其物理意义。 2.答非限定情况下麦克斯韦方程组的微分形式为,,0,D B H J E B D t t ρ????=+??=-??=??=??v v v v v v v ,(3分)(表明了电磁场和它们的源之间的全部关系除了真实电流外,变化的电场(位移电流)也是磁场的源;除电荷外,变化的磁场也是电场的源。 1. 写出时变电磁场在1为理想导体与2为理想介质分界面时的边界条件。 2. 时变场的一般边界条件 2n D σ=、20t E =、2t s H J =、20n B =。 (或矢量式2n D σ=v v g 、20n E ?=v v 、2s n H J ?=v v v 、20n B =v v g ) 1. 写出矢量位、动态矢量位与动态标量位的表达式,并简要说明库仑规范与洛仑兹规范的意义。 2. 答矢量位,0B A A =????=v v v ;动态矢量位A E t ??=-?-?v v 或A E t ??+ =-??v v 。库仑规范与洛仑兹规范的作用都是限制A v 的散度,从而使A v 的取值具有唯一性;库仑规范用在静态场,洛仑兹规范用在时变场。 1. 简述穿过闭合曲面的通量及其物理定义 2. s A ds φ=???v v ò 是矢量A 穿过闭合曲面S 的通量或发散量。若Ф> 0,流出S 面的通量大于流入的 通量,即通量由S 面内向外扩散,说明S 面内有正源若Ф< 0,则流入S 面的通量大于流出的通量,即通量向S 面内汇集,说明S 面内有负源。若Ф=0,则流入S 面的通量等于流出的通量,说明S 面内无源。 1. 证明位置矢量x y z r e x e y e z =++r r r r 的散度,并由此说明矢量场的散度与坐标的选择无关。 2. 证明在直角坐标系里计算 ,则有 ()()x y z x y z r r e e e e x e y e z x y z ???????=++?++ ??????r r r r r r r r 3x y z x y z ???= ++=??? 若在球坐标系里计算,则 23 22 11()()()3r r r r r r r r r ????= ==??r r 由此说明了矢量场的散度与坐标的选择无关。

磁场练习题及答案

1.电流看不见摸不到,我们可以根据电流产生的 来认识它;磁场看不见摸不到,我们可以根据磁场对磁体所产生的 来认识它,这正是科学的力量所在。 2.如图9-3所示,某点的磁场方向是这样规定的:磁场中可以自由转动的小磁针静止 时________极所指的方向,就是该点磁场的方向。如图9-4所示,磁感线总是从磁体的________极指向________极。 3.关于磁场,下列说法不正确的是( ) A.磁体周围空间存在着磁场 B.地球的周围存在着磁场 C.磁场中不同位置的磁场方向可能不同 D.磁场并非真实存在、,而是为了研究方便而假设的 4.关于对磁感线的认识,下列说法中不正确的是( ) A.磁感线是为描述磁场而画的一种假想的曲线 B.磁体周围越接近磁极的地方磁感线越密,表示磁性越强 C.磁体周围的磁感线都是从s 极出发回到N 极、 D.磁感线与放不放铁屑无关 5.关于地磁场(如图9-5),下列说法中不正确的是( ) A .地磁场的磁感线的方向大致是由地理的北方发出回到南方 B .地磁的北极在地理的南极附近 C .地磁场的磁感线形状与条形磁体的磁感线形状相似 D .世界上最早记述“地理的两极与地磁的两极并不重合”这一现象的人是我国宋代学者沈括 6.磁性水雷是用一个可以绕轴转动的小磁针来控制起爆电路的,军舰被地磁场磁化后就变成了一个浮动的磁 体,当军舰接近磁性水雷时,就会引起水雷的爆炸,其依据是( ) A .磁体的磁性 B .磁极间的相互作用规律 C .电荷间的相互作用规律 D . 磁场对电流的作用原理 7.作图: (1)图9-6已标明了磁感线方向,请标出磁铁的N 极和S 极。 (2)小红在画图时因粗心大意忘了标明图9-7中的磁感线方向和小磁针的N 、s 极,请你帮她补充。 8.据说录像带和录音带都不能靠近磁体。如果如图9—8所示,把永磁体靠近录音磁带,你认为会产生什图9-3 图9-4 图9-5 图9-6 S N N S 图9-7

高中物理磁场综合练习及答案.doc

高中物理磁场综合练习及答案 磁场相关的物理知识一直以来是学生在高中学习阶段较难掌握的部分,同学们需要加强相关练习,下面是我给大家带来的,希望对你有帮助。 一、选择题(本题10小题,每小题5分,共50分) 1.一个质子穿过某一空间而未发生偏转,则() A.可能存在电场和磁场,它们的方向与质子运动方向相同 B.此空间可能有磁场,方向与质子运动速度的方向平行 C.此空间可能只有磁场,方向与质子运动速度的方向垂直 D.此空间可能有正交的电场和磁场,它们的方向均与质子速度的方向垂直 答案ABD 解析带正电的质子穿过一空间未偏转,可能不受力,可能受力平衡,也可能受合外力方向与速度方向在同一直线上. 2. 两个绝缘导体环AA、BB大小相同,环面垂直,环中通有相同大小的恒定电流,如图1所示,则圆心O处磁感应强度的方向为(AA面水平,BB 面垂直纸面) A.指向左上方 B.指向右下方 C.竖直向上 D.水平向右

答案A 3.关于磁感应强度B,下列说法中正确的是() A.磁场中某点B的大小,跟放在该点的试探电流元的情况有关 B.磁场中某点B的方向,跟该点处试探电流元所受磁场力的方向一致 C.在磁场中某点试探电流元不受磁场力作用时,该点B值大小为零 D.在磁场中磁感线越密集的地方,B值越大 答案D 解析磁场中某点的磁感应强度由磁场本身决定,与试探电流元无关.而磁感线可以描述磁感应强度,疏密程度表示大小. 4.关于带电粒子在匀强磁场中运动,不考虑其他场力(重力)作用,下列说法正确的是() A.可能做匀速直线运动 B.可能做匀变速直线运动 C.可能做匀变速曲线运动 D.只能做匀速圆周运动 答案A 解析带电粒子在匀强磁场中运动时所受的洛伦兹力跟速度方向与磁 场方向的夹角有关,当速度方向与磁场方向平行时,它不受洛伦兹力作用,又不受其他力作用,这时它将做匀速直线运动,故A项正确.因洛伦兹力的方向始终与速度方向垂直,改变速度方向,因而同时也改变洛伦兹力的方向,故洛伦兹力是变力,粒子不可能做匀变速运动,故B、C两项错误.只有当速度方向与磁场方向垂直时,带电粒子才做匀速圆周运动,故D项

物理磁场练习测试题含参考答案

物理高二磁场练习题 一、 单选题 1.关于电场强度和磁感应强度,下列说法正确的是 A .电场强度的定义式q F E =适用于任何电场 B .由真空中点电荷的电场强度公式2Q E k r =可知,当r →0时,E →无穷大 C .由公式IL F B =可知,一小段通电导线在某处若不受磁场力,则说明此处一定无磁场 D .磁感应强度的方向就是置于该处的通电导线所受的安培力方向 2.如图所示,条形磁铁放在水平粗糙桌面上,它的正中间上方固定一根长直导线,导线中通 过方向垂直纸面向里(即与条形磁铁垂直)的电流,和原来没有电流通过时相比较,磁铁受到 的支持力N 和摩擦力f 将 A 、N 减小,f=0 B 、N 减小,f ≠0 C 、N 增大,f=0 D 、N 增大,f ≠0 3、有电子、质子、氘核、氚核,以同样速度垂直射入同一匀强磁场中, 它们都作匀速圆周运动,则轨道半径最大的粒子是 A .氘核 B .氚核 C .电子 D .质子 4.一带正电荷的小球沿光滑、水平、绝缘的桌面向右运动,如 图所示,速度方向垂直于一匀强磁场,飞离桌面后,最终落在地 面上. 设飞行时间为t 1、水平射程为s 1、着地速率为v 1;现撤去 磁场其它条件不变,小球飞行时间为t 2、水平射程为s 2、着地速 率为v 2.则有: A 、 v 1=v 2 B 、 v 1>v 2 C 、 s 1=s 2 D 、 t 1E K ',W =0 C 、E K =E K ',W =0 D 、 E K >E K ',W >0 6.图是质谱仪的工作原理示意图。带电粒子被加速电场加速后,进入速度 选择器。速度选择器内相互正交的匀强磁场和匀强电场的强度分别为B 和E 。平板S 上有可让 粒子通过的狭缝P 和记录粒子位置的胶片A 1A 2。平板S 下方有强度为B 0的匀强磁场。下列表述 错误的是 A .质谱仪是分析同位素的重要工具 B .速度选择器中的磁场方向垂直纸面向外 C .能通过的狭缝P 的带电粒子的速率等于E/B D .粒子打在胶片上的位置越靠近狭缝P ,粒子的荷质比越小 二、双选题 7.下列关于磁场中的通电导线和运动电荷的说法中,正确的是 A 、磁场对通电导线的作用力方向一定与磁场方向垂直 B 、有固定转动轴的通电线框在磁场中一定会转动 C 、带电粒子只受洛伦兹力作用时,其动能不变,速度一直在变 D 、电荷在磁场中不可能做匀速直线运动 8.如图,MN 是匀强磁场中的一块薄金属板,带电粒子(不计重力)在匀强磁场中运 动并穿过金属板,虚线表示其运动轨迹,由图知: A 、粒子带负电 B 、粒子运动方向是abcde M N a b c e v

几种常见的磁场练习题及答案解析

1.关于磁现象的电本质,下列说法正确的是( ) A.一切磁现象都起源于运动电荷,一切磁作用都是运动电荷通过磁场而发生的 B.除永久磁铁外,一切磁场都是由运动电荷产生的 C.据安培的分子电流假说,在外界磁场的作用下,物体内部分子电流取向变得大致相同时,物体就被磁化,两端形成磁极 D.有磁必有电,有电必有磁 解析:选AC.任何物质的原子的核外电子绕核运动形成分子电流,分子电流使每个物质分子相当于一个小磁体.当各分子电流的取向大致相同时,物质对外显磁性,所以一切磁现象都源于运动电荷,A、C正确,B错误.静电场不产生磁场,D错误. 2.关于磁感线下列说法正确的是( ) A.磁感线是磁场中实际存在的线 B.条形磁铁磁感线只分布于磁铁外部 C.当空中存在几个磁场时,磁感线有可能相交 D.磁感线上某点的切线方向就是放在这里的小磁针N极受力的方向 解析:选D.磁感线是假想的线,故A错;磁感线是闭合的曲线,磁铁外部、内部均有磁感线,故B错;磁感线永不相交,故C错;根据磁感线方向的规定知D对. 3. 图3-3-15 如图3-3-15所示,带负电的金属圆盘绕轴OO′以角速度ω匀速旋转,在盘左侧轴线上的小磁针最后平衡的位置是( ) A.N极竖直向上 B.N极竖直向下 C.N极沿轴线向右 D.N极沿轴线向左 解析:选C.等效电流的方向与转动方向相反,由安培定则知轴线上的磁场方向向右,所以小磁针N极受力向右,故C正确.

4. 图3-3-16 (2011年深圳中学高二检测)如图3-3-16所示,两根非常靠近且互相垂直的长直导线,当通以如图所示方向的电流时,电流所产生的磁场在导线所在平面内的哪个区域内方向是一致且向里的( ) A.区域Ⅰ B.区域Ⅱ C.区域Ⅲ D.区域Ⅳ 解析:选A.根据安培定则可判断出区域Ⅰ的磁场是一致且向里的. 5.如图3-3-17所示, 图3-3-17 线圈平面与水平方向夹角θ=60°,磁感线竖直向下,线圈平面面积S= m2,匀强磁场磁感应强度B= T,则穿过线圈的磁通量Φ为多少 解析:法一:把S投影到与B垂直的方向,则Φ=B·S cos θ=××cos 60° Wb= Wb.法二:把B分解为平行于线圈平面的分量B∥和垂直于线圈平面的分量B⊥,B∥不穿过线圈,且B⊥=B cos θ,则Φ=B⊥S=B cos θ·S=××cos 60° Wb= Wb. 答案: Wb 一、选择题 1.下列关于磁通量的说法,正确的是( ) A.磁通量是反映磁场强弱和方向的物理量 B.某一面积上的磁通量是表示穿过此面积的磁感线的总条数 C.在磁场中所取的面积越大,该面上磁通量越大 D.穿过任何封闭曲面的磁通量一定为零

《电工基础》练习及答案(-5.磁场和磁路)

《电工技术基础与技能》复习题 5.磁场和磁路 一、选择题: 1.判断通电导线或通电线圈产生磁场的方向用() A.左手定则B.右手定则C.右手螺旋定则D.楞次定律 2.判断磁场对通电导线的作用力的方向用() A.左手定则B.右手定则C.右手螺旋定则D.安培定则 3.如图所示,两个完全一样的环形线圈相互垂直放置,它们的圆心位于共同点O,当通以相同大小的电流时,O点处的磁感应强度与一个线圈单独产生的磁感应强度之比是() A.2:1 B.1:1 C.:1 D.1:4.铁、钴、镍及其合金的相对磁导率是() A.略小于1 B.略大于1 C.等于1 D.远大于1 5.如图所示,直线电流与通电矩形线圈同在纸面内,线框所受磁场力的方向为() A.垂直向上B.垂直向下C.水平向左D.水平向右6.如图所示,处在磁场中的载流导线,受到的磁场力的方向应为()A.垂直向上B.垂直向下C.水平向左D.水平向右

选择题3题选择题5题选择题6题 7.在匀强磁场中,原来载流导线所受的磁场力为F,若电流增加到原来的两倍,而导线的长度减少一半,这时载流导线所受的磁场力为()A.B.C.D. 8.如果线圈的形状、匝数和流过它的电流不变,只改变线圈中的媒质,则线圈内() A.磁场强度不变,而磁感应强度变化; B.磁场强度变化,而磁感应强度不变; C.磁场强度和磁感应强度均不变化; D.磁场强度和磁感应强度均要改变。 9.下列说法正确的是() A.一段通电导线,在磁场某处受的磁场力大,则该处的磁感应强度就大; B.磁感线越密处,磁感应强度越大; C.通电导线在磁场中受到的力为零,则该处磁感应强度为零;D.在磁感应强度为B的匀强磁场中,放入一面积为S的线圈,则通

高二物理磁场单元测试题(含答案解析)

高二物理磁场单元测试题 注意:本试卷分为第Ⅰ卷(选择题)和第卷(非选择题)两部分,共100分,考试时间90分钟。 第Ⅰ卷(选择题 共60分) 一、选择题(本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,1-8小题只有一个选项正确,9-12小题有多个选项正确。全部选对的得5分,选不全的得3分,有选错或不答的得0分。) 1.指南针静止时,其位置如图中虚线所示.若在 其上方放置一水平方向的导线,并通以恒定电流, 则指南针转向图中实线所示位置.据此可能是 ( B ) A.导线南北放置,通有向北的电流 B.导线南北放置,通有向南的电流 C.导线东西放置,通有向西的电流 D.导线东西放置,通有向东的电流 2.磁场中某区域的磁感线,如图所示,则 ( B ) A .a 、b 两处的磁感应强度的大小不等,> B .a 、b 两处的磁感应强度的大小不等,< C .同一通电导线放在a 处受力一定比放在b 处受力大 D .同一通电导线放在a 处受力一定比放在b 处受力小 3.由磁感应强度的定义式IL F B 可知,磁场中某处的磁感应强度的大小 ( D ) A .随通电导线中的电流I 的减小而增大 B .随乘积的减小而增大 C .随通电导线所受磁场力F 的增大而增大

D .跟F 、I 、L 的变化无关 4.质量为m 、带电量为q 的小球,从倾角为θ的光滑绝缘斜面上由静止下滑,整个斜面置于方向水平向外的 匀强磁场中,其磁感应强度为B ,如图所示。若 带电小球下滑后某时刻对斜面的作用力恰好为 零,下面说法中正确的是( B ) ①小球带正电 ②小球在斜面上运动时做匀加速直线运动 ③小球在斜面上运动时做加速度增大,而速度也增大的变加速直线运动 ④则小球在斜面上下滑过程中,当小球对斜面压力为零时的速率为θ/ A .①②③ B .①②④ C .①③④ D .②③④ 5.如图所示,三根通电直导线P 、Q 、R 互相平行,通过正三角形的三个顶点,三条导线通入大小相等,方向垂直纸面向里的电流;通电直导线产生磁场的磁感应强度,I 为通电导线的电流强度,r 为距通电导线的距离的垂直距离,K 为常数;则R 受到的磁场力的方向是( A ) A.垂直R ,指向y 轴负方向 B.垂直R ,指向y 轴正方向 C.垂直R ,指向x 轴正方向 D.垂直R ,指向x 轴负方向 6.如图所示,在水平地面上方有正交的匀强电场和匀强磁场,匀强电场方向竖直向下,匀强磁场方向水平向里。现将一个带正电的金属小球从M 点以初速度v 0水平抛出,

电流与磁场部分试题及答案学生测试

电流与磁场部分试题 一、选择题 1.磁场的高斯定理??=?0S d B 说明了下面的哪些叙述是正确的? ( A ) a 穿入闭合曲面的磁感应线条数必然等于穿出的磁感应线条数; b 穿入闭合曲面的磁感应线条数不等于穿出的磁感应线条数; c 一根磁感应线可以终止在闭合曲面内; d 一根磁感应线可以完全处于闭合曲面内。 (A )ad ; (B )ac ; (C )cd ; (D )ab 。 2. [ D ]1. 用细导线均匀密绕成长为l 、半径为a (l >> a )、总匝数为N 的螺线管,管内充满相对磁导率为μr 的均匀磁介质.若线圈中载有稳恒电流I ,则管中任意一点的 (A) 磁感强度大小为B = μ0 μ r NI . (B) 磁感强度大小为B = μ r NI / l . (C) 磁场强度大小为H = μ0NI / l . (D) 磁场强度大小为H = NI / l . 【参考答案】 B = μ0 μ r nI=μNI / l=μH 3.通有电流I 的无限长直导线有如图三种形状,则P ,Q ,O 各点磁感强度的大小B P ,B Q ,B O 间的关系为 (A) B P > B Q > B O . (B) B Q > B P > B O . B Q > B O > B P . (D) B O > B Q > B P . 解法: a 、 b ,电流在导体截面上均匀分布,则空间各 处的B 的大小与场点到圆柱中心轴线的距离r 的关系定性地如图所示.正确的图是 解法: 根据安培环路定理:当 a r < 时0=B 当a r b >>时 当b r >时 且a r =时0=B 和a r b >>时,曲线斜率随着r 增大。 5. 如图所示,在无限长载流直导线附近作一球形闭合曲面S ,当曲面S 向长直导线靠近时,穿过曲面S 的磁通量Φ和面上各点的磁感应强度B 将如何变化? ( D ) (A )Φ增大,B 也增大; I

高中物理磁场练习题及答案

a b 1、如图所示,两根垂直纸面、平行且固定放置的直导线M 和N ,通有同向等值电流;沿纸面与直导线M 、N 等距放置的另一根可自由移动的通电导线ab ,则通电导线ab 在安培力作用下运动的情况是 A.沿纸面逆时针转动 B.沿纸面顺时针转动 C.a 端转向纸外,b 端转向纸里 D.a 端转向纸里,b 端转向纸外 2.两根长直通电导线互相平行,电流方向相同.它们的截面处于一个等边三角形ABC 的A 和B 处.如图所示,两通电导线在C 处的磁场的磁感应强度的值都是B ,则C 处磁场的总磁感应强度是( ) A.2B B.B C.0 D. 3B 3、空间存在竖直向下的匀强电场和水平方向(垂直纸面向里)的匀强磁场,如图所示,已知一离子在电场力和洛 仑兹力共同作用下,从静止开始自A 点沿曲线ACB 运动,到达B 点时速度为零,C 为运动的最低点.不计重力,则 A.该离子带负电 B.A 、B 两点位于同一高度 C.C 点时离子速度最大 D.离子到达B 点后,将沿原曲线返回A 点 4、一带电粒子以一定速度垂直射入匀强磁场中,则不受磁场影响的物理量是: A 、速度 B 、加速度 C 、动量 D 、动能 5、MN 板两侧都是磁感强度为B 的匀强磁场,方向如图,带电粒子(不计重力)从a 位置以垂直B 方向的速度V 开始运动,依次通过小孔b 、c 、d ,已知ab = bc = cd ,粒子从a 运动到d 的时间为t ,则粒子的荷质比为: A 、 tB π B 、tB 34π C 、π 2tB D 、 tB π 3 6、带电粒子(不计重力)以初速度V 0从a 点进入匀强磁场,如图。运动中经过b 点,oa=ob 。若撤去磁场加一个与y 轴平行的匀强电场,仍以V 0从a 点进入电场,粒子仍能通过b 点,那么电场强度E 与磁感强度B 之比E/B 为: A 、V 0 B 、1 C 、2V 0 D 、 2 0V 7、如图,MN 是匀强磁场中的一块薄金属板,带电粒子(不计重力)在匀强磁场中运动并穿过金属板,虚线表示其运动轨迹,由图知: A 、粒子带负电 B 、粒子运动方向是abcde C 、粒子运动方向是edcba D 、粒子在上半周所用时间比下半周所用时间长 8、带负电的小球用绝缘丝线悬挂于O 点在匀强磁场中摆动,当小球每次通过最低点A 时: A 、摆球受到的磁场力相同 B 、摆球的动能相同 C 、摆球的动量相同 D 、向右摆动通过A 点时悬线的拉力大于向左摆动通过A 点时悬线的拉力 9、如图,磁感强度为B 的匀强磁场,垂直穿过平面直角坐标系的第I 象限。一质量为m ,带电量为q 的粒子以速度V 从O 点沿着与y 轴夹角为30°方向进入磁场,运动到A 点时的速度方向平行于x 轴,那么: A 、粒子带正电 B 、粒子带负电 C 、粒子由O 到A 经历时间qB m t 3π= D 、粒子的速度没有变化 10 、如图所示,一条形磁铁放在水平桌面上,在它的左上方固定一直导线,导线与磁场垂直,若给导线通以垂直于纸面向里的电流, N a b c d B B N O a

(完整版)电磁感应综合练习题(基本题型,含答案).doc

电磁感应综合练习题(基本题型) 一、选择题: 1.下面说法正确的是 A.自感电动势总是阻碍电路中原来电流增加 B.自感电动势总是阻碍电路中原来电流变化 C.电路中的电流越大,自感电动势越大 D.电路中的电流变化量越大,自感电动势越大 【答案】 B 2.如图 9-1 所示,M1N1与 M2N2是位于同一水平面内的两条平行金属导轨,导轨间距为 L 磁感应强度为 B 的匀强磁场与导轨所在平面垂直,ab 与 ef 为两根金属杆,与导轨垂直且可在导轨上滑动,金属杆 ab 上有一伏特表,除伏特表外,其他部分电阻可以不计,则下列说法正确的是() A .若 ab 固定 ef 以速度 v 滑动时,伏特表读数为BLv B.若 ab 固定 ef 以速度 v 滑动时, ef 两点间电压为零 C.当两杆以相同的速度v 同向滑动时,伏特表读数为零 D.当两杆以相同的速度v 同向滑动时,伏特表读数为2BLv 【答案】 AC 3.如图 9-2 所示,匀强磁场存在于虚线框内,矩形线圈竖直下落。() 1、2、3、 4 如果线圈中受到的磁场力总小于其重力,则它在 位置时的加速度关系为() A .a > a >a >a 4 B. a = a = a = a 1 2 3 1 2 3 4 C.a1 = a2>a3>a4 D. a4 = a2> a3>a1 图 9-2 图 9-3 图 9-4 【答案】 C 4.如图 9-3 所示,通电螺线管两侧各悬挂一个小铜环,铜环平面与 螺线管截面平行,当电键 S 接通一瞬间,两铜环的运动情况是()A.同时向两侧推开 B.同时向螺线管靠拢 C.一个被推开,一个被吸引,但因电源正负极未知,无法具体判断D.同时被推开或同时向螺线管靠拢,但因电源正负极未知,无法具体判断【答案】 A 图9-1

高中物理磁场经典习题(题型分类)含答案

磁场补充练习题 题组一 1.如图所示,在xOy 平面内,y ≥ 0的区域有垂直于xOy 平面向里的匀强磁场,磁感应强度为B ,一质量为m 、带电量大小为q 的粒子从原点O 沿与x 轴正方向成60°角方向以v 0射入,粒子的重力不计,求带电粒子在磁场中运动的时间和带电粒子离开磁场时的位置。 2.如图所示,abcd 是一个正方形的盒子,在cd 边的中点有一小孔e ,盒子中存在着沿ad 方向的匀强电场,场强大小为E ,一粒子源不断地从a 处的小孔沿ab 方向向盒内发射相同的带电粒子,粒子的初速度为v 0,经电场作用后恰好从e 处的小孔射出,现撤去电场,在盒子中加一方向垂直于纸面的匀强磁场,磁感应强度大小为B (图中未画出),粒子仍恰好从e 孔射出。(带电粒子的重力和粒子之间的相互作用均可忽略不计) (1)所加的磁场的方向如何? (2)电场强度E 与磁感应强度B 的比值为多大? 题组二 3.长为L 的水平极板间,有垂直纸面向里的匀强磁场,磁感应强度为B ,板间距离也为L ,极板不带电。现有质量为m ,电荷量为q 的带正电粒子(重力不计),从左边极板间中点处垂直磁场以速度v 水平射入,如图所示。为了使粒子不能飞出磁场,求粒子的速度应满足的条件。 4.如图所示的坐标平面内,在y 轴的左侧存在垂直纸面向外、磁感应强度大小B 1 = 0.20 T 的匀强磁场,在y 轴的右侧存在垂直纸面向里、宽度d = 0.125 m 的匀强磁场B 2。某时刻一质量m = 2.0×10-8 kg 、电量q = +4.0×10-4 C 的带电微粒(重力可忽略不计),从x 轴上坐标为(-0.25 m ,0)的P 点以速度v = 2.0×103 m/s 沿y 轴正方向运动。试求: (1)微粒在y 轴的左侧磁场中运动的轨道半径; (2)微粒第一次经过y 轴时速度方向与y 轴正方向的夹角; (3)要使微粒不能从右侧磁场边界飞出,B 2应满足的条件。 5.图中左边有一对平行金属板,两板相距为d ,电压为U ;两板之间有匀强磁场,磁场应强度大小为B 0,方向平行于板面并垂直于纸面朝里。图中右边有一边长为a 的正三角形区域EFG (EF 边与金属板垂直),在此区域内及其边界上也有匀强磁场,磁感应强度大小为B ,方向垂直于纸面朝里。假设一系列电荷量为q 的正离子沿平行于金属板面,垂直于磁场的方向射入金属板之间,沿同一方向射出金属板之间的区域,并经EF 边中点H 射入磁场区域。不计重力。

电磁场试卷及答案

?电磁场与微波技术?试卷A 一、单项选择题(在每小题的四个备选答案中,选出一个正确答案,并将正确答案的序号填在题干的括号内。每小题2分,共20分) 1. 静电场是(C) A. 无散场 B. 旋涡场 C.无旋场 D. 既是有散场又是旋涡场 2. 已知(23)()(22)x y z D x y e x y e y x e =-+-+-,如已知电介质的介电常数 为0ε,则自由电荷密度ρ为( ) A. B. 1/ C. 1 D. 0 3. 磁场的标量位函数的单位是( C) A. V/m B. A C. A/m D. Wb 4. 导体在静电平衡下,其内部电场强度( A ) A.为零 B.为常数 C.不为零 D.不确定 5. 磁介质在外部磁场作用下,磁化介质出现(C ) A. 自由电流 B. 磁化电流 C. 传导电流 D. 磁偶极子 6. 磁感应强度与磁场强度的一般关系为( C ) A.H B μ= B.0H B μ= C.B H μ= D.0B H μ= 0ε0 ε

7. 极化强度与电场强度成正比的电介质称为(C)介质。 A.各向同性 B. 均匀 C.线性 D.可极化 8. 均匀导电媒质的电导率不随(B)变化。 A.电流密度 B.空间位置 C.时间 D.温度 9. 磁场能量密度等于(D) A. E D B. B H C. 21E D D. 2 1B H 10. 镜像法中的镜像电荷是(A)的等效电荷。 A.感应电荷 B.原电荷 C. 原电荷和感应电荷 D. 不确定 二、填空题(每空2分,共20分) 1. 电场强度可表示为_标量函数__的负梯度。 2. 体分布电荷在场点r 处产生的电位为_______。 3. 一个回路的自感为回路的_自感磁链_与回路电流之比。 4. 空气中的电场强度5sin(2)x E e t z πβ=-V/m ,则位移电流密度d J = 。 5. 安培环路定律的微分形式是 ,它说明磁场的旋涡源是 有旋场。 6. 麦克斯韦方程组的微分形式是 , , , 。 三、简答题(本大题共2小题,每小题5分,共10分) 1.写出电荷守恒定律的数学表达式,说明它揭示的物理意义。

相关文档
相关文档 最新文档