文档库 最新最全的文档下载
当前位置:文档库 › 浅谈激光焊接的机理和性能特点

浅谈激光焊接的机理和性能特点

浅谈激光焊接的机理和性能特点
浅谈激光焊接的机理和性能特点

浅谈激光焊接的机理和性能特点

newmaker

现在的激光焊接技术还是比较完善的,那激光焊接是根据什么原理来工作的呢?激光焊接的性能特点是什么呢?本文就这两个问题总结了一下:

激光焊接原理:激光焊接是将高强度的激光束辐射至金属表面,通过激光与金属的相互作用,金属吸收激光转化为热能使金属熔化后冷却结晶形成焊接。

激光焊接的机理有两种:

1、热传导焊接

当激光照射在材料表面时,一部分激光被反射,一部分被材料吸收,将光能转化为热能而加热熔化,材料表面层的热以热传导的方式继续向材料深处传递,最后将两焊件熔接在一起。

2、激光深熔焊

当功率密度比较大的激光束照射到材料表面时,材料吸收光能转化为热能,材料被加热熔化至汽化,产生大量的金属蒸汽,在蒸汽退出表面时产生的反作用力下,使熔化的金属液体向四周排挤,形成凹坑,随着激光的继续照射,凹坑穿人更深,当激光停止照射后,凹坑周边的熔液回流,冷却凝固后将两焊件焊接在—起。

这两种焊接机理根据实际的材料性质和焊接需要来选择,通过调节激光的各焊接工艺参数得到不同的焊接机理。这两种方式最基本的区别在于:前者熔池表面保持封闭,而后者熔池则被激光束穿透成孔。传导焊对系统的扰动较小,因为激光束的辐射没有穿透被焊材料,所以,在传导焊过程中焊缝不易被气体侵入;而深熔焊时,小孔的不断关闭能导致气孔。传导焊和深熔焊方式也可以在同一焊接过程中相互转换,由传导方式向小孔方式的转变取决于施加于工件的峰值激光能量密度和激光脉冲持续时间。激光脉冲能量密度的时间依赖性能够使激光焊接在激光与材料相互作用期间由一种焊接方式向另一种方式转变,即在相互作用过程中焊缝可以先在传导方式下形成,然后再转变为小孔方式。

1、激光焊接的焊缝形状

对于大功率深熔焊由于在焊缝熔池处的熔化金属,由于材料的瞬时汽化而形成深穿型的圆孔空腔,随着激光束与工件的相对运动使小孔周边金属不断熔化、流动、封闭、凝固而形成连续焊缝,其焊缝形状深而窄,即具有较大的熔深熔宽比,在高功率器件焊接时,深宽比可达5:l,最高可达10:1。

对比的结论有以下几点:

(1)激光焊和电子束焊比TIG和等离子焊的主要优点相似:焊缝窄、穿透深、焊缝两边平行、热影响区小;

(2)TIG和等离子焊投资少,广泛应用了许多年,经验比较多;

(3)激光焊和电子束焊在高生产率方面优势大得多。但电子束焊须在真空室或局部真空中进行。也可在空气中,但熔透能力比激光焊差;

(4)激光焊和电子束焊,焊缝窄且热影响区小,因而变形最小。

2、激光焊接焊缝的组织性能

采用大功率激光光束焊接时,因其能量密度极高,被焊工件经受快速加热和冷却的热循环作用,使得焊缝和热影响区区域极窄,其硬度远远高于母材,因此,该区域的塑性相对较低。

为了降低接头区域的硬度,应采取焊接前预热和焊后回火等相应的工艺措施。激光回火是一种在激光焊后随即采用非聚焦的低能量密度光束对焊道进行多道扫描从而降低焊缝硬度的新工艺。激光焊接金属及热影响区的组织和硬度是由化学成分和冷却速度决定的。在激光焊接中,现行焊接工艺一般不需要填充金属。在这种情况下,焊缝的组织和硬度主要由钢板的化学成分和激光照射条件来决定。采用填充焊丝的激光焊接由于可以选择任意合金成分的焊丝作为最佳的焊缝过渡合金,因而可以保证两侧母材的联结具有最佳性能。可以对高熔点、高热导率、物理性质差异较大的异种或同种金属材料进行焊接,可以得到无污染、杂质少的焊缝。激光焊接加热速度快,焊接熔池迅速冷却,与普通的常规焊接在金相组织上有着很大的区别。(end)

激光焊接应用讲解

激光焊接应用 一、激光焊接的主要特性。 激光焊接是激光材料加工技术应用的重要方面之一。20世纪70年代主要用于焊接薄壁材料和低速焊接,焊接过程属热传导型,即激光辐射加热工件表面,表面热量通过热传导向内部扩散,通过控制激光脉冲的宽度、能量、峰值功率和重复频率等参数,使工件熔化,形成特定的熔池。由于其独特的优点,已成功应用于微、小型零件的精密焊接中。 高功率CO2及高功率YAG激光器的出现,开辟了激光焊接的新领域。获得了以小孔效应为理论基础的深熔焊接,在机械、汽车、钢铁等工业领域获得了日益广泛的应用。 与其它焊接技术相比,激光焊接的主要优点是: 1、速度快、深度大、变形小。 2、能在室温或特殊条件下进行焊接,焊接设备装置简单。例如,激光通过电磁场,光束不会偏移;激光在真空、空气及某种气体环境中均能施焊,并能通过玻璃或对光束透明的材料进行焊接。 3、可焊接难熔材料如钛、石英等,并能对异性材料施焊,效果良好。 4、激光聚焦后,功率密度高,在高功率器件焊接时,深宽比可达5:1,最高可达10:1。 5、可进行微型焊接。激光束经聚焦后可获得很小的光斑,且能精确定位,可应用于大批量自动化生产的微、小型工件的组焊中。 6、可焊接难以接近的部位,施行非接触远距离焊接,具有很大的灵活性。尤其是近几年来,在YAG激光加工技术中采用了光纤传输技术,使激光焊接技术获得了更为广泛的推广和应用。 7、激光束易实现光束按时间与空间分光,能进行多光束同时加工及多工位加工,为更精密的焊接提供了条件。 但是,激光焊接也存在着一定的局限性: 1、要求焊件装配精度高,且要求光束在工件上的位置不能有显著偏移。这是因为激光聚焦后光斑尺雨寸小,焊缝窄,为加填充金属材料。若工件装配精度或光束定位精度达不到要求,很容易造成焊接缺憾。 2、激光器及其相关系统的成本较高,一次性投资较大。 二、激光焊接热传导。 激光焊接是将高强度的激光束辐射至金属表面,通过激光与金属的相互作用,使金属熔化形成焊接。在激光与金属的相互作用过程中,金属熔化仅为其中一种物理现象。有时光能并非主要转化为金属熔化,而以其它形式表现出来,如汽化、等离子体形成等。然而,要实现良好的熔融焊接,必须使金属熔化成为能量转换的主要形式。为此,必须了解激光与金属相互作用中所产生的各种物理现象以及这些物理现象与激光参数的关系,从而通过控制激光参数,使激光能量绝大部分转化为金属熔化的能量,达到焊接的目的。 三、激光焊接的工艺参数。 1、功率密度。 功率密度是激光加工中最关键的参数之一。采用较高的功率密度,在微秒时间范围内,表层即可加热至沸点,产生大量汽化。因此,高功率密度对于材料去除加工,如打孔、切割、雕刻有利。对于较低功率密度,表层温度达到沸点需要经历数毫秒,在表层汽化前,底层达到熔点,易形成良好的熔融焊接。因此,在传导型激光焊接中,功率密度在范围在104~106W/CM2。 2、激光脉冲波形。 激光脉冲波形在激光焊接中是一个重要问题,尤其对于薄片焊接更为重要。当高强度激光束射至材料表面,金属表面将会有60~98%的激光能量反射而损失掉,且反射率随表面温度变化。在一个激光脉冲作用期间内,金属反射率的变化很大。 3、激光脉冲宽度。 脉宽是脉冲激光焊接的重要参数之一,它既是区别于材料去除和材料熔化的重要参数,也是决定加工设备造价及体积的关键参数。 4、离焦量对焊接质量的影响。 激光焊接通常需要一定的离做文章一,因为激光焦点处光斑中心的功率密度过高,容易蒸发成孔。离开激光焦点的各平面上,功率密度分布相对均匀。 离焦方式有两种:正离焦与负离焦。焦平面位于工件上方为正离焦,反之为负离焦。按几何光学理论,当正负离做文章一相等时,所对应平面上功率密度近似相同,但实际上所获得的熔池

吉大2017《波谱分析》离线作业及答案

一、名词解释(每小题5分,共30分) 1、化学位移:由原于核与周围电子静电场之间的相互作用引起的Y发射与吸收能级间的相对移动。 2、屏蔽效应:由于其她电子对某一电子的排斥作用而抵消了一部分核电荷对该电子的吸引力,从而引起有效核电荷的降低,削弱了核电荷对该电子的吸引,这种作用称为屏蔽作用或屏蔽效应。 3、相对丰度:相对丰度又称同位素丰度比(isotopic abundance ratio),指气体中轻组分的丰度C与其余组分丰度之与的比值。 4、氮律: 分子中含偶数个氮原子或不含氮原子则它的分子量就一定就是偶数。如分子中含奇数个氮原子,则分子量就一定就是奇数。 5、分子离子:分子失去一个电子而生成带正电荷的自由基为分子离子。 6、助色团:含有非成键n电子的杂原子饱与基团,本身在紫外可见光范围内不产生吸收,但当与生色团相连时,可使其吸收峰向长波方向移动,并吸收强度增加的基团。 二、简答题(每小题8分,共40分) 1、色散型光谱仪主要有几部分组成及其作用; 答:由光源、分光系统、检测器3部分组成。光源产生的光分为两路:一路通过样品,另一路通过参比溶液。切光器控制使参比光束与样品光束交替进入单色器。检测器在样品吸收后破坏两束光的平衡下产生信号,该信号被放大后被记录。2、紫外光谱在有机化合物结构鉴定中的主要贡献; 答:在有机化合物结构鉴定中,紫外光谱在确定有机化合物的共轭体系、生色团与芳香性等方面有独到之处。 3、在质谱中亚稳离子就是如何产生的?以及在碎片离子解析过程中的作用就是什么 答:离子m1在离子源主缝至分离器电场边界之间发生裂解,丢失中性碎片,得到新的离子m2。这个m2与在电离室中产生的m2具有相同的质量,但受到同m1

现代焊接技术发展的现状及前景

现代焊接技术发展的现状及前景 【摘要】焊接作为一门制造技术,在制造业中起着重要作用。没有一种技术能像焊接技术那样被制造商如此普遍地用于金属及合金的高效连接,并在其产品中产生如此多的附加值。 【关键词】现代;焊接技术;发展;现状;前景 目前焊接广泛应用于各种材料的连接,并采用了诸如激光、电子束焊等先进技术,无论是在建筑、桥梁行业,还是在车辆、计算机及医疗机械行业,绝大多数产品离开焊接技术就根本无法制造。特别是有了异种材料和非金属构料的连接技术和在产品形状与设计方面的创新制造方法,焊接技术的未来充满了希望。 1.焊接技术发展的现状 近年来随着制造业的蓬勃发展,提高焊接生产的生产率,保证产品质量,实现焊接生产的自动化和智能化越来越受到焊接生产企业的重视。现代智能控制技术、数字化信息处理技术、图像处理及传感器技术、高性能CPU芯片等现代高新技术的融入,使现代焊接技术取得了长足进步。 1.1焊接工艺高速高效化 以实现高速度、高熔敷率、高质量的焊接工艺为目标,国内外在多牡多弧焊接工艺、多元气体保护焊接工艺、活性化焊接新工艺等方面开展了广泛深入的研究,且取得了显著成效。 在多丝多弧焊接新:工艺方面,日本、瑞士、德国等国公司在多根焊丝配以单个或多个电源方面开展了大量的焊接研究丁作,在提高焊接生产速度和金属熔敷率方面取得了一些实用化的成果。例如日本的藤村告史开发的多丝焊接系统,可用于角焊缝的高速焊接,焊速可以达到1.8m/min。 基于上述思想,伴随着新型的功能强大的数字信息处理DSP的出现,Fronius 公司推出了全数字化焊接电源,随后Panosonic等公司也推出了各自的数宁化焊接电源产品,并相继;进入中国市场。数字化焊接电源实现了柔性化控制和多功能集成,具有控制精度高、系统稳定性好、产品一致性好、功能升级方便等优点。 1.2焊接质量控制智能化技术 焊缝跟踪是保证自动焊接质量的关键。在焊缝自动跟踪方面,采用的技术及获得的成果比较多。在熔滴过渡控制方面,由于焊接电源控制数字化技术的发展及先进电子元件在焊接领域的应用,使得对熔淌控制的研究达到了相当高水平。 1.3焊接生产自动化及智能化技术水平

波谱解析汇报考精彩试题库

实用文档 波谱解析考试题库 一、紫外部分 1. C H 3 H 2 S O 4 C -O H B C H 3 B C 9 H 1 4 ,λ m ax 24 2 n m , B. 其可能的结构为: 解:其基本结构为异环二烯烃,基值为 217nm:所以,左边: 母体:217 取代烷基:+3×5 λmax=217+3×5=232 右边:母 体:217 取代烷基:+4×5 环外双键:1×5 λmax=217+4×5+1×5=242 故右式即为 B。 2. 某化合物有两种异构体: CH3-C(CH3)=CH-CO-CH3 CH2=C(CH3)-CH-CO-CH3 一个在 235nm 有最大吸收,ε=1.2×104。另一个超过 220nm 没有明显的吸收。试鉴定这两种异构体。 解:CH3-C(CH3)=CH-CO-CH3 有共轭结构,CH2=C(CH3)-CH-CO-CH3 无共轭结构。前者在 235nm 有最大吸收,ε=1.2×104。后者超过 220nm 没有明显的吸收。1. 3. 紫外题

实用文档 1 标

解:(1)符合朗伯比尔定律 (2)ε==1.4*103 (3)A=cεl c= = =2.67*10-4mol/l C=2.67*10-4*100=1.67*10-2 mol/l 4. 从防风草中分离得一化合物,其紫外光谱λmax=241nm,根据文献及其它光谱测定显示可能为松香酸(A)或左旋海松酸(B)。试问分得的化合物为何? A、B结构式如下: COOH COOH (A)(B) 解: A:基值217nm B:基值217nm 烷基(5×4)+20nm 同环二烯+36nm 环外双键+5nm 烷基(5×4)+20nm λmax=242nm λmax=273nm 由以上计算可知:结构(A)松香酸的计算值(λ =242nm)与分得的化合 max =241nm)最相近,故分得的化合物可能为松香酸。 物实测值(λ max 5. 若分别在环己烷及水中测定丙酮的紫外吸收光谱,这两张紫外光谱的n→π*吸收带会有什么区别? 解析:丙酮在环己烷中测定的n→π*吸收带为λ =279nm(κ=22)。而在水 max 中测定时,吸收峰会向短波方向移动,跃迁概率也将减小。 2

激光焊接的未来与前景

激光焊接的未来与前景 激光焊接前景 摘要:焊接是一种将材料永久连接,并成为具有给定功能结构的制造技术。近几年中国完成的一些标志性工程来看,焊接技术发挥了重要作用。但传统焊接已不能满足越来越高的技术要求和条件限制,激光焊接便有了很大的发展空间。激光技术涉及材料学、力学、计算机科学等。研发是一个消耗的过程,其投入要求高,资金回收期较长。单靠企业研发,速度很难跟上,于是有一部分压力转移到国家科研机构。所以产业化需要强大的经济实体后盾和政策支持。 关键词:焊接技术关键制造工艺激光焊接产业化 焊接是一种将材料永久连接,并成为具有给定功能结构的制造技术。几乎所有的产品,从几十万吨巨轮到不足1克的微电子元件,在生产制造中都不同程度地应用焊接技术。焊接已经渗透到制造业的各个领域,直接影响到产品的质量、可靠性和寿命以及生产的成本、效率和市场反应速度。中国2005年钢产量达到3.49亿吨,成为世界最大的钢材生产与消费国,而焊接结构的用钢量也突破1.3亿吨,相当于美国一年的钢产量,成为世界上空前最大的焊接钢结构制造国。近几年中国完成的一些标志性工程来看,焊接技术发挥了重要作用。例如三峡水利枢纽的水电装备就是一套庞大的焊接系统,包括导水管、蜗壳、转轮、大轴、发电机机座等,其中马氏体不锈钢转轮直径10.7m 高5.4m 重440t,为世界最大的铸-焊结构转轮。该转轮由上冠、下环和13或15个叶片焊接而成,每个转轮的焊接需要用12t焊丝,耗时4个多月。神舟6号飞船的成功发射与回收,标志着中国航天事业的巨大进步,其中两名航天员活动的返回舱和轨道舱都是铝合金的焊接结构,而焊接接头的气密性和变形控制是焊接制造的关键。由第一重型机械集团为神华公司制造的中国第一个煤直接液化装置的加氢反应器,直径5.5m 长62m 厚337mm 重2060t,为当今世界最大、最重的锻-焊结构加氢反应器,采用国内自主知识产权的全自动双丝窄间隙埋弧焊技术,每条环焊缝需连续焊接5天。西气东输的管线长4000km,是中国第一条高强钢(X70)大直径长输管线,所用的螺旋钢管和直缝钢管全部是板-焊形式的焊接管。2005年我国造船的总吨位达到1212万吨,占世界造船总量的17%,居于日、韩之后,稳居世界第三位,正向年产2500万吨的世界水平迈进。国内制造的30万吨超级油轮、新型5668标箱集装箱船、15万吨散装货船,以及为世界瞩目的,被称为“中华第一盾”的170舰,都是中国造船界的骄傲,船体是典型的板-焊结构。另外,上海中泸浦大桥是世界最长的全焊钢拱桥;国家大剧院的椭球型穹顶是世界最重的钢结构穹顶;奥林匹克主体育场的鸟巢式钢结构重4万多吨,也是世界之最。这些大型结构都是中国焊接制造的最大、最重、最长、最高、最厚、最新的具有代表性的重要产品。由此可见,焊接在国民经济发展和国防建设中具有非常重要的地位和作用。从“十一五”规划的二十项国家重大技术装备的研制项目可以看出,在百万千瓦级核电机组、超超临界火力发电机组成套设备、高水头超大容量水电机组、大型抽水蓄能机组、30~60万瓦级循环硫化床(CFB)锅炉的成套技术装备、百万吨级大型乙烯成套设备、百万吨级大型对苯二甲酸成套设备、大型煤制气成套设备以及大型煤矿综合采掘成套技术与装备中,焊接制造都是关键制造工艺之一。 但传统焊接已不能满足越来越高的技术要求和条件限制,激光焊接便有了很大的发展空间。

波谱解析试题及答案

波普解析试题 一、名词解释(5*4分=20分) 1.波谱学 2.屏蔽效应 3.电池辐射区域 4.重排反应 5.驰骋过程 二、选择题。( 10*2分=20分) 1.化合物中只有一个羰基,却在1773cm-1和1736cm-1处出现两个吸收峰 这是因为:() A、诱导效应 B、共轭效应 C、费米共振 D、空间位阻 2. 一种能作为色散型红外光谱仪的色散元件材料为:() A、玻璃 B、石英 C、红宝石 D、卤化物晶体 3.预测H2S分子的基频峰数为:() A、4 B、3 C、2 D、1 4.若外加磁场的强度H0逐渐加大时,则使原子核自旋能级的低能态跃迁到高能态所需的能量是如何变化的:() A、不变 B、逐渐变大 C、逐渐变小 D、随原核而变 5.下列哪种核不适宜核磁共振测定:() A、12C B、15N C、19F D、31P 6.在丁酮质谱中,质荷比质为29的碎片离子是发生了() A、α-裂解 B、I-裂解 C、重排裂解 D、γ-H迁移 7.在四谱综合解析过程中,确定苯环取代基的位置,最有效的方法是() A、紫外和核磁 B、质谱和红外 C、红外和核磁 D、质谱和核磁 8.下列化合物按1H化学位移值从大到小排列 ( ) a.CH2=CH2 b.CH CH c.HCHO d. A、a、b、c、d B、a、c、b、d C、c、d、a、b D、d、c、b、a 9.在碱性条件下,苯酚的最大吸波长将发生何种变化? ( ) A.红移 B. 蓝移 C. 不变 D. 不能确定

10.芳烃(M=134), 质谱图上于m/e91处显一强峰,试问其可能的结构是:( ) A. B. C. D. 三、问答题(5*5分=25分) 1.红外光谱产生必须具备的两个条件是什么? 2.影响物质红外光谱中峰位的因素有哪些? 3. 色散型光谱仪主要有哪些部分组成? 4. 核磁共振谱是物质内部什么运动在外部的一种表现形式? 5. 紫外光谱在有机化合物结构鉴定中的主要贡献是什么? 四、计算和推断题(9+9+17=35分) 1.某化合物(不含N元素)分子离子区质谱数据为M(72),相对丰度100%; M+1(73),相对丰度3.5%;M+2(74),相对丰度0.5%。 (1)分子中是否含有Br Cl? 。 (2) 分子中是否含有S? 。 (3)试确定其分子式为。 2. 分子式为C8H8O的化合物,IR(cm-1):3050,2950,1695,1600,1590,1460,1370,1260,760,690等处有吸收, (1)分子中有没有羟基(—O H)?。 (2)有没有苯环。 (3)其结构为。 3. 某未知物的分子式为C3H6O,质谱数据和核磁共振谱如图1、2所示,试推断其结构。 图1 、C3H6O的质谱

激光焊接技术市场现状1

激光焊接技术市场现状 一、激光焊接技术概述 激光被认为是焊接的理想热源,激光焊接是激光技术最重要的应用之一,它是利用偏光镜反射激光产生的光束使其集中在聚焦装置中产生巨大能量的光束,激光束与物质相互作用的特性对材料(包括金属与非金属)进行焊接的一门加工技术。激光焊接具有加热集中,热输入少,变形小,焊接速度快(可达每分钟几米到十几米),焊接深宽比大、质量高,不仅适宜于常规材料,也特别适宜于难熔金属,热合金、钛合金热物理性能差别大的异种金属、体积和厚度差别大的工件以及焊缝附近有受热易燃,受热易裂和受热易爆的构件。焊缝美观、漂亮,许多情况下焊缝可与母材等强。而且激光光束可以通过光纤传送,因此可以省去复杂的光束传送系统,适用于柔性制造系统或远程加工。激光焊接既可以是点焊,也可是连续缝焊。 二、发展前景分析 1、国外发展状况 经过四十多年的研究开发,激光技术在工业加工领域的应用前景日益广泛,技术日益成熟,已成为集光、机、电、计算机和材料等多个学科技术于一体的先进制造方法。尽管目前激光焊接仍被视为一种非主流的焊接方式,但是这种状况不会持续太久。材料和设备方面的进步使激光焊接成为可能,这在欧洲已经得到了证明。激光焊接引起了那些正在寻找一种更清洁的方式来连接精巧、复杂制件的加工商的兴趣。此外,激光焊接技术对传统工业的改造将发挥愈来愈显著的作用。作为先进制造技术已广泛应用于汽车、电子、电器、航空、冶金、机械制造等国民经济重要部门,对提高产品质量、劳动生产率、自动化、无污染、减少材料消耗等起到愈来愈重要的作用。据ILS(Industrial Laser Solutions)统计,全球工业激光系统的产值1997年为20.63 亿美元,1998 年为23.38 亿美元,1999 年为25.91亿美元,这三年年产值年增长率一直保持在13%左右。受到美国和全球范围经济衰退的影响,近两年的年增长率保持在5%左右,随着全球经济的复苏,预计有加快发展的趋势。从国外激光加工系统应用方式来看,以2002 年为例,其中激光焊接占总销售额的14%,按此计算,当年激光焊接的市场价值约为4.3亿美元。 激光焊接在21世纪将进入高速发展时期。随着各类激光发生器向大功率化、轻便化和经济化的发展,激光焊接由于能源高度集中和热影响区小,并且激光束具有可以在大气中焊接的优点,既可以对大型构件作深熔焊,又可以进行微形精密焊接,今后将逐步加快其推广使用的步伐。日本已有人预言,由于激光焊接符合优质、低耗、高效、清洁、热影响区窄、接头变形小、操作灵活等技术发展方向,21世纪将逐渐成为激光焊接的时代,激光焊接的发展前景无可限量。 2、中国“全球制造基地”的广阔市场

光器件激光焊接基础

激光焊接技术简介 2017-8-1 激光—全称为受激辐射光放大,它是一种新光源,其所具有的相干性、单色性、方向性与高输出功率等特点,是其它光源所无法比拟的。激光焊接是通过光学系统将激光光束聚集在很小的区域,焦平面上的功率密度可达到10×10w/cm2,在极短的时间内,使被焊处形成一个能量高度集中的局部热源区,从而使被焊物熔化并形成牢固的焊点或焊缝。 激光焊接可以采用连续或脉冲激光束加以实现,激光焊接的原理可分为热传导型焊接和激光深熔焊接。功率密度小于104~105W/ cm2为热传导焊,此时熔深浅、焊接速度慢;功率密度大于105~107W/ cm2时,金属表面受热作用下凹成“孔穴”,形成深熔焊,具有焊接速度快、深宽比大的特点。 热传导型激光焊接原理为:激光辐射加热待加工表面,表面热量通过热传导向内部扩散,通过控制激光脉冲的宽度、能量、峰功率和重复频率等激光参数,使工件熔化,形成特定的熔池。 激光深熔焊接的原理。 激光深熔焊接原理:一般采用连续激光光束完成材料的连接,其冶金物理过程与电子束焊接极为相似,即能量转换机制是通过“小孔”(Key-hole)结构来完成的。在足够高的功率密度激光照射下,材料产生蒸发并形成小孔。这个充满蒸气的小孔犹如一个黑体,几乎吸收全部的入射光束能量,孔腔内平衡温度达25000C左右,热量从这个高

温孔腔外壁传递出来,使包围着这个孔腔四周的金属熔化。小孔内充满在光束照射下壁体材料连续蒸发产生的高温蒸汽,小孔四壁包围着熔融金属,液态金属四周包围着固体材料(而在大多数常规焊接过程和激光传导焊接中,能量首先沉积于工件表面,然后靠传递输送到内部)。孔壁外液体流动和壁层表面张力与孔腔内连续产生的蒸汽压力相持并保持着动态平衡。光束不断进入小孔,小孔外的材料在连续流动,随着光束移动,小孔始终处于流动的稳定状态。就是说,小孔和围着孔壁的熔融金属随着前导光束前进速度向前移动,熔融金属充填着小孔移开后留下的空隙并随之冷凝,焊缝于是形成。激光的空间控制性和时间控制性很好,对加工对象的材料、形状、尺寸和加工环境的自由度都很大,特别适用于自动化加工。近年来,几乎所有的电子产品,如电脑、电视机、手机、数码相机以及许多电子元器件等,在生产制造中都不同程度地应用了激光焊接技术。 激光焊接设备 用于光器件封装的激光焊接设备主要有单光束焊接、三光束焊接和四光束焊接三种焊接设备,也有个别公司有用到双光束焊接设备,下面就谈谈这四种焊接的设备。 单光束激光焊机:顾名思义,单光束焊机每次焊接只有一束激光,在没有焊接时激光焊机会有一束红色的指示光束,此指示光束就是焊接时激光的前进路线。基本每台单光束焊机都配有一个显微镜,通过显微镜,可以清晰地观察到红色指示光束光斑聚焦在需要焊接的点上,

波谱解析名词解释

紫外吸收光谱 1. 紫外吸收光谱系分子吸收紫外光能、发生价电子能级跃迁而产生的吸收光谱,亦称电子光谱。 2. 曲折或肩峰:当吸收曲线在下降或上长升处有停顿或吸收稍有增加的现象。这种现象常由主峰内藏有其它吸收峰造成。 3. 末端吸收:是指紫外吸收曲线的短波末端处吸收增强,但未成峰形。 4. 电子跃迁选律:P9 5. 紫外吸收光谱的有关术语:P12-13 6. Woodward-fieser规则: P21 7. Fieser-kuhns规则:P23 红外吸收光谱 1. 振动偶合:分子内有近似相同振动频率且位于相邻部位(两个振动共用一个原子,或振动基团间有一个公用键)的振动基团,常常彼此相互作用,产生二种以上基团参加的混合振动,称之为振动偶合。 2. 基频峰:本征跃迁产生的吸收带称为本征吸收带,又称基频峰。 3. 倍频峰:由于真实分子的振动公是近似的简谐振动,不严格遵守⊿V=±1的选律,也可产生⊿V=±2或±3等跃迁,在红外光谱中产生波数为基频峰二倍或三倍处的吸收峰(不严格等于基频峰的整数倍,略小)称为倍频峰。 4. 结合频峰:基频峰间的相互作用,形成频率等于两个基频峰之和或之差的峰,叫结合频峰。 5. 泛频峰:倍频峰和结合频峰统称为泛频峰。 6. 热峰:跃迁发生在激发态之间,这种跃迁产生的吸收峰称为热峰。 7. 红外非活性振动:不产生红外吸收的振动称红外非活性振动。 核磁共振光谱 1. 磁偶极子:任何带电物体的旋转运动都会产生磁场,因此可把自旋核看作一个小磁棒,称为磁偶极子。 2. 核磁距:核磁偶极的大小用核磁矩表示。核磁矩与核的自旋角动量(P)和e/2M的乘积成正比。 3. 进动:具有磁矩的原子核在外磁场中一方面自旋一方面以一定角度(θ)绕磁场做回旋运动,这种现象叫做进动。 4. 核磁共振:当射频磁场的能量()等于核自旋跃迁能时(),即旋转磁场角频率()与核磁矩进动角频率()相等时,自旋核将吸收射频场能量,由α自旋态(低能态)跃迁至β自旋态(高能态)。即,核磁矩对的取向发生倒转,这种现象称之为核磁共振。 5. 饱和:在外加磁场中,低能级核吸收射频能量被激发至高能级产生核磁共振信号,结果使低能级核起来越少,结果是低高能级的核数目相等,体系净能量吸收为0,共振信号消失。 6.弛豫:高能态的核须通过其它适当的途径将其获得的能量释放到周围环境中去,使其回到低能态,这一过程称为弛豫。 7. 纵向弛豫:是高能态核释放能量(平动能、转动能)转移给周围分子骨架中的其它核回到平衡状态的过程。(气体和低黏度的液体中) 8. 横向弛豫:高能级核与低能级核相互通过自旋状态的交换而实现能量转移,每种自旋状态的总数并未改变,但使某些高能级核的寿命减短。(固体和高黏度液中) 9. 核磁共振波谱仪的组成:磁铁磁场扫描发生器---平行安放的线圈,用于有一个小范围内

激光焊接技术应用及发展趋势

激光焊接技术应用及其发展趋势 摘要:本文论述了激光焊接工艺的特点、激光焊接在汽车工业、微电子工业、生物医学等领域的应用以及研究现状,激光焊接的智能化控制,论述激光焊接需进一步研究与探讨的问题。关键词:激光焊接;混合焊接;焊接装置;应用领域 引言 激光焊接是激光加工材料加工技术应用的重要方面之一。70年代主要用于焊接薄壁材料和低速焊接,焊接过程属于热传导型,即激光辐射加热工件表面,表面热量通过热传导向内部扩散,通过控制激光脉冲的宽度、能量、峰值功率和重复频率等参数,使工件熔化,形成特定的熔池。由于激光焊接作为一种高质量、高精度、低变形、高效率和高速度的焊接方法,随着高功率CO2和高功率的Y AG激光器以及光纤传输技术的完善、金属钼焊接聚束物镜等的研制成功,使其在机械制造、航空航天、汽车工业、粉末冶金、生物医学微电子行业等领域的应用越来越广。目前的研究主要集中于C02激光和YAG激光焊接各种金属材料时的理论,包括激光诱发的等离子体的分光、吸收、散射特性以及激光焊接智能化控制、复合焊接、激光焊接现象及小孔行为、焊接缺陷发生机理与防止方法等,并对镍基耐热合金、铝合金及镁合金的焊接性,焊接现象建模与数值模拟,钢铁材料、铜、铝合金与异种材料的连接,激光接头性能评价等方面做了一定的研究。 一、激光焊接的质量与特点 激光焊接原理:激光焊接是将高强度的激光束辐射至金属表面,通过激光与金属的相互作用,金属吸收激光转化为热能使金属熔化后冷却结晶形成焊接。图1显示在不同的辐射功率密度下熔化过程的演变阶段[2],激光焊接的机理有两种: 1、热传导焊接 当激光照射在材料表面时,一部分激光被反射,一部分被材料吸收,将光能转化为热能而加热熔化,材料表面层的热以热传导的方式继续向材料深处传递,最后将两焊件熔接在一起。 2、激光深熔焊 当功率密度比较大的激光束照射到材料表面时,材料吸收光能转化为热能,材料被加热熔化至汽化,产生大量的金属蒸汽,在蒸汽退出表面时产生的反作用力下,使熔化的金属液体向四周排挤,形成凹坑,随着激光的继续照射,凹坑穿人更深,当激光停止照射后,凹坑周边的熔液回流,冷却凝固后将两焊件焊接在—起。 这两种焊接机理根据实际的材料性质和焊接需要来选择,通过调节激光的各焊接工艺参数得到不同的焊接机理。这两种方式最基本的区别在于:前者熔池表面保持封闭,而后者熔池则被激光束穿透成孔。传导焊对系统的扰动较小,因为激光束的辐射没有穿透被焊材料,所以,在传导焊过程中焊缝不易被气体侵入;而深熔焊时,小孔的不断关闭能导致气孔。传导焊和深熔焊方式也可以在同一焊接过程中相互转换,由传导方式向小孔方式的转变取决于施加于工件的峰值激光能量密度和激光脉冲持续时间。激光脉冲能量密度的时间依赖性能够使激光焊接在激光与材料相互作用期间由一种焊接方式向另一种方式转变,即在相互作用过程中焊缝可以先在传导方式下形成,然后再转变为小孔方式。 1、激光焊接的焊缝形状 对于大功率深熔焊由于在焊缝熔池处的熔化金属,由于材料的瞬时汽化而形成深穿型的圆孔空腔,随着激光束与工件的相对运动使小孔周边金属不断熔化、流动、封闭、凝固而形成连续焊缝,其焊缝形状深而窄,即具有较大的熔深熔宽比,在高功率器件焊接时,深宽比可达5:l,最高可达10:1。图2显示四种焊法在316不锈钢及DUCOLW30钢上的焊缝截面形

激光焊接基础知识

米亚奇公司 Nd(钕):YAG激光器激光焊接指南 米亚奇公司2003年版 此处包含的材料,未经米亚奇公司书面同意,严禁复 制或用于任何用途 联系方式: 米亚奇公司 Myrtle大道1820号 蒙罗维亚CA, 91017-7133 Tel.: 626 303 5676 Fax: 626 599 9636 https://www.wendangku.net/doc/a39496593.html,

目录 1.激光基础 1.1 介绍 1.2 激光产生的原理 1.3 Nd:YAG激光的介质 1.4 泵浦源 1.5 谐振器 1.6 激光安全 2.激光焊接基本原理 2.1脉冲激光焊接 2.1.1实时功率反馈 2.1.2输出功率斜波 2.1.3脉冲的成形 2.1.4时间的分配 2.1.5能量分配 2.1.6光束的传输 2.1.7聚焦头 2.2激光是怎么实现焊接的 2.3主要焊接参数 2.3.1接缝设计与配合 2.3.2部分聚焦 2.3.3材料的选择和其表面镀层 2.4激光的参数 2.4.1名词术语 2.4.2光学系统 2.4.3聚焦镜片 2.4.4峰值功率和脉冲宽度 2.4.5接缝的焊接 2.4.6保护气体 2.5焊接举例

1.激光基础 1.1介绍 “激光”一词是Light Amplification by Stimulated Emission of Radiation(受激辐射而放大的光)的缩写,激光器的要素有: Nd:YAG激光器有两种类型,连续波的和脉冲波的,正如它们的名字所指,连续激光的波形要么是开,要么是关,但脉冲激光只用部分脉冲完成焊接。脉冲激光利用峰值功率进行焊接,反之连续激光使用的是平均功率,这使得脉冲激光只用很小的能量就能实现焊接,并形成了更小的热影响区,脉冲激光焊提供了无与伦比的点焊性能和极低的焊接热输入,米亚奇的就是脉冲激光焊机。 1.2激光产生的原理 激光本质上是分三步产生的,发生几乎是瞬间的。 1.泵浦源给介质提供能量,将介质内部原子激活,使得带电原子暂时被激发到 高能级,处在此活跃级的带电原子是不稳定的,于是跃迁到低能级,在这个过程中,从泵浦源吸收能量的电子释放多余的能量并辐射出一个光子,这个过程叫做自发辐射,通过这种方式产生的光子是激光的种子。 2.光子自发传播并最终撞击到别的处于高能级的电子,由于光速极快,处在激 发态的原子的密度很大,所以这个过程是极其短暂的,入射光子将电子从高能级激发到低能级并产生另一个光子,这两个光子是相干的,这意味着它们相位相同,波长相同,传播方向相同,这个过程叫做受激辐射。 3.光子传播方向是不定的,然而一些沿着介质传播的光子撞击共振器的反射镜, 又通过介质反射回来,共振反射镜决定了受激辐射的优先扩大方向,为了使

焊接结构名词解释

1.焊接温度场:指在焊接过程中,某一时刻所有空间各点温度的总计或分布。 2.焊接热循环:在焊接过程中,工件上的温度随着瞬时热源或移动热源的作用而发生变化, 温度随时间由低而高,达到最大值后,又由高而低的变化称为焊接热循环。 3.温度应力(热应力):变形不受约束,则说明变形是温度变化的唯一反映;若这种变形 受到约束,就会在物体内部产生应力,这种应力即为温度应力。 4.残余应力:当不均匀温度恢复到原始的均匀状态后残存在物体中的内应力。 5.自由变形(量、率):当金属物体的温度发生变化或发生相变没有受到外界的任何阻碍 而自由进行,它的形状和尺寸的变形就称为自由变形。自由变形的大小称之为自由变形量。单位长度上的自由变形量称之为自由变形率。 6.外观变形(量、率):当物体的变形受到阻碍而不能完全自由变形时,所表现出来的部 分变形称为外观变形或可见变形。外观变形的大小称为外观变形量。单位长度上的外观变形量称为外观变形率。 7.内部变形(量、率):当物体的变形受到阻碍而不能完全自由变形时,未表现出来的部 分变形称为内部变形或可见变形。内部变形的大小称为内部变形量。单位长度上的内部变形量称为内部变形率。 8.高组配:焊缝金属强度比母材高强度高的接头匹配。 9.低组配:焊缝金属强度比母材高强度低的接头匹配。 10.工作焊缝:一种与被连接的元件是串联的焊缝,承担着传递全部载荷的作用,焊缝一旦 开裂,结构就立即失效。 11.联系焊缝:一种与被连接的元件是并联的焊缝,主要起元件之间相互联系的作用,焊缝 一旦开裂,结构就不会立即失效。 12.焊接工艺评定:为验证所拟定的焊接工艺的正确性而进行的试验过程及结果的评价。 13.焊接工艺指导书:就是为验证试验所拟定的、经评定合格的、用于指导生产的焊接工艺 文件。 14.生产过程:使原材料或半成品的形状和重量不断的按照人们的意图发生改变的过程。或 者定义为把原材料变成成品的直接和间接的劳动过程的总和。 15.工艺过程:是指直接改变毛坯的形状、尺寸、力学性能以及物理性能,使之成为半成品 或成品的生产过程。 16.放样:指按设计图样在放样平台上,将其局部或全部按1:1的比例画出结构部件或零 件的图形和平面展开尺寸的加工工序。 17.划线:根据设计图样及工业上的要求按1:1的比例,将待加工工件形状、尺寸及各种 加工符号划在钢板或经粗加工的坯料上的加工工序。 18.号料:是用放样所取得的样板或样杆,在原材料或经粗加工的坯料上划下料线、加工线、 检查线及各种位置线的工艺过程。 19.夹具:是指将待装配的零件准确组对、定位并加紧的工艺装配,是定位器、夹紧器和各 种推拉装置的总称。 20.疲劳强度:指金属材料在无限多次交变载荷作用下而不破坏的最大应力。 21.疲劳极限:在疲劳试验中,应力交变循环大至无限次而试样仍不破损时的最大应力。 22.疲劳图:表达疲劳强度和循环特性之间关系的图形。 23.疲劳曲线:描述疲劳试验中所加交变应力振幅值S与试样达到破坏的交变应力周数N之 间的关系曲线。

波谱分析习题库答案

波谱分析复习题库答案 一、名词解释 1、化学位移:将待测氢核共振峰所在位置与某基准氢核共振峰所在位置进行比较,求其相对距离,称之为化学位移。 2、屏蔽效应:核外电子在与外加磁场垂直的平面上绕核旋转同时将产生一个与外加磁场相对抗的第二磁场,对于氢核来讲,等于增加了一个免受外磁场影响的防御措施,这种作用叫做电子的屏蔽效应。 3、相对丰度:首先选择一个强度最大的离子峰,把它的强度作为100%,并把这个峰作为基峰。将其它离子峰的强度与基峰作比较,求出它们的相对强度,称为相对丰度。 4、氮律:分子中含偶数个氮原子,或不含氮原子,则它的分子量就一定是偶数。如分子中含奇数个氮原子,则分子量就一定是奇数。 5、分子离子:分子失去一个电子而生成带正电荷的自由基为分子离子。 6、助色团:含有非成键n电子的杂原子饱和基团,本身在紫外可见光范围内不产生吸收,但当与生色团相连时,可使其吸收峰向长波方向移动,并使吸收强度增加的基团。 7、特征峰:红外光谱中4000-1333cm-1区域为特征谱带区,该区的吸收峰为特征峰。 8、质荷比:质量与电荷的比值为质荷比。 9、磁等同氢核化学环境相同、化学位移相同、对组外氢核表现相同偶合作用强度的氢核。 10、发色团:分子结构中含有π电子的基团称为发色团。 11、磁等同H核:化学环境相同,化学位移相同,且对组外氢核表现出相同耦合作用强度,想互之间虽有自旋耦合却不裂分的氢核。 12、质谱:就是把化合物分子用一定方式裂解后生成的各种离子,按其质量大小排列而成的图谱。 13、i-裂解:正电荷引发的裂解过程,涉及两个电子的转移,从而导致正电荷位置的迁移。 14、α-裂解:自由基引发的裂解过程,由自由基重新组成新键而在α位断裂,正电荷保持在原位。 15、红移吸收峰向长波方向移动 16. 能级跃迁分子由较低的能级状态(基态)跃迁到较高的能级状态(激发态)称为能级跃迁。 17. 摩尔吸光系数浓度为1mol/L,光程为1cm时的吸光度 二、选择题 1、波长为670.7nm的辐射,其频率(MHz)数值为(A) A、4.47×108 B、4.47×107 C、1.49×106 D、1.49×1010 2、紫外光谱的产生是由电子能级跃迁所致,能级差的大小决定了(C) A、吸收峰的强度 B、吸收峰的数目 C、吸收峰的位置 D、吸收峰的形状 3、紫外光谱是带状光谱的原因是由于(C )

激光焊接技术的应用及发展

科技文献检索作业 题目:激光焊接技术的应用及发展班级: 姓名: 学号:

激光焊接技术的应用及发展 高伟 (沈阳工业大学材料科学与工程学院辽宁沈阳) 摘要:激光焊接作为一种新型的焊接方法,已经在越来越多的领域得到广泛的应用。本文对激光焊接技术的概况、国内外激光焊接技术的研究现状、激光焊接技术的应用、激光焊接技术的发展等方面进行了综述。希望对激光焊接技术的应用和发展有一个比较全面的了解。 关键字:激光焊接技术应用领域发展 Abstract: As a new technology, laser welding is widely applied in mangy fields. The general situation of laser welding technology, the research situation of domestic and foreign laser welding technology, application of laser welding technology and the development tend of laser welding technology are summaries in this paper. Through this paper we get a quite comprehensive understanding to the laser welding technology application and development. Key words: laser welding, application fields, development 引言 激光焊接作为一种新型的焊接技术已被广泛的应用于IT、医疗、电子、汽车、机械和航天等行业,为优质、高效、无污染和低成本的现代加工生产开辟了广阔的前景。由于具有很高的适应性、很强的加工能力以及更加先进的质量检测手段,激光焊接在许多行业已经逐步取代了一些传统的焊接技术。 1激光焊接技术的概况 目前激光焊接是激光工艺技术应用的核心内容,同样是目前大力发展的一种焊接技术。一些国外发达国家早已将激光焊接技术应用于工业生产方面,而国内在开发激光焊接技术的时候,州门还要拟定起一个匹配于我国工业的发展规划书。随着工业制造的持续发展,高效的加工技术将会是未来工业发展的必然趋势,而激光焊接则符合这一发展趋势。通过长期实践我们总结出,激光焊接在加工业的应用面非常宽,激光焊接术较之常规焊接技术其焊接品质更高,月加工更有效率。 激光焊接的特点是被焊接工件变形极小,焊接深度/宽度比高,热影响区小,因此焊接质量比传统焊接方法高,它们在工业上的应用越来越广泛。激光焊接还具有不受磁场的影响,不局限于导电材料,不需要真空的工作条件并且焊接过程中不产生X射线等优点。随着制造部

激光焊接工艺实践课程学习指南讲解

《激光焊接工艺实践》课程学习指南 一、课程资源导航 二、学前要求 学习本课程需要有一定的预备基础知识,需要配置一台计算机,对计算机具体要求如下: (一) 必备基础 学习本课程的学习者必须具备一定的基础: 1.会熟练使用计算机,如常用操作系统Windows XP或者Linux,还有常用软件如PowerPoint、Word等; 2.一定的激光加工技术和工程材料学知识。 (二) 软硬件环境 1.硬件环境:

三、学习目标与要求 课程设置是基于光机电应用技术专业职业岗位能力的培养需要,要求学生通过视频课件、动画和现场实训操作等多种学习资源,掌握激光焊接原理、工艺特点和应用领域。通过本课程学习,学生不仅应该掌握激光焊接加工的基础理论,更要培养、锻炼实际动手操作能力,从而使其在掌握专业知识的基础上获得所需要的职业技能。具体要求如下: ?了解激光焊接工艺的过程和机理; ?学习根据材料特点和焊接工艺要求来选择合适的激光焊接设备; ?针对不同激光焊接设备,学会选择合适的激光焊接参数并能够对设备进行调试、维护; ?针对不同激光焊接过程,学会分析影响焊接质量的因素和解决的措施; ?学习激光焊接的安全操作常识和正确的操作规范。 四、学习路径 1.学习模式 在校学生学习方式:课堂学习+操作实训+网络辅助+标准化试题库考试 网络学习方式:教材自学+按课件学习+网上导学+实训实验+标准化试题库考试2.课程知识学习路径 按知识点渐进式学习:先导课程为激光加工原理、工程材料学等。 3.推荐书籍和参考 (1)郑启光,邵丹编著,激光加工工艺与设备,北京:机械工业出版社,2009,10;(2)刘其斌编著,激光加工技术及其应用,北京:冶金工业出版社,2007;(3)蒙大桥,张友寿,何建军等译,材料激光工艺过程,北京:机械工业出版社,2012,9; (4)现代激光焊接技术,陈彦宾,科学出版社,2010,,10; (5)激光焊接与切割质量控制,陈武柱,机械工业出版社,2010。 五、考核标准 学生学习考核标准请参见本课程资源“考核方案”

波谱解析名词解释

《波谱解析名词解释》 1.助学团:某些饱和的原子团本身在近紫外区无吸收的,并不“发色”,但其与发色团相连或共轭时,能使发色团的吸收峰长波方向移动,强度增强,这些基团称为助色团。常用的助色团有—OH,—OR,—NR2,—SR,—Cl,—Br,—I等。 2.发色团:有机化合物分子结构中有能吸收紫外光或可见光的基团,此类基团称为发色团。 3红移:由于化学环境的变化而导致吸收峰长波方向移动的现象叫做红移。 4蓝移:导致吸收峰向短波方向移动的现象叫做蓝移。 5.增色效应:使紫外吸收强度增加的作用。 6.减色效应:使紫外吸收强度降低的作用。第二章红外光谱 1费米(Fermi)共振:由频率相近的倍频峰和基频峰相互作用产生,结果使倍频峰的强度增大或发生裂分。 2伸缩振动:沿键轴方向发生周期性变化的振动称为伸缩振动。 3弯曲振动:沿键角发生周期性变化的振动称为弯曲振动。 4基频峰:从基态跃迁到第一激发态时将产生一个强的吸收峰,即基频峰。 5倍频峰:从基态跃迁到第二激发态,第三激发时将产生相应弱的吸收峰,即倍频峰。6振动自由度:将多原子分子的复杂振动分解成若干个简单的基本振动,这些基本振动的数目称为分子的振动自由度。 7指纹区:在红外光谱中,波数在1330~667cm-1范围内称为指纹区 8振动偶合效应:当两个相同的基团在分子中靠得很近时,其相应的特征峰常发生分裂,形成两个峰,这种现象叫作振动偶合。 9诱导效应:在有机化合物分子中,由于电负性不同的取代基(原子或原子团)的影响,使整个分子中的成键电子云密度向某一方向偏移,这种效应叫诱导效应。 10共轭效应:共轭体系中电子离域现象称为共轭效应。 第三章 1化学位移:是指将待测氢核共振峰所在位置与某基准物质氢核所在的位置进行比较,

国内外焊接技术的现状及其发展前景

国内外焊接技术的现状及其发展前景 在现代工业中,焊接技术已广泛用于航天、航空和船舶、海洋结构物及压力锅炉,化工容器、’机械制造等产品的建造。就船舶建造而言,焊接工时要占船体建造总工时的30~40%,由此可见,焊接作为一种加工工艺方法在制造业中的重要 作用。为了实现焊接产品或焊接结构生产的高效率、低,国内外都在大力开发创新新的焊接技术, 国内外焊接技术的新发展 一、电阻点焊 电阻点焊被认为是汽车车身制造中最重要的连接工艺。 二、激光技术和使用激光束加工材料 将激光束焊接与弧焊工艺相结合可以获得一种值得注意的焊接工艺:即CO2激光束与气体保护金属极电弧焊工艺相结合的工艺。采用该工艺,能对不同级别的钢材进行高效率的焊接。 三、等离子弧焊 一种新开发的用于等离子弧焊的焊矩系统,采用反极性电极和选用100~200A焊接电流可以经济有效地焊接铝制零件,焊接质量很好。 四、粉末等离子弧表面堆焊 通过表面堆焊,可以经济有效地制造具有不同特性的零部件。 五、焊接电源 六、机器人和系统 七、热喷涂技术 八、钎焊 九、微连接技术 十一、碳钢和低合金钢的焊接 在第十五届焊接和切割国际展览会上在保护气体方面,建议针对被焊材料和焊接要求的确定所需气体和精细调制的混合气体的发展趋势更加明显了。主要的研发特点是关注改善润湿性能、提高焊接速度和优化焊缝成形。 十二、细晶粒结构钢和高强度钢的焊接 国外新技术开发实例:1,肯倍Wise?焊接工艺软件 -- 更富成效的焊接解决方 案 全球知名的焊接解决方案提供商--芬兰肯倍公司(Kemppi Oy)推出全新智能焊接工艺软件Wise TM。该系列软件与肯倍最新FastMig Pulse与KempArc Pulse 焊接设备配套使用,可提供更多专业功能。 Wise TM系列软件产品可广泛应用于造船与海洋工程、汽车厂等各种焊接领域,

相关文档