文档库 最新最全的文档下载
当前位置:文档库 › 实用温度传感器的智能化与应用

实用温度传感器的智能化与应用

实用温度传感器的智能化与应用
实用温度传感器的智能化与应用

实用温度传感器的智能化与应用

类别:电子综合阅读:1519

吴康摘要:本文从常用的三种温度传感器-热电偶、RTD和NTC热敏电阻开始到智能化的开拓与数字温度传感器引入将分别按序介绍,并对其在解决大功率电路发热设计方案中的应用作一分折说明。关键词:线性化共模噪声结点补偿温度漂移PWM模式1、工业中常用温度传感器的分类温度是测量频度最高的物理参数,并且可采用各种各样的传感器来进行测量。所有这些传感器均通过检测某种物理特性的变化来推断温度。最常用的三种温度传感器是热电偶、电阻温度计(RTD)和NTC热敏电阻,见图1所示。值此先作介绍。2、ANALOG FOR THE DIGITAL AGE 2004 Microchip Technology Inc.1.1热电偶由两个焊接在一起的异金属导线(以形成两个结点)所组成。结点之间的温差会在两根导线之间产生热电电位(即电压)。通过将参考结点保持在已知温度上并测量该电压,便可推断出检测结点的温度。热电偶的优点是工作温度范围非常宽,而且体积极小。不过,它们也存在着输出电压小、容易遭受来自导线环路的噪声影响以及漂移较高的缺陷。1.2电阻温度计(RTD) 是能够显示电阻值随温度变化情况的绕丝或薄膜螺旋管。虽然常用的金属是铜、镍和镍铁合金等,但采用铂制成的RTD具有最佳的线性、可重复性和稳定性。凭借其上佳的线性和无与伦比的长期稳定性,铂R TD牢固确立了自己作为温度参考传递国际标准的地位。尽管薄膜铂RTD提供了性能匹配,但标准等级线绕电阻则在成本、外形尺寸和便利性方面更胜一筹。早期的薄膜铂RTD饱受漂移的困扰,原因是它们具有较高的表面积与体积之比,因而令其对污染更加敏感。后来,薄膜隔离和封装的改进消除了这些问题,使得薄膜RTD 一举超越线绕电阻和NTC热敏电阻而成为温度传感器之首选。1.3 NTC热敏电阻由金属氧化物陶瓷组成,是低成本、灵敏度最高的温度传感器。同时,它们也是线性最差的温度传感器,并具有负温度系数。热敏电阻拥有各种外形尺寸、基极电阻值以及电阻-温度(R-T)函数关系曲线,可供简化封装和输出线性化电路之用。通常将两个热敏电阻组合起来使用,以使输出具有较好的线性。常用的热敏电阻具有10%-20%的互换性。虽然可提供1%的精确互换性,但花费的成本往往要高于铂RTD。普通的热敏电阻可在有限的工作温度范围内呈现出上佳的电阻稳定性,而在较宽的温度范围内工作时则表现出中等水平的稳定性(在125℃条件下为2%/1000小时)。

2、温度传感器的智能化-工业过程与检测的温度测量电路2.1 RTD测量电路-0℃至400℃温度范围的PTl00传感器线性化测量电路图2为只采用一个双通道运算放大器OPA2335和7个电阻器便构建了具有线性化功能的低成本RTD测量电路。该电路的第一级负责在0℃至400℃的温度范围内对PTl00传感器进行线性化处理,从而产生±0.08℃的最大温度误差。R1用于确定RTD的初始激励电流。R3和R4负责设定线性化级的增益,以确保A1的输入处于其共模范围之内。Vo1将随着温度的升高而升高。Vo1的一小部分通过R2馈回输入端,用于线性化处理。应计算出合适的R1-R4 电阻器阻值,使得通过RTD的最大激励电流的电阻达100Ω,以避免由于自发热而导致测量误差。该电路的第二级负责失调和增益调节。这里,对Vo1的线性斜率重新进行调整,以便在0.5V至4.5V的输出范围内提供10mV/℃的Vo2斜率。22 通过4-20mA电流环路对远程三线式RTD进行温度测量图3为该电路采用4-20mA电流发送器XTR112来测量远程三线式RTD的温度的应用电路图(三线式是图3中RTD上下的1、2、3线),这儿应用了4-20mA电流发送器XTR112的电流环路功能。该器件提供了两个用于RTD激励和线性电阻补偿的匹配电流源。内部线性化电路为RTD提供二阶校正,从而实现了40:1的线性度提升。IR2是用于RTD的激励电流。IR1是流经Rz和RLINE1,的补偿电流。通过选择与最低温度条件下的RTD阻值相等的Rz阻值,XTR112的内部仪表放大器(1NA)将测量RTD电阻中与温度相关的阻值差量。

采用RCM来提供附加压降,用于给XTRll2的输入施加偏压,使其处于共模输入范围之内。0.01μF旁路电容器可最大限度地降低共模噪声。RG用于设定INA的增益。对于二阶线性化处理,INA输出电压的一小部分通过电阻器R LIN1和R LIN2进行反馈。该输出电压在内部被转换为电流,然后加至返回电流IRET,以产生I o=4mA+VIN,40/RG的输出电流。在电流环路侧,与信号相关的4-20mA环路电流的大部分由晶体管Q1来传导。这把大多数功耗与XTR112的内部精密电路隔离开来,从而保持了超群的准确度。2.3 采用连线冷结点补偿(CJC)的K型热电偶来进行温度测量图4为该应用电路图。该热电偶测量电路采用自动置零、单电源放大器OPA335。精密电压基准REF3040提供4.096V的桥式电源。二极管D1的正向电压具有-2mV/℃的负温度系数,并通过电阻器网络R1-R3来提供冷结点补偿。针对规定的最低温度的零点调节是通过R6来实现的,而R7和R9负责设定输出放大器的增益。OPA335提供了AOL,=130dB的高DC开环增益,从而在低电压应用中实现了超过16位的准确度(在高增益条件下)。自动置零操作消除了1/f噪声,并提供了5μV(最大值)的初始失调以及0.05μV/℃(最大值)的极低温度失调漂移。因此,对于那些强制要求高准确度、低漂移和低噪声的单电源、精密型应用而言,0PA335是理想之选。2.4采用MSCl200的多热电偶用自主型温度测量图5(a)为采用MSCl200的多热电偶用自主型温度测量应用图。该温度测量电路采用混合信号控制器MSCl200来测量四种不同类型的热电偶(Tc1-Tc4)的差分输出电压和参考温度。MSCl200集成了具有22位有效分辨率的△∑型ADC、通用型输入多路转换器、可选输入缓冲器和增益调节范围为1-128的可编程增益放大器(PGA) ,见图5(b)所示。该器件包括片上温度传感器、快闪存储器和SRAM存储器以及改良型8051-CPU(在功耗相同的情况下,其运行速度可达最初标准版本的3倍)。片上电流数字-模拟转换器(1-DAC)可提供至RTD和热敏电阻的激励电流。其MSCl200混合信号控制器内部框图见图5(b)所示。2.41 集成电流源为实现传感器烧毁检测创造了条件从图5(a)可分析,在热电偶定位较远的场合,输入RC低通滤波器将消除差分和共模噪声(当在噪声环境中工作时,热电偶的导线有可能拾取这些噪声)。对于不同类型的热电偶,有可能需要采用不同的PGA(可编程增益放大器)设置以减小模拟输入阻抗。低输入阻抗可导致补偿电流流过热电偶。这些电流会扰乱电子密度(塞贝克效应正是因此而产生的),从而在热电偶输出端给出错误的热电势读数。为了始终提供某些GW(增益宽带)的高输入阻抗,必须启动输入缓冲器。然而,这将把输入共模范围降至比模拟地高50mV,而比正模拟电源低1.5V。为了确保热电偶信号处于该范围之内,应通过10k-100kΩ(见图5(a)中RLIN)电阻器来给每个输入施加偏置电压。该偏置电压由精密电压基准电路REF3112来提供,它具有0.2%的初始误差和15ppm/℃的温度漂移。2.42冷结点补偿从图5(a)可知,冷结点补偿(CJC)是通过由AINCOM引脚(图5(a)下端)读出线性化热敏电阻电路两端的输出电压来完成的。输入多路转换器的通用性使得能够将缓冲器的正输入和负输入分配至任何模拟输入引脚。因此,为了对参考温度进行差分测量,需将一个缓冲器输入连接至AINCOM而将另一个输入连接至任何热电偶的“低端”输入(AI N1、3、5或7)。然而,一旦选择了某个输入,则参考温度的所有后续差分测量都必须以同一个“低端”输入为基准。如果MSCl200靠近等温部件且基于所需的准确度,则片上MSCl200的温度传感器可被用于CJC。2.5

采用INA330来进行热电冷却器的恒温控制图6为该恒温控制电路。其1NA330是专为在光网络和医学分析应用中进行热电冷却器(TEC)控制而设计的精密型放大器,它专为在基于10kΩ热敏电阻的温度控制器中使用而进行了优化。INA330提供热敏电阻激励,并生成与施加在输入端上的电阻差成比例的输出电压。它只采用了一个精密电阻器(RSET)和热敏电阻(图6左侧带箭头的RTHERM =10kΩ),因而为传统的桥式电路提供了一种替代方案。这种新型拓扑结构免除了增设两个精密电阻器的需要,同时保持了适合于温度控制应用的绝佳准确度。INA330在产品的使用寿命期限内始终提供了优异的长期稳定性和非常低的1/f噪声。低失调使得-40℃至+85℃范围内的温度误差仅为0.009℃。从图6左上可见,施加在输入端V1和V2上的激励电压将产生流经热敏电阻(R THERM)和精密电阻器(RSET)的电流I1和I2片上电流输送电路产生的输出电流为Io=I1-I2。该流经外部增益设定电阻器(RG)的输出电流在外部进行缓冲,并出现在Vo引脚上。任何加至RG另一端的偏置电压都将与输出电压相加,因此,Vo=Io·RG+VADJUST.该输出电压将馈送至PID控制器,这个控制器向采用桥接负载配置的TEC驱动器提供输入电压。两个运算放大器(OPA569)为CMOS型、单电源放大器,可在采用3V电源的情况下提供高达2A的负载驱动电流。在本应用中,受控温度由DAC来设定。如果TEC的温度升至设定温度以上,则TEC电流将单向流动,以进行冷却。如果温度降至设定点以下,则电流方向反转,TEC发热升温。图中的虚线表示从TEC至热敏电阻的闭环热反馈。两者虽然从机械上来讲是安装在一起的,但在电气上却是相互隔

离的。3、数字温度传感器TMP75和TMPl75是二线式、串行输出温度传感器,其内部组成框图见图7(a)所示。这些器件无需使用外部元件,并能够以0.0625℃的分辨率来显示温度读数。二线式接口与SMBus兼容,从而允许TMPl75在一根总线上连接多达27部设备(而TMP75则最多可在一根总线上连接8部设备)。这两款器件均具有SMBus报警功能,是工业环境中常见的扩展温度测量应用(见图7(b)所示)的理想选择。3.1主要特点* 27个地址(TMPl75) *8个地址(TMP75) *数字输出:二线式串行接口*分辨率:9至12位,用户可选*准确度:±1.5℃(最大值),在25℃至+85℃范围内±2.0℃(最大值),在40℃至+125℃范围内*低静态电流:50μA,0.1μA(待机状态下) *宽电源范围:2.7V至5.5V*封装型式:SO-8 3.2应用范围*电源温度监视*电脑外设热保护*恒温器控制器*环境监控和HVAC4、用热敏电阻与风扇控制器集成电路(IC)组合解决控制大功率电路的散热方案*大功率电路的散热问题投影仪、大功率电源、数据通讯交换机和路由器等设备的散热是一个值得考虑的问题。这些应用功耗极大,使设计人员在设计时要用风扇来冷却电子元件。如果吹向元器件的气流等于或小于每分钟六到七立方英尺(CFM)即可满足冷却要求,那么直流无刷风扇将是一个不错的选择。*利用带微处理器的电路或独立风扇控制器集成电路(1C)驱动和控制直流无刷风扇的转速的选择。如果应用中有多个风扇,则基于单片机的系统是最佳电路方案。借助这一单芯片方案和为数不多的外部元件,即可经济地对各种环境下的所有风扇及温度进行控制。对于单一风扇的电路,独立风扇控制器IC是最佳选择.独立IC具备故障检测电路,当风扇出现故障时会通知系统,从而切断系统的耗电部分。独立IC的风扇故障检测电路能够抗干扰,可确保将假警报滤除。采用NTC热敏电阻或片上的内部温度传感器,即可将这种电路用于远程温度传感,具有很好的经济性。这种电路的另一个优点在于可检测双线风扇的故障,双线风扇比三线风扇更加便宜。*风扇的激励、温度监测以及风扇噪声是设计中的三个主要问题如果不考虑所采用的电路类型,当风扇的位置确定下来后,应对三个主要的设计

问题加以考虑,分别为:风扇的激励、温度监测以及风扇噪声。图8所示为利用独立IC驱动双线风扇的电路。此电路中, 风扇控制器集成电路TC647B的作用是根据NTC热敏电阻上传感的温度改变风扇的转速。TC647B 还可检测风扇运行,并显示风扇何时发生了故障。无刷直流风扇的转速可通过两种方法控制,即线性改变风扇电压或对电压进行脉宽调制(PWM)。图8中TC647B利用PWM波形驱动晶体管Q1的基极,进而驱动风扇电压。改变PWM波形的脉宽可提高/降低风扇转速。利用脉宽调制法控制风扇的转速,效率比线性调整法高。通过图8可获得工作于PWM模式下,RSENSE两端和SENSE引脚上的电压。检测电阻RSENSE上的电压既有直流成分,又有交流成分。交流电压是由风扇电机绕组上电流换相产生的.RSENSE上的瞬时电压通过CSENSE

耦合到TC647B的SENSE引脚。这样就除去了检测电阻上电压的直流成分。SENSE引脚上接有一个10KΩ的内部接地电阻,该引脚可检测电压脉冲,并将风扇的运行情况传送给TC647B。如果SENSE 引脚在一秒钟内未检测到脉冲,TC647B即显示出现了故障。*热敏电阻RNTC与TC647B连接的三种方案。见图9(a)(b)(c)所示利用一种廉价的方案,如一只热敏电阻,即可方便地测量出温度。热敏电阻具有快速、小巧、输出范围宽等特点,且只需一个双线接口。其另一个优点在于,热敏电阻与TC647B的距离可以较远,从而使布局更加灵活。尽管热敏电阻不是线性的,但可在一个较小的温度范围内(+25℃)进行线性化处理,如图9(a)(b)所示。线性化处理和电平变化是利用标准的1%电阻R1和R2实现的。图9热敏电阻RNTC与TC647B连接是采用为图9(C) 所示-具备电平变化功能的分压电路形式。尽管分立电路或单片机方案均可实现对双线风扇的转速进行与温度成正比的控制和风扇故障检测,但设计者还应注意以下几点。TC647B是一枚开关模式双线无刷直流风扇转速控制器。脉宽调制(PWM)是用来控制与热敏电阻的温度相关的风扇转速的。风扇的最小转速可通过连接到V MIN的简单电阻分压器来设置。利用集成的启动定时器确保电机通电时能可靠启动、从关断模式恢复,或在瞬时故障后能自动重启风扇。由于TC647B采用了Microchip的FanSense(风扇捡测)技术,提高了系统可靠性。5、结束语

上述介绍的常用温度传感器的分类及温度传感器的智能化,即工业过程与检测的温度测量电路,它们是实用技术的一部分,究竟采用何种?是要根据实际项目的情况作出选择。参考文献:1、TEXAS INSTRUMENTS Te chnology for Innovators first quarter.2005.

实用温度传感器的智能化与应用

吴康摘要:本文从常用的三种温度传感器-热电偶、rtd和ntc热敏电阻开始到智能化的开拓与数字温度传感器引入将分别按序介绍,并对其在解决大功率电路发热设计方案中的应用作一分折说明。关键词:线性化共模噪声结点补偿温度漂移pwm模式1、工业中常用温度传感器的分类温度是测量频度最高的物理参数,并且可采用各种各样的传感器来进行测量。所有这些传感器均通过检测某种物理特性的变化来推断温度。最常用的三种温度传感器是热电偶、电阻温度计(rtd)和ntc热敏电阻,见图1所示。值此先作介绍。2、analog for the digital age 2004 microchi p technology inc.1.1热电偶由两个焊接在一起的异金属导线(以形成两个结点)所组成。结点之间的温差会在两根导线之间产生热电电位(即电压)。通过将参考结点保持在已知温度上并测量该电压,便可推断出检测结点的温度。热电偶的优点是工作温度范围非常宽,而且体积极小。不过,它们也存在着输出电压小、容易遭受来自导线环路的噪声影响以及漂移较高的缺陷。1.2电阻温度计(rtd) 是能够显示电阻值随温度变化情况的绕丝或薄膜螺旋管。虽然常用的金属是铜、镍和镍铁合金等,但采用铂制成的rtd具有最佳的线性、可重复性和稳定性。凭借其上佳的线性和无与伦比的长期稳定性,铂rtd牢固确立了自己作为温度参考传递国际标准的地位。尽管薄膜铂rtd提供了性能匹配,但标准等级线绕电阻则在成本、外形尺寸和便利性方面更胜一筹。早期的薄膜铂rtd饱受漂移的困扰,原因是它们具有较高的表面积与体积之比,因而令其对污染更加敏感。后来,薄膜隔离和封装的改进消除了这些问题,使得薄膜rt d一举超越线绕电阻和ntc热敏电阻而成为温度传感器之首选。1.3 ntc热敏电阻由金属氧化物陶瓷组成,是低成本、灵敏度最高的温度传感器。同时,它们也是线性最差的温度传感器,并具有负温度系数。热敏电阻拥有各种外形尺寸、基极电阻值以及电阻-温度(r-t)函数关系曲线,可供简化封装和输出线性化电路之用。通常将两个热敏电阻组合起来使用,以使输出具有较好的线性。常用的热敏电阻具有10%-20%的互换性。虽然可提供1%的精确互换性,但花费的成本往往要高于铂rtd。普通的热敏电阻可在有限的工作温度范围内呈现出上佳的电阻稳定性,而在较宽的温度范围内工作时则表现出中等水平的稳定性(在125℃条件下为2%/1000小时)。2、温度传感器的智能化-工业过程与检测的温度测量电路2.1 rtd测量电路-0℃至400℃温度范围的ptl00传感器线性化测量电路图2为只采用一个双通道运算放大器opa2335和7个电阻器便构建了具有线性化功能的低成本rtd测量电路。该电路的第一级负责在0℃至400℃的温度范围内对ptl00传感器进行线性化处理,从而产生±0.08℃的最大温度误差。r1用于确定rtd的初始激励电流。r3和r4负责设定线性化级的增益,以确保a1的输入处于其共模范围之内。vo1将随着温度的升高而升高。vo1的一小部分通过r2馈回输入端,用于线性化处理。应计算出合适的r1-r4 电阻器阻值,使得通过rtd的最大激励电流的电阻达100ω,以避免由于自发热而导致测量误差。该电路的第二级负责失调和增益调节。这里,对vo1的线性斜率重新进行调整,以便在0.5v至4.5v的输出范围内提供10mv/℃的vo2斜率。22 通过4-20ma电流环路对远程三线式rtd进行温度测量图3为该电路采用4-20ma电流发送器xtr112来测量远程三线式rtd的温度的应用电路图(三线式是图3中rtd上下的1、2、3线),这儿应用了4-20ma电流发送器xtr112的电流环路功能。该器件提供了两个用于rtd激励和线性电阻补偿的匹配电流源。内部线性化电路为rtd提供二阶校正,从而实现了40:1的线性度提升。ir2是用于rtd的激励电流。ir1是流经rz和rline1,的补偿电流。通过选择与最低温度条件下的rtd阻值相等的rz 阻值,xtr112的内部仪表放大器(1na)将测量rtd电阻中与温度相关的阻值差量。采用rcm来提供附加压降,用于给xtrll2的输入施加偏压,使其处于共模输入范围之内。0.01μf旁路电容器可最大限度地降低共模噪声。rg用于设定i na的增益。对于二阶线性化处理,ina输出电压的一小部分通过电阻器r lin1和r lin2进行反馈。该输出电压在内部被转换为电流,然后加至返回电流iret,以产生io=4ma+vin,40/rg的输出电流。在电流环路侧,与信号相关的4-20 ma环路电流的大部分由晶体管q1来传导。这把大多数功耗与xtr112的内部精密电路隔离开来,从而保持了超群的准确度。2.3 采用连线冷结点补偿(cjc)的k型热电偶来进行温度测量图4为该应用电路图。该热电偶测量电路采用自动置零、单电源放大器opa335。精密电压基准ref3040提供4.096v的桥式电源。二极管d1的正向电压具有-2m v/℃的负温度系数,并通过电阻器网络r1-r3来提供冷结点补偿。针对规定的最低温度的零点调节是通过r6来实现的,而r7和r9负责设定输出放大器的增益。opa335提供了aol,=130db的高dc开环增益,从而在低电压应用中实现了超过16位的准确度(在高增益条件下)。自动置零*作消除了1/f噪声,并提供了5μv(最大值)的初始失调以及0. 05μv/℃(最大值)的极低温度失调漂移。因此,对于那些强制要求高准确度、低漂移和低噪声的单电源、精密型应用而言,0pa335是理想之选。2.4采用mscl200的多热电偶用自主型温度测量图5(a)为采用mscl200的多热电偶用自主型温度测量应用图。该温度测量电路采用混合信号控制器mscl200来测量四种不同类型的热电偶(tc1-tc4)的差

分输出电压和参考温度。mscl200集成了具有22位有效分辨率的△∑型adc、通用型输入多路转换器、可选输入缓冲器和增益调节范围为1-128的可编程增益放大器(pga) ,见图5(b)所示。该器件包括片上温度传感器、快闪存储器和sram存储器以及改良型8051-cpu(在功耗相同的情况下,其运行速度可达最初标准版本的3倍)。片上电流数字-模拟转换器(1-dac)可提供至rtd和热敏电阻的激励电流。其mscl200混合信号控制器内部框图见图5(b)所示。2.41 集成电流源为实现传感器烧毁检测创造了条件从图5(a)可分析,在热电偶定位较远的场合,输入rc低通滤波器将消除差分和共模噪声(当在噪声环境中工作时,热电偶的导线有可能拾取这些噪声)。对于不同类型的热电偶,有可能需要采用不同的pga(可编程增益放大器)设置以减小模拟输入阻抗。低输入阻抗可导致补偿电流流过热电偶。这些电流会扰乱电子密度(塞贝克效应正是因此而产生的),从而在热电偶输出端给出错误的热电势读数。为了始终提供某些g w(增益宽带)的高输入阻抗,必须启动输入缓冲器。然而,这将把输入共模范围降至比模拟地高50mv,而比正模拟电源低1.5v。为了确保热电偶信号处于该范围之内,应通过10k-100kω(见图5(a)中rlin)电阻器来给每个输入施加偏置电压。该偏置电压由精密电压基准电路ref3112来提供,它具有0.2%的初始误差和15ppm/℃的温度漂移。2.42冷结点补偿从图5(a)可知,冷结点补偿(cjc)是通过由aincom引脚(图5(a)下端)读出线性化热敏电阻电路两端的输出电压来完成的。输入多路转换器的通用性使得能够将缓冲器的正输入和负输入分配至任何模拟输入引脚。因此,为了对参考温度进行差分测量,需将一个缓冲器输入连接至aincom而将另一个输入连接至任何热电偶的“低端”输入(ai n1、3、5或7)。然而,一旦选择了某个输入,则参考温度的所有后续差分测量都必须以同一个“低端”输入为基准。如果mscl200*近等温部件且基于所需的准确度,则片上mscl200的温度传感器可被用于cjc。2.5采用ina330来进行热电冷却器的恒温控制图6为该恒温控制电路。其1na330是专为在光网络和医学分析应用中进行热电冷却器(t ec)控制而设计的精密型放大器,它专为在基于10kω热敏电阻的温度控制器中使用而进行了优化。ina330提供热敏电阻激励,并生成与施加在输入端上的电阻差成比例的输出电压。它只采用了一个精密电阻器(rset)和热敏电阻(图6左侧带箭头的rtherm =10kω),因而为传统的桥式电路提供了一种替代方案。这种新型拓扑结构免除了增设两个精密电阻器的需要,同时保持了适合于温度控制应用的绝佳准确度。ina330在产品的使用寿命期限内始终提供了优异的长期稳定性和非常低的1/f噪声。低失调使得-40℃至+85℃范围内的温度误差仅为0.009℃。从图6左上可见,施加在输入端v1和v2上的激励电压将产生流经热敏电阻(rtherm)和精密电阻器(rset)的电流i1和i2片上电流输送电路产生的输出电流为io=i1-i2。该流经外部增益设定电阻器(rg)的输出电流在外部进行缓冲,并出现在vo引脚上。任何加至rg另一端的偏置电压都将与输出电压相加,因此,vo=io·rg+vadjust.该输出电压将馈送至pid控制器,这个控制器向采用桥接负载配置的tec驱动器提供输入电压。两个运算放大器(opa569)为cmos型、单电源放大器,可在采用3 v电源的情况下提供高达2a的负载驱动电流。在本应用中,受控温度由dac来设定。如果tec的温度升至设定温度以上,则tec电流将单向流动,以进行冷却。如果温度降至设定点以下,则电流方向反转,tec发热升温。图中的虚线表示从tec至热敏电阻的闭环热反馈。两者虽然从机械上来讲是安装在一起的,但在电气上却是相互隔离的。3、数字温度传感器tmp75和tmpl75是二线式、串行输出温度传感器,其内部组成框图见图7(a)所示。这些器件无需使用外部元件,并能够以0.0625℃的分辨率来显示温度读数。二线式接口与smbus兼容,从而允许tmpl75在一根总线上连接多达27部设备(而tmp75则最多可在一根总线上连接8部设备)。这两款器件均具有smbus报警功能,是工业环境中常见的扩展温度测量应用(见图7(b)所示)的理想选择。3.1主要特点*27个地址(tmpl75) *8个地址(tmp 75) *数字输出:二线式串行接口*分辨率:9至12位,用户可选*准确度:±1.5℃(最大值),在25℃至+85℃范围内±2.0℃(最大值),在40℃至+125℃范围内*低静态电流:50μa,0.1μa(待机状态下) *宽电源范围:2.7v至5.5v*封装型式:so-8 3.2应用范围*电源温度监视*电脑外设热保护*恒温器控制器*环境**和hvac4、用热敏电阻与风扇控制器集成电路(ic)组合解决控制大功率电路的散热方案*大功率电路的散热问题投影仪、大功率电源、数据通讯交换机和路由器等设备的散热是一个值得考虑的问题。这些应用功耗极大,使设计人员在设计时要用风扇来冷却电子元件。如果吹向元器件的气流等于或小于每分钟六到七立方英尺(cfm)即可满足冷却要求,那么直流无刷风扇将是一个不错的选择。*利用带微处理器的电路或独立风扇控制器集成电路(1c)驱动和控制直流无刷风扇的转速的选择。如果应用中有多个风扇,则基于单片机的系统是最佳电路方案。借助这一单芯片方案和为数不多的外部元件,即可经济地对各种环境下的所有风扇及温度进行控制。对于单一风扇的电路,独立风扇控制器ic是最佳选择.独立ic具备故障检测电路,当风扇出现故障时会通知系统,从而切断系统的耗电部分。独立ic的风扇故障检测电路能够抗干扰,可确保将假警报滤除。采用ntc热敏电阻或片上的内部温度传感器,即可将这种电路用于远程温度传感,具有很好的经济性。这种电路的另一个优点在于可检测双线风扇的故障,双线风扇比三线风扇更加便宜。*风扇的激励、温度监测以及风扇噪声

是设计中的三个主要问题如果不考虑所采用的电路类型,当风扇的位置确定下来后,应对三个主要的设计问题加以考虑,分别为:风扇的激励、温度监测以及风扇噪声。图8所示为利用独立ic驱动双线风扇的电路。此电路中, 风扇控制器集成电路tc647b的作用是根据ntc热敏电阻上传感的温度改变风扇的转速。tc647b还可检测风扇运行,并显示风扇何时发生了故障。无刷直流风扇的转速可通过两种方法控制,即线性改变风扇电压或对电压进行脉宽调制(pwm)。图8中tc647b利用pwm波形驱动晶体管q1的基极,进而驱动风扇电压。改变pwm波形的脉宽可提高/降低风扇转速。利用脉宽调制法控制风扇的转速,效率比线性调整法高。通过图8可获得工作于pwm模式下,rsense两端和sense引脚上的电压。检测电阻rsense上的电压既有直流成分,又有交流成分。交流电压是由风扇电机绕组上电流换相产生的.rsense上的瞬时电压通过csense耦合到tc647b的sense引脚。这样就除去了检测电阻上电压的直流成分。sense引脚上接有一个10kω的内部接地电阻,该引脚可检测电压脉冲,并将风扇的运行情况传送给tc647b。如果sense 引脚在一秒钟内未检测到脉冲,tc647b即显示出现了故障。*热敏电阻rntc与tc647b连接的三种方案。见图9(a)(b)(c)所示利用一种廉价的方案,如一只热敏电阻,即可方便地测量出温度。热敏电阻具有快速、小巧、输出范围宽等特点,且只需一个双线接口。其另一个优点在于,热敏电阻与tc647b的距离可以较远,从而使布局更加灵活。尽管热敏电阻不是线性的,但可在一个较小的温度范围内(+25℃)进行线性化处理,如图9(a)(b)所示。线性化处理和电平变化是利用标准的1%电阻r1和r2实现的。图9热敏电阻rntc与tc647b连接是采用为图9(c) 所示-具备电平变化功能的分压电路形式。尽管分立电路或单片机方案均可实现对双线风扇的转速进行与温度成正比的控制和风扇故障检测,但设计者还应注意以下几点。tc647b是一枚开关模式双线无刷直流风扇转速控制器。脉宽调制(pwm)是用来控制与热敏电阻的温度相关的风扇转速的。风扇的最小转速可通过连接到vmin的简单电阻分压器来设置。利用集成的启动定时器确保电机通电时能可*启动、从关断模式恢复,或在瞬时故障后能自动重启风扇。由于tc647b采用了microchip的fansense(风扇捡测)技术,提高了系统可*性。5、结束语上述介绍的常用温度传感器的分类及温度传感器的智能化,即工业过程与检测的温度测量电路,它们是实用技术的一部分,究竟采用何种?是要根据实际项目的情况作出选择。参考文献:1、texas instruments technology for innovators first quarter.2005.

作者:时间:2007-04-17 来源:https://www.wendangku.net/doc/a73924478.html,

摘要:本文从常用的三种温度传感器-热电偶、rtd和ntc热敏电阻开始到智能化的开拓与数字温度传感器引入将分别按序介绍,并对其在解决大功率电路发热设计方案中的应用作一分折说明。

工业中常用温度传感器的分类

温度是测量频度最高的物理参数,并且可采用各种各样的传感器来进行测量。所有

这些传感器均通过检测某种物理特性的变化来推断温度。最常用的三种温度传感器

是热电偶、电阻温度计(rtd)和ntc热敏电阻,见图1所示。值此先作介绍。

1.1热电偶

由两个焊接在一起的异金属导线(以形成两个结点)所组成。结点之间的温差会在两根导线之间产生热电电位(即电压)。通过将参考结点保持在已知温度上并测量该电压,

便可推断出检测结点的温度。热电偶的优点是工作温度范围非常宽,而且体积极小。不过,它们也存在着输出电压小、容易遭受来自导线环路的噪声影响以及漂移较高的缺陷。

1.2电阻温度计(rtd)

是能够显示电阻值随温度变化情况的绕丝或薄膜螺旋管。虽然常用的金属是铜、镍和镍铁合金等,但采用铂制成的rtd具有最佳的线性、可重复性和稳定性。凭借其上佳的线性

和无与伦比的长期稳定性,铂rtd 牢固确立了自己作为温度参考传递国际标准的地位。尽管薄膜铂rtd提供了性能匹配,但标准等级线绕电阻则在成本、外形尺寸和便利性方面更胜一筹。早期的薄膜铂rtd饱受漂移的困扰,原因是它们具有较高的表面积与体积之比,因而令其对污染更加敏感。后来,薄膜隔离和封装的改进消除了这些问题,使得薄膜rtd 一举超越线绕电阻和ntc热敏电阻而成为温度传感器之首选。

1.3 ntc热敏电阻

由金属氧化物陶瓷组成,是低成本、灵敏度最高的温度传感器。同时,它们也是线性最差的温度传感器,并具有负温度系数。热敏电阻拥有各种外形尺寸、基极电阻值以及电阻- 温度(r-t)函数关系曲线,可供简化封装和输出线性化电路之用。通常将两个热敏电阻组合起来使用,以使输出具有较好的线性。常用的热敏电阻具有10%- 20%的互换性。虽然可提供1%的精确互换性,但花费的成本往往要高于铂rtd。普通的热敏电阻可在有限的工作温度范围内呈现出上佳的电阻稳定性,而在较宽的温度范围内工作时则表现出中等水平的稳定性(在125℃条件下为2%/1000小时)。

温度传感器的智能化-工业过程与检测的温度测量电路

2.1 rtd测量电路-0℃至400℃温度范围的ptl00传感器线性化测量电路

图2为只采用一个双通道运算放大器opa2335和7个电阻器便构建了具有线性化功能的低成本rtd测量电路。该电路的第一级负责在0℃至400℃的温度范围内对ptl00传感器进行线性化处理,从而产生±0.08℃的最大温度误差。r1用于确定rtd的初始激励电流。r3和r4负责设定线性化级的增益,以确保a1的输入处于其共模范围之内。vo1将随着温度的升高而升高。vo1的一小部分通过r2馈回输入端,用于线性化处理。应计算出合适的r1-r4电阻器阻值,使得通过rtd的最大激励电流的电阻达100ω,以避免由于自发热而导致测量误差。

该电路的第二级负责失调和增益调节。这里,对vo1的线性斜率重新进行调整,以便在0.5v至4.5v的输出范围内提供10mv/℃的vo2斜率。

22 通过4-20ma电流环路对远程三线式rtd进行温度测量

图3为该电路采用4- 20ma电流发送器xtr112来测量远程三线式rtd的温度的应用电路图(三线式是图3中rtd上下的1、2、3线),这儿应用了4-20ma电流发送器xtr112的电流环路功能。该器件提供了两个用于rtd激励和线性电阻补偿的匹配电流源。内部线性化电路为rtd提供二阶校正,从而实现了40:1的线性度提升。ir2是用于rtd 的激励电流。ir1是流经rz和rline1,的补偿电流。通过选择与最低温度条件下的rtd 阻值相等的rz阻值,xtr112的内部仪表放大器(1na)将测量rtd电阻中与温度相关的阻值差量。

采用rcm来提供附加压降,用于给xtrll2的输入施加偏压,使其处于共模输入范围之内。0.01μf旁路电容器可最大限度地降低共模噪声。rg用于设定ina的增益。对于二阶线性化处理,ina输出电压的一小部分通过电阻器r lin1和r lin2进行反馈。该输出电压在内部被转换为电流,然后加至返回电流iret,以产io=4ma+vin,40/rg 的输出电流。

在电流环路侧,与信号相关的4-20ma环路电流的大部分由晶体管q1来传导。这把大多数功耗与xtr112的内部精密电路隔离开来,从而保持了超群的准确度。

2.3 采用连线冷结点补偿(cjc)的k型热电偶来进行温度测量

图4为该应用电路图。该热电偶测量电路采用自动置零、单电源放大器opa335。精密电压基准ref3040提供4.096v的桥式电源。二极管d1的正向电压具有-2mv/℃的负温度系数,并通过电阻器网络r1-r3来提供冷结点补偿。

针对规定的最低温度的零点调节是通过r6 来实现的,而r7和r9负责设定输出放大器的增益。opa335提供了aol,=130db的高dc开环增益,从而在低电压应用中实现了超过16位的准确度(在高增益条件下)。自动置零操作消除了1/f噪声,并提供了5μv(最大值)的初始失调以及0.05μv/℃(最大值)的极低温度失调漂移。因此,对于那些强制要求高准确度、低漂移和低噪声的单电源、精密型应用而言,0pa335是理想之选。

2.4采用mscl200的多热电偶用自主型温度测量

图5(a)为采用mscl200的多热电偶用自主型温度测量应用图。该温度测量电路采用混合信号控制器mscl200来测量四种不同类型的热电偶(tc1-tc4)的差分输出电压和参考温度。mscl200集成了具有22位有效分辨率的△∑型adc、通用型输入多路转换器、可选输入缓冲器和增益调节范围为1-128的可编程增益放大器(pga) ,见图5(b)所示。该器件包括片上温度传感器、快闪存储器和sram存储器以及改良型

8051-cpu(在功耗相同的情况下,其运行速度可达最初标准版本的3倍)。片上电流数字-模拟转换器(1-dac)可提供至rtd和热敏电阻的激励电流。其mscl200混合信号控制器内部框图见图5(b)所示。

2.41 集成电流源为实现传感器烧毁检测创造了条件

从图5(a) 可分析,在热电偶定位较远的场合,输入rc低通滤波器将消除差分和共模噪声(当在噪声环境中工作时,热电偶的导线有可能拾取这些噪声)。对于不同类型的热电偶,有可能需要采用不同的pga(可编程增益放大器)设置以减小模拟输入阻抗。低输入阻抗可导致补偿电流流过热电偶。这些电流会扰乱电子密度(塞贝克效应正是因此而产生的),从而在热电偶输出端给出错误的热电势读数。为了始终提供某些gw(增益宽带)的高输入阻抗,必须启动输入缓冲器。然而,这将把输入共模范围降至比模拟地高50mv,而比正模拟电源低1.5v。为了确保热电偶信号处于该范围之内,应通过10k-100kω(见图5(a)中rlin)电阻器来给每个输入施加偏置电压。该偏置电压由精密电压基准电路ref3112来提供,它具有0.2%的初始误差和15ppm/℃的温度漂移。

2.42冷结点补偿

从图5(a)可知,冷结点补偿(cjc)是通过由aincom引脚(图5(a)下端)读出线性化热敏电阻电路两端的输出电压来完成的。

输入多路转换器的通用性使得能够将缓冲器的正输入和负输入分配至任何模拟输入引脚。因此,为了对参考温度进行差分测量,需将一个缓冲器输入连接至aincom而将另一个输入连接至任何热电偶的“低端”输入(ain1、3、5或7)。然而,一旦选择了某个输入,则参考温度的所有后续差分测量都必须以同一个“低端”输入为基准。如果mscl200靠近等温部件且基于所需的准确度,则片上mscl200的温度传感器可被用

于cjc。

2.5采用ina330来进行热电冷却器的恒温控制

图6为该恒温控制电路。其1na330 是专为在光网络和医学分析应用中进行热电冷却器(tec)控制而设计的精密型放大器,它专为在基于10kω热敏电阻的温度控制器中使用而进行了优化。ina330提供热敏电阻激励,并生成与施加在输入端上的电阻差成比例的输出电压。它只采用了一个精密电阻器(rset)和热敏电阻(图6左侧带箭头的rtherm =10kω),因而为传统的桥式电路提供了一种替代方案。这种新型拓扑结构免除了增设两个精密电阻器的需要,同时保持了适合于温度控制应用的绝佳准确度。ina330在产品的使用寿命期限内始终提供了优异的长期稳定性和非常低的1/f 噪声。低失调使得-40℃至+85℃范围内的温度误差仅为0.009℃。

从图6 左上可见,施加在输入端v1和v2上的激励电压将产生流经热敏电阻(rtherm)和精密电阻器(rset)的电流i1和i2片上电流输送电路产生的输出电流为io=i1-i2。该流经外部增益设定电阻器(rg)的输出电流在外部进行缓冲,并出现在vo引脚上。任何加至rg另一端的偏置电压都将与输出电压相加,因此,vo=io·rg+vadjust.该输出电压将馈送至pid控制器,这个控制器向采用桥接负载配置的tec驱动器提供输入电压。两个运算放大器(opa569)为cmos型、单电源放大器,可在采用3v电源的情况下提供高达2a的负载驱动电流。

在本应用中,受控温度由dac来设定。如果tec的温度升至设定温度以上,则tec 电流将单向流动,以进行冷却。如果温度降至设定点以下,则电流方向反转,tec 发热升温。图中的虚线表示从tec至热敏电阻的闭环热反馈。两者虽然从机械上来讲是安装在一起的,但在电气上却是相互隔离的。

数字温度传感器

tmp75 和tmpl75是二线式、串行输出温度传感器,其内部组成框图见图7(a)所示。这些器件无需使用外部元件,并能够以0.0625℃的分辨率来显示温度读数。二线式接口与smbus兼容,从而允许tmpl75在一根总线上连接多达27部设备(而tmp75则最多可在一根总线上连接8部设备)。这两款器件均具有smbus报警功能,是工业环境中常见的扩展温度测量应用(见图7(b)所示)的理想选择。

3.1主要特点

*27个地址(tmpl75)

*8个地址(tmp75)

*数字输出:二线式串行接口

*分辨率:9至12位,用户可选

*准确度:

±1.5℃(最大值),在25℃至+85℃范围内

±2.0℃(最大值),在40℃至+125℃范围内

*低静态电流:50μa,0.1μa(待机状态下)

*宽电源范围:2.7v至5.5v

*封装型式:so-8

3.2应用范围

*电源温度监视

*电脑外设热保护

*恒温器控制器

*环境监控和hvac

4、用热敏电阻与风扇控制器集成电路(ic)组合解决控制大功率电路的散热方案

*大功率电路的散热问题

投影仪、大功率电源、数据通讯交换机和路由器等设备的散热是一个值得考虑的问题。这些应用功耗极大,使设计人员在设计时要用风扇来冷却电子元件。如果吹向元器件的气流等于或小于每分钟六到七立方英尺(cfm)即可满足冷却要求,那么直流无

刷风扇将是一个不错的选择。

*利用带微处理器的电路或独立风扇控制器集成电路(1c)驱动和控制直流无刷风扇的转速的选择。

如果应用中有多个风扇, 则基于单片机的系统是最佳电路方案。借助这一单芯片方案和为数不多的外部元件,即可经济地对各种环境下的所有风扇及温度进行控制。对于单一风扇的电路,独立风扇控制器ic是最佳选择.独立ic具备故障检测电路,当风扇出现故障时会通知系统,从而切断系统的耗电部分。独立ic的风扇故障检测电路能够抗干扰,可确保将假警报滤除。采用ntc热敏电阻或片上的内部温度传感器,即可将这种电路用于远程温度传感,具有很好的经济性。这种电路的另一个优点在于可检测双线风扇的故障,双线风扇比三线风扇更加便宜。

*风扇的激励、温度监测以及风扇噪声是设计中的三个主要问题

如果不考虑所采用的电路类型,当风扇的位置确定下来后,应对三个主要的设计问题加以考虑,分别为:风扇的激励、温度监测以及风扇噪声。

图8所示为利用独立ic驱动双线风扇的电路。此电路中,风扇控制器集成电路tc647b 的作用是根据ntc热敏电阻上传感的温度改变风扇的转速。tc647b还可检测风扇运行,并显示风扇何时发生了故障。

无刷直流风扇的转速可通过两种方法控制,即线性改变风扇电压或对电压进行脉宽调制(pwm)。图8中tc647b利用pwm波形驱动晶体管q1的基极,进而驱动风扇电压。

改变pwm波形的脉宽可提高/降低风扇转速。利用脉宽调制法控制风扇的转速,效率比线性调整法高。

通过图8 可获得工作于pwm模式下,rsense两端和sense引脚上的电压。检测电阻rsense上的电压既有直流成分,又有交流成分。交流电压是由风扇电机绕组上电流换相产生的.rsense上的瞬时电压通过csense耦合到tc647b的sense引脚。这样就除去了检测电阻上电压的直流成分。sense引脚上接有一个10kω的内部接地电阻,该引脚可检测电压脉冲,并将风扇的运行情况传送给tc647b。如果sense 引脚在一秒钟内未检测到脉冲,tc647b即显示出现了故障。

*热敏电阻rntc与tc647b连接的三种方案。见图9(a)(b)(c)所示

利用一种廉价的方案, 如一只热敏电阻,即可方便地测量出温度。热敏电阻具有快速、小巧、输出范围宽等特点,且只需一个双线接口。其另一个优点在于,热敏电阻与tc647b的距离可以较远,从而使布局更加灵活。尽管热敏电阻不是线性的,但可在一个较小的温度范围内(+25℃)进行线性化处理,如图9(a)(b)所示。线性化处理和电平变化是利用标准的1%电阻r1和r2实现的。图9热敏电阻rntc与tc647b连接是采用为图9(c) 所示-具备电平变化功能的分压电路形式。

尽管分立电路或单片机方案均可实现对双线风扇的转速进行与温度成正比的控制和风扇故障检测, 但设计者还应注意以下几点。tc647b是一枚开关模式双线无刷直流风扇转速控制器。脉宽调制(pwm)是用来控制与热敏电阻的温度相关的风扇转速的。风扇的最小转速可通过连接到vmin的简单电阻分压器来设置。利用集成的启动定时器确保电机通电时能可靠启动、从关断模式恢复,或在瞬时故障后能自动重启风扇。

由于tc647b采用了microchip的fansense(风扇捡测)技术,提高了系统可靠性。5、结束语

上述介绍的常用温度传感器的分类及温度传感器的智能化,即工业过程与检测的温度测量电路,它们是实用技术的一部分,究竟采用何种?是要根据实际项目的情况作出选择。

参考文献:

texas instruments technology for innovators first quarter.2005.

2、analog for the digital age 2004 microchip technology inc.

系统分类: 电子制造 | 用户分类: 无分类 | 来源: 无分类 | 【推荐给朋友

各种温度传感器分类及其原理.

各种温度传感器分类及其原理

各种温度传感器分类及其原理 温度传感器是检测温度的器件,其种类最多,应用最广,发展最快。众所周知,日常使用的材料及电子元件大部分特性都随温度而变化,在此我们暂时介绍最常用的热电阻和热电偶两类产品。 1.热电偶的工作原理 当有两种不同的导体和半导体A和B 组成一个回路,其两端相互连接时,只要两结点处的温度不同,一端温度为T,称为工作端或热端,另一端温度为TO,称为自由端(也称参考端或冷端,则回路中就有电流产生,如图2-1(a所示,即回路中存在的电动势称为热电动势。这种由于温度不同而产生电动势的现象称为塞贝克效应。 与塞贝克有关的效应有两个:其一,当有电流流过两个不同导体的连接处时,此处便吸收或放出热量(取决于电流的方向, 称为珀尔帖效应;其二,当有电流流过存在温度梯度的导体时,导体吸收或放出热量(取决 于电流相对于温度梯度的方向,称为汤姆逊效应。两种不同导体或半导体的组合称为热电偶。热电偶的热电势EAB(T,T0 是由接触电势和温差电势合成的。接触电势是指两种不同 的导体或半导体在接触处产生的电势,此电势与两种导体或半导体的性质及在接触点的温度有关。 温差电势是指同一导体或半导体在温度不同的两端产生的电势, 此电势只与导体或半导体的性质和两端的温度有关,而与导体的长度、截面大小、沿其长度方向的温度分布无关。 无论接触电势或温差电势都是由于集中于接触处端点的电子数不同而产生的电势:热电偶测量的热电势是二者的合成。当回路断开时,在断开处a,b 之间便有一电动势差△ V,其极性和大小与回路中的热电势一致,如图 2-1(b所示。并规定在冷端,当电流由A流向B时,称A为正极,B 为负极。实验表明,当△ V很小时,△ V与厶T成正比关系。定义△ V对厶T 的微分热电势为热电势率,又称塞贝克系数。

单线数字温度传感器DSB原理及其应用

单线数字温度传感器DS18B20原理及其应用 DALLAS最新单线数字温度传感器DS18B20简介新的"一线器件"体积更小、适用电压更宽、更经济Dallas 半导体公司的数字化温度传感器DS1820是世界上第一片支持"一线总线"接口的温度传感器。一线总线独特而且经济的特点,使用户可轻松地组建传感器网络,为测量系统的构建引入全新概念。DS18B20、DS1822 "一线总线"数字化温度传感器同DS1820一样,DS18B20也支持"一线总线"接口,测量温度范围为-55°C~+125°C,在-10~+85°C范围内,精度为±0.5°C。DS1822的精度较差为±2°C 。现场温度直接以"一线总线"的数字方式传输,大大提高了系统的抗干扰性。适合于恶劣环境的现场温度测量,如:环境控制、设备或过程控制、测温类消费电子产品等。与前一代产品不同,新的产品支持3V~5.5V的电压范围,使系统设计更灵活、方便。而且新一代产品更便宜,体积更小。DS18B2 0、DS1822 的特性DS18B20可以程序设定9~12位的分辨率,精度为±0.5°C。可选更小的封装方式,更宽的电压适用范围。分辨率设定,及用户设定的报警温度存储在EEPROM中,掉电后依然保存。DS18B20的性能是新一代产品中最好的!性能价格比也非常出色!DS1822与DS18B20软件兼容,是DS18B20的简化版本。省略了存储用户定义报警温度、分辨率参数的EEPROM,精度降低为±2°C,适用于对性能要求不高,成本控制严格的应用,是经济型产品。继"一线总线"的早期产品后,DS1820开辟了温度传感器技术的新概念。DS18B20和DS1822使电压、特性及封装有更多的选择,让我们可以构建适合自己的经济的测温系统。 1. DS18B20的新性能 (1) 可用数据线供电,电压范围:3.0~5.5V; (2) 测温范围:-55~+125℃,在-10~+85℃时精度为±0.5℃; (3) 可编程的分辨率为9~12位,对应的可分辨温度分别为0.5℃、0.25℃、0.125℃和0.0625℃; (4) 12位分辨率时最多在750ms内把温度值转换为数字; (5) 负压特性:电源极性接反时,温度计不会因发热而烧毁,但不能正常工作。 2. DS18B20的外形和内部结构 DS18B20内部结构主要由四部分组成:64位光刻ROM、温度传感器、非挥发的温度报警触发器TH和TL、配置寄存器。DS18B20的管脚排列如下: 图(1)DS18B20外形图 引脚定义: (1) DQ为数字信号输入/输出端; (2) GND为电源地;

开题报告-光纤温度传感器的研制

毕业设计(论文)开题报告题目:光纤温度传感器的研制 系别 专业 班级 姓名 学号 导师 ****年** 月*** 日

一、毕业设计(论文)综述(课题背景、研究意义及国内外相关研究情况) 本毕业设计研制的光纤温度传感器是指在光纤温度传感系统中,光纤作为光波的传输通路,设计一种光纤传感系统,测量待测物体的温度并与标准温度计的测量值、比较、定标以实现实用化的光纤温度测量系统。 光纤和光纤通信的问世和发展,引起了各界人士的关注,他们试图将这一新技术成果用到各自的领域。光纤传感器的出现正是这样。 目前,从大量文献资料中可看到光纤传感器的研究有如下动向: 1.继续深入研究传感器的理论和技术,解决实用化问题,发展新原理的光纤传感器。 光纤传感器基本原理的研究日益深入,强度、相位调制的传感器更加完善,而对波长调制和时间分辨信息的传感器亦有深入的研究。传感器用于实际测量的主要问题是长时间的漂移效应,漂移效应主要来自光纤传输线的衰减、祸合器和分束器特性不完整、光源输出不稳定及探测器的响应等。人们对此进行了深入研究,提出了许多解决办法,无论采用何种方法,在传感头上使用“比较”技术,使光纤传感器获得长时间的稳定,这样就可以使光纤传感器实用化。 2.从单一传感器进入到传感器系统的研究,并与微处理机相结合形成光纤遥测系统。 单一光纤传感器的研究一进入到实用化阶段,但它无法适用于多参数,多变量的测量。光纤传感器系统的一种形式是采用多路传输的光无源传感器系统,其核心问题是如何节省光路,寻求更有效利用的信息通道,使其能不畸变的更多的传输由各个光纤传感器取得的信号。利用光纤之间、几个无源传感器之间、数据遥测通道之间的多路传输达到此目的。 70年代中期,人们开始意识到光纤不仅具有传光特性,且其本身就可以构成一种新的直接交换信息的基础,无需任何中间级就能把待测的量与光纤内的导光联系起来。 1977年,美国海军研究所开始执行光纤传感器系统计划,这被认为是光纤传感器问世的日子。从这以后,光纤传感器在全世界的许多实验室里出现。 从70年代中期到80年代中期近十年的时间,光纤传感器己达近百种,它

集成温度传感器1

非接触式温度传感器 非接触式温度传感器即热探测器,热探测器(有时也放在红外光电式传感器中介绍)是在吸收红外辐射能后温度升高,引起某种物理性质的变化,这种变化与吸收的红外辐射能成一定关系。常用的物理现象有温差热电现象、金属或半导体电阻阻值变化现象、热释电现象、气体压强变化现象、金属热膨胀现象和液体薄膜蒸发现象等。 热释电型红外探测器是根据热释电效应制成的,即电石、水晶、酒石碳酸钠、钛酸钡等晶体受热产生温度变化时,其原子排列发生变化,晶体自然极化,在其两表面产生电荷的现象称为热释电效应。 热释电效应 当一些晶体受热时,在晶体两端将会产生数量相等而符号相反的电荷,这种由于热变化产生的电极化现象,被称为热释电效应。通常,晶体自发极化所产生的束缚电荷被来自空气中附着在晶体表面的自由电子所中和,其自发极化电矩不能表现出来。当温度变化时,晶体结构中的正负电荷重心相对移位,自发极化发生变化,晶体表面就会产生电荷耗尽,电荷耗尽的状况正比于极化程度,图1表

示了热释电效应形成的原理。 热释电材料是一种具有自发极化的电介质,它的自发极化强度随温度变化,可用热释电系数p来描述,p=dP/dT(P为极化强度,T为温度)。在恒定温度下,材料的自发极化被体内的电荷和表面吸附电荷所中和。如果把热释电材料做成表面垂直于极化方向的平行薄片,当红外辐射入射到薄片表面时,薄片因吸收辐射而发生温度变化,引起极化强度的变化。而中和电荷由于材料的电阻率高跟不上这一变化,其结果是薄片的两表面之间出现瞬态电压。若有外电阻跨接在两表面之间,电荷就通过外电路释放出来。电流的大小除与热释电系数成正比外,还与薄片的温度变化率成正比,可用来测量入射辐射的强弱。 1、热释电型红外传感器(PIR传感器)

温度传感器的常见分类 温度传感器应用大全

温度传感器的常见分类温度传感器应用大全 温度传感器在我们的日常生活中扮演着十分重要的角色,同时它也是使用范围最广,数量最多的传感器。关于它你了解多少呢?本文主要介绍的就是各种温度传感器的分类及其原理,温度传感器的应用电路。 温度传感器从17世纪温度传感器首次应用以来,依次诞生了接触式温度传感器,非接触式温度传感器,集成温度传感器,近年来在智能温度传感器在半导体技术,材料技术等新技术的支持下,温度传感器发展迅速,由于智能温度传感器的软件和硬件的合理配合既可以大大增强传感器的功能、提高传感器的精度,又可以使温度传感器的结构更为简单和紧凑,使用也更加方便。 1、热电偶传感器: 两种不同导体或半导体的组合称为热电偶。热电势EAB(T,T0)是由接触电势和温差电势合成的,接触电势是指两种不同的导体或半导体在接触处产生的电势,此电势与两种导体或半导体的性质及在接触点的温度有关,当有两种不同的导体和半导体A和B组成一个回路,其相互连接时,只要两结点处的温度不同,一端温度为T,称为工作端,另一端温度为TO,称为自由端,则回路中就有电流产生,即回路中存在的电动势称为热电动势,这种由于温度不同而产生电动势的现象称为塞贝克效应。 2、热敏电阻传感器: 热敏电阻是敏感元件的一类,热敏电阻的电阻值会随着温度的变化而改变,与一般的固定电阻不同,属于可变电阻的一类,广泛应用于各种电子元器件中,不同于电阻温度计使用纯金属,在热敏电阻器中使用的材料通常是陶瓷或聚合物,正温度系数热敏电阻器在温度越高时电阻值越大,负温度系数热敏电阻器在温度越高时电阻值越低,它们同属于半导体器件,热敏电阻通常在有限的温度范围内实现较高的精度,通常是-90℃?130℃。 3、模拟温度传感器: HTG3515CH是一款电压输出型温度传感器,输出电流1~3.6V,精度为±3%RH,0~100%RH相对湿度范围,工作温度范围-40~110℃,5s响应时间,0±1%RH迟滞,是一个带

DS18B20温度传感器工作原理及其应用电路图

DS18B20温度传感器工作原理及其应用电路图 时间:2012-02-16 14:16:04 来源:赛微电子网作者: 前言 温度与工农业生产密切相关,对温度的测量和控制是提高生产效率、保证产品质量以及保障生产安全和节约能源的保障。随着工业的不断发展,由于温度测量的普遍性,温度传感器的市场份额大大增加,居传感器首位。数字化温度传感器DS18B20是世界上第一片支持“一线总线”接口的温度传感器。现在,新一代的DS18B20温度传感器体积更小、更经济、更灵活。DS18B20温度传感器测量温度范围为-55℃~+125℃。在-10℃~+85℃范围内,精度为±0.5℃。现场温度直接以“一线总线”的数字方式传输,大大提高了系统的抗干扰性。基于DS18B20温度传感器的重要性,小编整理出DS18B20温度传感器工作原理及其应用电路图供大家参考。 一、DS18B20温度传感器工作原理(热电阻工作原理) DS18B20温度传感器工作原理框图如图所示: DS18B20温度传感器工作原理框图 图中低温度系数晶振的振荡频率受温度影响很小,用于产生固定频率的脉冲信号送给计数器1。高温度系数晶振随温度变化其振荡频率明显改变,所产生的信号作为计数器2的脉冲输入。计数器1和温度寄存器被预置在-55℃所对应的一个基数值。计数器1对低温度系数晶振产生的脉冲信号进行减法计数,当计数器1的预置值减到0时,温度寄存器的值将加1,计数器1的预置将重新被装入,计数器1重新开始对低温度系数晶振产生的脉冲信号进行计数,如此循环直到计数器2计数到0时,停止温度寄存器值的累加,此时温度寄存器中的数值即为所测温度。斜率累加器用于补偿和修正测温过程中的非线性,其输出用于修正计数器1的预置值。 二、DS18B20温度传感器的应用电路 1.DS18B20温度传感器寄生电源供电方式电路图 寄生电源方式特点: (1)进行远距离测温时,无须本地电源。 (2)可以在没有常规电源的条件下读取ROM。 (3)电路更加简洁,仅用一根I/O口实现测温。 (4)只适应于单一温度传感器测温情况下使用,不适于采用电池供电系统中。

基于单片机温度控制开题报告

本科生毕业设计(论文)开题报告论文题目:基于80c52单片机加热数字恒温控制系统设计 学院:电气工程学院 专业班级:自动化 学生姓名:刘东洋 学号: 110302415 导师姓名:关新 开题时间:2015年 3 月26 日

1、课题背景及意义 1.1课题研究背景、目的及意义 二十一世纪是科技高速发展的信息时代,随着超大规模集成电路技术的发展而诞生的电子技术、信息技术、单片机技术的应用更是空前广泛。由于它具有体积小、功能强、性价比高等特点,因此广泛应用于电子仪器、家用电器、节能电器、军事领域、机器人、工业控制等诸多领域,使产品更加小型化、智能化,在不断提高产品的功能和质量的同时又降低了其生产成本、又花了产品设计。在各个领域得到了迅速地发展,人们也因此感受到应用单片机技术的优点,因而单片机也得到了更加快速的发展和应用。 传统的温度检测大多以热敏电阻为温度传感器,但热敏电阻的可靠性差、测量温度准确率低,而且必须经过专门的接口电路转换成数字信号后才能由单片机进行处理。随着微电子技术的发展,单片微处理器功能日益增强,价格低廉,在各方面得到广泛应用。在温度控制器中应用单片机,具有设计简单、可靠性高、控制精度高,功能易扩展,有较强的通用性等优点。温度控制器主要实现对恒温箱温度的控制,并满足不同用户的个性需求。因此一个较完善的控制器应具有以下功能:温度的测量与显示;用户设定功能(如温度设定,定时设定等);对电加热管的控制功能;一些功能键(如定时自动加热,恒温控制,手动加热等);安全措施(漏电检测,安全失效保护,限温保护等)。 近年来,国内传感器正向着集成化、智能化、网络化和单片系统化的方向发展,为开发新一代温度测量系统创造了有利条件。 在电加热恒温箱控制器系统的设计中,由电阻式温度传感器测量温度值并转换成电压信号,由变送器转换成标准的电压信号,经A/D转换器进行模数转换并读入单片机,经单片机处理后的温度数值,一方面送LED数码管显示;另一方面与给定值进行比较,并判断是否超限,将发出报警信号,提醒人注意并采取相应措施;否则正常显示温度数值,然后根据偏差值进行控制计算。从而进行温度的调节,使其达到指定要求。实践证明,现在采用电阻丝加热,不仅有利于避免在常规测温方法中测量误差大、准确度低、测量滞后时间长等问题,而且在节约能源和改善环境方面本设计显示出一定的优越性。 恒温箱主要是用来控制温度,它为农业研究、生物技术、测试提供所需要的各种环境模拟条件,因此可广泛适用于药物、纺织、食物加工等无菌试验、稳定性检查以及工业产品的原料性能、产品包装、产品寿命等测试。 随着单片机的飞速发展,通过单片机对被控对象进行控制日益广泛,具有体积小、功能强、性价比高等特点,把单片机应用于温度控制系统中可以起到更好的控温作用,恒温箱是使用单片机进行温度控制的典型应用,采用单片机做主控

各种温度传感器分类及其原理.

各种温度传感器分类及其原理.

各种温度传感器分类及其原理 温度传感器是检测温度的器件,其种类最多,应用最广,发展最快。众所周知,日常使用的材料及电子元件大部分特性都随温度而变化, 在此我们暂时介绍最常用的热电阻和热电偶两类产品。 1. 热电偶的工作原理 当有两种不同的导体和半导体 A 和 B 组成一个回路,其两端相互连接时,只要两结点处的温度不同,一端温度为 T ,称为工作端或热端,另一端温度为 TO ,称为自由端 (也称参考端 或冷端,则回路中就有电流产生,如图 2-1(a所示,即回路中存在的电动势称为热电 动势。这种由于温度不同而产生电动势的现象称为塞贝克效应。 与塞贝克有关的效应有两个:其一, 当有电流流过两个不同导体的连接处时, 此处便吸收或放出热量 (取决于电流的方向 , 称为珀尔帖效应;其二,当有电流流过存在温度梯度的导体时,导体吸收或放出热量(取决 于电流相对于温度梯度的方向 ,称为汤姆逊效应。两种不同导体或半导体的组合称为热电偶。热电偶的热电势 EAB(T, T0 是由接触电势和温差电势合成的。接触电势是指两种不同 的导体或半导体在接触处产生的电势, 此电势与两种导体或半导体的性质及在接触点的温度有关。 温差电势是指同一导体或半导体在温度不同的两端产生的电势, 此电势只与导体或半导体的性质和两端的温度有关, 而与导体的长度、截面大小、沿其长度方向的温度分布无关。 无论接触电势或温差电势都是由于集中于接触处端点的电子数不同而产生的电势, 热电偶测量的热电势是二者的合成。当回路断开时,在断开处 a , b 之间便有一电动势差△ V ,其极性和大小与回路中的热电势一致,如图 2-1(b所示。并规定在冷端,当电流由 A 流向 B 时, 称 A 为正极, B 为负极。实验表明,当△ V 很小时,△ V 与△ T 成正比关系。定义△ V 对△ T

数字温度计(开题报告)

中国计量学院 毕业设计(论文)开题报告 学生姓名:学号: 专业: 班级: 设计(论文)题目: 指导教师: 二级学院: 年月日

一、综述本课题国内外研究动态,说明选题的依据和意义 随着电子技术的发展,电子技术已经潜移默化的渗透到了我们日常生活的各个方面。方便快捷的了解实时温度对人们日常生活、农业种植、工业生产、气象研究、物资仓储等都有着重要的影响,所以研究温度的测量方法和装置具有重要的意义。近年来,温度检测领域发展迅速,并且随着数字技术的发展,温度的测控芯片也相应的登上历史的舞台,能够在工业、农业等各个领域中广泛使用。温度的测量的关键之处是温度传感器,其往往决定着一个温度检测系统的性能。至今温度传感器的发展经历了三个发展阶段:传统的分立式温度传感器、模拟集成温度传感器及目前的智能集成温度传感器。智能温度传感器是在20世纪90 年代中期问世的,它是微电子技术、计算机技术和自动测试技术的结晶,特点是能输出温度数据及相关的温度控制量,适配各种微控制器。社会的发展使人们对传感器的要求也越来越高,现在的温度传感器正在基于单片机的基础上从模拟式向数字式,从集成化向智能化、网络化的方向飞速发展,并朝着高精度、多功能、总线标准化、高可靠性及安全性、开发虚拟传感器和网络传感器、研制单片测温系统等高科技的方向迅速发展。传统的温度检测以热敏电阻和AD590为温度敏感元件。热敏电阻虽成本低,但需信号处理电路,电路复杂,可靠性较低,测温准确度及抗干扰能力也有一定的不足。 近年来,传感器正处于传统型向新型传感器转型的发展阶段。新型的温度传感器的特点是微型化、数字化、智能化、多功能化、系统化、网络化,它提高了抗干扰能力和可靠性,而且使系统结构更简洁,维护方便,缩小了空间。单片机具有集成度高、功能强、体积小、价格低、抗干扰能力等优于一般CPU的优点,因此往往采用单片机作为数字控制器取代模拟控制器。 温度只能通过物体随温度变化的某些特性来间接测量,而用来量度物体温度数值的标尺叫温标。它规定了温度的读数起点(零点)和测量温度的基本单位。目前国际上用得较多的温标有华氏温标、摄氏温标、热力学温标和国际实用温标。华氏温标(℉)规定:在标准大气压下,冰的熔点为32℉,水的沸点为212 ℉,中间划分180 等份,每一份为华氏1 度,符合为℉。摄氏温标(℃)规定:在标准大气压下,冰的熔点为0℃,水的沸点为100℃,中间划分180等份,每一份为摄氏1度,符合为℃。热力学温标又称开尔文温标,或称绝对温标,它规定分子运动停止时的温度为

集成温度传感器LM35测量水温

《传感器技术》课程设计 课题:集成温度传感器测量水温 班级______________________ 学生姓名__________ 学号 指导教师________________________ 淮阴工学院电子与电气工程学院

2013年6月21日 集成温度传感器LM35测量水温 1.系统方案设计 1.1概述 如今,随着科学技术的发展,传感器的种类也日益增多,如AD公司生产的模拟电压输出 型的温度传感器TMP35/36/37,它主要应用于环境控制系统、过热保护、工业过程控制、火灾报警系统、电源系统监控、仪器散热风扇控制等。还有NATIONAISEMICONDUCT生产的与微处理器相结合的测温及温度控制、管理的温度测量控制器LM8Q它主要应用于个人计算机 及服务器的硬件及系统的温度监控、办公室设备、电子测试设备等。以及MAXINE司生产的PW风扇控制器及遥控温度传感器MAX1669它主要应用于CPU冷却控制。因此,测量外界的 温度也有很多种方法,然而,由于热敏电阻及其放大电路受到环境的影响,在不同的条件下 会出现不同的测温偏差;TMP35/36/37,LM80 MAX166这些传感器的造价又太高,在相同条 件下,由于测温精度、处理精度等多方面的因素,不同的通道也会出现不同的偏差,因此必 须采用一种灵活的修正方式,这便用到了电压型温度传感器LM35D它的线性好(10mV/C), 宽量程(0--100 C)高精度(+0.4 C ),低成本,而且采集到的是电压型信号,易于处理,使得电路简单实用。 采集到的微弱电压信号经过放大器OP07放大十倍后送入ADC0804的输入端,A/D转换 器(ADC0804将模拟信号转换为数字信号后传给AT89C51,该系统以AT89C51单片机为核 心,通过单片机编程可以实现高温(50C)、低温(10C)报警的控制,以及预置温度的控 制,然后经过P1 口将数字信号传送给74LS138译码器以及驱动器CD4511使LED八段数码管动态显示室温。经实验调试,用该方法对0--100 C范围的温度测量时,测量误差+0.4 C, 可靠性好、抗干扰性能强。采用MC& 51系列单片机作为核心监控器对外界温度进行测量。 这样,既可以降低对温度传感器和放大电路的要求,从而降低成本,又可以针对不同外部环 境或不同通道对温度显示及报警设定进行灵活修改。 1.2系统方案框图 根据课题设计要求可知该系统需要利用电压型温度传感器采集室温并产生10mv/C的电压信号,将放大后的信号送给转换器进行转换,通过单片机设定上下限报警温度并显示转 换后的室温,具体流程图如图2:

各种温度传感器分类及其原理.

各种温度传感器分类及其原理 温度传感器是检测温度的器件,其种类最多,应用最广,发展最快。众所周知,日常使用的材料及电子元件大部分特性都随温度而变化, 在此我们暂时介绍最常用的热电阻和热电偶两类产品。 1. 热电偶的工作原理 当有两种不同的导体和半导体 A 和 B 组成一个回路,其两端相互连接时,只要两结点处的温度不同,一端温度为 T ,称为工作端或热端,另一端温度为 TO ,称为自由端 (也称参考端或冷端,则回路中就有电流产生,如图 2-1(a所示,即回路中存在的电动势称为热电动势。这种由于温度不同而产生电动势的现象称为塞贝克效应。与塞贝克有关的效应有两个:其一, 当有电流流过两个不同导体的连接处时, 此处便吸收或放出热量 (取决于电流的方向 , 称为珀尔帖效应;其二,当有电流流过存在温度梯度的导体时,导体吸收或放出热量 (取决于电流相对于温度梯度的方向 ,称为汤姆逊效应。两种不同导体或半导体的组合称为热电偶。热电偶的热电势 EAB(T, T0 是由接触电势和温差电势合成的。接触电势是指两种不同的导体或半导体在接触处产生的电势, 此电势与两种导体或半导体的性质及在接触点的温度有关。温差电势是指同一导体或半导体在温度不同的两端产生的电势, 此电势只与导体或半导体的性质和两端的温度有关, 而与导体的长度、截面大小、沿其长度方向的温度分布无关。无论接触电势或温差电势都是由于集中于接触处端点的电子数不同而产生的电势, 热电偶测量的热电势是二者的合成。当回路断开时,在断开处 a , b 之间便有一电动势差△ V ,其极性和大小与回路中的热电势一致,如图 2-1(b所示。并规定在冷端,当电流由 A 流向 B 时, 称 A 为正极, B 为负极。实验表明,当△ V 很小时,△ V 与△ T 成正比关系。定义△ V 对△ T 的微分热电势为热电势率, 又称塞贝克系数。塞贝克系数的符号和大小取决于组成热电偶的两种导体的热电特性和结点的温度差。 2. 热电偶的种类

温度传感器的应用及原理

温度传感器的应用及原理 温度测量应用非常广泛,不仅生产工艺需要温度控制,有些电子产品还需对它们自身的温度进行测量,如计算机要监控CPU的温度,马达控制器要知道功率驱动IC 的温度等等,下面介绍几种常用的温度传感器。温度是实际应用中经常需要测试的参数,从钢铁制造到半导体生产,很多工艺都要依靠温度来实现,温度传感器是应用系统与现实世界之间的桥梁。本文对不同的温度传感器进行简要概述,并介绍与电路系统之间的接口。热敏电阻器用来测量温度的传感器种类很多,热敏电阻器就是其中之一。许多热敏电阻具有负温度系数(NTC),也就是说温度下降时它的电阻值会升高。在所有被动式温度传感器中,热敏电阻的灵敏度(即温度每变化一度时电阻的变化)最高,但热敏电阻的电阻/温度曲线是非线性的。 表1是一个典型的NTC热敏电阻器性能参数。 这些数据是对Vishay-Dale热敏电阻进行量测得到的,但它也代表了NTC热敏电阻的总体情况。其中电阻值以一个比率形式给出(R/R25),该比率表示当前温度下的阻值与25℃时的阻值之比,通常同一系列的热敏电阻器具有类似的特性和相同电阻/温度曲线。以表1中的热敏电阻系列为例,25℃时阻值为10KΩ的电阻,在0℃时电阻为28.1KΩ,60℃时电阻为4.086KΩ;与此类似,25℃时电阻为5KΩ的热敏电阻在0℃时电阻则为14.050K Ω。 虽然这里的热敏电阻数据以10℃为增量,但有些热敏电阻可以以5℃甚至1℃为增量。如果想要知道两点之间某一温度下的阻值,可以用这个曲线来估计,也可以直接计算出电阻值,计算公式如下: 热敏电阻一般有一个误差范围,用来规定样品之间的一致性。根据使用的材料不同,误差值通常在1%至10%之间。有些热敏电阻设计成应用时可以互换,用于不能进行现场调节的场合,例如一台仪器,用户或现场工程师只能更换热敏电阻而无法进行校准,这种热敏

基于单片机的温度传感器设计 开题报告

天津理工大学本科毕业设计开题报告 毕业设计题目 学生姓名学号 指导教师职称工程师 (报告内容包括课题的意义、国内外发展状况、本课题的研究内容、研究方法、研究手段、研究步骤以及参考文献资料等。) 1)课题的研究意义 随着现代信息技术的飞速发展和传统工业改造的逐步实现,能够独立工作的温度检测和显示系统应用于诸多领域,使得温度控制在生产生活领域有着广泛的应用。 温度是日常生活、工业、医学、环境保护、化工、石油等领域最常用到的一个物理量。测量温度的基本方法是使用温度计直接读取温度。最常见到的测量温度的工具是各种各样的温度计,例如:水银玻璃温度计,酒精温度计。它们常常以刻度的形式表示温度的高低,人们必须通过读取刻度值的多少来测量温度。利用单片机和温度传感器构成的电子式智能温度计就可以直接测量温度,得到温度的数字值,既简单方便,有直观准确。本设计所介绍的数字温度计与传统的温度计相比,具有读数方便,测温范围广,测温准确,其输出温度采用数字显示,主要用于对测温比较准确的场所,或科研实验室使用,该设计控制器使用单片机AT89S51,测温传感器使用DS18B20,采用LCD1602液晶显示能准确达到以上要求。 2)国内外发展状况 目前温度计的发展很快,从原始的玻璃温度计管温度计发展到了现在的热电阻温度计、热电偶温度计、数字温度计、电子温度计等等。主要温度仪表,如热电偶、热电阻及辐射温度计等在技术上已经成熟,但是它们只能在传统的场合应用,尚不能满足简单、快速、准确测温的要求,尤其是高科技领域。因此,各国专家都在有针对性地竞相开发各种新型温度传感器及特殊与实用测温技术,如采用光纤、激光及遥感或存储等技术的新型温度计已经实用化。 2008年起中国数字温度计及恒温器市场发展迅速,产品产出持续扩张,国家产业政策鼓励电子温度计及恒温器产业向高技术产品方向发展,国内企业新增投资项目投资逐渐增多。投资者对电子温度计及恒温器行业的关注越来越密切,这使得电子温度计及恒温器行业的发展需求增大。本文研究一种基于单片机温度控制系统,以克服传统方法的不足。 3)研究内容和方法 采用数字式温度传感器为检测器件,进行单点温度检测。用LCD1602液晶直接显示温度值,单片机系统作为电子温度计的控制、显示系统。 本系统从以下三个方面来考虑:

智能温控风扇开题报告

XXX本科毕业论文(设计)开题报告书 学生姓名学号 二级学院专业级班毕业论文 (设计)题目基于51单片机智能温控风扇 指导教师 职称 毕业论文(设计)工作期限2015年月日起至2015年月日止 毕业论文(设计)进行地点 一、选题的背景与意义: 生活中,我们经常会使用一些与温度有关的设备。尽管空调作为日常生活家电已经步入千万普通家庭中,但空调普遍耗能太多,而且在占中国大部分人口的农村地区依旧使用电风扇用作降温防暑设备。近些来,空调价格水平不断下降,越来越多的人开始使用空调,对电风扇行业是个不小的冲击,但是空调的强大的功能下是以高耗能、封闭空间为代价的。相比之下,电风扇通风较好且功耗低仍是很大的一个优势,还是具有广阔的市场空间的,电风扇需要新型的技术功能,来满足不同的人群需求。为了提高电风扇的市场竞争力,使之在技术含量上有所提高,且更加安全可靠,智能电风扇随之被提出。 传统电风扇具有以下缺点:风扇不能随着环境温度的变化自动调节风速,这对那些昼夜温差大的地区是致命的缺点,尤其是人们在熟睡时,不但浪费资源,还很容易使人感冒生病;传统电风扇机械的定时方式常常会伴随着机械运动的声音,特别是夜间影响人们的睡眠,而且定时范围有限,不能满足人们的需求。鉴于这些缺点,我们需要设计一款智能的电风扇温度控制系统来解决。 温控风扇系统,是根据当时温度情况去自动开通和关闭电风扇,能很好的节约电能,同时也方便用户们的使用更具人性化。而且温控风扇系统在工业生产、日常生活中都有广泛的应用,如在工业生产中大型机械设备的散热系统,或限制笔记本电脑上的智能CPU风扇等基于单片机的温控风扇都能够根据环境温度的高低自动启动或停止转动,并能够根据温度的变化实现转速的自动调节,在现实生活中具非常广泛的用途,因此它的设计具有一定的价值意义。 二、研究内容、拟解决的主要问题:

温度传感器简介

简谈温度传感器及研究进展 摘要:温度传感器是使用范围最广,数量最多的传感器,在日常生活,工业生产等领域都扮演着十分重要的角色。从17世纪温度传感器首次应用以来,依次诞生了接触式温度传感器,非接触式温度传感器,集成温度传感器。近年来在智能温度传感器在半导体技术,材料技术等新技术的支持下,温度传感器发展迅速。由于智能温度传感器的软件和硬件的合理配合既可以大大增强传感器的功能、提高传感器的精度,又可以使温度传感器的结构更为简单和紧凑,使用更加方便,因此智能温度传感器是当今的一个研究热点。微处理器的引入,使得温度信号的采集,记忆,存储,综合,处理与控制一体化,使温度传感器向智能化方向发展。关键词:温度传感器;智能温度传感器;接触式温度传感器 中图分类号:TP212.1 文献标识码:A Abstract:temperature transducer is used most widely, the largest number of sensors, in daily life, such as industrial production field plays a very important role.Since the 17th century temperature sensor for the first time application, was born in turn contact temperature sensor, non-contact temperature sensor, integrated temperature sensor.Intelligent temperature sensor in recent years in semiconductor technology, materials technology, under the support of new technologies such as the temperature sensor is developing rapidly.Due to the software and hardware of the intelligent temperature sensor reasonable matching can greatly enhance the function of the sensor, improve the precision of the sensor, and can make the temperature sensor has simple and compact structure, use more convenient, thus intelligent temperature sensor is a hot spot nowadays.The introduction of the microprocessor, which makes the temperature signal collection, memory, storage, comprehensive, processing and control integration, make the temperature sensor to the intelligent direction. Key words:temperature transducer; Smart temperature sensor; Contact temperature sensors 前言:温度作为国际单位制的七个基本量之一,测量温度的传感器的各种各样,温度传感器是温度测量仪表的核心部分,十分重要。据统计,温度传感器是使用范围最广,数量最多的传感器。简而言之,温度传感器(temperature transducer)就是是指能感受温度并转换成可用输出信号的传感器。在半导体技术的支持下,本世纪相继开发了半导体热电偶传感器、PN结温度传感器和集成温度传感器。在材料技术的支持下,陶瓷,有机,纳米等新材料用于温度传感器中可以使温度的测量和控制更加科学和精确。由于智能温度传感器的软件和硬件的合理配合既可以大大增强传感器的功能、提高传感器的精度,又可以使温度传感器的结构更为简单和紧凑,使用更加方便,因此智能温度传感器是当今的一个研究热点。微处理器的引入,使得温度信号的采集,记忆,存储,综合,处理与控制一体化,使温度传感器向智能化方向发展。

常用温度传感器的对比分析及选择

常用温度传感器的对比分析及选择 大致的要点: 1.温度传感器概述:应用领域,重要性; 2.四种主要的温度传感器类型的横向比较 3.热电偶传感器 4.热电阻传感器 5.热敏电阻传感器 6.集成电路温度传感器以及典型产品举例 7.温度传感器的正确选择及应用 在各种各样的测量技术中,温度的测量可能是最为常见的一种,因为任何的应用领域,掌握温度的确切数值,了解温度与实际状态之间的差异等,都具有极为重要的意义。就以测量为例,在力的测量,压力,流量,位置及电平高低等测量的过程中,为了提高测量精度,通常都会要求对温度进行监视,如压力或力的测量,往往是使用惠斯登电阻电桥,但组成电桥的电阻随温度变化引起的误差,往往会大大超过待测力引起的电阻值变化,如不对温度进行监控并据此校正测量结果,则测量完全不可能进行或者毫无效果。其他参数测量也有类似问题,可以说,各种的物理量都是温度的函数,要得到精确的测定结果,必须针对温度的变化,作出精确的校正。本文就是帮助读者针对特定的用途,选择最为合适的温度传感器,并进行精确的温度测量。 工业上常用的温度传感器有四类:即热电偶、热电阻RTD、热敏电阻及集成电路温度传感器;每一类温度传感器有自己独特的温度测量范围,有自己适用的温度环境;没有一种温度传感器可以通用于所有的用途:热电偶的可测温度范围最宽,而热电阻的测量线性度最优,热敏电阻的测量精度最高。表1是四类传感器的各自独特的性能特性及相互比较。表2是四类传感器的典型应用领域。

热电偶--通用而经济 热电偶由二根不同的金属线材,将它们一端焊接在一起构成,如图1所示;参考端温度(也称冷补偿端)用来消除铁-铜相联及康铜-铜联接端所贡献的误差;而两种不同金属的焊接端放置于需要测量温度的目标上。 两种材料这样联接后会在未焊接的一端产生一个电压,电压数值是所有联接端温度的函数,热电偶无需电压或电流激励。实际应用时,如果试图提供电压或电流激励反而会将误差引进系统。 鉴于热电偶的电压产生于两种不同线材的开路端,其与外界的接口似乎可通过直接测量两导线之间的电压实现;如果热电偶的的两端头不是联接至另外金属,通常是铜,那末事情真会简单至此。 但热电偶需与另外一种金属联接这一事实,实际上又建立了新的一对热电偶,在系统中引入了极大的误差,消除此误差的唯一办法是检测参考端的温度(参见图1),以硬件或硬件-软件相结合的方式将这一联接所贡献的误差减掉,纯硬件消除技术由于线性化校正的因素,比软件-硬件相结合技术受限制更大。一般情况下,参考端温度的精确检测用热电阻RTD,热敏电阻或是集成电路温度传感器进行。原则上说,热电偶可由任意的两种不同金属构建而成,但在实践中,构成热电偶的两种金属组合已经标准化,因为标准组合的线性度及所产生的电压与温度的关系更趋理想。 表3与图2是常用的热电偶E,J,T,K,N,S,B R的特性。

温度传感器在工业中的应用

红外温度传感器在工业中的应用 随着工业生产的发展,温度测量与控制十分重要,温度参数的准确测量对输出品质、生产效率和安全可靠的运行至关重要。目前,在热处理及热加工中已逐渐开始采用先进的红外温度计等非传统测温传感器,来代替传统的热电偶、热电阻类的热电式温度传感器,从而实现生产过程或者重要设备的温度监视和控制。 基本原理 温度传感器基本原理,最常用的非接触式温度传感器基于黑体辐射的基本定律,称为辐射测温仪表。辐射测温法包括亮度法(见光学高温计)、辐射法(见辐射高温计)和比色法(见比色温度计)。各类辐射测温方法只能测出对应的光度温度、辐射温度或比色温度。只有对黑体(吸收全部辐射并不反射光的物体)所测温度才是真实温度。如欲测定物体的真实温度,则必须进行材料表面发射率的修正。而材料表面发射率不仅取决于温度和波长,而且还与表面状态、涂膜和微观组织等有关,因此很难精确测量。在自动化生产中往往需要利用辐射测温法来测量或控制某些物体的表面温度,如冶金中的钢带轧制温度、轧辊温度、锻件温度和各种熔融金属在冶炼炉或坩埚中的温度。在这些具体情况下,物体表面发射率的测量是相当困难的。对于固体表面温度自动测量和控制,可以采用附加的反射镜使与被测表面一起组成黑体空腔。附加辐射的影响能提高被测表面的有效辐射和有效发射系数。利用有效发射系数通过仪表对实测温度进行相应的修正,最终可得到被测表面的真实温度。最为典型的附加反射镜是半球反射镜。球中心附近被测表面的漫射辐射能受半球镜反射回到表面而形成附加辐射,从而提高有效发射系数式中ε为材料表面发射率,ρ为反射镜的反射率。至于气体和液体介质真实温度的辐射测量,则可以用插入耐热材料管至一定深度以形成黑体空腔的方法。通过计算求出与介质达到热平衡后的圆筒空腔的有效发射系数。在自动测量和控制中就可以用此值对所测腔底温度(即介质温度)进行修正而得到介质的真实温度。 在水泥制造生产中的应用 红外温度传感器在水泥制造生产中有着广泛的应用。据调查目前我国每年因红窑事故造成的直接经济损失达2000万元,间接损失达3亿元。用常规的方法很难对非匀速旋转的水泥胴体进行测温,国际上先进的办法是在窑尾预热平台上安装一套红外扫描测温仪,系统的软件部分主要由数据采集滤波、同步扫描控制、数据通讯处理等,红外辐射测温仪按预定的扫描方式,实现对窑胴体轴向每一个测量段成的温度的测量,在一个扫描周期内,红外温度传感器将在扫描装置的驱动下,将每一个测量元表面的红外辐射转换成温度相关的电信号,送进数据采集装置作为数据采集,同步装置保证数据采集与回转窑的旋转保持严格同步,要让测量的温度值与测量元下确对应,测温仪由扫描起点扫描到终点后,即对窑胴体表面各测量元完成了一次逐元温度检测后,立即快速返回扫描起点,开始下一扫描周期的检测,数据经微机处理后,给出反映窑内状况的图像,文字信息,必要时可以发射声光报警。为保证测量的精度,定要考虑物体的发射率,周围环境影响。红外测温仪要垂直对准窑胴体的表面,因因水汽,尘埃,烟雾的影响,要采取加装水冷,风吹扫装置。意义:1.生产过程中对产品的质量监控与监视,只要温度控制在设定值内,产品质量会有保证,过低过高都浪费能源;2.在线安全的检测可以起到保护人以及设备安全;3.降低能耗,节约能源。 在热处理行业中的应用 红外温度传感器可以广泛的应用于钢铁生产过程中,对生产过程的温度进行监控,对于提高生产率和产品质量至重要。红外温度传感器可精确地监视每个阶段,使钢材在整个加工过程中保持正确的冶金性能。红外温度传感器可以帮助钢铁生产过程中提高产品质量和生产率、降低能耗、增强人员安全、减少停机时间等。 红外温度传感器在钢铁加工和制造过程中主要应用在连铸、热风炉、热轧、冷轧、棒材和线材轧制等过程中。 红外温度传感器传感头有数字和模拟输出两种,发射率可调。—这对于发射率变化金属材料尤其重要。要生产出优质的产品和提高生产率,在炼钢的全过程中,精确测温是关键。连铸将钢水变为扁坯、板坯或方坯时,有可能出现减产或停机,需精确的实时温度监测,配以水嘴和流量的调节,以提供合适的冷却,从而确保钢坯所要求的冶

温度控制器毕业设计开题报告

内蒙古农业大学 本科生毕业论文(设计) 开题报告 题目温度测量与控制器设计 学院机电工程学院 专业农业电气化及其自动化 年级2008级 学号080515731 姓名王阳 指导教师李奋荣 职称教授 内蒙古农业大学教务处 二012 年3 月8 日

说明 一、开题报告前的准备 毕业论文(设计)题目确定后,学生应尽快征求导师意见,讨论题意与整个毕业论文(或设计)的工作计划,然后根据课题要求查阅、收集有关资料并编写研究提纲,主要由以下几个部分构成: 1、研究(或设计)的目的与意义。应说明此项研究(或设计)在生产实践上或对某些技术进行改革带来的经济、生态与社会效益。有的课题过去曾进行过,但缺乏研究,现在可以在理论上做些探讨,说明其对科学发展的意义。 2、国内外同类研究(或同类设计)的概况综述。在广泛查阅有关文献后,对该类课题研究(或设计)已取得的成就与尚存在的问题进行简要综述,只对本人所承担的课题或设计部分的已有成果与存在问题有条理地进行阐述,并提出自己对一些问题的看法。 3、课题研究(或设计)的内容。要具体写出将在哪些方面开展研究,要重点突出。研究的主要内容应是物所能及、力所能及、能按时完成的,并要考虑与其它同学的互助、合作。 4、研究(或设计)方法。科学的研究方法或切合实际的具有新意的设计方法,是获得高质量研究成果或高水平设计成就的关键。因此,在开始实践前,学生必须熟悉研究(或设计)方法,以避免蛮干造成返工,或得不到成果,甚至于写不出毕业论文或完不成设计任务。 5、实施计划。要在研究提纲中按研究(或设计)内容落实具体时间与地点,有计划地进行工作。 二、开题报告 1、开题报告可在导师所在院、教研室范围内举行,须适当请有关专家参加,导师必须参加。报告最迟在毕业(生产)实习前完成。 2、本表(页面:A4)在开题报告通过论证后填写,一式三份,本人、导师、所在院部(要原件)各一份。 三、注意事项 1、开题报告的撰写完成,意味着毕业论文(设计)工作已经开始,学生已对整个毕业论文(设计)工作有了周密的思考,是完成毕业论文(设计)关键的环节。在开题报告的编写中指导教师只可提示,不可包办代替。 2、无开题报告者不准申请答辩。 3、本表(原件)用钢笔填写,字迹务必清楚。

相关文档
相关文档 最新文档