文档库 最新最全的文档下载
当前位置:文档库 › 第一章行列式(学生题目简单答案版)

第一章行列式(学生题目简单答案版)

第一章行列式(学生题目简单答案版)
第一章行列式(学生题目简单答案版)

第1章行列式 例题习题

1.计算下列各行列式: (1)????????????7110 025******** 1 4; (2)?????? ? ?? ? ??-2605 23 211 2 131412; (3)???? ??????---ef cf bf de cd bd ae ac ab ; (4)? ? ??? ? ???? ??---d c b a 100 11 00 11001 解 (1) 7 1 1 025102 0214214 343 27c c c c --0 1 1423102021 10214--- =3 4) 1(14310221 1014 +-?--- =14 3 10 221 1014 --3 2 1132c c c c + +14 17 17 2001099-=0 (2) 2605 232112131 412 -24c c -2605 032122130412- 24r r -0 4 1 2 03212213 0412 - 1 4r r -0 032122130412 -=0 (3)ef cf bf de cd bd ae ac ab ---=e c b e c b e c b adf ---

=1 1 1 111 1 11---adfbce =abcdef 4 (4) d c b a 1 110011001---2 1ar r +d c b a ab 1 110011010 ---+ =1 2) 1)(1(+--d c a ab 1 110 1--+ 2 3dc c +0 1 111-+-+cd c ad a ab =2 3) 1)(1(+--cd ad ab +-+11 1=1++++ad cd ab abcd 2.证明: (1)1 1 1 222 2 b b a a b ab a +=3 )(b a -; (2)bz ay by ax bx az by ax bx az bz ay bx az bz ay by ax +++++++++=y x z x z y z y x b a )(3 3 +; (3) 0) 3() 2() 1()3()2()1()3()2()1()3()2()1(2 2 2 2 222222222222=++++++++++++d d d d c c c c b b b b a a a a ; (4) 4 4 4 4 22221111d c b a d c b a d c b a ))()()()((d b c b d a c a b a -----=))((d c b a d c +++-?;

(完整版)线性代数行列式第一章练习题答案

《线性代数》(工)单元练习题 一、填空题 1、设矩阵A 为4阶方阵,且|A |=5,则|A*|=__125____,|2A |=__80___,|1-A |= 1/5 2、若方程组?? ? ??=+=+=+a bz cy b az cx ay bx 0 有唯一解,则abc ≠ 0 3、把行列式的某一列的元素乘以同一数后加到另一列的对应元素上,行列式 0 . 4、当a 为 1 or 2 时,方程组??? ??=++=++=++0 40203221321321x a x x ax x x x x x 有非零解. 5、设=-+----=31211142,4 101322 13A A A D 则 .0 二、单项选择题 1.设) (则=---===33 3231312322212113 1211113332312322 211312 11324324324,1a a a a a a a a a a a a D a a a a a a a a a D B (A)0 ; (B)―12 ; (C )12 ; (D )1 2.设齐次线性方程组??? ??=+-=++=+02020z y kx z ky x z kx 有非零解,则k = ( A ) (A )2 (B )0 (C )-1 (D )-2 3.设A=7 925138 02-,则代数余子式 =12A ( B ) (A) 31- (B) 31 (C) 0 (D) 11- 4.已知四阶行列式D 中第三列元素依次为-1,2,0,1,它们的余子式依次分别为5,3,-7,4, 则D= ( A ) (A ) -15 (B ) 15 (C ) 0 (D ) 1 三、计算行列式

上海市2019届高三数学一轮复习典型题专项训练:复数与行列式

上海市2019届高三数学一轮复习典型题专项训练 复数与行列式 一、复数 1、(2018上海高考)已知复数z 满足117i z i +=-()(i 是虚数单位),则∣z ∣= 2、(2017上海高考)已知复数z 满足3 0z z +=,则||z = 3、(2016上海高考)设i i Z 23+= ,期中i 为虚数单位,则Im z =__________________ 4、(宝山区2018高三上期末)若i z i 23-+= (其中i 为虚数单位),则Imz = . 5、(崇明区2018高三上期末(一模))若复数z 满足iz=1+i (i 为虚数单位),则z= . 6、(奉贤区2018高三上期末)复数 i +12 的虚部是________. 7、(静安区2018高三二模)若复数z 满足(1)2z i i -=(i 是虚数单位),则||z = 8、(普陀区2018高三二模)已知i 为虚数单位,若复数2(i)i a +为正实数,则实数a 的值为……………………………( ) )A (2 ()B 1 ()C 0 ()D 1- 9、(青浦区2018高三二模)若复数z 满足2315i z -=+(i 是虚数单位),则=z _____________. 10、(青浦区2018高三上期末)已知复数i 2i z =+(i 为虚数单位),则z z ?= . 11、(松江、闵行区2018高三二模)设m ∈R ,若复数(1i)(1i)m ++在复平面内对应的点位于实轴 上,则m = . 12、(松江区2018高三上期末)若i -2是关于x 的方程02 =++q px x 的一个根(其中i 为虚数单位,R q p ∈,),则q 的值为 A. 5- B. 5 C. 3- D. 3 13、(杨浦区2018高三上期末)在复平面内,复数2i z i -= 对应的点位于( ) A. 第一象限 B. 第二象限 C. 第三象限 D. 第四象限 14、(浦东新区2018高三二模)已知方程210x px -+=的两虚根为1x 、2x ,若12||1x x -=,则实数p 的值为( ) A. 3± B. 5± C. 3,5 D. 3±,5± 15、(浦东新区2018高三二模)在复数运算中下列三个式子是正确的:(1)1212||||||z z z z +≤+;(2)1212||||||z z z z ?=?;(3)123123()()z z z z z z ??=??,相应的在向量运算中,下列式子:(1)

第一章行列式练习题目及答案

第一章 行列式 一、单项选择题 1.=0 001001001001000( ). (A) 0 (B)1- (C) 1 (D) 2 2. =0 001100000100100( ). (A) 0 (B)1- (C) 1 (D) 2 3. 若2 1 33 32 31 232221 131211 ==a a a a a a a a a D ,则=---=32 3133 31 2221232112 111311122222 2a a a a a a a a a a a a D ( ). (A) 4 (B) 4- (C) 2 (D) 2- 4.若 a a a a a =22 2112 11,则 =21 11 2212ka a ka a ( ). (A)ka (B)ka - (C)a k 2 (D)a k 2- 5. 已知4阶行列式中第1行元依次是3,1,0,4-, 第3行元的余子式依次为x ,1,5,2-, 则=x ( ). (A) 0 (B)3- (C) 3 (D) 2 6. 若5 734111113263478 ----=D ,则D 中第一行元的代数余子式的和为( ). (A)1- (B)2- (C)3- (D)0 7. 若2 23 5 00 1 011110403 --= D ,则D 中第四行元的余子式的和为( ). (A)1- (B)2- (C)3- (D)0

8. k 等于下列选项中哪个值时,齐次线性方程组??? ??=++=++=++0 00321 321321x x kx x kx x kx x x 有非零解. ( ) (A)1- (B)2- (C)3- (D)0 二、填空题 1. 行列式=0 100111010100111. 2.行列式 = -0 10000200 0010 n n . 3.行列式 =--0 01) 1(2211)1(111 n n n n a a a a a a . 4.如果M a a a a a a a a a D ==3332 31 232221131211 ,则=---=32 323331 2222232112121311133333 3a a a a a a a a a a a a D . 5.已知某5阶行列式的值为5,将其第一行与第5行交换并转置,再用2乘所有元素,则所得的新行列式的值为 . 6.行列式 = --+---+---111 1 111111111111 x x x x . 7.n 阶行列式=+++λλλ 111 1 11111 . 8.已知三阶行列式中第二列元素依次为1,2,3, 其对应的余子式依次为3, 2, 1,则该行列式的值为 .

行列式练习题及答案资料

一、填空题 1.设自然数从小到大为标准次序,则排列1 3 … )12(-n 2 4 … )2(n 的逆序数为 ,排列1 3 … )12(-n )2(n )22(-n …2的逆序数为 . 2.在6阶行列式中,651456314223a a a a a a 这项的符号为 . 3.所有n 元排列中,奇排列的个数共 个. 二、选择题 1.由定义计算行列式n n 0 0000010 020 001000Λ ΛΛΛΛΛΛ ΛΛΛ -= ( ). (A )!n (B )!)1(2 ) 1(n n n -- (C )!) 1(2) 2)(1(n n n --- (D )!)1()1(n n n -- 2.在函数x x x x x x f 2 1 1 232 3 21 01)(= 中,3x 的系数是( ). (A )1 (B )-1 (C )2 (D )3 3.四阶行列式的展开式中含有因子32a 的项,共有( )个. (A )4; (B )2; (C )6; (D )8. 三、请按下列不同要求准确写出n 阶行列式)det(ij a D =定义式: 1. 各项以行标为标准顺序排列; 2. 各项以列标为标准顺序排列; 3. 各项行列标均以任意顺序排列. 四、若n 阶行列式中,等于零的元素个数大于n n -2,则此行列式的值等于多少?说明理由.

一、填空题 1.若D=._____324324324,133 32 3131 232221211312111113332 31 232221131211=---==a a a a a a a a a a a a D a a a a a a a a a 则 2.方程 2 2 913 2 5 1 3 232213211x x --=0的根为___________ . 二、计算题 1. 817116045153016 9144 3 1 2 ----- 2.d c b a 100 1100 11001--- 3.a b b b a b b b a D n Λ ΛΛΛΛΛΛ=

行列式经典例题及计算方法

行列式的例题 1.已知方程 01125208 42111111154115 21211111154113 21111113 23232=+ + -x x x x x x x x x ,求x 。 解:由行列式的加法性质,原方程可化为 32321 12520842111111154118 4211111x x x x x x + 3 232 2781941321111112793184 211111x x x x x x = = =(2-1)(3-1)(3-2)(x-1)(x-2)(x-3)=0 得x=1或x=2或x=3。 2.计算:(化三角形法) 3.拆行列法 42031 2852 51873 121D =

行列式的计算 (四)升级法(加边法) 112122 1212 ,0 n n n n n n a b a a a a b a D b b b a a a b ++= ≠+ 1 21121221 21 1000n n n n n n n a a a a b a a D a a b a a a a b ++=++ 解:1) 1 21121 1 00(2,31)10010 0n i n a a a b r r i n b b --=+-- 121 (1).n i n i i a b b b b ==+∑ 111 11100 (1,21)00 n i n i i i i n a a a b c b c i n b b =+++ =+∑ 行列式的计算 (二)箭形行列式 0121112 2,0,1,2,3. n n i n n a b b b c a D a i n c a c a +=≠= 解:把所有的第列的倍加到(1,,)i n = i i c a -1i +第1列,得: 11201()n i i n n i i b c D a a a a a +==-∑

第1章行列式自测题(答案)

内容提要: 一、行列式的定义 1、2阶和3阶行列式 2112221122 21 1211a a a a a a a a D -== 31231232211333221133 32 31 23222113 1211a a a a a a a a a a a a a a a a a a ++= 322311332112312213a a a a a a a a a --- 2、排列与逆序 定义 由n ,,3,2,1 组成的一个有序数组称为一个n 阶排列. 3、n 阶行列式定义 定义 称∑ -== n n n p p p np p p p p p nn n n n n a a a a a a a a a a a a D 21212121) (2 1 22221 11211 )1(τ )det(ij a = 为n 阶行列式,记作D 或n D .也记作)det(ij a . 4、三角形行列式:主对角线元素的乘积。 二、行列式的性质 性质1 D D ='. 性质2 互换行列式的某两行(或列),行列式仅变符号. 推论 若行列式中某两行(或列)相同,则行列式为零. 性质3 行列式某行(列)的各元素乘以k ,等于用数k 乘以行列式. 推论 行列式的某行(或列)各元素的公因子可以提到行列式符号外面相乘. 推论 若行列式的某两行(或列)的对应成元素成比例,则行列式为零.

性质4 nn n n in i i n nn n n in i i n nn n n in in i i i i n a a a a a a a a a a a a a a a a a a 21 21 1121121 21112112 1 2211112 11βββαααβαβαβα+=+++ 性质5 将行列式的某行(或列)各元素乘以数k 加到另一行(或列)的对应元素上,行列式的值不变. 三、行列式的展开定理 定义 在n D 中划掉ij a 所在的行和列(即第i 行和第j 列),余下的元素按原来的相对位置构成一个(1-n )阶行列式,称为ij a 的余子式,记作ij M . ij j i ij M A +-=)1( ——ij a 的代数余子式 定理1 in in i i i i A a A a A a D +++= 2211 (n i ,,2,1 =) →按第i 行展开 或 ni ni i i i i A a A a A a D +++= 2211 (n i ,,2,1 =) →按第i 列展开 推论 02211=+++jn in j i j i A a A a A a (j i ≠) 或 02211=+++nj ni j i j i A a A a A a (j i ≠) 四、Cramer 规则 ?????? ?=+++=+++=+++n n nn n n n n n n b x a x a x a b x a x a x a b x a x a x a 22112 222212********* (1) 定理 当0≠D 时,方程组(1)有唯一解 D D x 11= ,D D x 22=,……,D D x n n =.

第一章行列式与矩阵的计算的练习(含答案)

行列式及矩阵的计算(课堂练习) 、填空 1 ?已知三阶方阵A 的行列式为3,贝U 2A = -24 1 2 ,g(x) 0 1 3 .设, ,为3维列向量, 记矩阵 A ( , , ),B ( A 3, 则B 3 = ,,丨 6 1 1 1 4?行列式 1 1 x 的展开式中,X 的系数是 2 . 1 1 1 1 0 1 0 5.设A 则A k 。(k 为正整数). 2 1 2k 1 7.已知四阶行列式D 中第三列元素分别为1 , 3 , 别为3, 2, 1 , 1,则行列式D =二3 24 4 (1) 1 , 2, 3, 2 16m n 2.设A 则 g(A )= n ,则 1 , 2, 3,2 1 2 16m n 2, 2,它们对应的余子式分

(X ) 解:D = 1 X 3+ 3X(— 2) + (— 2)X 1 + 2X 1 = — 3 二、判断题 1. 设A 、B 均为n 阶方阵, |AB | [AB AB A|B. (V ) 二、行列式计算 3 3 3 3 4 3 3 4 (1) D n 3 3 4 3 3 3 3 4 3n 1 3 Cl C 2 3n 1 4 解: Ci C 3 D n 3n 1 3 G C n 3n 1 3 1 1 1 1 1 2 3 1 (2 D 1 4 9 1 1 8 27 1 2. 设A 、B 均为n 阶方阵, 解:(范得蒙行列式)=(— 3 3 3 1 =3n 1 1 0 0 0 1 3 3 3n 1 3 3 D n 0 「3 A 4 3 ——0 3 4 r n r 1 ax 1 X 2 X 3 2 五、 a 为何值时, 线性方程组: X 1 ax 2 X 3 2 有唯一解? X 1 X 2 ax 3 3 a a 1 1 解: det A 1 a 1 (a 2)(a 1)2 a 2且a 1时,有唯一解 1 1 a 1)=— 240 1 — 3) (— 1 + 2) (— 1— 1) (3+ 2) ( 3— 1) ( — 2—

行列式经典例题

大学-----行列式经典例题 例1计算元素为a ij = | i -j |的n 阶行列式. 解 方法1 由题设知,11a =0,121a =,1,1,n a n =- ,故 01110212 n n n D n n --= -- 1,1,,2 i i r r i n n --=-= 01 1111 111 n ---- 1,,1 j n c c j n +=-= 121 1 021 (1)2(1)020 1 n n n n n n ------=---- 其中第一步用的是从最后一行起,逐行减前一行.第二步用的每列加第n 列. 方法2 01110 212 0n n n D n n --= -- 1 1,2,,111 1111 120 i i r r i n n n +-=----=-- 1 2,,100120 1231 j c c j n n n n +=---= --- =12(1)2(1) n n n ---- 例2. 设a , b , c 是互异的实数, 证明: 的充要条件是a + b + c =0. 证明: 考察范德蒙行列式:

= 行列式 即为y 2前的系数. 于是 = 所以 的充要条件是a + b + c = 0. 例3计算D n = 121 100010n n n x x a a a x a ----+ 解: 方法1 递推法 按第1列展开,有 D n = x D 1-n +(-1) 1 +n a n 1 1111n x x x ----- = x D 1-n + a n 由于D 1= x + a 1,221 1x D a x a -=+,于是D n = x D 1-n + a n =x (x D 2-n +a 1-n )+ a n =x 2 D 2-n + a 1-n x + a n = = x 1 -n D 1+ a 2x 2 -n + + a 1-n x + a n =111n n n n x a x a x a --++++ 方法2 第2列的x 倍,第3列的x 2 倍, ,第n 列的x 1 -n 倍分别加到第1列上 12 c xc n D += 21121 10010000n n n n x x x a xa a a x a -----++

第一章行列式作业及答案

第一部分 行列式作业 (一)选择题(15分) 1.在5阶行列式展开式中,12335544i j a a a a a 是其中带有正号的一项,则,i j 之值为( ) (A) 1,2i j == (B) 2,3i j == (C) 1,3i j == (D) 2,1i j == 2.在5阶行列式展开式中,包含1325,a a 并带有负号的项是( ) (A) 1325344251a a a a a - (B) 1325314254a a a a a - (C) 1325324154a a a a a - (D) 1325314452a a a a a - 3.已知行列式11 121321 222331 3233a a a a a a m a a a =,则行列式2122 1331113212331 311211222 1323 222222a a a a a a a a a a a a a a a ---=+++( ) (A)-4m (B)-2m (C)2m (D)4m 4.已知4101 1111 11111111 x D ---=----,则4D 中x 的系数是( ) (A)4 (B)-4 (C)-1 (D)1 5. 设方程组12312312 3112 x x x x x x x x x λλλ--=?? ++=??-++=? ,若方程组有惟一解,则λ的值应为( ) (A)0 (B)1 (C)-1 (D)异于0与1±的数 (二)填空题(15分) 1.排列(1)(2)321n n n -?-??? 的逆序数为 。 2.排列12n a a a 与排列121n n a a a a - 的逆序数之和等于 。 3.行列式D 中第2行元素的代数余子式之和21222324A A A A +++= ,其中 1111 1111 11111111 D -= --。

行列式测试题(有标准答案)

第九讲 行列式单元测试题点评 一、填空题(每小题2分,满分20分) 1.全体3阶排列一共有6 个,它们是123,132,213,231,312,321; 2. 奇排列经过奇数次对换变为偶排列,奇排列经过偶数次 对换变为奇排列; 3. 行列式D和它的转置行列式D'有关系式D D' =; 4. 交换一个行列式的两行(或两列),行列式的值改变符号; 5. 如果一个行列式有两行(或两列)的对应元素成比例,则这个行 列式等于零; 6. 一个行列式中某一行(列)所有元素的公因子可以提到行列式符号的外边; 7.把行列式的某一行(列)的元素乘以同一数后加到另一行(列)的对应元素上,行列式的值不变; 8.行列式的某一行(列)的元素与另一行(列)的对应元素的代数余子式的乘积之和等于零; 9. 11121 222 1122 ; 00 n n nn nn a a a a a a a a a =

10.当k =22 ±时,542k k k =。 二、判断题(每小题3分,满分24分) 1.1)(,)(31221±==k i i i i k i i i n n ππ则若 (∨) 的符号 的一般项则设n n j i j i j i nn n n n n a a a a a a a a a a a a D 2211D ,.221 22221 11211 = .)1()(21n j j j π-是 (×) 3. 若n(n>2)阶行列式D=0,则D 有两行(列)元素相同. (×) 4.若n 阶行列式D 恰有n 个元素非0,则D ≠0. (×) 5.对于线性方程组,只要方程个数等于未知数个数,就可以直接使 用 克 莱 姆 法 则 求 解 。 (×) 6.若行列式D 的相同元素多于2n n -个,则D=0. (×) 7. 11 121313233321222312 222331 32 33 11 21 31 a a a a a a a a a a a a a a a a a a = (×) 8.n 阶行列式主对角线上元素乘积项带正号,副对角线上元素乘

行列式典型例题

第二讲 行列式综合训练 第一部分 例2.1 计算行列式,其中对角线上元素都是a ,未写出的元素都是零. n D = 1 1 a a 解 这道题可以用多种方法进行求解,充分应用了行列式的各种性质. 方法1 利用性质,将行列式化为上三角行列式. n D 11c n c a -?= 101 a a a a - =11()n a a a -- =n a -2n a - 方法2 仍然是利用性质,将行列式化为上三角行列式. n D n 1 r r -= 111 a a a --1n c c += 1 1 1 a a a +-=n a -2 n a - 方法3 利用展开定理,将行列式化成对角行列式. n D 1c 展开 =1 n a a a -+1 1 001 (1) 0n n a a +-- 而 1 1 001 (1) 0n n a a +--最后列展开 = 21 (1)n +-2 n a a -=2 n a -- n D =1n a a -?-2n a -=n a -2n a - 方法4 利用公式 A O O B =A B . 将最后一行逐行换到第2行,共换了2n -次;将最后一列逐列换到第2列,也共换了2n -次.

n D =2(2) (1)n --11a a a = 11a a 2 n a a -=n a -2 n a - 方法5 利用公式 A O O B =A B . 例2.2 计算n 阶行列式: 1121221 2 n n n n n a b a a a a b a D a a a b ++= + (120n b b b ≠) 解 采用升阶(或加边)法.该行列式的各行含有共同的元素12,,,n a a a ,可在保持 原行列式值不变的情况下,增加一行一列,适当选择所增行(或列)的元素,使得下一步化简后出现大量的零元素. 12112122 1 2 1000 n n n n n n a a a a b a a D a a b a a a a b +=++升阶 213111 n r r r r r r +---= 12121100 1001 n n a a a b b b --- 11 12,,1 j j c c b j n -+ =+= 1 1121 1 12100000000 n n a a a a a b b b b b + ++ =1 12 1 (1)n n n a a b b b b b + ++ 这个题的特殊情形是 12121 2 n n n n a x a a a a x a D a a a x ++= +=1 1 ()n n i i x x a -=+∑ 可作为公式记下来. 例2.3 计算n 阶行列式: 12111 1111 1 1n n a a D a ++= +

第一章行列式与矩阵计算练习(含答案)

行列式及矩阵的计算(课堂练习) 一、填空 1.已知三阶方阵A 的行列式为3,则 2A -= -24 2. 设12,01A -?? = ???1()32x g x x -= -+,则()g A =0800-?? ??? 3.设,,αβγ为3维列向量,记矩阵(,,),(,,)A B αβγαββγγα==+++,若 3,A B =则=,,,,6αβγ βγα+= 4.行列式1 1 1 11 1 11 ---x 的展开式中,x 的系数是 2 . 5.设???? ??=1201A 则=k A 1021k ?? ??? 。(k 为正整数). 6.设321,,ααα,21,ββ都是四维列向量,且四阶行列式1123,,,m αααβ=, 1232,,,n αααβ=,则12312,,,2αααββ-=16m n + 解:11231232,,,2,,,D αααβαααβ=+- 14412312322,,,(1),,,16m n αααβαααβ=+-=+ 7. 已知四阶行列式D 中第三列元素分别为1,3,-2,2,它们对应的余子式分 别为3,-2,1,1,则行列式D =-3 .

解:D =1×3+3×(-2)+(-2)×1+2×1=-3 二、判断题 1.设A 、B 均为n 阶方阵,则A B A B =. ( × ) 2.设A 、B 均为n 阶方阵,则AB A B =. (√ ) 三、行列式计算 (1)4 3 3 3 34333 343 3334 Λ ΛΛΛΛΛΛ ΛΛ=n D 解: n D n c c c c c c +++13121M 4 3 3 1 334313334133331 3Λ ΛΛΛΛΛΛΛΛ++++n n n n 1 1312r r r r r r n ---M 1 01000 0103 3313Λ ΛΛΛΛΛΛΛΛ+n =13+n (2)11111231 149118271 D --=-- 解:(范得蒙行列式)=(-1-3)(-1+2)(-1-1)(3+2)(3-1)(-2- 1)=-240 五、a 为何值时,线性方程组:??? ??-=++=++=++a ax x x x ax x x x x a 322321 321321有唯一解? 解:2 )1)(2(11111 1det -+==a a a a a A ,2-≠a 且1≠a 时,有唯一解.

行列式典型例题

第二讲 行列式综合训练 第一部分 例2.1 计算行列式,其中对角线上元素都是a ,未写出的元素都是零. n D = 11 a a O 解 这道题可以用多种方法进行求解,充分应用了行列式的各种性质. 方法1 利用性质,将行列式化为上三角行列式. n D 11c n c a -?= 101 a a a a - L O =11()n a a a -- =n a -2n a - 方法2 仍然是利用性质,将行列式化为上三角行列式. n D n 1 r r -= 111 a a a --O 1n c c += 1 1 1 a a a +-O =n a -2 n a - 方法3 利用展开定理,将行列式化成对角行列式. n D 1c 展开 =1 n a a a -O +1 1 001 0(1) 0n n a a +--L O O 而 1 1 01 0(1) 0n n a a +--L O O 最后列展开 =21 (1)n +-2 n a a -O =2 n a -- n D =1n a a -?-2n a -=n a -2n a - 方法4 利用公式 A O O B =A B . 将最后一行逐行换到第2行,共换了2n -次;将最后一列逐列换到第2列,也共换了2n -次.

n D =2(2) (1)n --11a a a O = 11a a 2 n a a -O =n a -2 n a - 方法5 利用公式 A O O B =A B . 例2.2 计算n 阶行列式: 1121221 2 n n n n n a b a a a a b a D a a a b ++= +L L M M M L (120n b b b ≠L ) 解 采用升阶(或加边)法.该行列式的各行含有共同的元素12,,,n a a a L ,可在保持 原行列式值不变的情况下,增加一行一列,适当选择所增行(或列)的元素,使得下一步化简后出现大量的零元素. 121121 221 2 1000 n n n n n n a a a a b a a D a a b a a a a b +=++L L L M M M M L 升阶 213111 n r r r r r r +---= L 12121100100100n n a a a b b b ---L L L M M M M L 11 12,,1 j j c c b j n -+ =+= L 111211 1 2100 00000 n n a a a a a b b b b b + ++L L L L M M M M L =1121(1)n n n a a b b b b b + ++L L 这个题的特殊情形是 12121 2 n n n n a x a a a a x a D a a a x ++= +L L M M M L =1 1 ()n n i i x x a -=+∑ 可作为公式记下来. 例2.3 计算n 阶行列式:

线性代数习题册行列式-习题详解.doc

行列式的概念 一、选择题 1. 下列选项中错误的是 ( ) a b c d (B) a b d b (A) d a b ; c d c ; c a a 3c b 3d a b a b a b (C) c d c ; (D) c d c . d d 答案: D 2.行列式 D n 不为零,利用行列式的性质对 D n 进行变换后,行 列式的值( ). (A) 保持不变; (B) 可以变成任何值; (C) 保持不为零; (D) 保持相同的正负号. 答案: C 二、填空题 1. log a b 1 =. 1 log b a 解析: log a b 1 log a b log b a 1 1 1 0 . 1 log b a cos sin 2. 3 6 =. sin cos 3 6 cos sin 解析: 3 6 cos cos sin sin cos0 sin cos 3 6 3 6 2 3 6 2x 1 3 3. 函数 f (x) x x 1 中, x 3 的系数为 ; 2 1 x 2x 1 1 g( x) x x x 中, x 3 的系数为. 1 2 x 答案: -2 ; -2.

阶行列式 D n中的n最小值是. 答案: 1. 1 2 3 5.三阶行列式0 2 4 中第2行第1列元素的代数余子式 3 1 1 等于. 答案: 5. 6.若 2x 8 0 ,则x= . 1 2 答案: 2. 7. 在n 阶行列式 D a ij 中,当 i

线性代数习题-[第一章]行列式

习题1—1 全排列及行列式的定义 1. 计算三阶行列式123 4 56789 。 2. 写出4阶行列式中含有因子1324a a 并带正号的项。 3. 利用行列式的定义计算下列行列式: ⑴0 004003002001 0004 D

⑵0 0000000052 51 42413231 2524232221 151********a a a a a a a a a a a a a a a a D = ⑶0 001 0000 200 0010 n n D n -= 4. 利用行列式的定义计算210111()0211 1 1 x x x f x x x -= 中34 , x x 的系数。

习题1—2 行列式的性质 1. 计算下列各行列式的值: ⑴ 2141 012112025 62 - ⑵ef cf bf de cd bd ae ac ab --- ⑶ 2 2 2 2 2 2 2 2 22222222)3()2()1()3()2()1()3()2()1()3()2()1(++++++++++++d d d d c c c c b b b b a a a a

2. 在n 阶行列式nn n n n n a a a a a a a a a D 2 1 222 2111211 = 中,已知),,2,1,(n j i a a ji ij =-=, 证明:当n 是奇数时,D=0. 3. 计算下列n 阶行列式的值: ⑴x a a a x a a a x D n = ⑵n n a a a D +++= 11 1 1 1111121 ()120n a a a ≠

线性代数第1章行列式试卷及答案

第一章 行列式 一、单项选择题 1.行列式D 非零的充分条件是( D ) (A) D 的所有元素非零 (B) D 至少有n 个元素非零 (C) D 的任何两行元素不成比例 (D)以D 为系数矩阵的非齐次线性方程组有唯一解 2.二阶行列式 1 2 21--k k ≠0的充分必要条件是( C ) A .k ≠-1 B .k ≠3 C .k ≠-1且k ≠3 D .k ≠-1或≠3 3.已知2阶行列式 2 21 1b a b a =m , 2 21 1c b c b =n ,则 2 22 111c a b c a b ++=( B ) +n (m+n ) 4.设行列式==1 11103 4 222,1111304z y x z y x 则行列式( A ) A. 32 D.3 8 5.下列行列式等于零的是(D ) A .100123123- B. 031010300- C . 100003010- D . 2 61422613- 6.行列式 1 1 1 101111011110------第二行第一列元素的代数余子式21A =( B ) A .-2 B .-1 C .1 D .2 8.如果方程组?? ? ??=+=-=-+0404033232321kx x x x x kx x 有非零解,则 k =( B ) 9.(考研题)行列式 0000000a b a b c d c d =( B ) A.()2ad bc - B.() 2ad bc -- C.2222 a d b c - D.22 2 2 b c a d - 二、填空题 1.四阶行列式中带负号且含有因子12a 和21a 的项为 44332112a a a a 。 2. 行列式11 1 2 3 44916 中(3, 2 )元素的代数余子式 A 32=___-2___. 3. 设7 3 43690211 1 1 875 1----= D ,则5A 14+A 24+A 44=_______。 解答:5A 14+A 24+A 44= 1501 3430 90211 1 15751-=--- 4.已知行列式01 110321 2=-a ,则数a =____3______. 5.若a ,b 是实数,则当a =___且b =___时,有=---10100 a b b a 0。 解答:0)(1 0100 22=+-=--=---b a a b b a a b b a a =0, b =0 6. 设1 31 2 4321322 )(+--+-+= x x x x f ,则2 x 的系数为 23 。 7. 五阶行列式=6 200357020381002 300031000___________。 解答:4232 1 2 331)1(6 200357020381002 30003100032=?? -=? 8. (考研题)多项式2 1 1 111 )(32 132132 1321+++++= x a a a a x a a a a x a a a a x f 的所有零 点为 01=x ,12-=x ,23-=x 。 9、(考研题)设x d c b d x c b d c x b d c b x x f = )(,则方程0)(=x f 的根为=x 。 【分析】 )(x f 是关于x 的四次多项式,故方程0)(=x f 应有四根,利用行列式的性质知,当d c b x ,,=时,分别会出现两行相等的情况,所以 行列式为零,故d c b x ,,=是方程的三个根。 再将后三列均加到第一列上去可以提取一个公因子为 d c b x +++,所以当)(d c b x ++-=时,满足0)(=x f ,所以得方程的 第四根)(d c b x ++-=。 故方程的四个根分别是:)(,,,d c b d c b ++-。 二、计算题 1、计算000100 0200020120002013000 002014 D = 。 【分析】方法一:此行列式刚好只有n 个非零元素 nn n n n a a a a ,,,,112211--- ,故非零项只有一项: nn n n n t a a a a 112211)1(---- ,其中2 ) 2)(1(--= n n t , 因此 (20141)(20142) 2 (1) 2014!2014!D --=-= 方法二:按行列展开的方法也行。 2、计算行列式 3 214214314324 321= D 。 分析:如果行列式的各行(列)数的和相同时,一般首先采用的是将各列(行)加到第一列(行),提取第一列(行)的公因子(简称列(行)加 法). 解 这个行列式的特点是各列4个数的和为10 ,于是,各行加到第一行,得

矩阵典型习题解析

2 矩阵 矩阵是学好线性代数这门课程的基础,而对于初学者来讲,对于矩阵的理解是尤为的重要;许多学生在最初的学习过程中感觉矩阵很难,这也是因为对矩阵所表示的内涵模糊的缘故。其实当我们把矩阵与我们的实际生产经济活动相联系的时候,我们才会发现,原来用矩阵来表示这些“繁琐”的事物来是多么的奇妙!于是当我们对矩阵产生无比的兴奋时,那么一切问题都会变得那么的简单! 知识要点解析 2.1.1 矩阵的概念 1.矩阵的定义 由m×n 个数),,2,1;,,2,1(n j m i a ij ==组成的m 行n 列的矩形数表 ?? ?? ? ? ? ??=mn m m n n a a a a a a a a a A 2 1 22221 11211 称为m×n 矩阵,记为n m ij a A ?=)( 2.特殊矩阵 (1)方阵:行数与列数相等的矩阵; (2)上(下)三角阵:主对角线以下(上)的元素全为零的方阵称为上(下) 三角阵; (3)对角阵:主对角线以外的元素全为零的方阵; (4)数量矩阵:主对角线上元素相同的对角阵; (5)单位矩阵:主对角线上元素全是1的对角阵,记为E ; (6)零矩阵:元素全为零的矩阵。 3.矩阵的相等 设mn ij mn ij b B a A )(; )(==

若 ),,2,1;,,2,1(n j m i b a ij ij ===,则称A 与B 相等,记为A=B 。 2.1.2 矩阵的运算 1.加法 (1)定义:设mn ij mn ij b B A A )(,)(==,则mn ij ij b a B A C )(+=+= (2)运算规律 ① A+B=B+A ; ②(A+B )+C =A +(B+C ) ③ A+O=A ④ A +(-A )=0, –A 是A 的负矩阵 2.数与矩阵的乘法 (1)定义:设,)(mn ij a A =k 为常数,则mn ij ka kA )(= (2)运算规律 ① K (A+B ) =KA+KB , ② (K+L )A =KA+LA , ③ (KL ) A = K (LA ) 3.矩阵的乘法 (1)定义:设.)(,)(np ij mn ij b B a A ==则 ,)(mp ij C C AB ==其中∑== n k kj ik ij b a C 1 (2)运算规律 ①)()(BC A C AB =;②AC AB C B A +=+)( ③CA BA A C B +=+)( (3)方阵的幂 ①定义:A n ij a )(=,则K k A A A = ②运算规律:n m n m A A A +=?;mn n m A A =)( (4)矩阵乘法与幂运算与数的运算不同之处。 ①BA AB ≠ ②;00,0===B A AB 或不能推出 ③k k k B A AB ?≠)( 4.矩阵的转置

相关文档
相关文档 最新文档