文档库 最新最全的文档下载
当前位置:文档库 › AHRI 550-590 2011

AHRI 550-590 2011

AHRI 550-590  2011
AHRI 550-590  2011

2011 Standard for

Performance Rating Of Water-Chilling and

Heat Pump Water-Heating Packages Using the Vapor Compression Cycle

i

IMPORTANT

SAFETY DISCLAIMER

AHRI does not set safety standards and does not certify or guarantee the safety of any products, components or systems designed, tested, rated, installed or operated in accordance with this standard/guideline. It is strongly recommended that products be designed, constructed, assembled, installed and operated in accordance with nationally recognized safety standards and code requirements appropriate for products covered by this standard/guideline.

AHRI uses its best efforts to develop standards/guidelines employing state-of-the-art and accepted industry practices.

AHRI does not certify or guarantee that any tests conducted under its standards/guidelines will be non-hazardous or free from risk.

AHRI CERTIFICATION PROGRAM PROVISIONS

The scope of the Certification Program is defined below. This scope is current as of the publication date of the standard. Revisions to the scope of the certification program can be found on AHRI website https://www.wendangku.net/doc/a14148522.html,. The scope of the Certification Program should not be confused with the scope of the standard as the standard covers products that are not covered by a certification program.

Included in Certification Program:

50 Hz a and 60 Hz Air-Cooled Chiller (ACCL) Product Inclusions

?Chillers between 0 and 200 tons R b manufactured prior to July 2011

?Chillers between 0 and 400 tons R b manufactured between July 2011 and July 2013

?Chillers between 0 and 600 tons R b manufactured after July 2013

?Units selected for use within the range of Application Rating Conditions as per AHRI Standard 550/590 (I-P)

?Hermetic or open type, electric motor driven

?Up to 600 volts

?All compressor types

?Units intended for use with glycol or other secondary coolant for freeze protection with a leaving chilled fluid temperature above 32.0°F are certified when tested with water at Standard Rating Conditions

Note a:50 Hz products selectively certified as per Section 1.4 of the Air-Cooled Water Chilling Packages

Using Vapor Compression Cycle Operations Manual

Note b: The cooling capacity in tons R at full-load AHRI Standard Rating Conditions per Table 1 of AHRI

Standard 550/590 (I-P).

60 Hz Water-Cooled Chiller (WCCL) Product Inclusions

?All compressor types;

?Chillers rated between 0 and 2,500 tons R c manufactured prior to January 2012

?Chillers rated between 0 and 3,000 tons R c manufactured after January 2012

?Hermetic or open type electric motor driven

?Units selected for use within the r a nge of Application Rating Conditions as per AHRI Standard 550/590 (I-P)

?Voltages up to 11,000 volts

?Voltages up to 15,000 volts after June 15, 2011

?Positive Displacement Units intended for use with glycol or other secondary coolant for freeze protection with a leaving chilled fluid temperature above 32.0°F are certified when tested with water at Standard

Rating Conditions

Note c: Rated capacity, tons R, for Positive Displacement chillers is the net cooling capacity at full-load

AHRI Standard Rating Conditions per Table 1 of AHRI Standard 550/590 (I-P). Rated capacity, tons R, for

centrifugal chillers is the net cooling capacity at full-load AHRI Application Rating Conditions within the

range permitted in Table 2 of AHRI Standard 550/590 (I-P).

50 Hz WCCL Product Inclusions

?Centrifugal & screw compressor chillers

?Chillers rated between 200 and 2500 tons R d

?Hermetic & open type, electric motor driven

?Units selected for use within the range of Application Rating Conditions as per AHRI Standard 550/590 (I-P) ?Voltages up to 11,000 volts

?Voltages up to 15,000 volts manufactured after June 15, 2011

?Positive Displacement Units intended for use with glycol or other secondary coolant for freeze protection with a leaving chilled fluid temperature above 32°F are certified when tested with water at Standard Rating Conditions

Note d: Rated capacity, tons R, for Positive Displacement chillers is the net cooling capacity at full-load AHRI Standard Rating Conditions per Table 1 of AHRI Standard 550/590. Rated capacity, tons R, for centrifugal chillers is the Net Refrigerating Capacity at full-load Application Rating Conditions within the range permitted in Table 2 of AHRI Standard 550/590 (I-P).

Excluded from the Certification Program:

50 Hz and 60 Hz ACCL Product Exclusions

?Condenserless chillers

?Evaporatively cooled chillers

?Chillers above 200 tons R manufactured prior to July 2011

?Chillers above 400 tons R manufactured prior to July 2013

?Chillers above 600 tons R

?Chillers with voltages above 600 volts

?Glycol and other secondary coolants are excluded when leaving chiller fluid temperature is below 32.0°F ?Custom units as defined in the section specific Operations Manual

?Field trial units as defined in the section specific Operations Manual

?Heat recovery & heat pump ratings are not certified, however manufacturers may elect to certify these chillers in the cooling mode and with the heat recovery option turned off

?Units for use outside of Application Rating Conditions

?Chillers that are not electrically driven, or that use open type compressors not supplied with motors by the manufacturer

?50 Hz Air-Cooled units that the manufacturer elects not to certify

60 Hz WCCL Product Exclusions

?Condenserless chillers

?Evaporatively cooled chillers

?Chillers above 2500 tons R manufactured prior to January 2012

?Chillers above 3000 tons R

?Chillers with voltages above 11,000 volts prior to June 15, 2011

?Chillers with voltages above 15,000 volts

?Chillers that are not electrically driven

?Chillers with motors not supplied with the unit by the manufacturer

?Glycol and other secondary coolants are excluded when leaving chiller fluid temperature is below 32.0°F ?Custom units as defined in the section specific Operations Manual

?Field trial units as defined in the section specific Operations Manual

?Units for use outside of Application Rating Conditions

?Heat recovery & heat pump ratings are not certified; however, manufacturers may elect to certify these chillers in the cooling mode and with the heat recovery option turned off

Price $10.00 (M) $20.00 (NM) Copyright 2011, by Air-Conditioning, Heating and Refrigeration Institute Printed in U.S.A.

Registered United States Patent and Trademark Office

50 Hz WCCL Product Exclusions

? Condenserless chillers

? Evaporatively cooled chillers

? Reciprocating and scroll Water-Chilling Packages ? Chillers below 200 tons R

? Chillers above 2,500 tons R manufactured prior to January 2012 ? Chillers above 3,000 tons R

? Chillers with voltages above 11,000 volts prior to June 15, 2011 ? Chillers with voltages above 15,000 volts ? Chillers that are not electrically driven

? Chillers with motors not supplied with the unit by the manufacturer

? Glycol and other secondary coolants are excluded when leaving chiller fluid temperature is below 32.0°F ? Custom units as defined in the section specific Operations Manual ? Field trial units as defined in the section specific Operations Manual ? Units for use outside of Application Rating Conditions

? Heat recovery & heat pump ratings are not certified, however manufacturers may elect to certify these

chillers in the cooling mode and with the heat recovery option turned off

Certified Ratings

The Water-Cooled and Air-Cooled Certification Program ratings verified by test are:

Operating Conditions Water-Cooled Air-Cooled

Standard Rating Conditions 1

Full Load ? Capacity 3

? Energy Efficiency ? Water Pressure Drop ? Capacity 3

? Energy Efficiency ? Water Pressure Drop Part Load ? IPLV 4 Energy Efficiency ? IPLV 4 Energy Efficiency Application Rating Conditions 2

Full Load ? Capacity 3

? Energy Efficiency ? Water Pressure Drop ? Capacity 3

? Energy Efficiency ? Water Pressure Drop Part Load

?

NPLV 5 Energy Efficiency

?

Not Applicable

Notes:

1. Standard Rating Conditions per AHRI Standard 550/590 Section 5.2

2. Application Rating Conditions per AHRI Standard 550/590 Section 5.3

3. Certified Capacity is the net Refrigerating Capacity per AHRI Standard 550/590 Section 3.3

4. Integrated Part-Load Value (IPLV) per AHRI Standard 550/590 Section

5.4 5. Non-Standard Part-Load Value (NPLV) per AHRI Standard 550/590 Section 5.4

With the following units of measure:

? Net Capacity, tons R

? Energy Efficiency, as applicable:

– Power Input per Capacity, kW/ton R ; or

– Energy Efficiency Ratio (EER), Btu/(W ?h); or – Coefficient of Performance (COP), watts/watt

? Evaporator and/or condenser Water Pressure Drop, ft H 2O

Note:

This standard supersedes AHRI Standard 550/590-2003 and is effective 1 January 2012

For SI ratings, see ANSI/AHRI Standard 551/591 (SI)-2011.

The requirements of Appendix G shall be effective on 1 January 2013 and optional prior to that date.

Accompanying this standard is an Excel Spreadsheet for the Computation of the Pressure Drop Adjustment Factors

(https://www.wendangku.net/doc/a14148522.html,/search+standards.aspx ).

TABLE OF CONTENTS

SECTION PAGE Section 1. Purpose (1)

Section 2. Scope (1)

Section 3. Definitions (1)

Section 4. Test Requirements (4)

Section 5. Rating Requirements (4)

Section 6. Minimum Data Requirements for Published Ratings (22)

Section 7. Conversions and Calculations (27)

Section 8. Marking and Nameplate Data (27)

Section 9. Conformance Conditions (28)

TABLES

Table 1. Standard Rating Conditions (6)

Table 2. Application Rating Conditions (8)

Table 3. Part-Load Conditions for Rating (10)

Table 4. Chiller Performance – IPLV (13)

Table 5. Chiller Performance – NPLV (14)

Table 6. Chiller Performance – Interpolated Data (14)

Table 7. Actual and Adjusted Performance for Example 4 (16)

Table 8. Performance Data for Example 5 (17)

Table 9. Actual and Adjusted Performance for Example 6 (18)

Table 10. Definition of Tolerances (19)

Table 11. Published Values (25)

Table 12. Conversion Factors (27)

FIGURES

Figure 1. Part Load Condenser Temperature for IPLV Test Points (12)

Figure 2. Rating Point Interpolation (15)

Figure 3. Allowable Tolerance (Tol1) Curves for Full and Part Load Points (20)

Figure 4. IPLV and NPLV Tolerance (Tol2) Curve (20)

APPENDICES

Appendix A. References – Normative (29)

Appendix B. References – Informative (30)

Appendix C. Method of Testing Water-Chilling and Water-Heating Packages Using the

Vapor Compression Cycle – Normative (31)

Appendix D. Derivation of Integrated Part-Load Value (IPLV) – Informative (45)

Appendix E. Chiller Condenser Entering Air Temperature Measurement – Normative (53)

Appendix F. Barometric Pressure Adjustment – Normative (59)

Appendix G. Water Side Pressure Drop Correction Procedure – Normative (61)

Appendix H. Heating Capacity Test Procedure – Normative (63)

TABLES FOR APPENDICES

Table C1. Accuracy Requirements for Test Instrumentation (34)

Table D1. Group 1 Air-Cooled IPLV Data and Calculation (50)

Table D2. Group 1 Water-Cooled IPLV Data and Calculation (51)

Table D3. Group 1 – 4 IPLV Summary (52)

Table E1. Temperature Measurement Requirements (53)

Table E2. Criteria for Air Distribution and Control of Air Temperature (54)

Table F1. Terms (60)

Table F2. Correction Factor (CF) Coefficients (60)

Table G1. K Factors for Elbow Arrangements (62)

Table H1. Test Tolerances (67)

FIGURES FOR APPENDICES

Figure D1. Ton R-Hour Distribution Categories (47)

Figure D2. Bin Groupings – Ton R-Hours (48)

Figure D3. Group 1 Ton R-Hour Distribution Categories (48)

Figure D4. Group 2 Ton R-Hour Distribution Categories (49)

Figure E1. Typical Air Sampling Tree (55)

Figure E2. Aspirating Psychrometer (56)

Figure E3. Determination of Measurement Rectangles and Required

Number of Air Sampler Trees (57)

Figure E4. Typical Test Setup Configurations (58)

Figure G1. Calibration Term for Included Angle for Expansion/Contraction Fittings (62)

7 PERFORMANCE RATING OF WATER-CHILLING AND HEAT PUMP WATER-HEATING PACKAGES USING THE VAPOR

COMPRESSION CYCLE

Section 1. Purpose

1.1Purpose. The purpose of this standard is to establish for Water-Chilling and Water-Heating Packages using the vapor compression cycle: definitions; test requirements; rating requirements; minimum data requirements for Published Ratings; marking and nameplate data; and conformance conditions.

1.1.1Intent. This standard is intended for the guidance of the industry, including manufacturers, engineers,

installers, efficiency regulators, contractors and users.

1.1.2Review and Amendment. This standard is subject to review and amendment as technology advances.

Section 2. Scope

2.1 Scope. This standard applies to factory-made vapor compression refrigeration Water-Chilling and Water-Heating Packages including one or more hermetic or open drive compressors. These Water-Chilling and Water-Heating Packages include:

?Water-Cooled, Air-Cooled, or Evaporatively-Cooled Condensers

?Water-Cooled heat reclaim condensers

?Air-to-water heat pump

?Water-to-water heat pumps with a capacity greater or equal to 135,000 Btu/h. Water-to-water heat pumps with a capacity less than 135,000 Btu/h are covered by the latest edition of AHRI Standard 320

Note that this standard covers products that may not currently be covered under a certification program.

Section 3. Definitions

All terms in this document follow the standard industry definitions in the current edition of ASHRAE Terminology of Heating, Ventilation, Air Conditioning and Refrigeration unless otherwise defined in this section.

3.1Auxiliary Power. Power provided to devices that are not integral to the operation of the vapor compression cycle such as, but not limited to: oil pumps, refrigerant pumps, control power, fans and heaters.

3.2Bubble Point. Refrigerant liquid saturation temperature at a specified pressure.

3.3Capacity. A measurable physical quantity that characterizes the water side heat flow rate, Btu/h or tons R. Capacity is defined as the mass flow rate of the water multiplied by the difference in enthalpy of water entering and leaving the heat exchanger, Btu/h or tons R. For this standard, the enthalpy change is approximated as the sensible heat transfer using specific heat and temperature difference, and in some calculations also the energy associated with water-side pressure losses.

3.3.1Gross Heating Capacity. The capacity of the Water Cooled Condenser as measured by the heat transfer from

the refrigerant in the condenser. This value includes both the sensible heat transfer and the pressure drop effects of the water flow through the condenser. This value is used to calculate the test heat balance. (Refer to Equations C12a and C12b).

3.3.2Gross Refrigerating Capacity. The capacity of the water-cooled evaporator as measured by the heat transfer

to the refrigerant in the evaporator. This value includes both the sensible heat transfer and the pressure drop effects of the water flow through the evaporator. This value is used to calculate the test heat balance. (Refer to Equation C11).

1

3.3.3Net Heating Capacity. The capacity of the heating condenser available for useful heating of the thermal load

external to the Water-Heating Package and is calculated using only the sensible heat transfer. (Refer to Equations 7a and 7b).

3.3.4Net Refrigerating Capacity. The capacity of the evaporator available for cooling of the thermal load external

to the Water-Chilling Package and is calculated using only the sensible heat transfer. (Refer to Equation 6).

3.4Compressor Saturated Discharge Temperature. For single component and azeotrope refrigerants, it is the saturated temperature corresponding to the refrigerant pressure at the compressor discharge. For zeotropic refrigerants, it is the arithmetic average of the Dew Point and Bubble Point temperatures corresponding to refrigerant pressure at the compressor discharge. It is usually taken at or immediately downstream of the compressor discharge service valve (in either case on the downstream side of the valve seat), where discharge valves are used.

3.5Condenser. A refrigeration system component which condenses refrigerant vapor. Desuperheating and sub-cooling of the refrigerant may occur as well.

3.5.1Air-Cooled Condenser. A component which condenses refrigerant vapor by rejecting heat to air mechanically

circulated over its heat transfer surface causing a rise in the air temperature.

3.5.2Evaporatively-Cooled Condenser. A component which condenses refrigerant vapor by rejecting heat to a

water and air mixture mechanically circulated over its heat transfer surface, causing evaporation of the water and an increase in the enthalpy of the air.

3.5.3Water-Cooled Condenser. A component which utilizes refrigerant-to-water heat transfer means, causing the

refrigerant to condense and the water to be heated.

3.5.4Water-Cooled Heat Reclaim Condenser. A component which utilizes refrigerant-to-water heat transfer

means, causing the refrigerant to condense and the water to be heated. This Condenser may be a separate condenser, the same as, or a portion of the Water-Cooled Condenser.

3.6Dew Point. Refrigerant vapor saturation temperature at a specified pressure.

3.7Energy Efficiency.

3.7.1 Cooling Energy Efficiency.

3.7.1.1Cooling Coefficient of Performance (COP R). A ratio of the Net Refrigerating Capacity in watts to

the power input values in watts at any given set of Rating Conditions expressed in watts/watt. (Refer to

Equation 1)

3.7.1.2Energy Efficiency Ratio (EER). A ratio of the Net Refrigerating Capacity in Btu/h to the power

input value in watts at any given set of Rating Conditions expressed in Btu/(h · W). (Refer to Equation 2)

3.7.1.3 Power Input per Capacity. A ratio of the power input, W INPUT, supplied to the unit in kilowatts

[kW], to the Net Refrigerating Capacity at any given set of Rating Conditions, expressed in kilowatts per

ton R of Refrigeration [kW/ton R]. (Refer to Equation 3)

3.7.2Heating Energy Efficiency.

3.7.2.1Heating Coefficient of Performance (COP H). A ratio of the Net Heating Capacity in watts to the

power input values in watts at any given set of Rating Conditions expressed in watts/watt. (Refer to

Equation 4).

3.7.2.2Heat Reclaim Coefficient of Performance (COP HR). COP HR applies to units that are operating in a

manner that uses either all or only a portion of heat generated during chiller operation, q hrc, to heat the

occupied space, while the remaining heat, q cd, if any, is rejected to the outdoor ambient. COP HR takes into

account the beneficial cooling capacity, q ev, as well as the Heat Recovery capacity, q hrc (Refer to Equation 5). 2

7 3.8Fouling Factor. The thermal resistance due to fouling accumulated on the water side or air side heat transfer surface.

3.8.1 Fouling Factor Allowance (FFA). Provision for anticipated water side or air side fouling during use

expressed in h?ft2?oF/Btu.

3.9Liquid Refrigerant Temperature. The temperature of the refrigerant liquid leaving the condenser but prior to the expansion device.

3.10Part-Load Value (PLV). A single number figure of merit expressing part-load efficiency for equipment on the basis of weighted operation at various partial load capacities for the equipment. (Refer to Appendix D for information regarding the use of IPLV and NPLV.)

3.10.1Integrated Part-Load Value (IPLV). A single number part-load efficiency figure of merit calculated per the

method described in this standard at Standard Rating Conditions.

3.10.2Non-Standard Part-Load Value (NPLV). A single number part-load efficiency figure of merit calculated per

the method described in this standard referenced to conditions other than IPLV conditions. (i.e. For units with Water-Cooled Condensers that are not designed to operate at Standard Rating Conditions.)

3.11Percent Load (%Load). The part-load net capacity divided by the full-load rated net capacity at the full-load rating conditions, stated in decimal format. (e.g.100% = 1.0).

3.12Published Ratings. A statement of the assigned values of those performance characteristics, under stated Rating Conditions, by which a unit may be chosen to fit its application. These values apply to all units of like nominal size and type (identification) produced by the same manufacturer. The term Published Rating includes the rating of all performance characteristics shown on the unit or published in specifications, advertising or other literature controlled by the manufacturer, at stated Rating Conditions.

3.12.1 Application Rating. A rating based on tests performed at Application Rating Conditions (other than Standard

Rating Conditions).

3.12.2Standard Rating. A rating based on tests performed at Standard Rating Conditions.

3.13Rating Conditions. Any set of operating conditions under which a single level of performance results and which causes only that level of performance to occur.

3.13.1Standard Rating Conditions. Rating Conditions used as the basis of comparison for performance characteristics.

3.14“Shall” or “Should”. “Shall” or “should” shall be interpreted as follows:

3.1

4.1Shall. Where “shall” or “shall not” is used for a provision specified, that provision is mandatory if compliance

with the standard is claimed.

3.1

4.2Should, “Should” is used to indicate provisions which are not mandatory but which are desirable as good

practice.

3.15Total Power Input. Power input of all components of the unit.

3.16Total Heat Rejection. Heat rejected through the condenser including heat utilized for heat recovery (q cd+q hrc).

3.17Water-Chilling or Water-Heating Package. A factory-made and prefabricated assembly (not necessarily shipped as one package) of one or more compressors, condensers and evaporators, with interconnections and accessories designed for the purpose of cooling or heating water. It is a machine specifically designed to make use of a vapor compression refrigeration cycle to remove heat from water and reject the heat to a cooling medium, usually air or water. The refrigerant condenser may or may not be an integral part of the package.

3

3.17.1Heat Reclaim Water-Chilling Package. A factory-made package, designed for the purpose of chilling water

and containing a condenser for reclaiming heat. Where such equipment is provided in more than one assembly, the separate assemblies are to be designed to be used together, and the requirements of rating outlined in this standard are based upon the use of matched assemblies. It is a package specifically designed to make use of the refrigerant cycle to remove heat from the water source and to reject the heat to another fluid for heating use. Any excess heat may be rejected to another medium, usually air or water.

3.17.2Heat Pump Water-Chilling Package. A factory-made package, designed for the purpose of heating water.

Where such equipment is provided in more than one assembly, the separate assemblies are to be designed to be used together, and the requirements of rating outlined in this standard are based upon the use of matched assemblies. It is a package specifically designed to make use of the refrigerant cycle to remove heat from an air or water source and to reject the heat to water for heating use. This unit can include valves to allow for reverse-cycle (cooling) operation.

3.17.3 Modular Chiller Package. A modular chiller is a package that is made up of multiple water-chilling units that

can function individually or as a single unit.

3.18Water Pressure Drop. A measured value of the reduction in water pressure associated with the flow through a water- type heat exchanger. This value is expressed as a rating in ft H2O.

Section 4. Test Requirements

4.1Test Requirements. Ratings shall be established at the Rating Conditions specified in Section

5. Ratings shall be verified by tests conducted in accordance with the test method and procedures described in Appendix C.

Section 5. Rating Requirements

5.1Standard Rating Metrics.

5.1.1Cooling Energy Efficiency. The general forms of the Cooling Energy Efficiency terms are listed as equations

1 through 3. These terms are calculated at both design point and at part load conditions. They also may be

modified by adjustments for barometric pressure as shown in Appendix F or by a part load degradation factor

as detailed in Equation 15.

5.1.1.1The Cooling Coefficient of Performance (COP R) [W/W] shall be calculated as follows:

COP R=q ev K1?W INPUT 1 Where:

K1 = 3.41214, Btu/W?6T14T h

q ev= Net Refrigerating Capacity, Btu/h

W INPUT= Total Power Input, W

5.1.1.2 The Energy Efficiency Ratio (EER) [Btu/W·h] shall be calculated as follows:

EER=q ev INPUT 2

5.1.1.3 The Power Input per Capacity [kW/ton R] shall be calculated as follows:

Power Input Per Capacity=K2?W INPUT ev 3 Where:

K2 = 12000, Btu/ton R?14T h

4

7

5.1.2Heating Energy Efficiency

5.1.2.1 The Heating Coefficient of Performance (COP H) [W/W] shall be calculated as follows:

COP H=q cd K1?W INPUT 4 Where:

q cd= Net Heating Capacity, Btu/h

5.1.2.2The Heat Reclaim Coefficient of Performance (COP HR) [W/W] shall be calculated as follows:

COP HR=q ev + q hrc

K1?W INPUT 5 Where:

q hrc= Heat generated during chiller operation, Btu/h

5.1.3Net Refrigerating Capacity. The Net Refrigerating Capacity, [Btu/h], for the evaporator shall use the water

temperatures, water flow rate and water properties at the evaporator entering and leaving conditions and be

calculated as follows:

q ev=m w?c p?(t e? t l) 6 Where:

c p= Specific heat at the average of entering an

d leaving water temperatures, Btu/lbm,°F

m w= Mass flow rate, lbm/h

t e= Entering water temperature, °F

t l= Leaving water temperature, °F

=

5.1.4Net Heating Capacity. The Net Heating Capacity, [Btu/h], for either a standard or heat recovery condenser

shall use the water temperatures, water flow rate, and water properties at the entering and leaving conditions

and be calculated as follows:

q cd=m w?c p?(t l? t e) 7a

q hrc=m w?c p?(t l? t e) 7b

5.1.5Water Pressure Drop. For the Water Pressure Drop calculations, refer to Appendices C and G.

5.2Standard Ratings and Conditions. Standard Ratings for all Water-Chilling Packages shall be established at the Standard Rating Conditions. These packages shall be rated for cooling, heat reclaim, or heating performance at conditions specified in Table 1. Standard Ratings shall include a water-side Fouling Factor Allowance as specified in the notes section of Table 1. Modular Chiller Packages consisting of multiple units and rated as a single package must be tested as rated.

5

5.3Application Rating Conditions. Application Ratings should include the range of Rating Conditions listed in Table 2 or be within the operating limits of the equipment. For guidance to the industry, designing to large Fouling Factors significantly impacts the performance of the chiller. It is best to maintain heat transfer surfaces by cleaning or maintaining proper water treatment to avoid highly fouled conditions and the associated efficiency loss. From a test perspective, highly fouled conditions are simulated with clean tubes by testing at decreased evaporator water temperatures and increased condenser water temperatures. High Fouling Factors can increase or decrease these temperatures to conditions outside test loop or equipment capabilities. For this test standard the application range for the water side fouling shall be between clean (0.000) and 0.001000 h·ft2·°F/Btu. Fouling factors above these values are outside of the scope of this standard and shall be noted as such.

Table 2. Application Rating Conditions

Evaporator Condenser

Cooling

Water Cooled Water Cooled Leaving

Temperature1,

°F

Temperature

Difference

Across Heat

Exchanger, °F

Fouling

Factor

Allowance,

h·ft2·oF/Btu

Entering

Temperature2,

°F

Flow Rate,

gpm/ton R

Fouling

Factor

Allowance,

h·ft2·oF/Btu

36.0 to

60.0

5.0 to

20.0

0.000 to

0.001000

55.0 to

105.0

1.0 to 6.0

0.000 to

0.001000

Air-Cooled

Entering Air Dry Bulb3, °F

55.0 to 125.0

Evaporatively Cooled

Entering Air Wet Bulb4, °F

50.0 to 80.0

Heating

Water Source Evaporator Water Cooled Condenser

Entering Water Temperature1,

°F

Fouling

Factor

Allowance,

h·ft2·oF/Btu

Leaving Water

Temperature2,

°F

Temperature

Difference

Across Heat

Exchanger, °F

Fouling Factor

Allowance,

h·ft2·oF/Btu

40.0 to 80.0

0.000 to

0.001000

105.0 to

160.0

5.0 to

20.0

0.000 to

0.001000

Air Source Evaporator

Entering Air Temperature, °F

15.0 to 60.0

Notes

1. Evaporator water temperatures shall be published in rating increments of no more than 4.0°F.

2. Condenser water temperatures shall be published in rating increments of no more than 5.0°F.

3. Entering air temperatures shall be published in rating increments of no more than 10.0°F.

4. Air wet bulb temperatures shall be published in rating increments of no more than 2.5°F.

5.4Part-Load Rating For Cooling Only. Water-Chilling Packages shall be rated at 100%, 75%, 50%, and 25% load relative to the full-load rating Net Refrigerating Capacity at the conditions defined in Table 3. For chillers capable of operating in multiple modes (cooling, heating, and /or heat reclaim), part-load ratings are only required for cooling mode operation. Part-load ratings are not required for heating mode operation or cooling operation with active heat reclaim operation.

8

Part-load rating points shall be presented in one or more of the following four ways:

a. IPLV. Based on the conditions defined in Table 3.

b. NPLV. Based on the conditions defined in Table 3.

c. Individual Part-Load Data Point(s) Suitable for Calculating IPLV or NPLV as defined in Table 3.

d. Within the application rating limits of Table 2, other part-load points that do not meet the requirements of

footnotes (3) and (4) in Table 3 (i.e. variable water flow rates or other entering condenser water temperatures).

Neither IPLV nor NPLV shall be calculated for such points.

5.4.1Determination of Part-Load Performance. For Water-Chilling Packages covered by this standard, the IPLV

or NPLV shall be calculated as follows:

a. Determine the part-load energy efficiency at 100%, 75%, 50%, and 25% load points at the conditions

specified in Table 3.

b. Use the following equation to calculate the IPLV or NPLV for units rated with COP R and EER.

IPLV or NPLV = 0.01A + 0.42B + 0.45C + 0.12D 8

For COP R and EER:

Where: A = COP R or EER at 100% load

B = COP R or EER at 75% load

C = COP R or EER at 50% load

D = COP R or EER at 25% load

c. Use the following equation to calculate the IPLV or NPLV for units rated with kW/ton R:

IPLV or NPLV=1

0.01+0.42+0.45+0.12 9

Where: A = Power Input per Capacity, kW/ton R at 100% load

B = Power Input per Capacity, kW/ton R at 75% load

C = Power Input per Capacity, kW/ton R at 50% load

D = Power Input per Capacity, kW/ton R at 25% load

5.4.1.1For a derivation of Equations 8 and 9, and an example of an IPLV or NPLV calculation, see

Appendix D. The weighting factors have been based on the weighted average of the most common building

types and operations using average weather in 29 U.S. cities, with and without airside economizers.

9

10

5.4.1.2The IPLV or NPLV rating requires that the unit efficiency be determined at 100%, 75%, 50% and 25% at the conditions as specified in Table 3. If the unit, due to its capacity control logic cannot be operated at 75%, 50%, or 25% capacity then the unit shall be operated at other load points and the 75%, 50%, or 25% capacity efficiencies shall be determined by plotting the efficiency versus the % load using straight line segments to connect the actual performance points. The 75%, 50%, or 25% load efficiencies shall then be determined from the curve. Extrapolation of data shall not be used. An actual chiller capacity point, equal to, or less than the required rating point, must be used to plot the data. For example, if the minimum actual capacity is 33% then the curve can be used to determine the 50% capacity point, but not the 25% capacity point. For test points that are not run at the 75%, 50%, and 25% rating points, the condenser temperature for determination of IPLV shall be based on the measured part-load percentage for the actual test point using the Equations 10 through 14. For example for an air-cooled chiller test point run at 83% capacity, the entering air temperature for the test shall be 84.8 oF (60·0.83 + 35).

Entering air dry-bulb temperature (EDB) [°F] for an Air-Cooled Condenser at IPLV part load conditions (refer to Figure 1):

EDB=?60?% Load+35 for Load >33%

55 for Load ≤33% 10

Note: In the case of an air-cooled chiller, the Load term used to calculate the EDB temperature is

based on the adjusted capacity after using the barometric correction.

Entering water temperature (EWT) [°F] for a Water-Cooled Condenser at IPLV part load conditions (refer to Figure 1):

EWT=?40?% Load+45 for Load >50%

65 for Load ≤50% 11 Entering air wet-bulb temperature (EWB) [°F] for an Evaporatively-Cooled Condenser at IPLV part load conditions (refer to Figure 1):

EWB= 25?%Load+50 12

Saturated discharge temperature (SDT) [°F] for an air-cooled unit without condenser at IPLV part load conditions (refer to Figure 1):

AC SDT= 70?%Load+55 13

Saturated discharge temperature (SDT) [°F] for a water-cooled (WC) or evaporatively-cooled (EC) unit without condenser at IPLV part load conditions (refer to Figure 1):

WC & EC SDT= 40?%Load+65 14

11

Figure 1. Part Load Condenser Temperature for IPLV Test Points

If a unit cannot be unloaded to the 25%, 50%, or 75% capacity point, then the unit shall be run at the

minimum step of unloading at the condenser entering water or air temperature based on Table 3 for 25%,

50% or 75% capacity points as required. The efficiency shall then be determined by using one of the

following three equations:

EER CD=EER Test D 15a

COP R,CD=COP Test D 15b

?kW R?CD=?kW R?Test?C D 15c Where:

COP Test = Efficiency at test conditions

EER Test = Efficiency at test conditions

kW/ton RTest = Efficiency at test conditions

EER Test, COP Test, kW/ton RTest is the efficiency at the test conditions (after barometric pressure adjustment as

per Appendix F, as applicable) and C D is a degradation factor to account for cycling of the compressor for

capacities less than the minimum step of capacity.

C D shall be calculated using the following equation:

C D=(-0.13?LF)+ 1.13 16

Where LF is the load factor calculated using the following equation:

LF=(%Load) (q ev100%)

(q ev min%Load) 17

12

Where:

%Load is one of the standard rating points, i.e. 75%, 50%, or 25%

q ev 100% is the rated unit net capacity at design conditions.

q evmin%Load is the measured or calculated unit net capacity at the minimum step of capacity.

Part-Load unit capacity is the measured or calculated unit capacity from which Standard Rating points are determined using the method above.

5.4.1.3Sample Calculations. The following are examples of the IPLV calculations:

Example 1

The chiller is a water-cooled centrifugal chiller that has proportional capacity control and can be tested at each of the four rating points of 100%, 75%, 50% and 25% as defined in Table 3. The chiller has a full-load rated capacity of 500 tons R and a full-load efficiency of 0.600 kW/ton R. Table 4 shows the test results needed to compute IPLV.

Table 4. Chiller Performance – IPLV

% of full

Load

rated ton R Condenser

EWT (oF)

Capacity

Target

(ton R)

Measured

Net

Refrigerating

Capacity

(ton R)

Total Input

Power

(kW)

Efficiency2

(kW/ton R)

Deviation from

capacity target

(ton R)

Percent difference

from target based on

full-load capacity

(%)

100% 85.0 500.0 505.0 303.0 0.600 5 (5/500) or 1.0% 75% 75.0 375.0 381.0 174.1 0.457 6 (6/500) or 1.2% 1 50% 65.0 250.0 245.0 85.5 0.349 -5 (-5/500) or -1.0% 1 25% 65.0 125.0 130.0 56.7 0.436 5 (5/500) or 1.0% 1

1.Because the chiller can be run within the capacity tolerances associated with the target loads required

to calculate the IPLV, the above data can be used directly to calculate the IPLV (refer to Table 10 for test tolerances).

2.Because the Power Input per Capacity rating is in kW/ton R use Equation 9.

IPLV=1

0.010.600+ 0.420.457 + 0.450.349 + 0.120.436=0.400 Example 2

The chiller is a water-cooled centrifugal chiller that has proportional capacity control and can be tested at each of the four rating points of 100%, 75%, 50% and 25% as defined in Table 3. The chiller has a full-load rated capacity of 800 tons R and a full-load efficiency of 0.632 kW/ton R. The full load design conditions for the evaporator have a 42 oF leaving water temperature at 2.0 gpm/ton water flow rate. The condenser conditions at full load design are 89 oF entering water temperature with 3.0 gpm/ton water flow rate. Table 5 shows the test results needed to compute NPLV.

13

物业管理表格大全保洁保安全表

物业管理表格大全保洁保安部分 物业管理环境卫生检查表J/L-002 修改码:0 检查结果备注项目项目标准 日旬月 一、车库 1、地面无污迹、无垃圾、干净、无积水 2、排水沟无杂物、干净 3、进排风管干净 4、烟灰筒、垃圾筒干净、无积灰、无污迹 5、消防设施(公共区域) 干净、无积灰 6、栏杆无污迹、无积灰、干净 7、墙面、天花板、通风百叶窗无积灰、干净 8、指示牌干净、无积灰、 9、电梯门、货梯厅无积灰、无污迹、干净 10、管道干净、无积灰 11、消防走道与门无积灰、干净 12、灭虫诱饵无霉变、无缺少、无受潮、标识清晰无遗漏 二、外围、大楼顶层 1、地面(地砖)、上街沿、顶层楼面无垃圾、无积水、干净 2、绿化带、污水池罩、花坛墙无垃圾、干净、

3、2米以下玻璃幕墙干净、明亮 4、大理石(地面)、平台、台阶无污迹、无垃圾、无积水 5、雨水井、雨水沟(含顶层)无垃圾、无泥沙 6、路灯、照明灯、泛光灯无污迹,干净 7、车库坡道、指示牌无污迹、无垃圾、无积水 检查结果备注项目项目标准 日周月 8、消防设施、管道、百叶窗无污迹、无积灰 9、移动门、岗亭、栏杆无污迹、无积灰 10、外围绿化、租摆花缸、托盆、叶面干净、无枯叶、枝叶茂盛 11、灭虫诱饵无霉变、无缺少、无受潮、标识清晰无遗漏 三、标准层 1、电梯厅地面无污迹、无垃圾、无水迹、明亮 2、烟缸、垃圾筒无污迹、无垃圾、缸内石子洁白、烟头少于5只 3、墙面、电梯门、门框无污迹、无积灰 4、送风口、指示牌、号码无污迹、无积灰 5、消防箱、消防器材无污迹、无积灰 6、过道门、消防走道无污迹、无积灰、干净 7、消防梯墙面、天花、台阶无污迹、无积灰、无蛛网、无垃圾 8、各类木门无污迹、无积灰 9、各类管道、照明无污迹、无积灰 10、电梯厅吊顶无污迹、无积灰 11、公共走道广播器材无污迹、无积灰、干净

生产安全事故报告制度

事故报告制度 一、根据《国务院生产安全事故和调查处理条例》,为规范生产安全事故报告,落实安全生产事故责任追究制,防止和减少安全生产事故,结合单位实际,制定本制度。 《建设工程安全生产管理条例》对建设工程生产安全事故报告制度的规定为:“单位发生生产安全事故,应当按照国家有关伤亡事故报告和调查处理的规定,及时、如实地向负责安全生产监督管理的部门、建设行政主管部门或者其他有关部门报告;特种设备发生事故的,还应当同时向特种设备安全监督管理部门报告。接到报告的部门应当按照国家有关规定,如实上报。 二、生产安全事故(以下简称事故)分为以下等级: (一)特别重大事故,是指造成30人以上死亡,或者100人以上重伤(包括急性工业中毒,下同),或者1亿元以上直接经济损失的事故; (二)重大事故,是指造成10人以上30人以下死亡,或者50人以上100人以下重伤,或者5000万元以上1亿元以下直接经济损失的事故; (三)较大事故,是指造成3人以上10人以下死亡,或者10人以上50人以下重伤,或者1000万元以上5000万元以下直接经济损失的事故; (四)一般事故,是指造成3人以下死亡,或者10人以下重伤,或者1000万元以下直接经济损失的事故。 三、事故调查处理应当及时、准确地查清事故经过、事故原因和事故损失,查明事故性质,认定事故责任,总结事故培训,提出整改措施,并对事故责任者追究责任。 四、事故发生后,事故现场有关人员应当立即向单位负责人报告;单位负责人接到报告后,应当于1小时内向事故发生地县级以上安全生产监督管理部门和负有安全生产监督管理职责的有关部门报告。 情况紧急或者遇到无法联系单位负责人等特殊情况时,事故现场有关人员可以直接向事故发生地县级以上安全生产监督管理部门和负有安全生产监督管理职责的有关部门报告。 五、报告事故应当包括下列内容: (一)事故发生单位概况; (二)事故发生的时间、地点以及事故现场情况;

最新安全检查表格式大汇总

安全状况调查表 —徐刚 1. 安全管理机构 安全组织体系是否健全,管理职责是否明确,安全管理机构岗位设置、人员配备是否充分合理。 序号检查项结果备注 1. 信息安全管理机构 设置□ 以下发公文方式正式设置了信息安全管理工作的专门职能机构。 □ 设立了信息安全管理工作的职能机构,但还不是专门的职能机构。 □ 其它。 2. 信息安全管理职责 分工情况□ 信息安全管理的各个方面职责有正式的书面分工,并明确具体的责任人。 □ 有明确的职责分工,但责任人不明确。 □ 其它。 3. 人员配备□ 配备一定数量的系统管理人员、网络管理人 员、安全管理人员等; 安全管理人员不能兼任网 络管理员、系统管理员、数据库管理员等。 □ 配备一定数量的系统管理人员、网络管理人 员、安全管理人员等,但安全管理人员兼任网络 管理员、系统管理员、数据库管理员等。 □ 其它。 4. 关键安全管理活动 的授权和审批□ 定义关键安全管理活动的列表,并有正式成文的审批程序,审批活动有完整的记录。 □ 有正式成文的审批程序,但审批活动没有完整的记录。 □ 其它。 5. 与外部组织沟通合 作□ 与外部组织建立沟通合作机制,并形成正式文件和程序。 □ 与外部组织仅进行了沟通合作的口头承诺。□ 其它。 6. 与组织机构内部沟 通合作□ 各部门之间建立沟通合作机制,并形成正式文件和程序。 □ 各部门之间的沟通合作基于惯例,未形成正式文件和程序。 □ 其它。

2. 安全管理制度 安全策略及管理规章制度的完善性、可行性和科学性的有关规章制度的制定、发布、修订及执行情况。 检查项结果备注 1 信息安全策略□ 明确信息安全策略,包括总体目标、范围、原则和 安全框架等内容。 □ 包括相关文件,但内容覆盖不全面。 □ 其它 2 安全管理制度□ 安全管理制度覆盖物理、网络、主机系统、数据、 应用、建设和管理等层面的重要管理内容。 □ 有安全管理制度,但不全而面。 □ 其它。 3 操作规程□ 应对安全管理人员或操作人员执行的重要管理操作 建立操作规程。 □ 有操作规程,但不全面。 □ 其它。 4 安全管理制度 的论证和审定□ 组织相关人员进行正式的论证和审定,具备论证或审定结论。 □ 其它。 5 安全管理制度 的发布□ 文件发布具备明确的流程、方式和对象范围。□ 部分文件的发布不明确。 □ 其它。 6 安全管理制度 的维护□ 有正式的文件进行授权专门的部门或人员负责安全管理制度的制定、保存、销毁、版本控制,并定期评审与修订。 □ 安全管理制度分散管理,缺乏定期修订。 □ 其它。 7 执行情况□ 所有操作规程的执行都具备详细的记录文档。 □部分操作规程的执行都具备详细的记录文档。 □ 其它。 3. 人员安全管理 人员的安全和保密意识教育、安全技能培训情况,重点、敏感岗

20xx年安全事故调查报告(完整版)

报告编号:YT-FS-3872-27 20xx年安全事故调查报 告(完整版) After Completing The T ask According To The Original Plan, A Report Will Be Formed T o Reflect The Basic Situation Encountered, Reveal The Existing Problems And Put Forward Future Ideas. 互惠互利共同繁荣 Mutual Benefit And Common Prosperity

20xx年安全事故调查报告(完整版) 备注:该报告书文本主要按照原定计划完成任务后形成报告,并反映遇到的基本情况、实际取得的成功和过程中取得的经验教训、揭露存在的问题以及提出今后设想。文档可根据实际情况进行修改和使用。 安全事故调查报告(一) 一、xx年—20**年全县煤矿事故情况 xx年至20**年全县共发生各类煤矿生产安全事 故25起,死亡31人,百万吨死亡率达8.86%,直接 经济损失138.45万元。 二、当前煤矿安全生产存在的主要问题 当前煤矿安全生产存在的主要问题表现在以下几 个方面: 1、从事故类别分析,3年中国共产党发生顶板事 故23起,死亡了24人,分别占3年事故总数的92% 和77.4%;其中瓦斯事故是自1994年我县官沟煤矿发 生瓦斯爆炸,XX年后又一起重大的瓦斯爆炸。顶板事 故突出,瓦斯事故再次发生,说明全县煤矿安全生产

工作重点没有抓到位,预防顶板事故和瓦斯事故的措施没有到位。 2、从事故的性质分析,3年25起事故均是责任事故,事故的发生都是由于企业人员“三违”造成的,说明我县煤矿行业从业人员安全教育滞后,安全素质普遍较低,自我防护意识较差,遵守安全生产法律法规的自觉性不强。 3、从事故发生的原因分析,顶板事故发生的主要原因客观上由于全县煤矿基础条件差,井巷布局不合理,安全投入不够。主观上是由于工人在工作中支护不到位、或者是支护不及时造成的;有的是处理危岩时,措施、方法不合理造成的;有的是支护材料不合要求造成的。在瓦斯事故中存在的主要问题是瓦检员配备不足,责任心不强,检查不及时,没有及时跟班作业,井下电器有失爆现象;煤矿树枝状开采还未根本杜绝,通风状况还不是非常良好,瓦斯很容易产生突然集聚,造成瓦斯事故的发生。从分析来看,事故归根到底均是由于直接操作者不按照煤矿安全生产操作规程或者

六年级数学综合计算题

1、0.32×5.7+3.2×0.43 2、37×99+37 3、(8-94÷31)×1.8 4、(4.5÷83+8)×2 1 5、432÷(11.08-9.83)×0.8 6、72×43+41×75+73×4 3 7、1.25×32×0.25 8、18×(32+94-6 5 ) 9、201×25 17 10、19.82-(3.82-1.47) 11、4.7×99+4.7 12、(12.5×3.7+6.3×12.5)×16 13、0.125×8×0.25×40 14、463%×25+25×5.37 15、( 32+152)×45 16、(81+43)×(1-31) 17、92÷[(1-51)×32] 18、329÷[43-(167-4 1)] 19、4.6-1.6×0.5+0.2 20、[1.9-1.9×(1.9-1.9)]÷0.38 21、(5-0.2)×3.9+4.8×(4+2.1) 22、1.23×98+2.46 23、[ 209-(54-43)] ×1715 24、13×(137×26 3 ) 25、6×99%+0.06 26、43÷(43+3 2 ) 27、87×863 28、12.75-(83+43 ) 29、(121+511)×3×4 30、(1415×95-95)÷65 31、32×[83-(167-41)] 32、972-(54+9 21) 33、10.8÷[32×(1-8 5 )] 34、85.3×1.8-85.3×0.8 35、(26×5326)×261 36、(43+61-125 )×240 37、917-2120÷75×43 38、[45-(167+41)×92] 39、307÷[(53+31)×92] 40、307÷[(53+31)×4 1] 41、32×25÷20 42、518×45+52÷54 43、20÷0.8÷1.25 44、1911×253+193×25 8 45、[1-(41+83)]÷41 46、[32+(107-61)]÷5 4 (32+152)×45 (26×5326)×26 1

最高人民检察院公布涉铁路刑事犯罪十大典型案例

最高人民检察院公布涉铁路刑事犯罪十大典型案例 法学家教学案例网 最高人民检察院2月9日公布涉及铁路刑事犯罪十大典型案例。这些案例中,包括破坏铁路交通设施,骗逃铁路运费、非法买卖、运输枪支、弹药案、涉铁团伙盗窃等。十大案件分别为: 一、黑龙江“4.13”破坏交通设施案(黑龙江K7034列车脱轨事件) 2014年4月13日,哈尔滨铁路局绥化工务段海伦线路车间工人吴某某(男,44岁)为发泄对单位人事制度的不满,采用拆卸钢轨的手段破坏铁路设施,造成由黑河开往哈尔滨的K7034次旅客列车脱轨、倾覆,致1人轻伤、6人轻微伤,直接经济损失413万余元。 该案发生后,哈尔滨铁检机关组成专案组,第一时间介入侦查,引导取证。案件移送审查起诉后,主管检察长带领两名业务骨干组成公诉团,对卷宗进行了认真查阅,及时提审被告人,并两次深入案发地复核证据,在办案过程中充分利用庭前会议、证据开示等方式解决庭审程序和证据列举等相关问题。因为铁检机关的工作充分、有力,在案件审判中,法院完全采纳了铁检机关的意见,当庭宣判被告人吴振军构成破坏交通设施罪,判处有期徒刑十五年,剥夺政治权利三年,赔偿被害单位哈尔滨铁路局经济损失413万余元。 二、云南“2013.11.21”特大非法买卖、运输枪支、弹药案 这是昆明铁检机关在专项活动中办理的一起重大危害公共安全案件。该案是公安部“灭枪专项行动”的第11批督办案件,共批准逮捕犯罪嫌疑人4名。该案共计查获9mm大口径制式手枪4支,制式手枪子弹396发,弹匣7个,火药枪2支。 三、枝江22名村民特大涉铁团伙盗窃案 该案由武汉铁检分院襄阳铁检院办理。经查明,邓某某等22名枝江市安福寺镇丰山岗村四组的留守村民利用其毗邻枝江车站编组场的便利条件,8次携带自制铁钩、编织袋等作案工具,趁夜潜入编组场内,采用掀盗等方式盗窃共计4万余元的铁路运输物资(主要是大米、玉米和黄豆),再用皮卡车、轻型卡车运走销赃。经铁检机关的努力工作,在审判阶段,法院采纳了检察机关的指控,对该盗窃团伙22名被告人全部作了有罪判决。 四、衡阳铁检院监督立案的破坏京广高铁交通设施案 这是广州铁检分院衡阳铁检院承办的一起案件。2014年1月3日,京广高铁耒阳区间发生一起人为在钢轨上放置两根树木,造成G1129次列车被撞,中断行车36分钟的事故。了解到公安机关仅以治安案件立案后,衡阳铁检院认为这是一起典型的破坏交通设施案,公安机关处理明显错误,遂启动立案监督程序,派员提前介入,并于4月18日向衡阳铁路公安处发出《要求说明不立案理由通知书》。公安机关以铁路有关部门对事故性质定性为铁路治安事件为由进行解释,衡阳铁检院充分阐述应立为刑事案件的理由和依据,并得到公安机关的认可。当日,衡阳铁路公安处即以破坏交通工具设施案,对犯罪嫌疑人罗某某(男,汉族,31岁,湖南耒阳人)立案侦查。 五、重庆铁检院监督立案一起重大责任事故案 2014年3月18日,成都铁路局成都工务大修段职工王某某在梁平火车站施工作业中,违反操作规定,施工完毕牵引运行前,没有认真履行检查义务,疏忽大意,致使施工作业的物料运输车侧翻、毁损,造成直接经济损失120余万元。成都铁检分院重庆铁检院得知公安

六年级数学综合历年(计算题))

六年级数学综合历年(计算题) 1.直接写出得数(8分): ①36+64= ②12.5×8= ③5÷0.5= ④2- 7 2 = ⑤ 32+5 1 = ⑥32÷81= ⑦32= ⑧1÷25%= 2.计算(18分): ①(120-64)×(13+7) ②6.47×9.9+6.47×1.1 ③( 43+61-125)÷121 ④76÷[(74-21)×5 2 ] ⑤53÷ 94×75 ⑥209×2511+2514÷9 20 3.解方程(6分): ①40%x =4.2 ②51∶0.4=6∶x ③ 4 3 x -5%x =17.5

①78+46= ②24×5= ③7.2-0.48= ④30%÷3= ⑤5265?= ⑥6185-= ⑦1351÷= ⑧455.2÷= 2.计算(18分): ①20.86-5.63-4.37 ②624÷6-38 ③(12 7 85+)×24 ④69÷(2.4×31+1.5) ⑤ 22.25×4.8+77.5×0.48 ⑥ ]26 5)10753[(218?+÷ 3.解方程(6分): ①9x -1.8=5.4 ②227 4 =+ x x ③18∶0.2=x ∶12

①236+64= ②1.25×8= ③3.75÷0.25= ④3995÷95≈ ⑤21 -31= ⑥32 ×81= ⑦32= ⑧ 9 16÷32= 2.计算(18分): ① 2014-2014÷2 ② 32-52+31—5 3 ③0.125×2.5×8×4 ④36×( 92+1211) ⑤53÷94×7 5 ⑥89×99+89 23.解方程(6分): ①9x =5.4 ②5+5x =20 ③ 10 1 :x=81:41

2010年度中国十大最受关注刑事案件评选结果揭晓

2010年度中国十大最受关注刑事案件评选结果揭晓 2011-01-08 19:46:36 作者:佚名来源:人民大学浏览次数:380 网友评论0 条 自12月1日中国刑事法律网开展“2010年度中国刑事法十大案例评选活动”以来,本活动受到了学术界内外众多人士的广泛关注和积极参与,中国人民大学刑事法律科学研究中心对长期关注本中心网站和参与该项评选活动的热心人士表示感谢。按照计划,该活动网络投票为期一个月,截止活动结束统计时,已有1832 人参与投票。根据网络得票率我们评选出了2010年度中国十大最受关注刑事案 件。 中国刑事法律网发布 2010/12/29 1.赵作海冤案 得票数:305票 百分比:16.65 % 案情介绍: 1998年2月15日,商丘市柘城县老王集乡赵楼村赵振晌的侄子赵作亮到公安机关报案,其叔父赵振晌于1997年10月30日离家后已失踪4个多月,怀疑被同村的赵作海杀害,公安机关当年进行了相关调查。 5月8日,赵楼村在挖井时发现一具高度腐烂的无头、膝关节以下缺失的无名尸体,公安机关遂把赵作海作为重大嫌疑人于5月9日刑拘。 2002年10月22日,商丘市人民检察院以被告人赵作海犯故意杀人罪向商丘市中级人民法院提起公诉。12月5日商丘中院作出一审判决,以故意杀人罪判处被告人赵作海死刑,

缓期二年执行,剥夺政治权利终身。省法院经复核,于2003年2月13日作出裁定,核准商丘中院上述判决。 2010年4月30日,赵振晌回到赵楼村。经调查,1997年10月30日夜,赵振晌携自家菜刀在杜某某家中向赵作海头上砍了一下,怕赵作海报复,也怕把赵作海砍死,就收拾东西于10月31日凌晨骑自行车,带400元钱和被子、身份证等外出,以捡废品为生。因去年患偏瘫无钱医治,才回到村里。5月5日下午,省法院决定启动再审程序。5月8日下午,省法院召开审委会,认为赵作海故意杀人一案是一起明显的错案,审委会决定立即纠正,宣告赵作海无罪释放,并启动国家赔偿程序。 2010年5月13日上午,河南省高院召开新闻发布会宣布:给予赵作海国家赔偿及生活困难补助共计65万元。 2.“我爸是李刚”之李启铭河大校园交通肇事案 得票数:284票 百分比:15.50% 案情介绍: 2010年10月16日晚9时40分许,位于河北保定市的河北大学新区校园内出现一起严重车祸。一名年轻男子酒后在校园内驾驶一辆牌照为冀FWE420的黑色轿车飚车,撞飞两名女大学生,副驾驶位置的车玻璃被撞碎。 据悉,受害学生均系河北大学工商学院大一新生,最终被撞者陈某、张某一死一伤。肇事者李启铭在撞人后并没有立即停车,而是淡定地继续开车去校内宿舍楼接女友。返回途中被学生和保安拦下,他还大声对周围人叫嚣:“有本事你们告去。”“我爸爸是李刚。” 后经警方调查确认:肇事者李启铭,又名李一帆,男,22岁,系保定某单位实习生。10月16日晚9时40分许,李启铭酒后驾驶朋友的黑色迈腾轿车在河北大学新校区生活区,将两名女生陈某、张某撞倒。经对李启铭采血检测,鉴定为醉酒驾驶。10月24日,李启铭因涉嫌交通肇事犯罪被保定望都县人民检察院依法批准逮捕。最近,据被害方代理律师张凯透露,死者家属与肇事者李启铭方达成和解结案。

生产安全事故调查报告格式

生产安全事故调查报告格式 一、事故发生单位概况 二、事故发生经过和事故救援情况 1、事故发生详细经过(1)生产过程;状态(2)事故中的当事人的行为、语言表述(3)事故状态(4)事故场所机械、设备、状况等 2、应急救援情况(1)救援过程(2)抢救地点、过程、结果。 三、事故造成的人员伤亡和直接经济损失状况 四、事故发生的原因和事故性质 (一)事故原因 1、直接原因(1)人的不安全行为:根据GB5442-86A7规定。(2)机械、物质或环境的不安全状态:根据GB5441-86A6规定。 2、间接原因(1)、技术和设计上的缺陷。(2)、教育培训不够,缺乏安全技术知识。(3)、劳动组织不合理。(4)、对现场工作缺乏检查指导。(5)、没有安全操作规程或不健全。(6)、对事故隐患整改不力,没有落实事故防范措施等。 (二)事故性质 1、是否为责任事故 2、是否为非责任事故

五、对事故的责任认定及对事故责任人的处理建议 1、对事故单位的责任认定及处理意见(全部责任、主要责任、重要责任、次要责任等),依据《条例》规定提出行政处罚建议。 2、对事故有关部门的责任认定(主要责任、重要责任、次要责任、一定责任等),依据《条例》规定提出行政处罚建议。 3、对有关责任者的责任认定(主要领导责任、领导责任、管理责任、直接责任、重要责任等),提出个人行政处罚建议及党、政纪处分建议,追究责任人的刑事责任。六、今后的防范和整改措施建议附: 1、事故调查人员签字名单。 2、伤亡人员名单。 3、有关资料复印件。包括:(1)企业提供资料的复印件(2)现场照片(3)现场示意图(4)笔录复印件(5)行政处罚的法律文书(6)刑事处罚的法律文书(7)罚款收据复印件(8)行政处分的复印件(9)党内处分的复印件(10)其它需要提交的有关材料等

小学六年级数学四则混合运算题库

学习必备 欢迎下载 分数四则混合运算和应用题复习(一) 一、直接写得数。 3÷ 76= 65÷10= 83÷109= 21-41= 18×61= 107÷15 14 = 二、怎样简便就怎样计算: 51÷(1-31×21) 109×【8 7 ÷(54+41)】 (41-41×21)÷41 65+89×95×98 9×65+65÷9 1 (83+271)×8+2719 X - 31X =32 1-31X =3 2 8X +31=97 4415:X =115 解决问题:

1、一桶油20千克,用去5 4 ,还剩下多少千克? 2、一桶油20千克,用去一些后还剩下5 2 。用去多少千克? 3、一桶油,用去18千克后,还剩下5 2 。这桶油多少千克? 4、一桶油40千克,用去的是剩下的 5 3 ,用去多少千克? 分数四则混合运算和应用题复习(二) 一、细心填写: 1、 53小时=( )分 5 3 千米=( )米 300克=( )千克 2、剪去的是剩下的11 6 ,剪去的是全长的( );实际比计划增产31,实际是计划的( );今 年比去年节约51 ,今年是去年的( )。 3、15米的53比( )多32米;28吨的73是( )的3 2 。 4、20千克苹果,卖出他的101后又卖出10 1 千克,共卖出( )千克。 5、一项工程,甲独做要14天完成,乙的效率是甲的8 7 ,乙的效率是( ),乙独做需要( ) 天完成这项工程。 二、解决问题:

1、老李用80天时间完成了一项任务,比计划节省时间5 1 。计划用多少天? 2、501班有60人,其中男生人数是女生的3 2 。男女生各有多少人? 3、新建一条生产线,实际投资27万元,比计划节约 10 1 。计划投资多少万元? 4、一段公路,甲队独修10天完成,乙队独修12天完成。甲队先修4天后,余下的由乙队独修。乙队还要修多少天? 5、一个水池有甲乙两个进水管,独开甲管6小时可以注满一池水,独开乙管9小时可以注满一池水。两管齐开,多少小时可以注满一池水? 分数四则混合运算和应用题复习(三) 一、判断是否: 1、0.5和2互为倒数。………………………………………………………( ) 2、甲数是乙数的35,乙数就是甲数的5 3 。…………………………………( ) 3、52÷10表示把5 2 平均分成10份,求这样的一份是多少。……………( ) 4、甲数比乙数少5 3 ,甲数和乙数的比是5:2. ……………………………( ) 二、怎样简便就怎样算: 84×( 43-31) 83+(73+141)×32 12 11 ÷81+1213×8 三、解决问题:

药品案件十大案例

第三分局执法人员现场检查医疗机构。 厦门网-厦门日报讯文/图记者陈泥通讯员刘启国 昨日,记者从市食品药品监督管理局获悉,今年以来,我市药监部门开展了打击非法境外药品、非法“性药”、中药材(饮片)、广告、网络非法售药、保健食品打“四非”、无产品注册证医疗器械等10个专项整治,共发现和查处各类“三品一械”违法违规案件400余起,其中立案103起,当场处罚228起,向公安机关移送涉嫌刑事案件87起,配合公安机关查获涉药犯罪嫌疑人39名,罚没款143.2万元,没收物品价值11.3万元。 11月20日,国务院总理李克强主持召开国务院常务会议,通过关于依法公开制售假冒伪劣商品和侵犯知识产权行政处罚案件信息的意见,这标志着,食品药品监督管理部门适用一般程序查办的制售假冒伪劣食品、药品、医疗器械、保健食品、化妆品等侵权行政处罚案件信息将主动公开。在这一背景下,昨日,市食品药品监督管理局授权本报独家发布了今年以来查处的十大典型案例。据了解,此次监管部门曝光的案例,全部是社会影响大、危害严重的重大案件,对社会上的各种食品药品违法行为起到警示和震慑。食药监部门也就此提醒市民,买药时一定要认准“国药准字”,对一些打着讲课、办培训班等活动推销药品的行为,要警惕购买。如发现问题,可拨打电话12331举报。 药品稽查年度关键词 ●非法药品 今年以来,药监部门加大了对非法境外药品和非药品冒充药品的整治力度,与公安部门共同处理经营使用未经批准进口药品、标示改善“性功能”产品(未经批准生产)200余起,依法作出认定书200余份。对涉嫌犯罪的犯罪嫌疑人采取了取保候审、刑事拘留等强制措施。 ●非法收购药品 药监部门开展打击非法收购倒卖医保药品,针对非法收购药品违法行为流动性强、覆盖面宽、取证难和处罚执行难等问题,以“打源头、端窝点、破网络、清市场”为重点,联手公安机关等部门查处了以林某某为首的非法收购倒卖医保药品团伙3个,捣毁6个非法收购药品的犯罪窝点,抓获8名犯罪嫌疑人。此外,积极探索打击非法收购药品违法犯罪工作的新机制、新办法,有效遏制了辖区内非法收购药品的违法行为。 ●“打四非” 市食药监局密切与公安、工商等相关部门的协作,通过摸底排查、突击检查、畅通投诉举报渠道等方式,共查处各类保健食品违法犯罪案件21起,其中由公安机关刑事立案2起,行政处罚立案19起。取缔利用“健康讲座”方式非法宣传、销售保健食品行为16起,办理保健食品协查件249件。 ●互联网非法售药 药监部门联合公安、工商、电信等部门,通过关闭网站、屏蔽信息、发布警示等打击利用互联网非法收售药品行为,成功查处17起网上非法售药行为,冲击了10个互联网销售假药窝点(湖里4个,翔安3个,思明、同安、海沧各1个),破获网络销售假药案4起。 ●虚假违法药品广告 今年以来,药监部门通过“在线违法广告监测管理系统”,全市对药品、保健食品、医疗器械广告进行监测,每月将监测情况汇总上报省食药监局,同时抄送市工商局,每季度还将违法广告监测结果及处理情况向市委宣传部、市纠风办、市文广新局等部门通报。通过违法广告监测工作共发现假药3种,假冒保健食品1批,全部予以立案查处。 ●监督抽验 药监部门今年共安排药品监督抽验1000批次,发现不合格产品46批,不合格率为4.6%。与去年同期相比,不合格率下降了0.7%,对这些不合格药全部予以行政处罚。完成基本药物抽检以国家基本药物目录和福建省增补药物目录为主,全年共完成抽验531批次,我市基本药物药品流通市场药品合格率为99.8 %,生产合格率为100%。 ●投诉举报 今年,市食品药品监督管理局稽查处为群众提供安全合理用药咨询3700余次,充分发挥“12331”投诉举

度中国十大最受关注刑事案件

2011年度中国十大最受关注刑事案件 2011年度中国十大最受关注刑事案件评选结果揭晓自12月1日中国刑事法律网开展“2011年度中国刑事法十大案例评选活动”以来,本活动受到了学术界内外众多人士的广泛关注和积极参与,中国人民大学刑事法律科学研究中心对长期关注本中心网站和参与该项评选活动的热心人士表示感谢。按照计划,该活动网络投票为期一个月,截止活动结束统计时,已有2357人参与投票。根据网络得票率我们评选出了2011年度中国十大最受关注刑事案件。 中国刑事法律网发布 2011/12/30 1.紫金山金铜矿重大环境污染事故案 得票数: 258票 百分比:10.95% 案情介绍: 2010年7月3日15点50分,紫金矿业集团的紫金山铜矿湿法厂污水池水位异常下降,池内酸性含铜污水出现渗漏,

部分进入汀江,导致汀江部分河段水质受到一定污染,并造成大量鱼类死亡。事故发生后,国家环保部和福建省环保厅、龙岩市政府及环保部门组成联合调查组。联合调查组通过对福建紫金矿业集团所属的紫金山铜矿湿法厂污水池渗漏致 汀江污染事故进行的调查发现,紫金山铜矿泄漏含铜酸性废水9176立方米,造成汀江紫金山金铜矿铜矿湿法厂下游水 体污染和下游养殖鱼类大量死亡。此次事件是一起由于企业污水池防渗膜破裂导致污水大量渗漏后通过人为设置的非 法通道溢流至汀江而引发的重大突发环境事件。 新罗区人民法院2011年1月30日下达的一审判决书中,以重大环境污染事故罪对紫金矿业集团股份有限公司紫金 山金铜矿判处罚金3000万元人民币;同时判处涉案被告人 紫金矿业原副总裁陈家洪有期徒刑3年,并处罚金20万元;紫金山金铜矿环保安全处原处长黄福才有期徒刑3年6个月,并处罚金20万元;紫金山金铜矿铜矿湿法厂原厂长林文贤 有期徒刑4年,并处罚金30万元;紫金山金铜矿铜矿湿法 厂原副厂长王勇有期徒刑4年,并处罚金30万元;紫金山 金铜矿铜矿湿法厂环保车间原主任刘生源有期徒刑4年6个月,并处罚金30万元。 2.药家鑫案+李昌奎案 得票数:253票 百分比:10.73%

震惊国内的十大学生杀人恶性案件

震惊国内的十大学生杀人恶性案件 1、马加爵连杀四人。2004年,云南大学学生马加爵杀害4名同学的一起刑事案件。此案件由于作案者为大学生,出身卑微,手段残忍而吸引社会各界的关注。马加爵曾被预评为“省三好学生”;2000年至2004年就读于云南大学生化学院生物技术专业;2004年2月13日晚杀一人,2月14日晚杀一人,2月15日再杀两人后从昆明火车站出逃。2004年3月15日被公安部列A级通缉犯;2004年6月17日被执行死刑。杀人事件的起因是因为打牌争执。2004年寒假马加爵因为打工没有回家,留在学校住宿。邵瑞杰和唐学李提早回到了学校。唐学李原本是住在校外的出租房的,只是因为那几天还是假期,校内宿舍的床位空置率较高而入住邵瑞杰和马加爵的317室。案发前几天,马加爵和邵瑞杰等几个同学打牌时,因邵瑞杰怀疑马加爵出牌作弊两人发生争执。曾被马认为与其关系较好的邵瑞杰说“没想到连打牌你都玩假,你为人太差了,难怪龚博过生日都不请你……”,马认为他的这番话伤害了自己的自尊心,转而动了杀机。 2、44刀惨案。紫溪中学学生宿舍3栋401室,李国阳刺了舍友徐振宇19刀,汪磊25刀。2010年12月11日7时20分,犯罪嫌疑人小阳在楚雄市紫溪中学401宿舍持刀对同宿舍睡觉的同班同学小宇进行刺杀。同宿舍同班同学小磊发现后起床,小阳又持刀在宿舍内将小磊刺伤并致其倒在地上。小阳作案后企图跳楼,被其他宿舍的同学发现后制止,随后小阳持刀割腕自杀。其他同学见状后找到学校宿

舍管理员报告了情况,随后拨打了120急救电话。120急救医生将小磊、小宇和小阳3人立即送到楚雄州人民医院抢救,小磊、小宇经抢救无效死亡,小阳经救治后现无生命危险。 3、残杀女友。2011年5月8日下午15时许,中南大学南校区升华公寓15栋、16栋宿舍下发生一起命案。一男子持刀将该校一女生杀死,随后自杀。警方初步查明,嫌疑人王某,因追求女生被女生拒绝将其杀害。 4、美女杀手。云南大学旅游文化学院女大学生张超伙同男友抢劫杀人碎尸案日前尘埃落定:最高法院改判张超为死缓。17日上午,其男友谢宏在丽江被执行枪决。张超于2007年6月与被害人木鸿章在丽江市某夜总会相识,木鸿章常约张超吃饭会友,并先后送了价值2万多元的财物。张超遂与男友谢宏商议暴力劫取木鸿章财物。之后,谢宏的好友陈光吕接到谢宏电话,也赶到丽江,并与谢宏购买了尼龙绳、橡胶手套等作案工具。12月19日,张超将木鸿章骗至自己租住的房屋,谢宏、陈光吕对其实施抢劫、套取银行卡密码后,用尼龙绳将其勒死,将尸体肢解为260多份,包装后抛入玉龙新县城护城河内。随后3人相继在丽江、昆明被公安机关抓获。 5、深夜刀杀。被告人郭力维因觉得被害人赵研打呼噜影响其休息,曾将赵研晚上打呼噜视频传到校内网上,二人因此不和。被告人郭力维认为赵研多次对其进行辱骂,伤害了其自尊心,遂于2009年11月14日凌晨3时30分左右,用事先准备好的尖刀扎熟睡的被害人赵研胸部、背部数下,致使赵研因左胸部刺创致心脏破裂造成失血

生产安全事故调查报告格式

生产安全事故调查报告格式 生产安全事故调查报告格式 题目“***”事故调查处理报告 一、事故发生单位概况 二、事故发生经过和事故救援情况 1、事故发生详细经过 (1)生产过程;状态 (2)变乱中的当事人的举动、语言表述 (3)事故状态 (4)事故场所机械、设备、状况等 2、应急救援情况 (1)救援过程

(2)抢救地点、过程、结果。 三、事故造成的人员伤亡和直接经济损失状况 四、事故发生的原因和事故性质 (一)事故原因 1、直接原因 (1)人的不安全行为:根据GB5442-86A7规定。 (2)机械、物质或环境的不安全状态:根据GB5441- 86A6规定。 2、间接原因 (1)、技能和计划上的缺陷。(2)、教育培训不够,缺乏宁静技能知识。(3)、劳动组织不合理。(4)、对现场工作缺乏检查指导。(5)、没有宁静操作规程或不健全。(6)、对事故隐患整改不力,没有落实变乱防范措施等。 (二)事故性质 1、是否为责任事故 2、是否为非责任事故

五、对事故的责任认定及对事故责任人的处理建议 1、对事故单位的责任认定及处理意见(全部责任、主要责任、重要责任、次要责任等),依据《条例》划定提出行政处罚发起。 2、对事故有关部门的责任认定(主要责任、重要责任、次要责任、一定责任等),依据《条例》划定提出行政处罚发起。 3、对有关责任者的责任认定(主要领导责任、领导责任、管理责任、直接责任、重要责任等),提出自己行政处罚发起及党、政纪处分建议,追究责任人的刑事责任。 六、今后的防范和整改措施建议 附: 1、变乱观察职员具名名单。 2、伤亡人员名单。

3、有关资料复印件。 包括: (1)企业提供资料的复印件(2)现场照片 (3)现场示意图 (4)笔录复印件 (5)行政处罚的法律文书 (6)刑事处罚的法律文书 (7)罚款收据复印件 (8)行政处分的复印件 (9)党内处分的复印件 (10)其它需要提交的有关材料等

徐州市中级人民法院公布2015年十大典型刑事案例

徐州市中级人民法院公布2015年十大典型刑事案例 2016年1月15日上午,徐州中院召开新闻发布会,分析通报了2015年度案件审判执行情况,并向社会公布了2015年度十大典型刑事案例。 典型案例一 【关键词】:网络传销 【案情回放】 这是一起组织领导传销活动案。被告人一共9人,多数是高学历人员,其中有北京行政学院的博士后。 2013年底,被告人胡某与被告人扈某经预谋后,决定成立万钧国际集团有限公司实施传销活动,由被告人胡某在香港注册公司,二被告人共同到广西南宁,联系被告人许某,由其制作万钧国际传销网络平台并负责后台维护、网站程序的修改、增加服务器等。 截至2014年5月21日,万钧国际传销组织在全国各地累计已注册会员账号15066个、管理员161人,已发展至80余层级,参与传销活动人员达数千人、累计缴纳的金额共计人民币数千万元,其中被告人胡某个人获利人民币3000余万元,被告人扈某、王某等人从中获利人民币几万元至300余万元不等。经被告人王某等人在徐州及周边地区组织、领导、发展的参与传销帐户累计达2000余个、直接或间接收取的传销资金累计达900余万元。 【法院判决】 市中级人民法院判决,被告人胡某犯组织、领导传销活动罪,判处有期徒刑七年,并处罚金人民币二百万元;被告人扈某犯组织、领导传销活动罪,判处有期徒刑六年,并处罚金人民币五十万元。其余7人,判处有期徒刑二年至四年不等,并处罚金人民币十万至三十万元不等。 【典型意义】 千方百计的让你从自己的口袋里掏出钱来交给他们,然后成为他们当中的一员。在当今社会上,与传统传销相比,网络传销隐蔽性更强。作为市民,要坚信“天上不会掉馅饼”、“没有免费的午餐”,对“高额回报”、“快速致富”的投资项目进行客观、冷静的分析,识别其虚假、欺骗、诱惑的实质,避免上当受骗。 典型案例二 【关键词】:银行大盗 【案情回放】 这起案件涉及盗窃、抢劫、抢夺,作案目标是从银行取款出来的人,民间俗称“把行”。这也是在徐州宣判的全国最大的把行案。 四个东北农民,结成团伙,自2007年11月至2014年7月间,四人经事先预谋,交叉结伙,先后携带螺丝刀、弹弓、破窗器等作案工具,开车尾随从银行取款人员所开车辆,扎其车胎,待其停车时趁其不备拉其车门、砸其车玻璃,窃取车内现金。 四被告人先后在黑龙江、辽宁、山东、河南、安徽、浙江、江苏、河北、天津等省市,实施盗窃66起,共盗窃人民币900余万。另外还实施抢劫3起,劫取人民币30余万,造成一人轻伤;抢夺2起,夺得财物人民币30余万元。 2014年8月,四人先后被我市警方抓获。 【法院判决】 市中级人民法院判决如下:被告人王某犯抢劫罪,犯抢夺罪,犯盗窃罪,决定执行无期徒刑,剥夺政治权利终身,并处罚金人民币一百三十八万元;被告人张某犯抢劫罪,犯抢夺罪,犯盗窃罪,决定执行无期徒刑,剥夺政治权利终身,并处罚金人民币一百三十七万元;被告人张某某犯抢劫罪,犯抢夺罪,犯盗窃罪,决定执行有期徒刑二十五年,剥夺政治权利五年,并处罚金人民币一百一十六万元;被告人田某犯

小学六年级数学四则混合运算题库22939

分数四则混合运算(一) 一、准确计算: 65+35×54 85-41×(98÷32) (21-61 )×53÷51 61÷【179×(43+32)】 1211-41+103÷53 32÷【(43-21)×54 】 一个数的109是43,这个数是多少? 43减去43与54 的积,所得的差除9,商是几? 二、解决问题: 1、计算下列物体的表面积。 52 米 25米 54米 52米 52 米 2、从A 地去B 地,货车需要90分钟,客车需要80分钟。货车每分钟行35 千米, 客车每分钟行多少千米?

分数四则混合运算(二) 一、简便计算: 52+154-52 76×85+83÷67 (117-83)×88 13—48×(121+161) 54÷3+32×54 52+21×53+107 1312×73+74×1312+1312 二、解决问题: 1、一个三角形的面积83平方米,底边长52 米。高多少米?(用方程解) 2、一桶油重15千克,倒出52 ,平均装到8个瓶子里,每个瓶子装多少千克? 3、一根绳子,剪去41 后,短了5米。这根绳子长多少米? 4、一筐香蕉连筐重42千克,卖出31 后,剩下的连筐重29千克。筐重多少千克?

5、甲32 小时生产60个零件,乙每小时生产60个零件。两人合做多少小时生产100 个零件? 6、甲车每小时行80千米,乙车每小时行70千米,两车同时从两地相对开出,行40分钟相遇。两地相距多少千米? 7、

分数四则混合运算(三) 一、怎样简便就怎样算: (87-165)×(95+32) 138÷7+71×136 97÷511+92×115 【1-(41+83)】÷41 2-136÷269-32 99×10099 (61+43-32)×12 54减32的差乘一个数得72 ,求这个数。 32加上41除以43的商,得到的和再乘41 ,积是几? 二、解决问题: 1、一个梯形上底103米,下底52米,高75 米,它的面积是多少? 2、一项工程,甲独做10天完成,乙独做15天完成。现在甲做4天,乙做3天,分别完成这项工程的几分之几? 3、、甲32小时生产60个零件,乙每小时生产60个零件。两人合做5小时生产多少 个零件? 4、一批货物100吨,4小时运走了它的54 。剩下的要几小时运完?

不可不看的罕见图:震惊世界的十大间谍案件

不可不看的罕见图:震惊世界的十大间谍案件 不可不看的罕见图:震惊世界的十大间谍案件 (25/25) 2012-05-24 15:07:44 [责编:论坛编辑] [收藏][分享] 特务,本指特殊任务,中性词,如特工、特务工作;作为人称代词,指特工人员,做特务工作的人员;第三个意思就很有地域和体制色彩———密探,为了国家、阶级或政治集团的利益,受组织或领导的委派,默默从事情报工作或搜捕、暗杀、破坏等行动工作以及其他维护本国、本阶级或本政治集团利益的秘密工作的人员。特务业务有情报工作、行动工作、策反及心理作战。第三个意义由于广为人知,浓厚的意识形态色彩已经完全淹没了词汇的原义以及中性立场,每个历史时期都存在特务。大视界网友为您搜集了大量珍贵的图片资料,为您解开世界上最著名的十五名特务的秘史。玛塔·哈莉(MataHari),是20世纪最有名的间谍之一,原名玛格雷萨·杰拉,这位来自修道院的姑娘在经历了和东印度公司一位官员的灾难性婚姻后,来到巴黎改头换面,以跳舞为生。她的新名字叫玛塔·哈莉,在爪哇语中的意思是“黎明的眼睛”。她穿着异域舞蹈家的华丽服饰,自称是东方皇

室成员的后代。她成了明星,专为上流社会表演艳情舞蹈。她利用美色引诱法国的军政要人,从他们那里骗取军事机密,并主动把情报传递给德国的情报机构。德国人向她报出了相当于两百万美元的交易报酬。传奇就这样诞生了。她楚楚动人,让整个巴黎为之动容。1916年,如果你能轰动巴黎,那么你就无所不能。从任何角度来看,她的工作都非常出色。她拥有一批身居要职的法国情人,并且不停地更换。作为一名德国密探,她的任务就是利用美色,从法国官员那里套取军事情报。但是她和各国官员的频频联系引起了别人的怀疑。她很快就被抓住了。1906年、1916年以及1917年处决前的玛塔-哈莉。直到临刑前,她依然楚楚动人。她拒绝遮住眼睛,也不让行刑者把她绑在木桩上。就在被枪决前,她还向12人的行刑队送去了飞吻。她得到的情报让数十万士兵们白白送了性命,而她最终也难逃一死。 南希·韦克(1912年8月30日---2011年8月9日),代号“白鼠”,第二次世界大战传奇美女间谍,纳粹德国元首希特勒最想除掉又总是抓不住的“白鼠”,原为记者,后加入抵抗组织。战争结束后,韦克获得了许多荣誉,美国、英国、法国和澳大利亚分别授予她国家级勋章,她的传奇故事后来被写进小说、搬上银幕。在二战期间,韦克还曾经徒手杀死过一名男子。而她深爱的丈夫,也因为不肯透露她的行踪而被纳粹残忍地杀害。可是面对那段战争岁月,韦克却表示自

人教版六年级数学下册数与数的运算综合能力专题卷附答案 (2)

人教版六年级数学下册期末总复习1.数与代数 一、仔细审题,填一填。(每空1分,共21分) 1.在0.8、-9、+50%、100、0、-3 2这几个数中,正数有( ),负数有( ),( )既不是正数,也不是负数。 2.分母是10的最小带分数是( ),它里面有( )个1 10,它再添上( )个这样的分数单位就是最小的合数。 3.甲、乙、丙三个数的比是3:4:5,丙是8.5,这三个数的平均数是( )。 4.按规律填数。 (1)1、4、9、16、( )、( )。 (2)1、2、2、4、3、8、4、16、5、( )、( )。 5.工地运来水泥a 车,每车14 t ,可供施工队使用一周,14a ÷7表示( )。当a =8时,上式的值是( )。 6.现在人们喜欢用微信运动记录步数,昨天爷爷与奶奶的步数比是8:7,奶奶比爷爷少走( )%,奶奶走10500步,爷爷走( )步。 7.一本字典打七五折比原来便宜了9元,这本字典比原价优惠( )%,原价是( )元。 8.五(1)班学生分小组跳绳比赛,每4人一组,每5人一组或每6人一组,都剩余2人,五(1)班学生至少有( )人。 9.在5 6、0.7 、0. 、73%中,最大的数是( ),最小的数是( )。

10.如果2x -4.5×0.5=5,5x -m =2.5,那么m =( )。 二、火眼金睛,判对错。(对的在括号里画“√”,错的画“×”)(每小题1 分,共5分) 1.杠杆原理的背后隐藏数学原理,其实就是反比例的关系。 ( ) 2.把0.75的小数点先向左移动两位再向右移动一位后是7.5。 ( ) 3.一个分数的分子分母同时乘12,这个分数的大小不变。 ( ) 4.两个合数不可能是互质数。 ( ) 5.25比20多25%,20比25少1 5。 ( ) 三、仔细推敲,选一选。(将正确答案的序号填在括号里)(每小题2分,共16分) 1.一幅地图的比例尺是1:2000000,在地图上,1 cm 的距离表示实际距离( )km 。 A .2 B .20 C .200 D .2000 2.能与0.24:0.1组成比例的是( )。 A .24:1 B .12:1 C .12:5 D .5:12 3.一项工程甲单独做要8天完成,乙单独做要10天完成,甲、乙效率的最简整数比是( )。 A .10:8 B .4:5 C .5:4 D .8:10 4.三个连续奇数的和是m ,最小的奇数是( )。 A .m -2 B .m -1 C .13m -2 D .1 3m +2 5.下面各选项中阴影所占比例与长方形中阴影所占比例最接近的是

相关文档
相关文档 最新文档