文档库 最新最全的文档下载
当前位置:文档库 › 光电轴角编码器的细分误差快速测量系统

光电轴角编码器的细分误差快速测量系统

光电轴角编码器的细分误差快速测量系统
光电轴角编码器的细分误差快速测量系统

 

2008年第27卷第1期 传感器与微系统(Transducer and M icr osyste m Technol ogies )

光电轴角编码器的细分误差快速测量系统

赵长海

1,2

,万秋华1,龙科慧1,吴永芝

1,2

,薛 陈

1,2

(1.中国科学院长春光学精密机械与物理研究所,吉林长春130033;

2.中国科学院研究生院,北京100039)

摘 要:为了在野外快速准确地测量编码器的误差,研制了编码器的误差测量系统。因为编码器的误差

主要来自细分误差,该系统主要对细分误差进行分析。系统采用2片MAX125A /D 转换芯片对编码器输出的信号进行采集,通过并口将数据传给计算机进行误差分析。与传统的误差测量系统相比具有测量速度快、便携、简单等特点。利用该系统对某21位编码器的误差进行测量分析,证明该方法可行。关键词:编码器;细分误差;数据采集中图分类号:TP212 文献标识码:A 文章编号:1000-9787(2008)01-0087-03

Fa st m ea sure m en t syste m of i n terpol a ti on errors

for photograph i c encoder

Z HAO Chang 2hai

1,2

,WAN Q iu 2hua 1,LONG Ke 2hui 1,WU Yong 2zhi

1,2

,XUE Chen

1,2

(1.Changchun I n stitute of O pti cs F i n e M echan i cs and Physi cs,Ch i n ese Academ y of Sc i ences,

Changchun 130033,Ch i n a;

2.Gradua te School,Ch i n ese Acade m y of Sc i ences,Be iji n g100039,Ch i n a)

Abstract :I n order t o measure the err ors of the encoder fast and accurately when used outdoors,the fast measure ment syste m is devel oped .Because most of the err ors of the encoder r oot in the inter polati on,in this syste m inter polati on err ors are analyzed mainly .T wo transf or m ing chi p s,MAX125AD are used t o collect the out put signal of the encoder,and the parallel port is used t o transfer the data t o the computer .Compared t o the traditi onal syste m,this syste m is very fast,portable and si m p le .This syste m is used t o measure a certain 21bit encoder and the result p r oves that the syste m is feasible .

Key words :encoder;inter polati on err ors;data collecti on

0 引 言

光电轴角编码器,又称光电角位置传感器,是一种集光、机、电为一体的精密数字测角装置,它把轴角信息转换成数字代码,与计算机和显示装置连接后可实现动态测量和实时控制。随着编码器在工业、国防、航天等部门的广泛应用,对编码器的技术指标提出了越来越高的要求[1,2]。测角误差是编码器的重要技术指标,细分误差是测角误差的主要分量,细分误差的检定要求用精密的小角度测量仪器在严格的实验室条件下进行,且检测过程复杂、时间长

[3]

。为了在编码器使用现场快速及时地检测出编码器

的细分误差,研制了一种编码器的细分误差快速测量系统,将编码器精码的光电信号采集到计算机,进行谐波分析,计算出编码器的细分误差。

收稿日期:2007-05-28

1 数据采集系统

1.1 系统硬件

该系统的核心器件是T MS320F2812和MAX125。

T MS320F2812是TI 公司的一款高速DSP 处理芯片。本系

统采用1片DSP 芯片控制2片A /D 转换芯片。图1所示为DSP 控制2片转换芯片的系统框图。

1.2 T MS320F2812

C281x 系列DSP 是TI 公司最新推出的32位定点数字

信号处理器,是基于T MS320C2000数字信号处理器平台开发的,其代码与24x/240x 数字信号处理器完全兼容。

C281x 处理器采用C /C ++编写软件,其效率高,用户

不仅可以应用高级语言编写系统程序,也可采用C /C ++高效率的数学算法。C281x 系列数字信号处理器在完成数学算法和系统控制等任务时都具有较高的性能,这样,就避

7

8

传感器与微系统 第27

图1 系统框图

F i g1 Block d i a gram of syste m

免了用户在1个系统中需要多只处理器的麻烦。C281x处理器内核包含了1个32位×32位的乘法累计单元,能够完成64位的数据处理能力。从而使该处理器能够完成更高精度的处理任务。

1.3 MAX125

MAX125是一款带多路采样保持器的高速14位A/D 转换芯片。该芯片包含1只14位,转换时间为3μs的逐次逼近式A/D转换器,1个+2.5V的内部电压基准。每一个采样保持器都对应2路输入信号,一共可以接收8路信号输入。输入电压为±5V。芯片具有±17V输入电压保护。

MAX125采用的是并行数据接口,和DSP的数据存取时序相同,与DSP通信时不需要等待周期,可以达到很高的通信速率。单路转换的最高速率为250ks p s,4路最高速率为76ks p s。

1.4 软件控制流程

要分析编码器在工作时的细分误差,数据采集速率要在100ks p s以上。本系统采用2片A/D转换芯片,分时采集编码器的4路信号,当读其中一片芯片的数据时,启动另一芯片开始转换。采用本方法4通道的最高采样速率可达120ks p s以上,2通道的最高采样速率可达240ks p s以上。 采集到的数据需要经过傅立叶变换,计算出编码器的细分误差。当数据量太大时,会给后续的数据处理带来很多麻烦;数据量太少时,又不能反映信号的真实情况。实验证明:编码器每个精码周期的最佳采样点数应在60~100点之间[4]。在本系统中采样点设定为85点,根据编码器加速度的变化,采样点会在附近波动。DSP在接收到采样命令后,对编码器信号进行采样,首先,判断编码器的转速,设定采样频率,保证一个周期的采样点数在85点左右,连续采样3个以上完整的周期,采样完成后将数据一并传给计算机处理。

2 数据处理

编码器输出的是角度信息,其输出信号是以角度为自变量的空间函数。如果数据采集卡的采样频率是固定的,并且,编码器是匀速转动,理论上可以得到等转角的角度信息。在编码器实验或工作时,数据采集卡的采样频率可以控制成固定采样频率,但编码器不可能是严格意义上的匀速运动,可以认为是加速度很小的等加速运动,所以,采集到的精码光电信号是非等转角的。在编码器工作时,采集2路相位差为π/2的正弦精码光电信号u sin和u cos,首先,计算编码器的加速度,再利用线性插值法进行等转角处理,得到一组新的数据u′

sin

和u′

cos

,由u′sin和u′cos组成的精码光电信号就是一组等转角的光电信号[5,6]。

编码器2路相位差为π/2的正弦精码光电信号u

a

和u

b

,精码光电信号通常含有直流电平、基波及高次谐波。高次谐波以二次和三次谐波为主要分量,故可其波形方程为

u

a

=u

a0

+u

a1

sinθ+u

a2

sin(2θ+φ

a2

)+

u

a3

sin(3θ+φ

a3

),(1) u b=u b0+u b1sin(θ+φb)+u b2sin[2(θ+φb)+φb2]+ u b3sin[2(θ+φb)+φb3],(2)

式中 u

a0

,u b0为正弦信号的直流电平;u a1,u b1为基波;u a2,

u

b2

为二次谐波;u

a3

,u

b3

为三次谐波。

编码器精码光电信号具有周期函数的性质,任何一个周期函数,都可以展开为如下的傅立叶级数

f(x)=a0+∑

n=1

(a

n

cos nx+b

n

sin nx).(3)若将式(3)中的正弦项和余弦项合并,则式(3)为

f(x)=a0+∑

n=1

A n sin(nx+φn).(4)

式(4)表明:一个周期函数可以由常数项a

与各次谐

波之和组成。其中,A

n

为f(x)的各次谐波的振幅;φ

n

为相应的各次谐波的初相角。这样,对实测数据信号进行谐波

分析,可以求出a

,A

n

和φ

n

由于信号u′

sin

和u′

cos

是编码器的等转角信号,可以对其进行谐波分析。利用软件VC++编写计算程序计算出式(1)和式(2)的波形参数,即求出精码光电信号的波形方程。编码器光电信号的细分技术是建立在一定信号波形(通常为正弦波)的基础上。当波形参数偏离预定参数时,就会产生细分误差。细分误差用相位差表示就是实际细分

88

第1期 赵长海,等:光电轴角编码器的细分误差快速测量系统 点相位tan -1

u a u b

与理论细分点相位tan -1

sin θ

cos

θ的差值,细分误差可以表示为

d

θ=φ-θ=tan -1u a u b

-tan

-1

sin θcos

θ.(5)

3 实验测量

某21位增量式编码器为8192对线/周光栅盘,经电子学256细分后,分辨力为0.6″。利用数据采集卡将差分放大后的2路精码光电信号与数据采集装置的2路输入端相连,通过人机操作界面运行数据采集程序。采集编码器精码光电信号放大后的电压值,接入计算机得到动态数据,并计算动态细分误差。利用二十一面体和自准直仪,任意选择一个细分周期

,测量静态细分误差,动态与静态细分误差曲线如图2所示。

图2 编码器动态与静态细分误差对比

F i g 2 Con tra st of st a ti c error and dynam i c error of encoder

4 结 论

本文提出了一种高精度编码器动态细分误差的快速测量系统,与传统的静态检测编码器细分误差方法相比,该方

法检测编码器动态细分误差的实验过程简便、检测速度快。不仅可用于实验室检测,也可以用于编码器工作现场对编码器动态细分误差进行评估。实验证明:该方法是可行的。参考文献:

[1] 董莉莉,熊经武.光电轴角编码器的发展动态[J ].光学精密

工程,2000,8(2):198-202.

[2] 汤天瑾,曹向群,林 斌.光电轴角编码器发展现状分析及展

望[J ].光学仪器,2005,27(1):90-95.

[3] 佘 林,冯长有,丁林辉.两步法测量编码器测角误差[J ].光

学精密工程,2004,12(1):66-70.

[4] 李 洪,冯长有,丁林辉.光电轴角编码器细分误差动态评估

方法[J ].传感技术学报,2005,18(4):927-930.

[5] 刘汉平,冯长有,丁林辉.L isssaj ous 曲线拟合法评估编码器细

分误差[J ].传感器与微系统,2006,25(2):70-72.

[6] 卢新然,李 洪,冯长有.光电轴角编码器细分误差的Matalab

仿真评估方法[J ].微计算机信息,2005,21(11):109-110.

作者简介:

赵长海(1980-),男,河南邓州人,博士研究生,主要从事光电轴角编码器和光电位移转换技术的研究。

98

光电编码器分类及作用

光电编码器分类及作用 光电编码器是一种通过光电转换将输出轴的机械几何位移量转换为脉冲或数字量的传感器,主要由光源、码盘、光学系统及电路4部分组成, 光电编码器主要有增量式编码器、绝对式编码器、混合式绝对值编码器、旋转变压器、正余弦伺服电机编码器等,其中增量式编码器、绝对式编码器、混合式绝对值编码器属于数字量编码器,旋转变压器、正余弦伺服电机编码器属于模拟量编码器. 一、增量式编码器 增量式编码器可以将位移转换成周期性的电信号,再把这个电信号转变成计数脉冲,通过计数设备来知道其位置.增量式光电编码器的特点是每产生一个输出脉冲信号就对应于一个增量位移,但是不能通过输出脉冲区别出在哪个位置上的增量。它能够产生与位移增量等值的脉冲信号,其作用是提供一种对连续位移量离散化或增量化以及位移变化(速度)的传感方法,它是相对于某个基准点的相对位置增量,不能够直接检测出轴的绝对位置信息。一般来说,增量式光电编码器输出A、B 两相互差90°电度角的脉冲信号(即所谓的两组正交输出信号),从而可方便地判断出旋转方向。同时还有用作参考零位的Z 相标志(指示)脉冲信号,码盘每旋转一周,只发出一个标志

信号。标志脉冲通常用来指示机械位置或对积累量清零。 二、绝对式编码器 绝对式编码器每一个位置对应一个确定的数字码,因此它的示值只与测量的起始和终止位置有关,而与测量的中间过程无关。其位置是由输出代码的读数确定的。当电源断开时,绝对型编码器并不与实际的位置分离。重新上电时,位置读数仍是当前的。绝对编码器能够直接进行数字量大的输出,在码盘上会有若干的码道,码道数就是二进制位数。在每条码道上都会由透光与不透光的扇形区域组成,通过采用光电传感器对信号进行采集。在码盘两侧分别设置有光源和光敏元件,这样光敏元件则能够根据是否接受到光信号进行电平的转换,输出二进制数。并且在不同位置输出不同的数字码。从而可以检测绝对位置。但是分辨率是由二进制的位数来决定的,也就是说精度取决于位数。优点:可以直接读出角度坐标的绝对值,没有累积误差,电源切除后位置信息不会丢失。编码器的抗干扰特性、数据的可靠性大大提高了。 三、混合式绝对值编码器 混合式绝对值编码器,它输出两组信息:一组信息用于检测磁极位置,带有绝对信息功能;另一组则完全同增量式编码器的输出信息。 四、旋转变压器 旋转变压器简称旋变,是一种可变耦合原理工作的交流控制电机。它的副方(次级)输出电压与转子转角呈确定的函数关系。由经过特殊电磁设计的高性能硅钢叠片和漆包线构成的,相比于采用光电

光电轴角编码器

光电轴角编码器 产品目录 长春华特光电技术有限公司 2006.09 目录 公司简介 1 第一篇绝对式光电编码器 2 ?E1032 3 ?E1035 4 ?E1040 5 ?E1065 6 ?E1090K 7 ?E1100 8 ?E1130K 9 ?E1150K 10 ?E1198K 11 ?E1220K 12 第二篇增量式光电编码器13 ?E2120 14 ?E2220K 15 第三篇多圈绝对式编码器16 ?E3032 17 ?E3065 18 ?E3085 19 第四篇金属盘绝对式编码器20 ?EM1085 21 ?EM1150K 22 前言

长春华特光电技术有限公司是一家新组建的光、机、电技术综合的科技企业,主要从事光电位移传感技术的研制与开发,以高技术为起点,以高等级光电编码器(光电角度传感器)为主导产品。 光电编码器广泛用于数控机床、机器人、雷达、光电经纬仪及军事、航天等领域,是自动化仪器、设备理想的数字化角度传感器。 本公司技术多样、综合交融、产品新颖、设计巧妙、结构紧凑,在两年多时间里先后开发出8位至24位各档次绝对式光电编码器10余种。其中E1100型20位绝对式光电编码器开始批量生产并出口。 刚刚开发出的金属反射式码盘绝对式编码器是国内仅有的、国际市场尚无商品出售的高新技术产品,是自主知识创新的成果,具有抗强冲击、强振动的突出特点,其抗强冲击可达1000M/S2 以上。 本公司以开发研制特种光电编码器为宗旨,为国内外用户提供各种专门设计的特殊要求的光电编码器,更欢迎国内外专家、厂商与我公司洽谈合作,共同携手为国际市场多栽几株奇花异草!让世界更精彩! 长春华特光电技术有限公司 地址:长春市南湖大路1876号9楼A室邮编:130022 E-mail:网址: 电话/传真:1 手机: 第一篇绝对式光电编码器 本篇所提供的编码器为常规型绝对式编码器。 绝对式编码器的核心元件是码盘。它是一个圆形的玻璃盘,上面刻有复杂而排列有序的图案。每一个角位置都有特定的通光与不通光

光电编码器的特性及应用

光电编码器的特性及应用 2009-04-09 15:31 1.光电编码器的工作原理 光电编码器,是一种通过光电转换将输出轴上的机械几何位移量转换成脉冲或数字量的传感器。这是目前应用最多的传感 器, 光电编码器是由光栅盘和光电检测装置组成。光栅盘是在一定直径的圆板上等分地开通若干个长方形孔。由于光电码盘与电动机同轴,电动机旋转时,光栅盘与电动 机同速旋转,经发光二极管等电子元件组成的检测装置检测输出若干脉冲信号,其原理示意图如图1所示;通过计算每秒光电编码器输出脉冲的个数就能反映当前电 动机的转速。此外,为判断旋转方向,码盘还可提供相位相差90o的两路脉冲信号。 根据检测原理,编码器可分为光学式、磁式、感应式和电容式。根据其刻度方法及信号输出形式,可分为增量式、绝对式以及混合式三种。 1.1增量式编码器 增 量式编码器是直接利用光电转换原理输出三组方波脉冲A、B和Z相; A、B两组脉冲相位差90o,从而可方便地判断出旋转方向,而Z相为每转一个脉冲,用于 基准点定位。它的优点是原理构造简单,机械平均寿命可在几万小时以上,抗干扰能力强,可靠性高,适合于长距离传输。其缺点是无法输出轴转动的绝对位置信 息。 1.2绝对式编码器 绝对编码器是直接输出数字量的传感器,在它的圆形码盘上沿径向有若干同心码道,每条道上由透 光和不透光的扇形区相间组成,相邻码道的扇区数目是双倍关系,码盘上的码道数就是它的二进制数码的位数,在码盘的一侧是光源,另一侧对应每一码道有一光敏 元件;当码盘处于不同位置时,各光敏元件根据受光照与否转换出相应的电平信号,形

成二进制数。这种编码器的特点是不要计数器,在转轴的任意位置都可读出一个固定的与位置相对应的数字码。显然,码道越多,分辨率就越高,对于一个具有 N位二进制分辨率的编码器,其码盘必须有N条码道。目前国内已有16位的绝对编码器产品。 绝对式编码器是利用自然二进制或循环二进制(葛 莱码)方式进行光电转换的。绝对式编码器与增量式编码器不同之处在于圆盘上透光、不透光的线条图形,绝对编码器可有若干编码,根据读出码盘上的编码,检测 绝对位置。编码的设计可采用二进制码、循环码、二进制补码等。它的特点是: 1.2.1可以直接读出角度坐标的绝对值; 1.2.2没有累积误差; 1.2.3电源切除后位置信息不会丢失。但是分辨率是由二进制的位数来决定的,也就是说精度取决于位数,目前有10位、14位等多种。 1.3混合式绝对值编码器 混合式绝对值编码器,它输出两组信息:一组信息用于检测磁极位置,带有绝对信息功能;另一组则完全同增量式编码器的输出信息。 光电编码器是一种角度(角速度)检测装置,它将输入给轴的角度量,利用光电转换原理 转换成相应的电脉冲或数字量,具有体积小,精度高,工作可靠,接口数字化等优点。它广泛应用于数控机床、回转台、伺服传动、机器人、雷达、军事目标测定等需要检测角度的装置和设备中。 2. 光电编码器的应用电路 2.1 EPC-755A光电编码器的应用 EPC-755A 光电编码器具备良好的使用性能,在角度测量、位移测量时抗干扰能力很强,并具有稳定可靠的输出脉冲信号,且该脉冲信号经计数后可得到被测量的数字信号。因 此,我们在研制汽车驾驶模拟器时,对方向盘旋转角度的测量选用EPC-755A光电编码器作为传感器,其输出电路选用集电极开路型,输出分辨率选用360 个脉冲/圈,考虑到汽车方向盘转动是双向的,既可顺时针旋转,也可逆时针旋转,需要对编码器的输出信号鉴相后才能计数。图2给出了光电编码器实际使用的鉴 相与双向计数电路,鉴相电路用1个D触发器和2个与非门组成,计数电路用3片74LS193组成。

光电编码器辨向电路

光电编码器 速度位置的数据在电机控制中起着非常重要的作用,其检测到的精确性能够直接影响电机控制的精度。速度的测量方法有多种,如感应式转速传感器、测速发电机、光电式转速传感器、霍尔转速传感器以及旋转变压器式转速传感器等。但目前调速系统速度以及位置反馈控制中应用较多的为光电编码器。 光电编码器是一种高精度的数字化检测仪器,是现代伺服系统广泛应用的角位移或者角速度的测量装置,它可以通过光电原理,将一个机械装置的角度或者位移量转化为电信号(数据串或者脉冲信号)。光电编码器可分为绝对式和增量式两种,其中,绝对式光电编码器具有输出信号与旋转信号对应的特点,但是精度欠缺,成本高;增量式光电编码器输出信号为脉冲信号,脉冲个数和相对旋转位移相关,与旋转的绝对位置无关,成本相对于绝对式更低,并且精度高、体积小、响应快、性能稳定等特点。如果预先设置一个基准位置,则可以利用增量式编码器完成绝对式编码器的功能,即也可以测出旋转的绝对位置。 实现绝对式编码器的功能,也即可以测出旋转的绝对位置。增量式光电编码器在高分辨率、大量程角速率、位移的测量中,它更具有优势。因而,在这个手指康复机器人系统中采用增量式光电编码器。 增量式光电编码器主要是由机械系统、数据扫描系统和电气系统三个部分组成。其中机械系统主要负责外壳和转动的支撑作用。电气系统的作用主要是保护、放大、抗干扰以及数据传输等等。 增量式光电脉冲编码器由光源、聚光镜、挡光板、码盘、检测光栅、光电检测器件和转换电路组成。 在光电码盘上刻度盘上均匀分布一定数量的光栅,光挡板(检测光栅)上刻有A、B相两组与光电码盘上光栅相对应的透光缝隙。增量式光电脉冲编码器工作时,光电码盘随着工作轴旋转,但是光挡板(检测光栅)保持不动。有光同时透过光电码盘和检测光栅时,电路中产生逻辑“1”信号,没有透光时产生逻辑“0”信号,从而产生了A、B两相的脉冲信号。由于检测光栅上的A、B相两个透光缝隙的节距与光电码盘上光栅的节距是一致的,并且这两组透光缝隙错开四分之一的节距,从而使得最终信号处理输出的信号存在90°的相位差。在大多数情况下,如若直接由编码器的光电检测器件获取信号,信号的电平较低,波形也不规则,不能适应于信号处理、控制和远距离传输的要求。所以,在编码器内还必须将此信号放大、整形。经过处理的输出信号近似于正弦波或者矩形波。由于矩形波输出信号易于进行数字处理,所以矩形信号输出在定位控制中得到广泛的应用。 正因为增量式光电编码器输出A、B 两相互差90°电度角的脉冲信号(即所谓的两组正交输出信号),从而可方便地判断出旋转方向。

空心轴不带内置轴承的角度编码器

本篇文章发表在《制造技术与机床》2003年4期 空心轴不带内置轴承的角度编码器 准确度±20”±0.1”,内径50 mm至10 m 作者:Dr.Ing.Rainer Hagl 翻译:王桂芳 关于作者 Ing. Rainer Hagl 先生为德国Stuttgart大学的博士毕业生生。1992 加入德国海德汉公司,现任海德汉公司旋转和角度编码器研发部主管。  数控或电子同步轴越来越普遍地使用无框架电机或密封式空心轴电机,尤其在机床行业,印刷机械和纺织机械。这对消除如同步齿型带等带来的机械传动误差,提高传动的位置精度,减少速度波动和提高传动的动态特性显得非常重要。也容比较易设计象附加轴,夹紧轴或材料处理轴的信号线和电源线。 这些电机的位置编码器相应地也许要单独的设计。编码器的空心轴内径相应需要50mm。对于带摆动轴的机床旋转工作台轴,其轴径由0.5 米到几米。如望远镜电机的方位和提升轴要求的直径在5米以上。 设计人员希望将编码器内置于电机或轴承中从而模块化。如果电机轴承和测量轴达到一定的精度,编码器可以不用内置轴承。本文主要介绍用于带空心轴的驱动电机的模块式编码器的研究动态以及该编码器的特征和与其它设计的对比。 精度和扫描原理 旋转编码器和角度编码器的精度定义为一圈内及一个信号周期内的位置偏差如(图 1)。模块式编码器在一圈内的位置偏差主要是由刻度盘相对于扫描头的径向跳动和刻度本身的误差引起的。

一个信号周期内的偏差 图 1:一个信号周期内的位置偏差u (上图) 和一圈内的位置偏差a (下图) 一圈内的位置偏差的绝大部分来源于轴承,测量轴的机械结构和安装产生的径向跳动。而一个信号周期内的位置偏差来自扫描质量和信号周期的质量。 上述两种位置偏差对驱动特性具有实质性的影响(表1)并要越小越好,尤其是数字式速度

光电编码器

光电编码器原理 光电编码器,是一种通过光电转换将输出轴上的机械几何位移量转换成脉冲或数字量的传感器。光电编码器每转输出600个脉冲,五线制。其中两根为电源线,三根为脉冲线(A相、B相、Z)。电源的工作电压为(+5~+24V)直流电源。光电编码器是由光栅盘和光电检测装置组成。光栅盘是在一定直径的圆板上等分地开通若干个长方形孔。由于光电码盘与电动机同轴,电动机旋转时,光栅盘与电动机同速旋转,经发光二极管等电子元件组成的检测装置检测输出若干脉冲信号;通过计算每秒光电编码器输出脉冲的个数就能反映当前电动机的转速。此外,为判定旋转方向,码盘还可提供相位相差90o的两路脉冲信号。 工作原理:当光电编码器的轴转动时A、B两根线都产生脉冲输出,A、B两相脉冲相差90度相位角,由此可测出光电编码器转动方向与电机转速。假如A相脉冲比B相脉冲超前则光电编码器为正转,否则为反转.Z线为零脉冲线,光电编码器每转一圈产生一个脉冲.主要用作计数。A线用来丈量脉冲个数,B线与A线配合可丈量出转动方向. 设N为电机转速 Δn=ND测-ND理 例如:我们车的速度为1.5m/s,轮子的直径220mm,C=D*Pi,电机控制在21.7转/秒,根据伺服系统的指标,设电机转速为1500转/分,故可求得当ND=21.7*60=130转/分时,光码盘每秒钟输出的脉冲数为: PD=130×600/60=1300个脉冲 当测出的脉冲个数与计算出的标准值有偏差时,可根据电压与脉冲个数的对应关系计算出输出给伺服系统的增量电压△U,经过D/A转换,再计算出增量脉冲个数,等下减往 摘要:位置检测装置作为数控机床的重要组成部分,其作用是检测位移量,并发出反馈信号。在现代数控伺服系统中广泛应用于角位移或角速率的测量。目前生产和使用的数控机床大多采用的是半闭环控制方式。 关键词:光电编码器;角位移;脉冲;传感器 光电编码器是一种旋转式位置传感器,在现代伺服系统中广泛应用于角位移或角速率的测量,它的转轴通常与被测旋转轴连接,随被测轴一起转动。它能将被测

高分辨率 高精度角度编码器

高分辨率,高精度角度编码器 机械制造业作为基础工业,其发展在国民经济中有着举足轻重的作用,而精密测量技术是它发展的基础和先决条件。测量的精度和效率在一定程度上决定了制造业乃至技术发展的水平。元素周期表的发明者门捷列夫说过:“从开始有测量的时候起,才开始有科学。没有测量,精密科学就没有意义”。新的测量方法标志着真正的进步,测试技术的水平是衡量一个国家科学技术水平的重要标志之一。仅就几何测量仪器的发展来看,在19世纪中叶以前,机械制造业中的主要测量工具是钢板刻线尺,测量精度为1mm。机械式测量器具,如游标卡尺和千分尺的出现,将测量精度提高到了0.01mm。量块出现以后,采用量块作为长度基准,大大推动了微差测量法的发展,将测量精度提高到了微米级。进入20世纪30年代、40年代以后,出现的电动量仪、光学量仪和气动量仪,以及诞生于近20年的激光干涉仪,隧道扫描显微镜,除继续使用机械式测量器具以外,还逐渐采用了基于几何光学与物理光学原理的光学量仪,这都极大的促进了当时技术的发展,为几何量的测量开辟了新的。 随着科学技术和制造业的发展,各个领域对测量微小尺寸的要求越来越迫切,传统的测量技术和设备难以在精度、效率及自动化程度方面完全满足要求,甚至根本无法实现。显然,融合当今的最新科学理论和技术成果,开发高效率的智能化精密测量系统有着重要的理论意义和实用价值。 角度是一个重要的计量单位,角度测量是计量技术的重要组成部分。不仅有以检测角度为目的的角度检测,还有为了检测的方便和可靠,将其他物理量也转换成角度量来进行检测的角位移检测。生产和科学的不断发展使得角度测

量越来越广泛地应用在工业、科研等领域,技术水平和测量准确度也在不断提高。 角度测量技术按照测量原理可以分为三大类:机械式测角技术、电磁式测角技术和光学测角技术。机械式和光学测角技术的研究起步较早,技术也已经非常成熟。光学测角方法比一般的机械和电磁方法有更高的准确度,而且更容易实现细分和测试过程的自动化,但使用我公司研究新的电感式测角技术将精度提高至±3″。在高精度角度测试技术领域,各种新型的测角技术不断涌现,成为高精度测角技术的主流方向。随着电子计算机技术的蓬勃发展,使得以近代波动光学为基础的光电检测法得以实现自动化,这极大地扩充了角度测量的应用范围。按照被测角性质可以分为静态角度测量和动态角度测量两种。高精度角度测试技术在静态角度测试领域己经日趋成熟,各种测试理论和方法日益完善。然而,实现动态角度的高精度测量,是测角技术领域的一个难点,也因此成为国内外测角技术研究的一个热点。 国内外角度测量的研究现状 1 机械测角法 测角技术中研究最早的是机械式测角法,主要以多齿分度盘为代表,它是一种基于机械分度定位原理的圆度分度技术。最早的多齿分度盘的雏形出现在20世纪20年代,完整的圆分度器件是由美国Gate公司研制成功的,并于1960年获得该技术专利,其分度为士o.25”。前苏联考纳斯机床厂研制的YLUI-05型角度测量仪最小分度间隔为15”,测量误差不大于O.1”。由于多齿分度盘的齿数不能无限增加,因此细分受到限制,由此而出现了差动细分方法。原理上,差动

第五章 测量误差的基本知识

第五章测量误差的基本知识 单选题 1、引起测量误差的因素概括起来有以下三个方面(B)。 A.观测者、观测方法、观测仪器 B.观测仪器、观测者、外界因素 C.观测方法、外界因素、观测者 D.观测仪器、观测方法、外界因素 2、测量误差来源于(A)。 A.仪器、观测者、外界条件 B.仪器不完善 C.系统误差 D.偶然误差 3、用测回法测水平角,盘左盘右角值相差1°是属于( D )。 A.系统误差 B.偶然误差 C.绝对误差 D.粗差 4、测量记录时,如有听错、记错,应采取(C)。 A.将错误数字涂盖 B. 将错误数字擦去 C. 将错误数字划去 D.返工重测重记 5、真误差是观测值与(A )之差。 A.真值 B.观测值与正数 C.中误差 D.相对误差 6、真误差为观测值与(C)之差。 A.平均 B.中误差 C.真值 D.改正数 7、钢尺的尺长误差对距离测量产生的影响属于(B )。 A.偶然误差 B.系统误差 C.偶然误差也可能是系统误差 D.既不是偶然误差也不是系统误差 8、下列误差中(A)为偶然误差。 A.照准误差和估读误差 B.横轴误差 C.水准管轴不平行与视准轴的误差 D.指标差 9、尺长误差和温度误差属(B)。 A.偶然误差 B.系统误差 C.中误差 D.粗差 10、用名义长度为30 m的钢尺量距,而该钢尺实际长度为30.004 m,用此钢尺丈量AB两点距离,由此产生的误差是属于(C)。 A.偶然误差 B.相对误差 C.系统误差 D.绝对误差 11、水准尺向前或向后方向倾斜对水准测量读数造成的误差是(B)。 A.偶然误差 B.系统误差

C.可能是偶然误差也可能是系统误差 D.既不是偶然误差也不是系统误差 12、普通水准尺的最小分划为1cm,估读水准尺mm位的误差属于(A)。 A.偶然误差 B.系统误差 C.可能是偶然误差也可能是系统误差 D.既不是偶然误差也不是系统误差 13、由于钢尺的不水平对距离测量所造成的误差是( B )。 A.偶然误差 B.系统误差 C.可能是偶然误差也可能是系统误差 D.既不是偶然误差也不是系统误差 14、经纬仪对中误差属(A) A.偶然误差 B.系统误差 C.中误差 D.容许误差 15、衡量一组观测值精度的指标是(A)。 A.中误差 B.相对误差 C.平均误差 D.容许误差 16、在距离丈量中衡量精度的方法是用(B)。 A.绝对误差 B.相对误差 C.标准差 D.中误差 17、工程测量中的最大误差一般取其中误差的(A )。 A.2倍 B.1倍 C.3倍 D.以上都不是 18、中误差反映的是(A)。 A.一组误差离散度的大小 B.真差的大小 C.似真差的大小 D.相对误差的大小 19、基线丈量的精度用相对误差来衡量,其表示形式为(A)。 A.平均值中误差与平均值之比 B.丈量值中误差与平均值之比 C.平均值中误差与丈量值之和之比 D.以上全不对 20、对三角形进行5次等精度观测,其真误差(闭合差)为:+04″;-03″;+01″;-02″;+06″,则该组观测值的精度(B)。 A.不相等 B.相等 C.最高为+01″ D.最低为-02″ 21、某基线丈量若干次计算得到平均长为540m,平均值之中误差为±0.05m,则该基线的相对误差为(C)。 A.0.0000925 B.1/12000 C.1/10000 D. 1/9000 22、下面是三个小组丈量距离的结果,只有(D)组测量的相对误差不低于1/5000的要求。 A.100m±0.025m B.250m±0.060m C.150m±0.035m D.200m±0.040m

光电编码器详解

光电编码器 光电编码器,是一种通过光电转换将输出轴上的机械几何位移量转换成脉冲或数字量的传感器。这是目前应用最多的传感器,光电编码器是由光栅盘和光电检测装置组成。根据检测原理,编码器可分为光学式、磁式、感应式和电容式。根据其刻度方法及信号输出形式,可分为增量式、绝对式以及混合式三种。绝对脉冲编码器:APC 增量脉冲编码器:SPC 1.光电编码器原理 光电编码器,是一种通过光电转换将输出轴上的机械几何位移量转换成脉冲或数字量的传感器。这是目前应用最多的传感器,光电编码器是由光栅盘和光电检测装置组成。光栅盘是在一定直径的圆板上等分地开通若干个长方形孔。由于光电码盘与电动机同轴,电动机旋转时,光栅盘与电动机同速旋转,经发光二极管等电子元件组成的检测装置检测输出若干脉冲信号,其原理示意图如图1所示;通过计算每秒光电编码器输出脉冲的个数就能反映当前电动机的转速。此外,为判断旋转方向,码盘还可提供相位相差90°的脉冲信号。 1.1 增量式编码器 增量式编码器是直接利用光电转换原理输出三组方波脉冲A、B和Z相;A、B两组脉冲相位差90,从而可方便地判断出旋转方向,而Z相为每转一个脉冲,用于基准点定位。 增量式光电编码器的特点是每产生一个输出脉冲信号就对应于一个增量 位移,但是不能通过输出脉冲区别出在哪个位置上的增量。它能够产生与位移增量等值的脉冲信号,其作用是提供一种对连续位移量离散化或增量化以及位移变化(速度)的传感方法,它是相对于某个基准点的相对位置增量,不能够直接检测出轴的绝对位置信息。一般来说,增量式光电编码器输出A、B两相互差 90度角的脉冲信号(即所谓的两组正交输出信号),从而可方便地判断出旋转方向。同时还有用作参考零位的Z相标志(指示)脉冲信号,码盘每旋转一周,只发出一个标志信号。标志脉冲通常用来指示机械位置或对积累量清零。 增量式光电编码器主要由光源、码盘、检测光栅、光电检测器件和转换电路组成。码盘上刻有节距相等的辐射状透光缝隙,相邻两个透光缝隙之间代表一个增量周期;检测光栅上刻有A、B两组与码盘相对应的透光缝隙,用以通过或阻挡光源和光电检测器件之间的光线。它们的节距和码盘上的节距相等,并且两组透光缝隙错开1/4节距,使得光电检测器件输出的信号在相位上相差电度角。当码盘随着被测转轴转动时,检测光栅不动,光线透过码盘和检测光栅上的透过缝隙照射到光电检测器件上,光电检测器件就输出两组相位相差电度角的近似于正弦波的电信号,电信号经过转换电路的信号处理,可以得到被测轴的转角或速度信息。

轴角位置数模转换器RDC设计原理

1 概述 轴角位置模数转换器(Resolver-Digital-Converter, RDC)是一个低成本具有12位分辨率的单片跟踪式轴角位置模数转换器 主要应用有,马达控制、机床控制、机器人控制、过程控制、动力转向控制、集成启动/发电控制及电动车动力驱动控制 1.1I/O接口 Input: 差分模拟输入 sin/sinlo. Cos/coslo. Output:1) 绝对位置和速度输出:并行和串行12-位数据 增量编码器仿真输出(1024脉冲/转) 可编程正旋振荡器输出(DDS) 1.2主要技术指标 1000RPS最大跟踪速率,12为分辨率 可编程正旋振荡器输出(10、12、15、20KHz) 角度跟踪精度可达22角分 小尺寸:44脚- LQFP封装 图中线圈A与线圈B互相垂直。如果将线圈C输入正弦电压,并旋转线圈C,那么在线圈A与线圈B中将感应出两个电压, V A = KE C Sin θ V B = KE C Cos θ where E C = E I Sinωt; K是旋转变压器的变比 So that V A = K E I Sinωt Sin θ (SIN) V B = K E I Sinωt Cos θ (COS)

用MATLAB的SIMULIK模块构造出两信号的波形如下图所示意 图2:调制后的高频SIN/COS波形图

如果我们用 Va 乘以Cos φ,Vb 乘以Sin φ,并将它们在一个减误差放大器中相减,从而产生= K E I Sin ωt Sin θ Cos φ ? K E I Sin ωt Cos θ Sin φ 生角φ,使Ve 变成0。基本上,我们会设计一个电路,此 图4:系统的设计框图 了实现输入信号的幅值匹配调整以及高频滤波。见下图: V E = K E I Sin ωt Sin (θ ?φ ) 我们会设计一个电路来产电路是一个带有相位感应检测器、积分器及电压控制型振荡器的闭环系统,它使Sin (θ ?φ )趋向于零。其数字输出,在一定的 精确度上,与旋转变压器轴的夹角大致相同。图4是轴角位置模数转换器的框图。 1.4 几个主要电路的实现 输入buffer 电路:目的:为5:对应的PSPICE 仿真波形如图6 图5:输入BUFFER 电路

编码器原理结构图

光电编码器原理结构图 增量式光电旋转编码器 所谓编码器即是将某种物理量转换为数字格式的装置。运动控制系统中的编码器的作用是将位置和角度等参数转换为数字量。可采用电接触、磁效应、电容效应和光电转换等机理,形成各种类型的编码器。 运动控制系统中最常见的编码器是光电编码器。 光电编码器根据其用途的不同分为旋转光电编码器和直线光电编码器,分别用于测量旋转角度和直线尺寸。光电编码器的关键部件是光电编码装置,在旋转光电编码器中是圆形的码盘(codewheel或codedisk),而在直线光电编码器中则是直尺形的码尺(codestrip)。码盘和码尺根据用途和成本的需要,可由金属、玻璃和聚合物等材料制作,其原理都是在运动过程中产生代表运动位置的数字化的光学信号。

图12.1可用于说明透射式旋转光电编码器的原理。在与被测轴同心的码盘上刻制了按一定编码规则形成的遮光和透光部分的组合。在码环的一边是发光二极管或白炽灯光源,另一边则是接收光线的光电器件。码盘随着被测轴的转动使得透过码盘的光束产生间断,通过光电器件的接收和电子线路的处理,产生特定电信号的输出,再经过数字处理可计算出位置和速度信息。 上面所说的是透射式光电编码器的原理。显然利用光反射原理也可制作光电编码器。 增量编码器的码盘如图12.2所示。在现代高分辨率码盘上,透光和遮光部分都是很细的窄缝和线条,因此也被称为圆光栅。相邻的窄缝之间的夹角称为栅距角,透光窄缝和遮光部分大约各占栅距角的1/2。码盘的分辨率以每转计数(CPR-counts per revolution)表示,亦即码盘旋转一周在光电检测部分可产生的脉冲数。例如某码盘的CPR为2048,则可以分辨的角度为10,311.8”。在码盘上,往往还另外安排一个(或一组)特殊的窄缝,用于产生定位(index)或零位(zero)信号。测量装置或运动控制系统可利用这个信号产生回 零或复位操作。

第五章 测量误差基本知识(答案)

第五章测量误差基本知识(答案) 第五章测量误差基本知识 1、研究测量误差的目的是什么?产生观测误差的原因是哪些? 研究测量误差的目的:分析测量误差产生的原因和性质;掌握误差产生的规律,采取各种措施消除或减小其误差影响,合理地处理含有误差的测量结果,求出未知量的最可靠值;正确地评定观测值的精度。 产生观测误差的原因:观测者,测量仪器和工具以及外界自然环境的影响 2、测量误差分哪些?在测量工作中如何消除或削弱? 测量误差按照误差性质分:偶然误差、系统误差 系统误差采用以下方法减弱或消除 (1)用计算的方法加以改正 (2)检校仪器。对测量时所使用的仪器进行检验与校正,把误差减小到最小程度。 (3)采用合理的观测方法,可使误差自行消除或减弱。 偶然误差:不能用计算改正或用一定的观测方法简单地加以消除。只能根据偶然误差的特性,合理地处理观测数据;减少偶然误差的影响,求出未知量的最可靠值,并衡量其精度。 3、偶然误差和系统误差有什么区别?偶然误差有哪些特性? 偶然误差大小和符号都没有表现出一致的倾向,从表面上看没有任何规律性 特性: (1)在一定观测条件下,偶然误差的绝对值有一定的限值,或者说,超出该限值的误差出现的概率为零;(2)绝对值较小的误差比绝对值较大的误差出现的概率大; (3)绝对值相等的正、负误差出现的概率相同; (4)同一量的等精度观测,其偶然误差的算术平均值,随着观测次数n的无限增大而趋于零。 4、衡量精度的标准有哪些?在对同一量的一组等精度观测中,中误差与真误差有何区别? 通常采用中误差、容许误差、相对误差来衡量误差精度标准 观测值的中误差并不等于它的真误差,只是一组观测值的精度指标,中误差越小,相应的观测成果的精度就越高,反之精度就越低 5、对某直线丈量了7次,观测结果分别为168.135,168.148,168.120,168.129,168.150,168.137,168.131,试计算其算术平均值、算术平均值的中误差和算术平均值的相对误差。算术平均值 L=(168.135+168.148+168.120+168.129+168.150+168.137+168.131)/7 =168.136 中误差:m=±=0.013 算术平均值中误差:M=±0.005 算术平均值相对误差:

光电编码器选型及同步电机转速和转子位置测量

光电编码器选型及同步电机转速和 转子位置测量3 于庆广 刘葵 王冲 袁炜嘉 钱炜慷 张程 清华大学 摘要:光电轴角编码器,又称光电角位置传感器,是电气传动系统中用来测量电动机转速和转子位置的核心部件。对绝对式、增量式和混合式光电轴编码器的工作原理进行了综述,介绍了光电轴编码器的选型原则、转子速度的测量和转子位置的测量方法。最后,给出了同步电动机变频调速系统中转速和转子位置测量系统的实现。 关键词:光电轴编码器 混合式轴编码器 同步电机转子位置 Choice of Optical2encoder and Measure of Speed and R otor Place of Synchronous Motor Yu Qingguang Liu Kui Wang Chong Yuan Weijia Qian Weikang Zhang Cheng Abstract:Optical2encoder,which is also called photoelectric angei2position sensor,is the core device in measurement of motor speed and rotor position in drive system.There summarize the operating principle of ab2 solute、incremental and hybrid encoder,introduce the choice principle of optical2encoder model and the measur2 ing method of rotor speed and rotor position.The implementation of measuring method of rotor speed and ro2 tor position in variable frequency speed2regulated system of synchronous motor is also given. K eyw ords:optical2encoder hybrid2encoder rotor place of synchronous motor 1 引言 光电轴角编码器,又称轴编码器或光电角位置传感器。光电轴编码器以高精度计量圆光栅为检测元件,通过光电转换,将输入的角位置信息转换成相应的数字代码,并与计算机等控制器及显示装置相连接,实现数字测量、数字控制与数字显示[1]。光电轴编码器具有较高的性能价格比,已普遍应用在雷达、光电经纬仪、地面指挥仪、机器人、数控机床和高精度闭环调速系统等诸多领域,是电动机等自动化设备理想的角度和速度传感器。轴编码器主要分为增量式、绝对式与混合式3种,其中增量式轴编码器主要用于测量转子速度,绝对式轴编码器主要用于测量转子的空间位置,混合式轴编码器是增量式轴编码器与绝对式轴编码器的组合。后端加入处理芯片之后,3种轴编码器都具有测量转子速度与空间位置的功能。本文综述了光电轴编码器的种类和选型原则,介绍了转速和转子位置的测量方法;最后,给出了同步电动机变频调速系统中转速和转子位置测量系统的实现。 2 光电轴编码器 2.1 增量式轴编码器 典型的光电轴角编码器结构原理如图1 所示。 图1 光电轴编码器结构图 71 3清华大学大学生SR T项目(031T0144)

编码器的分类、特点及其应用详解

编码器的分类、特点及其应用详解 编码器(encoder)是将信号(如比特流)或数据进行编制、转换为可用以通讯、传输和存储的信号形式的设备。编码器把角位移或直线位移转换成电信号,前者称为码盘,后者称为码尺。按照读出方式编码器可以分为接触式和非接触式两种;按照工作原理编码器可分为增量式和绝对式两类。增量式编码器是将位移转换成周期性的电信号,再把这个电信号转变成计数脉冲,用脉冲的个数表示位移的大小。绝对式编码器的每一个位置对应一个确定的数字码,因此它的示值只与测量的起始和终止位置有关,而与测量的中间过程无关。 根据检测原理,编码器可分为光学式、磁式、感应式和电容式,根据其刻度方法及信号输出形式,可分为增量式、绝对式以及混合式三种。 1.1 增量式编码器增量式编码器是直接利用光电转换原理输出三组方波脉冲A、B和Z 相;A、B两组脉冲相位差90度,从而可方便的判断出旋转方向,而Z相为每转一个脉冲,用于基准点定位。它的优点是原理构造简单,机械平均寿命可在几万小时以上,抗干扰能力强,可靠性高,适合于长距离传输。其缺点是无法输出轴转动的绝对位置信息。 1.2 绝对式编码器绝对式编码器是直接输出数字的传感器,在它的圆形码盘上沿径向有若干同心码盘,每条道上有透光和不透光的扇形区相间组成,相邻码道的扇区树木是双倍关系,码盘上的码道数是它的二进制数码的位数,在吗盘的一侧是光源,另一侧对应每一码道有一光敏元件,当吗盘处于不同位置时,各光敏元件根据受光照与否转换出相应的电平信号,形成二进制数。这种编码器的特点是不要计数器,在转轴的任意位置都可读书一个固定的与位置相对应的数字码。显然,吗道必须N条吗道。目前国内已有16位的绝对编码器产品。 1.3 混合式绝对编码器混合式绝对编码器,它输出两组信息,一组信息用于检测磁极位置,带有绝对信息功能;另一组则完全同增量式编码器的输出信息。 二、光电编码器的应用增量型编码器与绝对型编码器区别 1、角度测量

光电与旋变编码器的区别

光电编码器与旋转变压器的区别 一、 旋转变压器 优点: 1、结构简单,坚固耐用,维护方便,非接触式结构,定子和转子分开安装; 2、对机械和电气噪音不敏感,抗干扰能力好,具有很高的可靠性; 3、高速性能优秀,可配置到60000rpm的电机上; 4、绝对值零点位置,电机旋转一圈产出一个正余弦波; 5、能应用在各种恶劣环境中,具有防尘、防油、防敲击等特点。 旋转变压器是自动控制装置中的一类精密控制微电机。从物理本质看,可以认为是一种可以旋转的变压器,这种变压器的原、副边绕组分别放置在定子和转子上。当旋转变压器的原边施加交流电压励磁时,其副边输出电压将与转子的转角保持某种严格的函数关系,从而实现角度的检测、解算或传输等功能。 注:最大的应用在主轴定位中,因为绝对值零点位置,主轴定位时不再像光电编码器要寻找到Z相信号再执行定位,也不会出现因Z相受到干扰造成主轴定位不准的问题。装旋转变压器的主轴电机,主轴定位速度快,定位精度高。 缺点:低速响应不理想,低速性能稍差;精度不高,分辨率只有1024。

旋转变压器角度位置伺服控制系统 S2 S1 S4 S3S2 S1 S4S3XB 变速齿轮 上图是一个比较典型的角度位置伺服控制系统框图 永磁交流同步伺服电动机速度控制系统框图

B A 旋转变压器的结构 根据转子电信号引进、引出的方式,分为有刷旋转变压器和无刷旋转变压器。在有刷旋转变压器中,定、转子上都有绕组。转子绕组的电信号,通过滑动接触,由转子上的滑环和定子上的电刷引进或引出。由于有刷结构的存在,使得旋转变压器的可靠性很难得到保证。因此目前这种结构形式的旋转变压器应用的很少,我们着重于介绍无刷旋转变压器。 目前无刷旋转变压器有三种结构形式。 1)环形变压器式旋转变压器 图1示出环形变压器式无刷旋转变压器的结构。这种结构很好地实现了无刷、无接触。图中右侧部分是典型的旋转变压器的定、转子,在结构上和有刷旋转变压器一样的定、转子绕组,作信号变换。左侧是环形变压器。它的一个绕组在定子上,一个在转子上,同心放置。 转子上的环形变压器绕组和作信号变换的转子绕组相联,它的电信号的输入输出 由环形变压器完成。 A—普通旋转变压器 B—环形变压器 图1无刷式旋转变压器结构示意 2)磁阻式旋转变压器 图2是一个10对极的磁阻式旋转变压器的示意图。磁阻式旋转变压器的励磁绕组和输出绕组放在同一套定子槽内,固定不动。但励磁绕组和输出绕组的形式不一样。两相绕组的输出信号,仍然应该是随转角作正弦变化、彼此相差90°电角度的电信号。转子磁极形状作特殊设计,使得气隙磁场近似于正弦形。转子形状的设计也必须满足所要求的极数。可以看出,转子的形状决定了极对数和气隙磁场的形状。磁阻式旋转变压器一般都做成分装式,不组合在一起,以分装形式提供给用户,由用户自己组装配合。

第五章测量误差的基本知识

第五章测量误差的基本知识 一、简答题 (1)简述什么是过失误差?什么是系统误差?什么是偶然误差? (2)什么是真误差?什么是似真误差?什么是最或是值? (3)什么是等精度观测?什么是非等精度观测?什么是权? (4)偶然误差有哪些特性? (5)为什么算术平均值是真值的最优估计值? (6)写出衡量误差精度的指标。 (7)写出误差传播定律的公式,并说明该公式的用途。 (8)试推导求n次等精度直接观测值的算术平均值的中误差计算公式。

(9) 试写出白塞尔公式,并说明公式中各符号的含义。 二、单选题 5-1、钢尺的尺长误差对距离测量的影响属于( )。 A 偶然误差 B 系统误差 C 偶然误差也可能是系统误差 D 既不是偶然误差也不是系统误差 5-2、丈量一正方形的4条边长,其观测中误差均为±2cm ,则该正方形周长的中误差为±( )cm 。 A 0.5 B 2 C 4 D 8 5-3、用DJ 6级光学经纬仪测量一测回方向值的中误差为±6″,则一测回角值的中误差为 ( )。 A ±12″ B ±8.5″ C ±10″ D ±6″ 5-4、普通水准尺的最小分划为1cm ,估读水准尺mm 位的误差属于( )。 A 偶然误差 B 系统误差 C 可能是偶然误差也可能是系统误差 D 既不是偶然误差也不是系统误差 5-5、设对某角观测一测回的中误差为±3″,要使该角的观测精度达到±1.4″,需观测( ) 个测回。 A 2 B 3 C 4 D 5 5-6、某三角形两个内角的测角中误差分别为±6″与±2″,且误差独立,则余下一个角的中误差为( )。 A ±6.3″ B ±8″ C ±4″ D ±12″ 5-7、测量了两段距离及其中误差分别为:1d =136.46m±0.015m ,2d =960.76m±0.025m ,比较它们测距精度的结果为( )。 A 1d 精度高 B 精度相同 C 2d 精度高 D 无法比较 5-8、水准尺向前或向后方向倾斜对水准测量读数造成的误差是( )。 A 偶然误差 B 系统误差 C 可能是偶然误差也可能是系统误差 D 既不是偶然误差也不是系统误差 5-9、对某边观测4测回,观测中误差为±2cm ,则算术平均值的中误差为( )。 A ±0.5cm B ±1cm C ±4cm D ±2cm 5-10、某段距离丈量的平均值为100m ,其往返较差为+4mm ,其相对误差为( )。 A 1/25000 B 1/25 C 1/2500 D 1/250 三、计算题 (1)用钢尺丈量某一距离,丈量结果为312.581m 、312.546m 。312.551m ,312.532m 、312.537m 、312.499m ,试求该组观测值中误差与算术平均值中误差,及最后的结果。

光电轴角编码器细分误差动态评估方法

第18卷 第4期2005年12月 传感技术学报 CHIN ES E JOURNAL OF S ENSORS AND ACTUA TORS Vol.18 No.4Dec.2005 Dynamic Evaluation Method for Interpolation Errors in Photoelectric Encoder L I Hong 1,2 ,F EN G Chang 2you 1,D I N G L i n 2hui 1 1.Changchun I nstit ute of Optics ,Fine Mechanics and Physics ,Chi nese A cadem y of S ciences ,Changchun 130033,China; 2.Graduate S chool of t he Chinese A cadem y of S ciences ,Bei j ing 100039,China Abstract :A dynamic evaluation met hod of interpolation errors in p hotoeletric encoder is described 。While t he p hotoelet ric encoder is uniform motion ,t he data acquisition card samplings two p hotoelet ric signal wit h a p hase differece of π/2,t hen t he two signals are p rocessed to be equiangular data and harmonic analysis to calculate t he waveform parameters of signal equations.Finally ,t he signal waveform equations are p ut into t he interpolatio n error equations to make out t he interpolation errors 。Experimental result s show t hat t he met hod is effective. K ey w ords :p hotoelect ric signals ;interpolation errors ;equiangular p rocessing ;harmonic analysis EEACC :7230;7320C 光电轴角编码器细分误差动态评估方法 李 洪1 ,2 ,冯长有1,丁林辉1 1.中国科学院长春光学精密机械与物理研究所,长春130033; 2.中国科学院研究生院,北京100039 收稿日期:2005205204 基金项目:国防军工技改项目资助(C02S04S ) 作者简介:李洪(19802),男,硕士研究生,主要从事光电传感技术研究,lh_qq @https://www.wendangku.net/doc/ae4309341.html,. 摘 要:介绍了一种光电轴角编码器细分误差动态评估的方法。光电轴角编码器匀速转动时,采集相位差为π/2的两路精 码正弦光电信号,然后对采集到的光电信号进行等转角数据处理及谐波分析,从而求出光电信号波形参数,波形参数确定后可以建立波形方程。再将波形方程代入到细分误差的计算公式求出细分误差。试验结果表明,该方法是有效的。 关键词:光电信号;细分误差;等转角处理;谐波分析 中图分类号:TP212112;TN 762 文献标识码:A 文章编号:100529490(2005)0420927204 光电轴角编码器,又称光电角位置传感器,是一种集光、机、电为一体的精密数字测角装置,它把轴角信息转换成数字代码,与计算机和显示装置连接后可实现动态测量和实时控制。随着编码器在工业、国防、航天等部门的广泛应用,对编码器的技术指标提出了越来越高的要求。测角误差是编码器的重要技术指标,细分误差是测角误差的主要分量,细分误差的检定要求用精密的小角度测量仪器在严格 的实验室条件下进行。编码器在工作时细分误差的动态检测,以及在码盘光栅节距较小、细分份数较多的情况,还没有一种成熟的检测手段。对编码器精码光电信号的分析处理,求出光电信号的参数方程从理论上计算编码器的细分误差是一个新的研究方向。

相关文档