文档库 最新最全的文档下载
当前位置:文档库 › 乙烯--乙烷塔顶精馏塔

乙烯--乙烷塔顶精馏塔

乙烯--乙烷塔顶精馏塔
乙烯--乙烷塔顶精馏塔

精馏塔操作常见问题

1.精馏塔操作及自动控制系统的改进 问:蒸汽压力突然变化时,将直接影响塔釜难挥发组分的蒸发量,使当时塔内热量存在不平衡,导致气-液不平衡,为此如何将塔釜热量根据蒸汽进料量自动调节达到相对稳定,从而保证塔内热量平衡是问题的关键。在生产过程中,各精馏塔设备已确定,塔釜蒸发量与气体流速成正比关系,而流速与塔压差也成正比关系,所以控制好塔顶、塔釜压力就能保证一定的蒸发量,而在操作中,塔顶压力可通过塔顶压力调节系统进行稳定调节或大部分为常压塔,为此,稳定塔釜压力就特别重要。于是在蒸汽进料量不变情况下,我们对蒸汽压力变化情况与塔釜压力的变化进行对比,发现两者成正比关系,而且滞后时间极小。于是将蒸汽进料量与塔釜压力进行串级操作,将塔釜压力信号传递给蒸汽流量调节阀,蒸汽流量调节阀根据塔釜压力进行自动调节,通过蒸汽进料量自动增大或减少,确保塔釜压力稳定,从而保证了精馏操作不受外界蒸汽波动的影响。 我们在讨论精馏塔的控制方式,主要分析的是工艺系统对塔的影响,公用工程几乎不对内部有制约。实际上也是如此。举例分析:蒸汽系统的压力突然变化的系数要远远小于一个精馏塔内部压力变化的系数,也就是说蒸汽系统的压力对比塔压是更趋于稳定;基于这个原因塔压的控制才可以串级控制再沸器的进入蒸汽流量。如果发现蒸汽系统的压力发生了变化,塔压基本没法和加热蒸汽流量串控了。第二塔的压差基本只是一个参考数据,一般不对塔压差进行控制。尽管塔压差过高我们要采取一定的措施。 DCS/SCS/APC等技术伴随着大容量的工业电脑的应用,投入成本逐渐下降,精馏塔的高级智能控制也成为可能,比如APC/SCS等技术,精馏产品纯度也得到保证。可是这些系统其实很脆弱,由于影响这些先进控制的外来因素的影响,DCS操作工随时都可能摘除这些控制,回到DCS的水平,进行人工干预。 问:个人认为首先蒸汽压力的波动可以直接影响釜温和塔釜压力的不稳定,同时造成塔内压差的波动,在锅炉补水或蒸汽温度变化的情况下如果不即时去调节蒸汽量来稳定塔内压差的话,很有可能造成反混和塔釜轻组分超标现象.这个和采用双温差控制的方式相仿,而且在现场操作的时候,如果蒸汽压力升高或降低,如果阀门保持同样的开度的话,蒸汽的流量会多少有加大和减少的情况,我认为公用系统的稳定是精馏系统温度的先决条件,楼上你认为如何? 你“说”的没有任何错误。可是问题出在哪里呢? 我们以控制塔压力为例。假设塔的其它参数不变,只有供应塔底再沸的蒸汽压力在变化,假定塔压直控塔底再沸蒸汽的量或者串控塔底蒸汽的流量。因为该蒸汽压力的变化,然后塔压命令再沸器的流量控制阀做出调整,这样才能保持塔的稳定。这是可以实现的,完全没有问题。(这是一元参数变化) 然而实际的情况却不能让你这样子。 我们知道塔的进料除非你特意的控制其进料流量(有这种模式),否则任何塔的进料都是波动的,有时甚至有较大波幅(这时就产生二元参数变化),进料板一般不能变化了(除非特殊工艺,设计了多个可控进料口),设塔的进料变大了,就会出现塔的灵敏板以下温度降低,但是塔压已经正常,楼主的用塔压控制蒸汽流量的阀门关闭了,可这时塔底部温度却还低呢! 如果有三元以上参数也变化呢?楼主的精馏塔还精馏吗?

乙烯装置丙烯精馏塔优化设计_曹媛维

第40卷第9期2012年9月化学工程 CHEMICAL ENGINEERING (CHINA )Vol.40No.9Sep.2012 收稿日期:2011-11-01作者简介:曹媛维(1979—),女,硕士,工程师,主要从事乙烯装置的工艺设计工作,电话:(010)58676692, E-mail :caoyuanwei@hqcec.com 。乙烯装置丙烯精馏塔优化设计 曹媛维 (中国寰球工程公司,北京100029) 摘要:针对近年来大型乙烯装置中的丙烯精馏塔操作不稳定、能耗大的问题,利用PRO /Ⅱ软件模拟分析该塔流程,总结出随着装置规模大型化该塔采用多溢流塔板形式,计算中应考虑塔板形式对板效率取值的影响。当进料组成与设计工况不符或装置负荷增大时导致产品不达标的情况,可增设进料口在非设计工况下不同位置进料以满足分离的要求, 并且塔顶冷凝器和塔底再沸器需要考虑充分的设计余量。并创造性提出了,在传统工艺流程基础上在塔顶冷凝器后增设排放冷凝器进一步回收丙烯的节能优化方案,为实际生产提供建议性指导。关键词:丙烯精馏塔;操作波动;PRO /Ⅱ模拟中图分类号:TQ 051.81 文献标识码:B 文章编号:1005-9954(2012)09-0074-05DOI :10.3969/j.issn.1005-9954.2012.09.0017 Optimization design of propylene rectifying column in ethylene plant CAO Yuan-wei (China HuanQiu Contracting &Engineering Corporation ,Beijing 100029,China ) Abstract :According to high energy consumption and instable operation problems of propylene rectifying column in large-scale ethylene plants ,the propylene rectifying column system was simulated with PRO/Ⅱsoftware.The conclusion is that the influence of the tray type on the tray efficiency should be considered in calculation ,and it is better to use multi-overflow tray type for large-scale ethylene plant.If the propylene product is substandard in the inconsistent feed composition case or the increased duty case , the added feed nozzles are prefered to switch the diffierent feed location for different case.Enough design margin should be considered for the top condenser and the bottom reboiler.The energy saving optimization scheme that adding a new vent condenser after the top condenser to recover more propylene product is creatively put forward ,which provides the constructive guidance for the actual production.Key words :propylene rectifying column ;operation fluctuation ;PRO /Ⅱsimulation 丙烯主要用于生产聚丙烯、丙烯腈、环氧丙烷以 及异丙醇等, 是仅次于乙烯的重要石油化工原料[1] 。丙烯衍生物的快速发展带动了丙烯需求的快速增长, 据估计从2006年到2015年全球范围内丙烯需求仍以4.9%的速度持续增长,中国的丙烯需求预计年均 增长达到6.3%[2] 。目前从市场份额看,来自乙烯装置的丙烯占到59%,从炼厂轻烃分离装置回收的丙烯占到35%。本文针对乙烯装置实际运行中丙烯精馏塔进料组成和负荷波动大导致产品不合格、能耗高的问题,利用流程模拟软件PRO /Ⅱ优化该塔操作参数,并探索性地提出在冷凝器出口增设排放冷凝器进一步回收丙烯产品的工艺,为丙烯精馏塔在实际操作 中低能耗、平稳运行提供理论指导和建议。1原始工况的模拟计算 1.1 模拟计算条件 本模拟计算以80万t /a 乙烯装置丙烯精馏塔为例,该塔进料组成条件如表1所示。采出丙烯产品的规格按照GB/T 7716—2002中聚合级丙烯优等品(摩 尔分数99.6%),塔釜丙烯控制指标为摩尔分数≤2%。1.2模拟过程1.2.1 模拟图与模拟参数选择 工业生产中由于受到运输和加工制造的限制,将丙烯精馏塔分成双塔串联或并联操作,但在模拟

石脑油

1.定义 石脑油是石油产品之一。英文名称Naphtha,别名轻汽油、化工轻油。词源于波斯语,指易挥发的石油产品。是由C4-C12烷烃、环烷烃、芳烃、烯烃组成的混合物。 2.性状、情况简介。 石脑油在常温、常压下为无色透明或微黄色液体,有特殊气味,不溶于水。密度在650-750kg/m3、。硫含量不大于0.08%,烷烃含量不超过60%,芳烃含量不超有12%,烯烃含量不大于1.0%。3.加工工艺情况 通常由原油直接蒸馏而得到,也可以由二次加工汽油进行加氢精制后获得。石脑油是管式炉裂解制取乙烯,丙烯,催化重整制取苯,甲苯,二甲苯的重要原料。作为裂解原料,要求石脑油组成中烷烃和环烷烃的含量不低于70%(体积);作为催化重整原料用于生产高辛烷值汽油组分时,进料为宽馏分,沸点范围一般为80-180℃,用于生产芳烃时,进料为窄馏分,沸点范围为60-165℃; 用作蒸汽裂解制乙烯原料或合成氨造气原料时,可取初馏点至220℃馏分。国外常用的轻质直馏石脑油沸程为0-100℃,重质直馏石脑油沸程为100-200℃;催化裂化石脑油有<105℃,105-160℃及160-200℃的轻、中、重质三种。 4.用途 石脑油的用途是多方面的,在石油炼制方面是制造清洁汽油的主要原料,在石油化工方面是制造乙烯、芳烃/聚酯、合成氨/化肥和

制氢的原料。在数量关系方面,石脑油使用于油品的数量最大,乙烯料其次,芳烃更小。国际上油品、乙烯料、芳烃料三者大致数量比例为:6.82:1:0.36。这样,对于炼油和石油化工行业来讲,石脑油原料的分配和合理利用存在一个内部竞争的问题。 石脑油由原油蒸馏或石油二次加工切取相应馏分而得。其沸点范围依需要而定,通常为较宽的馏程,如30-220℃。石脑油是管式炉裂解制取乙烯,丙烯,催化重整制取苯,甲苯,二甲苯的重要原料。作为裂解原料,要求石脑油组成中烷烃和环烷烃的含量不低于70(体积);作为催化重整原料用于生产高辛烷值汽油组分时,进料为宽馏分,沸点范围一般为80-180℃,用于生产芳烃时,进料为窄馏分,沸点范围为60-165℃。 5.其它 石脑油闪点在0℃以下,爆炸极限为1.0%-0.8%。毒性随芳烃含量的不同而不同,高浓度蒸发气体有窒息性。石脑油由原油蒸馏或石油二次加工切取相应馏分而得。其沸点范围依需要而定,通常为较宽的馏程,如30-220℃。石脑油是管式炉裂解制取乙烯,丙烯,催化重整制取苯,甲苯,二甲苯的重要原料。作为裂解原料,要求石脑油组成中烷烃和环烷烃的含量不低于70%(体积);作为催化重整原料用于生产高辛烷值汽油组分时,进料为宽馏分,沸点范围一般为80-180℃,用于生产芳烃时,进料为窄馏分,沸点范围为60-165℃。国外常用的轻质直馏石脑油沸程为0-100℃,重质直馏石脑油沸程为100-200℃;催化裂化石脑油有<105℃,105-160℃及160-200℃的轻、中、重质

乙烯乙烷精馏工艺设计说明书

化工原理课程设计 乙烯-乙烷精馏塔工艺设计说明书 学院(系):化工与环境生命学部 专业:能源化学工程 学生姓名:杨旭 学号:201341260 指导教师:董宏光 评阅教师: 完成日期:2016年7月7日 - 1 -

目录 第 1章概述......................................................... - 4 - 第2章方案流程简介.................................... 错误!未定义书签。 2.1精馏装置流程................................................ - 5 - 2.2 工艺流程....................................... 错误!未定义书签。 2.2.1工艺流程.............................................. - 5 - 2.2.2能量利用.............................................. - 5 - 2.3 设备选用....................................... 错误!未定义书签。 2.4 处理能力及产品质量要求......................... 错误!未定义书签。 2.5 设计的目的和意义 - 6 - 第3章精馏塔工艺设计............................................... - 7 - 3.1 设计条件.................................................... - 7 - 3.1.1 工艺条件.............................................. - 7 - 3.1.2 操作条件:........................................... - 7 - 3.1.3 塔板形式:............................................ - 7 - 3.1.4 处理量:.............................................. - 7 - 3.1.5 安装地点:............................................ - 7 - 3.1.6 塔板设计位置:........................................ - 7 - 3.2 物料衡算及热量衡算........................................ - 8 - 3.2.1 物料衡算............................................. - 8 - 3.2.2 热量衡算............................................. - 8 - 3.3 塔板数的计算........................................... - 9 - 3.3.1相对挥发度的查取...................................... - 9 - 3.3.2最小回流比计算:..................................... - 10 - 3.3.3 逐板计算过程:...................................... - 10 - 3.4 精馏塔工艺设计............................................. - 11 - 3.4.1 物性数据............................................. - 11 - 3.4.2 板间距和塔径的初步选取............................... - 11 - 3.4.3校核................................................. - 12 - 3.4.4塔板负荷性能图....................................... - 14 - 3.4.4 塔高的计算........................................... - 16 - 第4章再沸器的设计................................................ - 16 - - 2 -

石脑油

石脑油 石脑油的利用 1、做其他生产单元的原料 比如 乙烯装置 2、做汽油 但不能直接按汽油卖 方法有加氢处理、异构化等 现在有些地方把它与催化汽油按比例掺在一起 加一些助剂进行调和 经济效益也不错。石脑油通过精馏方法是不可能提高辛烷值的。因为石脑油是直链烷烃。但它可以通过异构化的方法提高辛烷值 大概可以提供20多个单位 生产数据显示 RON可以达到78左右。 3、石脑油可以作为重整原料 经过重整加工 可以大幅度提高辛烷值。如果芳烃潜含量高 可以进重整装置 生产辛烷值高的重整汽油 然后去和其它汽油馏分调和。如果石脑油的BMCI值小 则是乙烯裂解的优良原料。有的炼厂的制氢装置也是用轻石脑油作原料的 不过相对用炼厂气制氢 成本就要高一些 石脑油(naphtha):一部分石油轻馏分的泛称。因用途不同有各种不同的馏程。我国规定馏程自初镏点至220℃左右。主要用作重整和化工原料。作为生产芳烃的重整原料,采用70~145℃馏分,称轻石脑油;当以生产高辛烷值汽油为目的时,采用70~180℃馏分,称重石脑油。用作溶剂时,则称溶剂石脑油,来自煤焦油的芳香族溶剂也称重石脑油或溶剂石脑油。 主要用途:可分离出多种有机原料,如汽油、苯、煤油、沥青等。 石脑油是一种轻质油品,由原油蒸馏或石油二次加工切取相应馏分而得。其沸点范围依需要而定,通常为较宽的馏程,如30-220℃。 石脑油是管式炉裂解制取乙烯,丙烯,催化重整制取苯,甲苯,二甲苯的重要原料。作为裂解原料,要求石脑油组成中烷烃和环烷烃的含量不低于70%(体积);作为催化重整原料用于生产高辛烷值汽油组分时,进料为宽馏分,沸点范围一般为80-180℃,用于生产芳烃时,进料为窄馏分,沸点范围为60-165℃。 国外常用的轻质直馏石脑油沸程为0-100℃,重质直馏石脑油沸程为100-200℃;催化裂化石脑油有<105℃,105-160℃及 160-200℃的轻、中、重质三种。 实际关联:由于石脑油市场价格远低于车用无铅汽油(吨价差达600-1200元),使用石脑油和石化助剂调配车用无铅汽油已成为民营石化企业增加成品油利润的重要方式。 石脑油切割产品作用 溶剂油是五大类石油产品之一。溶剂油的用途十分广泛。用量最大的首推涂料溶剂油(俗称油漆溶剂油),其次有食用油,印刷油墨,皮革,农药,杀虫剂,橡胶,化妆品,香料,医药,电子部件等溶剂油。目前约有400-500种溶剂在市场上销售,其中溶剂油(烃类溶剂,苯类化合物)占一半左右。

乙烯精馏塔的设计说明书

乙烯精馏塔的设计说明书 7.1.1 设计任务 由Aspen 模拟得到进料板上 S V =1.0310 (s m /3) S L =0.089141(s m /3) 气相密度V ρ=48.1423/m kg 液相密度L ρ=427.29(3/m kg 液体表面张力m σ= 2.982m mN / 7.1.2 塔和塔板主要工艺尺寸计算 塔板横截面的布置计算 1、塔径D 的计算 参考《化工原理》(下册)表10-1,取板间距H T =0.61m =L h 0.13m H T -L h =0.61-0.13=0.48m 两相流动参数计算如下 LV F = Vs Ls Lm Vm ρρ ∴LV F =( 0.0891411.0310)( 427. 2948. 142)2/1=0.258 参考《化工原理》(下册)图10-42筛板的泛点关联得:C 20f =0.075 f C =2.02020??? ??σf C =0.2 2.9820.0750.0512620?? = ? ?? u =f 5 .02 .02020??? ? ??-??? ??V V L f C ρρρσ=0.5 427.2948.1420.0512648.142-?? ???=0.1438(s m /) 本物系不易起泡,取泛点百分率为80%,可求出设计气速 n u '=0.8?0.1438=0.1150 s m / 所需的气体流通面积 /'Vs A n =n u '=1.0310/0.1150=8.96522m 4 1.0310 3.380.7850.1150 Vs D m u π'= ==? 根据塔设备系列化规格,将D '圆整到D=3.6 m 作为初选塔径,因此

精馏塔的控制

精馏塔的控制 12.1 概述? 精馏是石油、化工等众多生产过程中广泛应用的一种传质过程,通过精馏过程,使混合物料中的各组分分离,分别达到规定的纯度。 ?分离的机理是利用混合物中各组分的挥发度不同(沸点不同),使液相中的轻组分(低沸点)和汽相中的重组分(高沸点)相互转移,从而实现分离。 ?精馏装置由精馏塔、再沸器、冷凝冷却器、回流罐及回流泵等组成。 精馏塔的特点精馏塔是一个多输入多输出的多变量过程,内在机理较复杂,动态响应迟缓、变量之间相互关联,不同的塔工艺结构差别很大,而工艺对控制提出的要求又较高,所以确定精馏塔的控制方案是一个极为重要的课题。而且从能耗的角度,精馏塔是三传一反典型单元操作中能耗最大的设备。 一、精馏塔的基本关系 (1)物料平衡关系总物料平衡: F=D+B (12-1) 轻组分平衡:F z f =D x D +B x B (12-2) 联立(12-1)、(12-2)可得: (2)能量平衡关系 在建立能量平衡关系时,首先要了解分离度的概念。所谓分离度s 可用下式表示: 回流泵 冷凝器 气液分离器 精馏塔 进料 再沸器 釜液 馏出液 冷剂 热剂 B,x B D,x D F,z F L L B L D V B D f D B B f D x x x z F D x x z D F x --= +-=)((12-3) ) 1()1(D B B D x x x x s --=(12-5)

可见,随着s 的增大,x D 也增大,x B 而减小,说明塔系统的分离效果增大。影响分离度s 的因素很多,如平均相对挥发度、理论塔板数、塔板效率、进料组分、进料板位置,以及塔内上升蒸汽量V 和进料F 的比值等。对于一个既定的塔来说: 式(12-6)的函数关系也可用一近似式表示: 或可表示为: 式中β为塔的特性因子由上式可以看到,随着V /F 的增加,s 值提高,也就是x D 增加, x B 下降,分离效果提高了。由于V 是由再沸器施加热量来提高的,所以该式实际是表示塔的能量对产品成分的影响,故称为能量平衡关系式。由上分析可见, V /F 的增加,塔的分离效果提高,能耗也将增加。 对于一个既定的塔,包括进料组分一定,只要D /F 和V /F 一定,这个塔的分离结果,即 x D 和x B 将被完全确定。也就是说,由一个塔的物料平衡关系与能量平衡关系两个方程式, 可以确定塔顶与塔底组分待定因素。 上述结论与一般工艺书中所说保持回流比一定,就确定了分离结果是一致的。二、精馏塔的控制要求精馏塔的控制目标是,在保证产品质量合格的前提下,使塔的总收益(利润)最大或总成本最小。具体对一个精馏塔来说,需从四个方面考虑,设置必要的控制系统。 (1)产品质量控制; (2)物料平衡控制; (3)能量平衡控制; (4)约束条件控制(液泛限、漏液限、压力限、临界温差限等)。 防止液泛和漏液,可以塔压降或压差来监视气相速度。三、精馏塔的主要干扰因素精馏塔的主要干扰因素为进料状态,即进料流量F 、进料组分z f 、进料温度T f 或热焓F E 。 此外,冷剂与热剂的压力和温度及环境温度等因素,也会影响精馏塔的平衡操作。 所以,在精馏塔的整体方案确定时,如果工艺允许,能把精馏塔进料量、进料温度或热焓加以定值控制,对精馏塔的操作平稳是极为有利的。 12.3 精馏塔被控变量的选择 通常,精馏塔的质量指标选取有两类:直接的产品成分信号和间接的温度信号。 一、采用产品成分作为直接质量指标 成分分析仪表的制约因素: ①分析仪表的可靠性差; ②分析测量过程滞后大,反应缓慢; ③成分分析针对不同的产品组分,品种上较难一一满足。 二、采用温度作为间接质量指标 )(F V f s =(12-6) s F V ln β=) 1()1(ln D B B D x x x x F V --=β(12-7) (12-8)

乙烷制乙烯

国内乙烷制乙烯 中国暂时还没有建设或投产的乙烷裂解装置,国内几个宣布的百万吨级乙烷裂解制乙烯装置都是镜中花水中月。 新疆巴州在规划一个80万吨的乙烯装置,使用102万吨的乙烷作为裂解原料,大家可以持续关注,如果建的话,也算是世界级的乙烷裂解装置了。 这个项目是巴州政府和中石油按90:10的股份合资,使用当地2*60亿NM3/a 的天然气处理工厂的副产乙烷作为原料,这还算比较靠谱点的项目。 国内采用乙烷裂解制乙烯的公司较少,主要集中在燕山石化和青岛炼化。据报道,兰州规划的百万吨乙烷制乙烯项目已获工信部专家评审通过。 单就乙烯生产来讲,乙烷裂解目前是最具经济性的,单位成本最低。 100% ethane进料的裂解装置,乙烯收率78%左右,副产物有:H2,CH4,C3H6,丁二烯,C4,C5,苯,甲苯等。 工业上用乙烷裂解制乙烯,反应式为:C2H6(g)→C2H4(g)+H2(g) 1.乙烷裂解制乙烯的优越性 乙烷裂解制乙烯具有成本低、收率高、投资少、污染小等优点。据CEH报告,乙烷裂解制乙烯的收率高达80.5%,远高于国内传统石脑油制乙烯35%的收率。随着美国、加拿大及中东地区天然气的大规模开采,尤其是美国近几年的页岩气革命,乙烷的供应大幅增加,价格却不断下降,乙烷裂解制乙烯已成为颇具竞争力的工艺路线。世界范围内,乙烷在乙烯的原料占比中由之前的不足10%,增加到2012年的34.8%。世界乙烯原料占比及我国乙烯原料构成见图1、图2。

以2013年5月中石油石脑油报价、美国乙烷报价及亚洲乙烯报价为核算基准,石脑油制乙烯和乙烷制乙烯两种工艺路线的经济性见表1。可见,乙烷制乙烯表现出较好的利润率。

精馏塔的设计(毕业设计)

精馏塔尺寸设计计算 初馏塔的主要任务是分离乙酸和水、醋酸乙烯,釜液回收的乙酸作为气体分离塔吸收液及物料,塔顶醋酸乙烯和水经冷却后进行相分离。塔顶温度为102℃,塔釜温度为117℃,操作压力4kPa。 由于浮阀塔塔板需按一定的中心距开阀孔,阀孔上覆以可以升降的阀片,其结构比泡罩塔简单,而且生产能力大,效率高,弹性大。所以该初馏塔设计为浮阀塔,浮阀选用F1型重阀。在工艺过程中,对初馏塔的处理量要求较大,塔内液体流量大,所以塔板的液流形式选择双流型,以便减少液面落差,改善气液分布状况。 4.2.1 操作理论板数和操作回流比 初馏塔精馏过程计算采用简捷计算法。 (1)最少理论板数N m 系统最少理论板数,即所涉及蒸馏系统(包括塔顶全凝器和塔釜再沸器)在全回流下所需要的全部理论板数,一般按Fenske方程[20]求取。 式中x D,l,x D,h——轻、重关键组分在塔顶馏出物(液相或气相)中的摩尔分数; x W,l,x W,h——轻、重关键组分在塔釜液相中的摩尔分数; αav——轻、重关键组分在塔内的平均相对挥发度; N m——系统最少平衡级(理论板)数。 塔顶和塔釜的相对挥发度分别为αD=1.78,αW=1.84,则精馏段的平均相对挥发度: 由式(4-9)得最少理论板数: 初馏塔塔顶有全凝器与塔釜有再沸器,塔的最少理论板数N m应较小,则最少理论板数:。 (2)最小回流比 最小回流比,即在给定条件下以无穷多的塔板满足分离要求时,所需回流比R m,可用Underwood法计算。此法需先求出一个Underwood参数θ。 求出θ代入式(4-11)即得最小回流比。

式中——进料(包括气、液两相)中i组分的摩尔分数; c——组分个数; αi——i组分的相对挥发度; θ——Underwood参数; ——塔顶馏出物中i组分的摩尔分数。 进料状态为泡点液体进料,即q=1。取塔顶与塔釜温度的加权平均值为进料板温度(即计算温度),则 在进料板温度109.04℃下,取组分B(H2O)为基准组分,则各组分的相对挥发度分别为αAB=2.1,αBB=1,αCB=0.93,所以 利用试差法解得θ=0.9658,并代入式(4-11)得 (3)操作回流比R和操作理论板数N0 操作回流比与操作理论板数的选用取决于操作费用与基建投资的权衡。一般按R/R m=1.2~1.5的关系求出R,再根据Gilliland关联[20]求出N0。 取R/R m=1.2,得R=26.34,则有: 查Gilliland图得 解得操作理论板数N0=51。 4.2.2 实际塔板数 (1)进料板位置的确定 对于泡点进料,可用Kirkbride提出的经验式进行计算。

精馏塔基础知识

塔基础知识 1:化工生产过程中, 是如何对塔设备进行定义的? 答: 化工生产过程中可提供气(或汽)液或液液两相之间进行直接接触机会,达到 相际传质及传热目的,又能使接触之后的两相及时分开,互不夹带的设备称之为塔。塔设备是化工、炼油生产中最重要的设备之一。常见的、可在塔设备中完成单元操作的有精馏、吸收、解吸和萃取等,因此,塔设备又分为精馏塔、吸收塔、解吸塔和萃取塔等。 2:塔设备是如何分类的? 答:按塔的内部构件结构形式,可将塔设备分为两大类:板式塔和填料塔。按化工操作单元的特性(功能),可将塔设备分为:精馏塔、吸收塔、解吸塔、反应塔 (合成塔)、萃取塔、再生塔、干燥塔。按操作压力可将塔设备分为:加压塔、常压塔和减压塔。按形成相际接触界面的方式,可将塔设备分为:具有固定相界面的塔和流动相界面的塔。 3:什么是塔板效率?其影响因素有哪些? 答:理论塔板数与实际塔板数之比叫塔板效率,它的数值总是小于 1 。在实际 运行中,由于气液相传质阻力、混合、雾沫夹带等原因,气液相的组成与平衡状态有所偏离,所以在确定实际塔板数量时,应考虑塔板效率。系统物性、流体力学、操作条件和塔板结构参数等都对塔板效率有影响,目前塔板效率还不能精确地预测。 4:塔的安装对精馏操作有何影响? 答::(1)塔身垂直.倾斜度不得超过1/1000, 否则会在塔板上造成死区,使塔的精馏效率下降;(2)塔板水平.水平度不超过正负2mm塔板水平度如果达不到要求, 则会造成液层高度不均匀, 使塔内上升的气相易从液层高度小的区域穿过, 使气液两相不能在塔板上达到预期的传热,传质要求. 使塔板效率降低。筛板塔尤其要注意塔板的水平要求。对于舌形塔板,浮动喷射塔板,斜孔塔板等还需注意塔板的安装位置,保持开口方向与该层塔板上液体的流动方向一致。(3)溢 流口与下层塔板的距离应根据生产能力和下层塔板溢流堰的高度而定。但必须满足溢流堰板能插入下层受液盘的液体之中,以保持上层液相下流时有足够的通道和封住下层上升蒸汽必须的液封,避免气相走短路。另外,泪孔是否畅通,受液槽,集油箱,升气管等部件的安装,检修情况都是要注意的。对于不同的塔板有不同的安装要求,只有按要求安装才能保证塔的生产效率。 5:塔设备中的除沫器有什么作用? 答:除沫器用于分离塔中气体夹带的液滴,以保证有传质效率,降低有价值的物料损失和改善塔后压缩机的操作,一般多在塔顶设置除沫器。可有效去除 3 —5um的雾滴,塔盘间若设置除沫器,不仅可保证塔盘的传质效率,还可以减小板间距。所以丝网除沫器主要用于气液分离。 6:塔器在进行设备的材料选择时, 应考虑哪些问题? 答:(1)在使用温度下有良好的力学性能,即较高的强度, 良好的塑性和冲击韧性以及较低的缺口敏感性。(2)要求具有良好的抗氢, 氮等气体的腐蚀性能。(3)要求具有较好的制造和加工性能,并具有良好的可焊性。(4)热稳定性好

化工原理精馏题

五 蒸馏 汽液相平衡 1.1 苯(A)与氯苯(B)的饱和蒸汽压[mmHg]和温度[℃]的关系如下: t 80.92 90 100 110 120 130 131.8 p 0 A 760 1008 1335 1740 2230 2820 3020 p 0 B 144.8 208.4 292.8 402.6 542.8 719 760 若苯—氯苯溶液遵循Raoult 定律,且在1atm 下操作,试作: (1) 苯—氯苯溶液的t —x(y)图及y —x 图; (2) 用相对挥发度的平均值另行计算苯—氯苯的x —y 值。 1.2 苯—甲苯混合液的组成x=0.4(摩尔分率),求其在总压p=600[mmHg]下的泡点及平衡汽相组成。又苯和甲苯的混合气含苯40%(体积%),求常压下的露点。已知苯—甲苯混合液服从拉乌 尔定律。苯(A)和甲苯(B)的蒸汽压p 0 A 、p 0 B [mmHg],按下述Antoine 方程计算:式中t 为温度[℃]。 lg p 0 A =6.89740-1206.350/(t+220.237) lg p 0 B =6.95334-1343.943/(t+219.237) 1.3 某双组分理想物系当温度t=80℃时,p 0 A =106.7kPa ,p 0 B =40kPa ,液相摩尔组成为 x A =0.4,试求: (1) 与此液相组成相平衡的汽相组成y A ; (2) 相对挥发度α。 1.4 一双组分精馏塔,塔顶设有分凝器,已知进入分凝器的汽相组成y 1=0.96(?摩尔分率,下同),冷凝液组成x D =0.95,两个组分的相对挥发度α=2,求: (1) 出分凝器的汽相组成y D =? (2) 出分凝器之液、汽的摩尔流率之比L/V D =? 习题4附图 1.5 在1atm 下对x=0.6(摩尔分率)的甲醇—水溶液进行简单蒸馏,当馏出量为原料的 1/3时,求此时刻的釜液及馏出物的组成。设x=0.6附近平衡线可近视为直线,其方程为 y=0.46x+0.549 1.6 某二元混合物原料中易挥发组分x F =0.4(摩尔组成),用平衡蒸馏的方式使50%的物料汽化,试求气相中易挥发组分的回收率。(设相对挥发度为3) 1.7 将含有24%(摩尔,以下同)易挥发组分的某液体混合物送入连续操作的精馏塔,馏出液中含有95%的易挥发组分,残液中含有3%易挥发组分。塔顶蒸汽量为850[kmol/h], 回流量为670[kmol/h],塔顶采用全凝器,试求塔顶易挥发组分的回收率及残液量。

乙苯-苯乙烯精馏塔设计

毕业设计 题目年产10万吨苯乙烯工艺设计 姓名 所在系部化学工程 专业班级有机化工 指导老师 前言 本设计的内容为10万吨/年乙苯脱氢制苯乙烯装置,包括工艺设计,设备设计及平面布置图。 本设计的依据是采用低活性、高选择性催化剂,参照鲁姆斯(Lummus)公司生产苯乙烯的技术,以乙苯脱氢法生产苯乙烯。苯乙烯单体生产工艺技术:深度减压,绝热乙苯脱氢工艺乙苯脱氢反应在绝热式固定床反应器中进行,其特点是:转化率高,可达55%,选择性好,可达90%。特殊的脱氢反应器系统:在低压(深度真空下)下操作以达到最高的乙苯单程转化率和最高的苯乙烯选择性。该系统是由蒸汽过热器、过热蒸汽输送管线和反应产物换热器组成,设计为热联合机械联合装置。整个脱氢系统的压力降小,以维持压缩机入口尽可能高压,同时维持脱氢反应器尽可能低压,从而提高苯乙烯的选择性,同时不损失压缩能和投资费用。 所需要的催化剂用量和反应器体积较小,且催化剂不宜磨损,能在高温高压下操作,内部结构简单,选价便宜。在苯乙烯蒸馏中采用一种专用的不含硫的苯乙烯阻聚剂。它经济有效且能使苯乙烯焦油作为燃料清洁地燃烧。 工业设计的优化和设备的良好设计可使操作无故障,从而可减少生产波动. 本设计装置主要由脱氢反应和精馏两个工序系统所组成。原料来自乙苯生产装置或原料采购部门,循环水、冷冻水、电和蒸汽来由公用工程系统提供,生产出的苯乙烯产品到成品库。 此设计过程中,为了计算方便,忽略了一些计算过程,故有一定的误差,另由于计算时间比较仓促,有些问题不能够直接解决。设计中有不少错误之处,请指导老师予以批评指正,多提出宝贵意见。 苯乙烯设计任务书 一、设计题目:年产10万吨苯乙烯的生产工艺设计 二、设计原始条件: 2、操作条件: 年工作日:300天,每天24小时,乙苯总转化率为55% 乙苯损失量为纯乙苯投料量为4.66%

精馏塔的介绍

无论是平衡蒸馏还是简单蒸馏,虽然可以起到一定的分离作用,但是并不能将混合物分离为具有一定量的高纯度产品。在石油化工生产中常常要求获得纯度很高的产品,通过精馏过程可以获得这种高纯度的产品。 精馏过程所用的设备称为精馏塔,大体上可以分为两大类:①板式塔,气液两相总体上作多次逆流接触,每层板上气液两相一般作交叉流。②填料塔,气液两相作连续逆流接触。 一般的精馏装置由精馏塔塔身、冷凝器、回流罐,以及再沸器等设备组成。进料从精馏塔中某段塔板上进人塔内,这块塔板称为进料板。进料板将精馏塔分为上下两段,进料板以上部分称为精馏段,进料板以下部分称为提馏段。 塔板的分类

板式塔是一种应用极为广泛的气液传质设备,它由一个通常呈圆柱形的壳体及其中按一定间距水平设置的若干塔板所组成。板式塔正常工作时,液体在重力作用下自上而下通过各层塔板后由塔底排出;气体在压差推动下,经均布在塔板上的开孔由下而上穿过各层塔板后由塔顶排出,在每块塔板上皆储有一定的液体,气体穿过板上液层时,两相接触进行传质。 板式塔种类繁多,通常可分类如下: 按塔板结构分,有泡罩板、筛板、浮阀板、网孔板、舌形板等等。历史上应用最早的有泡罩塔及筛板塔,20世纪50年代前后,开发了浮阀塔板。现应用最广的是筛饭和浮阀塔板,其他不同型式的塔板也有应用。一些新型塔板或传统塔板的改进型也在陆续开发和研究中。 按气液两相的流动方式分,有错流式塔板和逆流式塔板,或称有降液管塔板和无降液管塔板。有降液管塔板应用极广,它们具有较高的传质效率和较宽的操作范围;无降液管的逆流式塔板也

常称为穿流式塔板,气液两相均由塔板上的孔道通过。塔板结构简单,整个塔板面积利用较充分。常用的有穿流式筛板、穿流式栅板、穿流式波纹板等。 按液体流动型式分,有单流形、双流形、U形流形及其他流形(如四流形、阶梯形、环流形等)。 单流形塔板应用最为广泛,它结构简单,液流行程长,有利于提高塔板效率。但当塔径或液量过大时,塔板上液面梯度会较大,导致气液分布不均,或造成降液管过载,影响塔板效率和正常操作。 双流形塔板宜用于塔径较大及液流量较大时,此时,液体分流为两股,可以减少溢流堰的液流强度和降液管负荷,同时,也减小了塔板上的液面梯度。但塔板的降液管要相间地置于塔板的中间或两边,多占一些塔板传质面积。

轻油裂解制乙烯的反应过程

研究生课程考试成绩单 (试卷封面) 任课教师签名:吴东方 日期:2011年1月1号注:1. 以论文或大作业为考核方式的课程必须填此表,综合考试可不填。“简要评语”栏缺填无效。 2. 任课教师填写后与试卷一起送院系研究生秘书处。 3. 学位课总评成绩以百分制计分。

东南大学研究生课程 催化剂工程 课程论文 题目:轻油裂解制乙烯的反应过程院(系):化学化工学院 专业:化学工程与技术 姓名:黄金金 学号: 112244 指导教师:吴东方 东南大学化学化工学院 2011年1月 轻油裂解制乙烯的反应过程

黄金金 指导教师:吴东方 摘要:综述了轻油制备乙烯技术的国内外研究进展,介绍了目前有代表性的研究成果以及催化裂解所用催化剂的研究进展,并对乙烯制备技术的开发前景进行了探讨,同时阐述了烃类催化热裂解的机理,根据研究成果提出了关于开发轻油热裂解制乙烯的催化剂研究的想法。 关键词:轻油催化裂解乙烯催化剂 一、前言 乙烯低碳烯烃作为重要基础原料,在石油化工行业起着至关重要的作用。随着发展中国家(如中国和中东地区)对石化产品需求的增加,轻烯烃(乙烯、丙烯、丁烯)的生产越来越受到各国的重视。 乙烯是石油化工最重要的基础原料,主要用途为生产聚乙烯、聚氯乙烯、环氧乙烷、乙二醇等有机化工原料,目前约有75%的石油化工产品以乙烯为原料生产。目前全世界乙烯生产能力已经达到112.906Mt/a,预计2012年乙烯市场需求量将达到137.045Mt/a,国内外乙烯市场仍有较大发展空间。乙烯主要来源于烃类裂解。人们对石油烃(碳二以上饱和烷烃)高温裂解生产低碳烯烃的技术研究早在30年代就开始了,并于40年代初建成了管式炉裂解生产烯烃的工业装置。经过近半世纪的发展,石油烷烃经管式炉热裂解生产乙烯至今仍是最主要的乙烯生产方法。石油烷烃裂解最初采用天然气回收的乙烷、丙烷为原料,后来随着烯烃市场需求的增大,单纯依靠乙烷和丙烷为裂解原料远不能满足市场对烯烃的需求,裂解原料开始逐渐向重质化原料方向发展。除使用轻质烷烃外,到60年代初逐步发展到大量使用石脑油,70年代又将裂解原料扩大到煤油,轻柴油以及重柴油。采用石脑油为原料的蒸汽裂解所得乙烯收率一般为0.50一0.65。管式炉裂解目前仍是最主要的乙烯生产方法。除石油烃裂解之外,由炼厂气(焦化和催化裂化)回收乙烯、丙烯和丁烯是烯烃的另一主要来源。虽然管式炉热裂解工艺已成功应用于工业生产,但是随着国家节能减排和环保政策的日益严格,其进一步的发展受到了较大的制约。主要表现在:首先,热裂解反应一般需要在800一850℃的高温下进行,再加上裂解反应本身的强吸热特性和管壁的结焦倾向,

化工原理精馏题

五蒸馏 汽液相平衡 1.1 苯(A)与氯苯(B)的饱和蒸汽压[mmHg]和温度[℃]的关系如下: t 80.92 90 100 110 120 130 131.8 p 760 1008 1335 1740 2230 2820 3020 p 144.8 208.4292.8 402.6 542.8 719 760 若苯—氯苯溶液遵循Raoult定律,且在1atm下操作,试作: (1) 苯—氯苯溶液的t—x(y)图及y—x图; (2) 用相对挥发度的平均值另行计算苯—氯苯的x—y值。 1.2 苯—甲苯混合液的组成x=0.4(摩尔分率),求其在总压p=600[mmHg]下的泡点及平衡汽相组成。又苯和甲苯的混合气含苯40%(体积%),求常压下的露点。已知苯—甲苯混合液服从拉乌尔定律。苯(A)和甲苯(B)的蒸汽压p、p [mmHg],按下述Antoine方程计算:式中t为温度[℃]。 lg p=6.89740-1206.350/(t+220.237) lg p=6.95334-1343.943/(t+219.237) 1.3 某双组分理想物系当温度t=80℃时,p=106.7kPa,p=40kPa,液相摩尔组成为x A=0.4,试求: (1) 与此液相组成相平衡的汽相组成y A; (2) 相对挥发度α。 1.4 一双组分精馏塔,塔顶设有分凝器,已知进入分凝器的汽相组 成y1=0.96(?摩尔分率,下同),冷凝液组成x D=0.95,两个组分的相对 挥发度α=2,求: (1) 出分凝器的汽相组成y D= (2) 出分凝器之液、汽的摩尔流率之比L/V D= 习题4附图 1.5 在1atm下对x=0.6(摩尔分率)的甲醇—水溶液进行简单蒸馏,当馏出量为原料的1/3时,求此时刻的釜液及馏出物的组成。设x=0.6附近平衡线可近视为直线,其方程为y=0.46x+0.549 1.6 某二元混合物原料中易挥发组分x F=0.4(摩尔组成),用平衡蒸馏的方式使50%的物料汽化,试求气相中易挥发组分的回收率。(设相对挥发度为3) 1.7 将含有24%(摩尔,以下同)易挥发组分的某液体混合物送入连续操作的精馏塔,馏出液中含有95%的易挥发组分,残液中含有3%易挥发组分。塔顶蒸汽量为850[kmol/h],回流量为670[kmol/h],塔顶采用全凝器,试求塔顶易挥发组分的回收率及残液量。 1.8 现有一连续精馏塔只有精馏段,用于A、B两组分的分离。已知A与B?的分子量分别为78与92,进料量为100[kg/h],含A组成为10%(质量%以下同),进料状态为饱和蒸汽自塔底送入,如图示。如果要求馏出产品中A的组成为95%,残液中A的组成为1%,试求: (1) 塔顶馏出液的量、釜残液量及塔顶的蒸汽量各为多少[kg/h] (2) 回流比R (3) 写出该塔操作线的数值表达式。 1.9 在连续精馏塔中,精馏段操作线方程 y=0.75x+0.2075,q线方程为y=-0.5x+1.5x F, 试求: (1) 回流比R

相关文档